1
|
Kandel SL, Eide JD, Firrincieli A, Finger FL, Lafta AM, Fugate KK. Sugar beet root susceptibility to storage rots and downregulation of plant defense genes increases with time in storage. Sci Rep 2024; 14:27235. [PMID: 39516509 PMCID: PMC11549380 DOI: 10.1038/s41598-024-78323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Storage rots are a significant cause of postharvest losses for the sugar beet crop, however, intrinsic physiological and genetic factors that determine the susceptibility of roots to pathogen infection and disease development are unknown. Research, therefore, was carried out to evaluate the disease development in sugar beet roots caused by two common storage pathogens as a function of storage duration and storage temperature, and to identify changes in the expression of defense genes that may be influencing the root susceptibility to disease. To evaluate root susceptibility to disease, freshly harvested roots were inoculated with Botrytis cinerea or Penicillium vulpinum on the day of harvest or after 12, 40, or 120 d storage at 5 or 12 °C and the weight of rotted tissue present in the roots after incubation for 35 d after inoculation were determined. Disease susceptibility and progression to B. cinerea and P. vulpinum increased with storage duration with elevations in susceptibility occurring more rapidly to B. cinerea than P. vulpinum. Also, B. cinerea was more aggressive than P. vulpinum and caused greater rotting and tissue damage in postharvest sugar beet roots. Storage temperature had minimal effect on root susceptibility to these rot-causing pathogens. Changes in defense gene expression were determined by sequencing mRNA isolated from uninoculated roots that were similarly stored for 12, 40 or 120 d at 5 or 12 °C. As susceptibility to rot increased during storage, concurrent changes in defense-related gene expression were identified, including the differential expression of 425 pathogen receptor and 275 phytohormone signal transduction pathway-related genes. Furthermore, plant resistance and hormonal signaling genes that were significantly altered in expression coincident with the change in root susceptibility to storage rots were identified. Further investigation into the function of these genes may ultimately elucidate methods by which storage rot resistance in sugar beet roots may be improved in the future.
Collapse
Affiliation(s)
- Shyam L Kandel
- Edward T. Schafer Agricultural Research Center, Sugarbeet Research Unit, USDA-ARS, Fargo, ND, 58102, USA.
| | - John D Eide
- Edward T. Schafer Agricultural Research Center, Sugarbeet Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Fernando L Finger
- Departamento de Agronomia, Universidade Federal de Vicosa, 36570-900, Vicosa, MG, Brazil
| | - Abbas M Lafta
- Department of Plant Pathology, North Dakota State University, P.O. Box 6050, Fargo, ND, 58108, USA
| | - Karen K Fugate
- Edward T. Schafer Agricultural Research Center, Sugarbeet Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| |
Collapse
|
2
|
Zhuravleva АА, Silkova ОG. Disomic chromosome 3R(3B) substitution causes a complex of meiotic abnormalities in bread wheat Triticum aestivum L. Vavilovskii Zhurnal Genet Selektsii 2024; 28:365-376. [PMID: 39027125 PMCID: PMC11253021 DOI: 10.18699/vjgb-24-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 07/20/2024] Open
Abstract
Triticum aestivum L. lines introgressed with alien chromosomes create a new genetic background that changes the gene expression of both wheat and donor chromosomes. The genes involved in meiosis regulation are localized on wheat chromosome 3B. The purpose of the present study was to investigate the effect of wheat chromosome 3B substituted with homoeologous rye chromosome 3R on meiosis regulation in disomically substituted wheat line 3R(3B). Employing immunostaining with antibodies against microtubule protein, α-tubulin, and the centromere-specific histone (CENH3), as well as FISH, we analyzed microtubule cytoskeleton dynamics and wheat and rye 3R chromosomes behavior in 3R(3B) (Triticum aestivum L. variety Saratovskaya 29 × Secale cereale L. variety Onokhoiskaya) meiosis. The results revealed a set of abnormalities in the microtubule dynamics and chromosome behavior in both first and second divisions. A feature of metaphase I in 3R(3B) was a decrease in the chiasmata number compared with variety Saratovskaya 29, 34.9 ± 0.62 and 41.92 ± 0.38, respectively. Rye homologs 3R in 13.18 % of meiocytes did not form bivalents. Chromosomes were characterized by varying degrees of compaction; 53.33 ± 14.62 cells lacked a metaphase plate. Disturbances were found in microtubule nucleation at the bivalent kinetochores and in their convergence at the spindle division poles. An important feature of meiosis was the asynchronous chromosome behavior in the second division and dyads at the telophase II in 8-13 % of meiocytes, depending on the anther studied. Considering the 3R(3B) meiotic phenotype, chromosome 3B contains the genes involved in the regulation of meiotic division, and substituting 3B3B chromosomes with rye 3R3R does not compensate for their absence.
Collapse
Affiliation(s)
- А А Zhuravleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - О G Silkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Xia Y, Han Q, Shu J, Jiang S, Kang X. Stomatal density suppressor PagSDD1 is a "generalist" gene that promotes plant growth and improves water use efficiency. Int J Biol Macromol 2024; 262:129721. [PMID: 38296132 DOI: 10.1016/j.ijbiomac.2024.129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
The serine protease SDD1 regulates stomatal density, but its potential impact on plant vegetative growth is unclear. Our study reveals a substantial upregulation of SDD1 in triploid poplar apical buds and leaves, suggesting its possible role in their growth regulation. We cloned PagSDD1 from poplar 84 K (Populus alba × P. glandulosa) and found that overexpression in poplar, soybean, and lettuce led to decreased leaf stomatal density. Furthermore, PagSDD1 represses PagEPF1, PagEPF2, PagEPFL9, PagSPCH, PagMUTE, and PagFAMA expression. In contrast, PagSDD1 promotes the expression of its receptors, PagTMM and PagERECTA. PagSDD1-OE poplars showed stronger drought tolerance than wild-type poplars. Simultaneously, PagSDD1-OE poplar, soybean, and lettuce had vegetative growth advantages. RNA sequencing revealed a significant upregulation of genes PagLHCB2.1 and PagGRF5, correlating positively with photosynthetic rate, and PagCYCA3;4 and PagEXPA8 linked to cell division and differentiation in PagSDD1-OE poplars. This increase promoted leaf photosynthesis, boosted auxin and cytokinin accumulation, and enhanced vegetative growth. SDD1 overexpression can increase the biomass of poplar, soybean, and lettuce by approximately 70, 176, and 155 %, respectively, and increase the water use efficiency of poplar leaves by over 52 %, which is of great value for the molecular design and breeding of plants with growth and water-saving target traits.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Han
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Jianghai Shu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Shenxiu Jiang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
5
|
Figueroa NE, Franz P, Luzarowski M, Martinez-Seidel F, Moreno JC, Childs D, Ziemblicka A, Sampathkumar A, Andersen TG, Tsiavaliaris G, Chodasiewicz M, Skirycz A. Protein interactome of 3',5'-cAMP reveals its role in regulating the actin cytoskeleton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1214-1230. [PMID: 37219088 DOI: 10.1111/tpj.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Identification of protein interactors is ideally suited for the functional characterization of small molecules. 3',5'-cAMP is an evolutionary ancient signaling metabolite largely uncharacterized in plants. To tap into the physiological roles of 3',5'-cAMP, we used a chemo-proteomics approach, thermal proteome profiling (TPP), for the unbiased identification of 3',5'-cAMP protein targets. TPP measures shifts in the protein thermal stability upon ligand binding. Comprehensive proteomics analysis yielded a list of 51 proteins significantly altered in their thermal stability upon incubation with 3',5'-cAMP. The list contained metabolic enzymes, ribosomal subunits, translation initiation factors, and proteins associated with the regulation of plant growth such as CELL DIVISION CYCLE 48. To functionally validate obtained results, we focused on the role of 3',5'-cAMP in regulating the actin cytoskeleton suggested by the presence of actin among the 51 identified proteins. 3',5'-cAMP supplementation affected actin organization by inducing actin-bundling. Consistent with these results, the increase in 3',5'-cAMP levels, obtained either by feeding or by chemical modulation of 3',5'-cAMP metabolism, was sufficient to partially rescue the short hypocotyl phenotype of the actin2 actin7 mutant, severely compromised in actin level. The observed rescue was specific to 3',5'-cAMP, as demonstrated using a positional isomer 2',3'-cAMP, and true for the nanomolar 3',5'-cAMP concentrations reported for plant cells. In vitro characterization of the 3',5'-cAMP-actin pairing argues against a direct interaction between actin and 3',5'-cAMP. Alternative mechanisms by which 3',5'-cAMP would affect actin dynamics, such as by interfering with calcium signaling, are discussed. In summary, our work provides a specific resource, 3',5'-cAMP interactome, as well as functional insight into 3',5'-cAMP-mediated regulation in plants.
Collapse
Affiliation(s)
- Nicolás E Figueroa
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Marcin Luzarowski
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- Core facility for Mass Spectrometry and Proteomics, Zentrum fur Molekulare Biologie der Universitat Heidelberg, Im Neuenheimer Feld 329, Heidelberg, 69120, Germany
| | - Federico Martinez-Seidel
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Juan C Moreno
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Dorothee Childs
- European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, 69117, Germany
| | - Aleksandra Ziemblicka
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Tonni Grube Andersen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
| | - Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm, 14476, Germany
- Boyce Thompson Institute (BTI), Cornell University, 533 Tower Rd., Ithaca, New York, 14853, USA
| |
Collapse
|
6
|
Siodmak A, Shahul Hameed UF, Rayapuram N, Völz R, Boudsocq M, Alharbi S, Alhoraibi H, Lee YH, Blilou I, Arold ST, Hirt H. Essential role of the CD docking motif of MPK4 in plant immunity, growth, and development. THE NEW PHYTOLOGIST 2023; 239:1112-1126. [PMID: 37243525 DOI: 10.1111/nph.18989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/28/2023] [Indexed: 05/29/2023]
Abstract
MAPKs are universal eukaryotic signaling factors whose functioning is assumed to depend on the recognition of a common docking motif (CD) by its activators, substrates, and inactivators. We studied the role of the CD domain of Arabidopsis MPK4 by performing interaction studies and determining the ligand-bound MPK4 crystal structure. We revealed that the CD domain of MPK4 is essential for interaction and activation by its upstream MAPKKs MKK1, MKK2, and MKK6. Cys181 in the CD site of MPK4 was shown to become sulfenylated in response to reactive oxygen species in vitro. To test the function of C181 in vivo, we generated wild-type (WT) MPK4-C181, nonsulfenylatable MPK4-C181S, and potentially sulfenylation mimicking MPK4-C181D lines in the mpk4 knockout background. We analyzed the phenotypes in growth, development, and stress responses, revealing that MPK4-C181S has WT activity and complements the mpk4 phenotype. By contrast, MPK4-C181D cannot be activated by upstream MAPKK and cannot complement the phenotypes of mpk4. Our findings show that the CD motif is essential and is required for activation by upstream MAPKK for MPK4 function. Furthermore, growth, development, or immunity functions require upstream activation of the MPK4 protein kinase.
Collapse
Affiliation(s)
- Anna Siodmak
- Plant Science Program, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Umar F Shahul Hameed
- Bioscience Program, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Naganand Rayapuram
- Plant Science Program, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ronny Völz
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Marie Boudsocq
- Université Paris Saclay, CNRS, INRAE, Univ Evry, Université Paris Cité, Institute of Plant Sciences Paris-Saclay IPS2, 91190, Gif sur-Yvette, France
| | - Siba Alharbi
- Bioscience Program, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hannah Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia
| | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Ikram Blilou
- Plant Science Program, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Bioscience Program, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090, Montpellier, France
| | - Heribert Hirt
- Plant Science Program, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030, Vienna, Austria
| |
Collapse
|
7
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
8
|
Zhou S, Luo Q, Nie Z, Wang C, Zhu W, Hong Y, Zhao J, Pei B, Ma W. CRK41 Modulates Microtubule Depolymerization in Response to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1285. [PMID: 36986973 PMCID: PMC10051889 DOI: 10.3390/plants12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Qiuling Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Changhui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baolei Pei
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
9
|
Lin X, Xiao Y, Song Y, Gan C, Deng X, Wang P, Liu J, Jiang Z, Peng L, Zhou D, He X, Bian J, Zhu C, Liu B, He H, Xu J. Rice microtubule-associated protein OsMAP65-3.1, but not OsMAP65-3.2, plays a critical role in phragmoplast microtubule organization in cytokinesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1030247. [PMID: 36388546 PMCID: PMC9643714 DOI: 10.3389/fpls.2022.1030247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/10/2023]
Abstract
In plants, MAP65 preferentially cross-links the anti-parallel microtubules (MTs) and plays an important role for cytokinesis. However, the functions of MAP65 isoforms in rice (Oryza sativa. L) are largely unknown. Here, we identified two MAP65-3 homologs in rice, OsMAP65-3.1 and OsMAP65-3.2. We found that both OsMAP65-3.1 and OsMAP65-3.2 were similar in dimerization and location to AtMAP65-3, and the expression of either rice genes driven by the AtMAP65-3 promoter suppressed the cytokinesis failure and growth defect of atmap65-3. However, OsMAP65-3.1 with native promoter also recovered the atmap65-3, but OsMAP65-3.2 with its own promoter had no effects. OsMAP65-3.1 but not OsMAP65-3.2 was actively expressed in tissues enriched with dividing cells. R1R2R3-Myb (MYB3R) transcription factors directly bound to the OsMAP65-3.1 promoter but not that of OsMAP65-3.2. Furthermore, osmap65-3.2 had no obvious phenotype, while either osmap65-3.1 or osmap65-3.1(+/-) was lethal. The eminent MTs around the daughter nuclei and cytokinesis defects were frequently observed in OsMAP65-3.1-defective plants. Taken together, our findings suggest that OsMAP65-3.1, rather than OsMAP65-3.2, plays essential roles in rice cytokinesis resulting from their differential expression which were passably directly regulated by OsMYB3Rs.
Collapse
Affiliation(s)
- Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yongping Song
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Gan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jialong Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Limei Peng
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Darrier B, Colas I, Rimbert H, Choulet F, Bazile J, Sortais A, Jenczewski E, Sourdille P. Location and Identification on Chromosome 3B of Bread Wheat of Genes Affecting Chiasma Number. PLANTS (BASEL, SWITZERLAND) 2022; 11:2281. [PMID: 36079661 PMCID: PMC9460588 DOI: 10.3390/plants11172281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Understanding meiotic crossover (CO) variation in crops like bread wheat (Triticum aestivum L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome. We showed that deletion of the short arm did not change the total number of chiasmata genome-wide, whereas this latter was reduced by ~35% while deleting the long arm. Contrary to what was hypothesized in a previous study, deletion of the long arm does not disturb the initiation of the synaptonemal complex (SC) in early meiotic stages. However, progression of the SC is abnormal, and we never observed its completion when the long arm is deleted. By studying six different deletion lines (missing different parts of the long arm), we revealed that at least two genes located in both the proximal (C-3BL2-0.22) and distal (3BL7-0.63-1.00) deletion bins are involved in the control of chiasmata, each deletion reducing the number of chiasmata by ~15%. We combined sequence analyses of deletion bins with RNA-Seq data derived from meiotic tissues and identified a set of genes for which at least the homoeologous copy on chromosome 3B is expressed and which are involved in DNA processing. Among these genes, eight (CAP-E1/E2, DUO1, MLH1, MPK4, MUS81, RTEL1, SYN4, ZIP4) are known to be involved in the recombination pathway.
Collapse
Affiliation(s)
- Benoit Darrier
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
- Syngenta, Toulouse Innovation Centre 12 Chemin de l’Hobit, 31790 Saint-Sauveur, France
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hélène Rimbert
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Frédéric Choulet
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Jeanne Bazile
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Aurélien Sortais
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Pierre Sourdille
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Regulatory Mechanisms of Mitogen-Activated Protein Kinase Cascades in Plants: More than Sequential Phosphorylation. Int J Mol Sci 2022; 23:ijms23073572. [PMID: 35408932 PMCID: PMC8998894 DOI: 10.3390/ijms23073572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play crucial roles in almost all biological processes in plants. They transduce extracellular cues into cells, typically through linear and sequential phosphorylation and activation of members of the signaling cascades. However, accumulating data suggest various regulatory mechanisms of plant MAPK cascades in addition to the traditional phosphorylation pathway, in concert with their large numbers and coordinated roles in plant responses to complex ectocytic signals. Here, we highlight recent studies that describe the uncanonical mechanism of regulation of MAPK cascades, regarding the activation of each tier of the signaling cascades. More particularly, we discuss the unusual role for MAPK kinase kinases (MAPKKKs) in the regulation of MAPK cascades, as accumulating data suggest the non-MAPKKK function of many MAPKKKs. In addition, future work on the biochemical activation of MAPK members that needs attention will be discussed.
Collapse
|
12
|
Mitogen-Activated Protein Kinase and Substrate Identification in Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23052744. [PMID: 35269886 PMCID: PMC8911294 DOI: 10.3390/ijms23052744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense response. However, the molecular mechanisms underlying MAPK cascades are still very elusive, largely because of our poor understanding of how they relay the signals. The MAPK cascade is composed of MAPK, MAPKK, and MAPKKK. They transfer signals through the phosphorylation of MAPKKK, MAPKK, and MAPK in turn. MAPKs are organized into a complex network for efficient transmission of specific stimuli. This review summarizes the research progress in recent years on the classification and functions of MAPK cascades under various conditions in plants, especially the research status and general methods available for identifying MAPK substrates, and provides suggestions for future research directions.
Collapse
|
13
|
Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep 2022; 23:e53817. [PMID: 35041234 PMCID: PMC8811656 DOI: 10.15252/embr.202153817] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/26/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are important signaling modules regulating diverse biological processes. During the past 20 years, much progress has been made on the functions of MAPK cascades in plants. This review summarizes the roles of MAPKs, known MAPK substrates, and our current understanding of MAPK cascades in plant development and innate immunity. In addition, recent findings on the molecular links connecting surface receptors to MAPK cascades and the mechanisms underlying MAPK signaling specificity are also discussed.
Collapse
Affiliation(s)
- Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
14
|
Mitogen-Activated Protein Kinase 4-Regulated Metabolic Networks. Int J Mol Sci 2022; 23:ijms23020880. [PMID: 35055063 PMCID: PMC8779387 DOI: 10.3390/ijms23020880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Mitogen-activated protein kinase 4 (MPK4) was first identified as a negative regulator of systemic acquired resistance. It is also an important kinase involved in many other biological processes in plants, including cytokinesis, reproduction, and photosynthesis. Arabidopsis thaliana mpk4 mutant is dwarf and sterile. Previous omics studies including genomics, transcriptomics, and proteomics have revealed new functions of MPK4 in different biological processes. However, due to challenges in metabolomics, no study has touched upon the metabolomic profiles of the mpk4 mutant. What metabolites and metabolic pathways are potentially regulated by MPK4 are not known. Metabolites are crucial components of plants, and they play important roles in plant growth and development, signaling, and defense. Here we used targeted and untargeted metabolomics to profile metabolites in the wild type and the mpk4 mutant. We found that in addition to the jasmonic acid and salicylic acid pathways, MPK4 is involved in polyamine synthesis and photosynthesis. In addition, we also conducted label-free proteomics of the two genotypes. The integration of metabolomics and proteomics data allows for an insight into the metabolomic networks that are potentially regulated by MPK4.
Collapse
|
15
|
Identification of MPK4 kinase interactome using TurboID proximity labeling proteomics in Arabidopsis thaliana. Methods Enzymol 2022; 676:369-384. [DOI: 10.1016/bs.mie.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Shi L, Zhang K, Xie L, Yang M, Xie B, He S, Liu Z. The Pepper Mitogen-Activated Protein Kinase CaMAPK7 Acts as a Positive Regulator in Response to Ralstonia solanacearum Infection. Front Microbiol 2021; 12:664926. [PMID: 34295316 PMCID: PMC8290481 DOI: 10.3389/fmicb.2021.664926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways play a vital role in multiple plant processes, including growth, development, and stress signaling, but their involvement in response to Ralstonia solanacearum is poorly understood, particularly in pepper plants. Herein, CaMAPK7 was identified from the pepper genome and functionally analyzed. The accumulations of CaMAPK7 transcripts and promoter activities were both significantly induced in response to R. solanacearum strain FJC100301 infection, and exogenously applied phytohormones, including methyl jasmonate (MeJA), brassinolide (BR), salicylic acid (SA), and ethephon (ETN), were decreased by abscisic acid (ABA) treatment. Virus-induced gene silencing (VIGS) of CaMAPK7 significantly enhanced the susceptibility of pepper plants to infection by R. solanacearum and downregulated the defense-related marker genes, including CaDEF1, CaPO2, CaSAR82A, and CaWRKY40. In contrast, the ectopic overexpression of CaMAPK7 in transgenic tobacco enhanced resistance to R. solanacearum and upregulated the defense-associated marker genes, including NtHSR201, NtHSR203, NtPR4, PR1a/c, NtPR1b, NtCAT1, and NtACC. Furthermore, transient overexpression of CaMAPK7 in pepper leaves triggered intensive hypersensitive response (HR)-like cell death, H2O2 accumulation, and enriched CaWRKY40 at the promoters of its target genes and drove their transcript accumulations, including CaDEF1, CaPO2, and CaSAR82A. Taken together, these data indicate that R. solanacearum infection induced the expression of CaMAPK7, which indirectly modifies the binding of CaWRKY40 to its downstream targets, including CaDEF1, CaPO2, and CaSAR82A, ultimately leading to the activation of pepper immunity against R. solanacearum. The protein that responds to CaMAPK7 in pepper plants should be isolated in the future to build a signaling bridge between CaMAPK7 and CaWRKY40.
Collapse
Affiliation(s)
- Lanping Shi
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kan Zhang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linjing Xie
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingxing Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baixue Xie
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqin Liu
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Samakovli D, Tichá T, Vavrdová T, Závorková N, Pecinka A, Ovečka M, Šamaj J. HEAT SHOCK PROTEIN 90 proteins and YODA regulate main body axis formation during early embryogenesis. PLANT PHYSIOLOGY 2021; 186:1526-1544. [PMID: 33856486 PMCID: PMC8260137 DOI: 10.1093/plphys/kiab171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
The YODA (YDA) kinase pathway is intimately associated with the control of Arabidopsis (Arabidopsis thaliana) embryo development, but little is known regarding its regulators. Using genetic analysis, HEAT SHOCK PROTEIN 90 (HSP90) proteins emerge as potent regulators of YDA in the process of embryo development and patterning. This study is focused on the characterization and quantification of early embryonal traits of single and double hsp90 and yda mutants. HSP90s genetic interactions with YDA affected the downstream signaling pathway to control the development of both basal and apical cell lineage of embryo. Our results demonstrate that the spatiotemporal expression of WUSCHEL-RELATED HOMEOBOX 8 (WOX8) and WOX2 is changed when function of HSP90s or YDA is impaired, suggesting their essential role in the cell fate determination and possible link to auxin signaling during early embryo development. Hence, HSP90s together with YDA signaling cascade affect transcriptional networks shaping the early embryo development.
Collapse
Affiliation(s)
- Despina Samakovli
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Tichá
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Vavrdová
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Natálie Závorková
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc 779 00, Czech Republic
| | - Miroslav Ovečka
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Jozef Šamaj
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| |
Collapse
|
18
|
Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity. Proc Natl Acad Sci U S A 2021; 118:2004670118. [PMID: 33419940 DOI: 10.1073/pnas.2004670118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In many eukaryotic systems during immune responses, mitogen-activated protein kinases (MAPKs) link cytoplasmic signaling to chromatin events by targeting transcription factors, chromatin remodeling complexes, and the RNA polymerase machinery. So far, knowledge on these events is scarce in plants and no attempts have been made to focus on phosphorylation events of chromatin-associated proteins. Here we carried out chromatin phosphoproteomics upon elicitor-induced activation of Arabidopsis The events in WT were compared with those in mpk3, mpk4, and mpk6 mutant plants to decipher specific MAPK targets. Our study highlights distinct signaling networks involving MPK3, MPK4, and MPK6 in chromatin organization and modification, as well as in RNA transcription and processing. Among the chromatin targets, we characterized the AT-hook motif containing nuclear localized (AHL) DNA-binding protein AHL13 as a substrate of immune MAPKs. AHL13 knockout mutant plants are compromised in pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species production, expression of defense genes, and PAMP-triggered immunity. Transcriptome analysis revealed that AHL13 regulates key factors of jasmonic acid biosynthesis and signaling and affects immunity toward Pseudomonas syringae and Botrytis cinerea pathogens. Mutational analysis of the phosphorylation sites of AHL13 demonstrated that phosphorylation regulates AHL13 protein stability and thereby its immune functions.
Collapse
|
19
|
Takáč T, Křenek P, Komis G, Vadovič P, Ovečka M, Ohnoutková L, Pechan T, Kašpárek P, Tichá T, Basheer J, Arick M, Šamaj J. TALEN-Based HvMPK3 Knock-Out Attenuates Proteome and Root Hair Phenotypic Responses to flg22 in Barley. FRONTIERS IN PLANT SCIENCE 2021; 12:666229. [PMID: 33995462 PMCID: PMC8117018 DOI: 10.3389/fpls.2021.666229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 05/26/2023]
Abstract
Mitogen activated protein kinases (MAPKs) integrate elicitor perception with both early and late responses associated with plant defense and innate immunity. Much of the existing knowledge on the role of plant MAPKs in defense mechanisms against microbes stems from extensive research in the model plant Arabidopsis thaliana. In the present study, we investigated the involvement of barley (Hordeum vulgare) MPK3 in response to flagellin peptide flg22, a well-known bacterial elicitor. Using differential proteomic analysis we show that TALEN-induced MPK3 knock-out lines of barley (HvMPK3 KO) exhibit constitutive downregulation of defense related proteins such as PR proteins belonging to thaumatin family and chitinases. Further analyses showed that the same protein families were less prone to flg22 elicitation in HvMPK3 KO plants compared to wild types. These results were supported and validated by chitinase activity analyses and immunoblotting for HSP70. In addition, differential proteomes correlated with root hair phenotypes and suggested tolerance of HvMPK3 KO lines to flg22. In conclusion, our study points to the specific role of HvMPK3 in molecular and root hair phenotypic responses of barley to flg22.
Collapse
Affiliation(s)
- Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Křenek
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavol Vadovič
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Ludmila Ohnoutková
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Petr Kašpárek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Vestec, Czechia
| | - Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Mark Arick
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
20
|
Máthé C, M-Hamvas M, Freytag C, Garda T. The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic-Facts and Questions. Int J Mol Sci 2021; 22:975. [PMID: 33478110 PMCID: PMC7835740 DOI: 10.3390/ijms22020975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP-GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole plant development. Overall, PP2A has essential roles in membrane interactions of plant cell and it is crucial for plant development and stress responses.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.M.-H.); (C.F.); (T.G.)
| | | | | | | |
Collapse
|
21
|
Genome-Wide Identification and Analysis of MKK and MAPK Gene Families in Brassica Species and Response to Stress in Brassica napus. Int J Mol Sci 2021; 22:ijms22020544. [PMID: 33430412 PMCID: PMC7827818 DOI: 10.3390/ijms22020544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are common and conserved signal transduction pathways and play important roles in various biotic and abiotic stress responses and growth and developmental processes in plants. With the advancement of sequencing technology, more systematic genetic information is being explored. The work presented here focuses on two protein families in Brassica species: MAPK kinases (MKKs) and their phosphorylation substrates MAPKs. Forty-seven MKKs and ninety-two MAPKs were identified and extensively analyzed from two tetraploid (B. juncea and B. napus) and three diploid (B. nigra, B. oleracea, and B. rapa) Brassica species. Phylogenetic relationships clearly distinguished both MKK and MAPK families into four groups, labeled A–D, which were also supported by gene structure and conserved protein motif analysis. Furthermore, their spatial and temporal expression patterns and response to stresses (cold, drought, heat, and shading) were analyzed, indicating that BnaMKK and BnaMAPK transcript levels were generally modulated by growth, development, and stress signals. In addition, several protein interaction pairs between BnaMKKs and C group BnaMAPKs were detected by yeast two-hybrid assays, in which BnaMKK3 and BnaMKK9 showed strong interactions with BnaMAPK1/2/7, suggesting that interaction between BnaMKKs and C group BnaMAPKs play key roles in the crosstalk between growth and development processes and abiotic stresses. Taken together, our data provide a deeper foundation for the evolutionary and functional characterization of MKK and MAPK gene families in Brassica species, paving the way for unraveling the biological roles of these important signaling molecules in plants.
Collapse
|
22
|
Wang Z, Gou X. Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. Int J Mol Sci 2020; 21:ijms21207638. [PMID: 33076465 PMCID: PMC7590044 DOI: 10.3390/ijms21207638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of protein kinase broadly involved in various signal pathways in eukaryotes. In plants, MAPK cascades regulate growth, development, stress responses and immunity by perceiving signals from the upstream regulators and transmitting the phosphorylation signals to the downstream signaling components. To reveal the interactions between MAPK cascades and their upstream regulators is important for understanding the functional mechanisms of MAPKs in the life span of higher plants. Typical receptor-like protein kinases (RLKs) are plasma membrane-located to perceive endogenous or exogenous signal molecules in regulating plant growth, development and immunity. MAPK cascades bridge the extracellular signals and intracellular transcription factors in many RLK-mediated signaling pathways. This review focuses on the current findings that RLKs regulate plant development through MAPK cascades and discusses questions that are worth investigating in the near future.
Collapse
|
23
|
Vavrdová T, Křenek P, Ovečka M, Šamajová O, Floková P, Illešová P, Šnaurová R, Šamaj J, Komis G. Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:693. [PMID: 32582243 PMCID: PMC7290007 DOI: 10.3389/fpls.2020.00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
Microtubule bundling is an essential mechanism underlying the biased organization of interphase and mitotic microtubular systems of eukaryotes in ordered arrays. Microtubule bundle formation can be exemplified in plants, where the formation of parallel microtubule systems in the cell cortex or the spindle midzone is largely owing to the microtubule crosslinking activity of a family of microtubule associated proteins, designated as MAP65s. Among the nine members of this family in Arabidopsis thaliana, MAP65-1 and MAP65-2 are ubiquitous and functionally redundant. Crosslinked microtubules can form high-order arrays, which are difficult to track using widefield or confocal laser scanning microscopy approaches. Here, we followed spatiotemporal patterns of MAP65-2 localization in hypocotyl cells of Arabidopsis stably expressing fluorescent protein fusions of MAP65-2 and tubulin. To circumvent imaging difficulties arising from the density of cortical microtubule bundles, we use different superresolution approaches including Airyscan confocal laser scanning microscopy (ACLSM), structured illumination microscopy (SIM), total internal reflection SIM (TIRF-SIM), and photoactivation localization microscopy (PALM). We provide insights into spatiotemporal relations between microtubules and MAP65-2 crossbridges by combining SIM and ACLSM. We obtain further details on MAP65-2 distribution by single molecule localization microscopy (SMLM) imaging of either mEos3.2-MAP65-2 stochastic photoconversion, or eGFP-MAP65-2 stochastic emission fluctuations under specific illumination conditions. Time-dependent dynamics of MAP65-2 were tracked at variable time resolution using SIM, TIRF-SIM, and ACLSM and post-acquisition kymograph analysis. ACLSM imaging further allowed to track end-wise dynamics of microtubules labeled with TUA6-GFP and to correlate them with concomitant fluctuations of MAP65-2 tagged with tagRFP. All different microscopy modules examined herein are accompanied by restrictions in either the spatial resolution achieved, or in the frame rates of image acquisition. PALM imaging is compromised by speed of acquisition. This limitation was partially compensated by exploiting emission fluctuations of eGFP which allowed much higher photon counts at substantially smaller time series compared to mEos3.2. SIM, TIRF-SIM, and ACLSM were the methods of choice to follow the dynamics of MAP65-2 in bundles of different complexity. Conclusively, the combination of different superresolution methods allowed for inferences on the distribution and dynamics of MAP65-2 within microtubule bundles of living A. thaliana cells.
Collapse
|
24
|
Ovečka M, Luptovčiak I, Komis G, Šamajová O, Samakovli D, Šamaj J. Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:734. [PMID: 32582258 PMCID: PMC7296145 DOI: 10.3389/fpls.2020.00734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 05/04/2023]
Abstract
Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.
Collapse
|
25
|
Yang Y, Huang W, Wu E, Lin C, Chen B, Lin D. Cortical Microtubule Organization during Petal Morphogenesis in Arabidopsis. Int J Mol Sci 2019; 20:E4913. [PMID: 31623377 PMCID: PMC6801907 DOI: 10.3390/ijms20194913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weihong Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Endian Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Three Main Genes in the MAPK Cascade Involved in the Chinese Jujube-Phytoplasma Interaction. FORESTS 2019. [DOI: 10.3390/f10050392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is an important economic forest species and multipurpose fruit tree in the family of Rhamnaceae. Phytoplasmas are significant prokaryotic pathogens, associated with more than 1000 plant diseases. Jujube witches’ broom disease (JWB) is a typical phytoplasma disease, caused by ‘Candidatus Phytoplasma ziziphi’. Mitogen-activated protein kinase (MAPK) cascades are highly universal signal transduction modules and play crucial roles in regulating innate immune responses in plants. Thus, in the current study, systematical expression profiles of 10 ZjMPK and 4 ZjMPKK genes were conducted in plantlets with JWB disease, plantlets recovered from JWB disease, the tissues showing different disease symptoms, and resistant/susceptible cultivars infected by JWB phytoplasma. We found that most ZjMPK and ZjMKK genes exhibited significant up- or down-regulation expression under phytoplasma infection, but the top three differentially expressed genes (DEGs) were ZjMPK2, ZjMKK2 and ZjMKK4, which showed the biggest times of gene’s significant difference expression in all materials. Based on STRING database analysis, ZjMKK2 and ZjMPK2 were involved in the same plant-pathogen interaction pathway, and Yeast two-hybrid screening showed that ZjMKK2 could interact with ZjMPK2. Finally, we deduced a pathway of jujube MAPK cascades which response to ‘Candidatus Phytoplasma ziziphi’ infection. Our study presents the first gene-family-wide investigation on the systematical expression analysis of MAPK and MAPKK genes in Chinese jujube under phytoplasma infection. These results provide valuable information for the further research on the signaling pathway of phytoplasma infection in Chinese jujube.
Collapse
|
27
|
Zhang W, Song J, Yue S, Duan K, Yang H. MhMAPK4 from Malus hupehensis Rehd. decreases cell death in tobacco roots by controlling Cd 2+ uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:230-240. [PMID: 30388541 DOI: 10.1016/j.ecoenv.2018.09.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/13/2018] [Accepted: 09/29/2018] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) induces cell death in plant roots. Mitogen-activated protein kinase (MAPK) plays a role in the regulation of cell death induced by Cd in plant roots. In this study, MhMAPK4 was isolated from the roots of Malus hupehensis. Subcellular localization showed that the MhMAPK4 protein was located in the cell membrane and cytoplasm and is a transmembrane protein that is characterized by hydrophily. The expression of MhMAPK4 in the roots of M. hupehensis was up-regulated by Cd sulfate and Cd chloride. Phenotypic comparison under Cd stress showed that the growth of wild-type (WT) tobacco was lower than the transgenic lines overexpressing MhMAPK4. The fresh weight and the root length of WT also was lower than that of the transgenic tobacco. The net Cd2+ influx in the tobacco roots was decreased by the overexpression of MhMAPK4, as was root Cd accumulation. The recovery time of the Cd2+ influx to stable state in the transgenic tobacco was also shorter than the WT. The expression of iron-regulated transporter 1 (NtIRT1) and natural resistance associated macrophage protein 5 (NtNRAMP5) was relatively low in the transgenic lines under Cd stress. Cell death and apoptosis in the tobacco roots was reduced following the overexpression of MhMAPK4. The activity of vacuolar processing enzyme (VPE) and the transcript level of VPE in the transgenic tobacco was lower than that of WT under Cd stress. In addition, the electrolyte leakage and malondialdehyde and hydrogen peroxide contents in the transgenic tobacco were lower than those of WT, whereas the antioxidant enzyme activity and expression were higher. These results suggest that MhMAPK4 regulates Cd accumulation by mediating Cd2+ uptake by the roots, and controls Cd-caused cell death by adjusting VPE activity.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Jianfei Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Songqing Yue
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Kaixuan Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
28
|
Zhang T, Schneider JD, Lin C, Geng S, Ma T, Lawrence SR, Dufresne CP, Harmon AC, Chen S. MPK4 Phosphorylation Dynamics and Interacting Proteins in Plant Immunity. J Proteome Res 2019; 18:826-840. [PMID: 30632760 DOI: 10.1021/acs.jproteome.8b00345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Arabidopsis MAP kinase 4 (MPK4) has been proposed to be a negative player in plant immunity, and it is also activated by pathogen-associated molecular patterns (PAMPs), such as flg22. The molecular mechanisms by which MPK4 is activated and regulates plant defense remain elusive. In this study, we investigated Arabidopsis defense against a bacterial pathogen Pseudomonas syringae pv tomato ( Pst) DC3000 when Brassica napus MPK4 ( BnMPK4) is overexpressed. We showed an increase in pathogen resistance and suppression of jasmonic acid (JA) signaling in the BnMPK4 overexpressing (OE) plants. We also showed that the OE plants have increased sensitivity to flg22-triggered reactive oxygen species (ROS) burst in guard cells, which resulted in enhanced stomatal closure compared to wild-type (WT). During flg22 activation, dynamic phosphorylation events within and outside of the conserved TEY activation loop were observed. To elucidate how BnMPK4 functions during the defense response, we used immunoprecipitation coupled with mass spectrometry (IP-MS) to identify BnMPK4 interacting proteins in the absence and presence of flg22. Quantitative proteomic analysis revealed a shift in the MPK4-associated protein network, providing insight into the molecular functions of MPK4 at the systems level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Craig P Dufresne
- Thermo Fisher Scientific , 1400 Northpoint Parkway , West Palm Beach , Florida 33407 , United States
| | | | | |
Collapse
|
29
|
Lin F, Krishnamoorthy P, Schubert V, Hause G, Heilmann M, Heilmann I. A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J 2019; 38:embj.2018100303. [PMID: 30617084 DOI: 10.15252/embj.2018100303] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Plant cytokinesis involves membrane trafficking and cytoskeletal rearrangements. Here, we report that the phosphoinositide kinases PI4Kβ1 and PI4Kβ2 integrate these processes in Arabidopsis thaliana (Arabidopsis) roots. Cytokinetic defects of an Arabidopsis pi4kβ1 pi4kβ2 double mutant are accompanied by defects in membrane trafficking. Specifically, we show that trafficking of the proteins KNOLLE and PIN2 at the cell plate, clathrin recruitment, and endocytosis is impaired in pi4kβ1 pi4kβ2 double mutants, accompanied by unfused vesicles at the nascent cell plate and around cell wall stubs. Interestingly, pi4kβ1 pi4kβ2 plants also display ectopic overstabilization of phragmoplast microtubules, which guide membrane trafficking at the cell plate. The overstabilization of phragmoplasts in the double mutant coincides with mislocalization of the microtubule-associated protein 65-3 (MAP65-3), which cross-links microtubules and is a downstream target for inhibition by the MAP kinase MPK4. Based on similar cytokinetic defects of the pi4kβ1 pi4kβ2 and mpk4-2 mutants and genetic and physical interaction of PI4Kβ1 and MPK4, we propose that PI4Kβ and MPK4 influence localization and activity of MAP65-3, respectively, acting synergistically to control phragmoplast dynamics.
Collapse
Affiliation(s)
- Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
30
|
Vavrdová T, ˇSamaj J, Komis G. Phosphorylation of Plant Microtubule-Associated Proteins During Cell Division. FRONTIERS IN PLANT SCIENCE 2019; 10:238. [PMID: 30915087 PMCID: PMC6421500 DOI: 10.3389/fpls.2019.00238] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/12/2019] [Indexed: 05/20/2023]
Abstract
Progression of mitosis and cytokinesis depends on the reorganization of cytoskeleton, with microtubules driving the segregation of chromosomes and their partitioning to two daughter cells. In dividing plant cells, microtubules undergo global reorganization throughout mitosis and cytokinesis, and with the aid of various microtubule-associated proteins (MAPs), they form unique systems such as the preprophase band (PPB), the acentrosomal mitotic spindle, and the phragmoplast. Such proteins include nucleators of de novo microtubule formation, plus end binding proteins involved in the regulation of microtubule dynamics, crosslinking proteins underlying microtubule bundle formation and members of the kinesin superfamily with microtubule-dependent motor activities. The coordinated function of such proteins not only drives the continuous remodeling of microtubules during mitosis and cytokinesis but also assists the positioning of the PPB, the mitotic spindle, and the phragmoplast, affecting tissue patterning by controlling cell division plane (CDP) orientation. The affinity and the function of such proteins is variably regulated by reversible phosphorylation of serine and threonine residues within the microtubule binding domain through a number of protein kinases and phosphatases which are differentially involved throughout cell division. The purpose of the present review is to provide an overview of the function of protein kinases and protein phosphatases involved in cell division regulation and to identify cytoskeletal substrates relevant to the progression of mitosis and cytokinesis and the regulation of CDP orientation.
Collapse
|
31
|
Vavrdová T, Šamajová O, Křenek P, Ovečka M, Floková P, Šnaurová R, Šamaj J, Komis G. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. PLANT METHODS 2019; 15:22. [PMID: 30899319 PMCID: PMC6408805 DOI: 10.1186/s13007-019-0406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the present work, we provide an account of structured illumination microscopy (SIM) imaging of fixed and immunolabeled plant probes. We take advantage of SIM, to superresolve intracellular structures at a considerable z-range and circumvent its low temporal resolution capacity during the study of living samples. Further, we validate the protocol for the imaging of fixed transgenic material expressing fluorescent protein-based markers of different subcellular structures. RESULTS Focus is given on 3D imaging of bulky subcellular structures, such as mitotic and cytokinetic microtubule arrays as well as on the performance of SIM using multichannel imaging and the quantitative correlations that can be deduced. As a proof of concept, we provide a superresolution output on the organization of cortical microtubules in wild-type and mutant Arabidopsis cells, including aberrant preprophase microtubule bands and phragmoplasts in a cytoskeletal mutant devoid of the p60 subunit of the microtubule severing protein KATANIN and refined details of cytoskeletal aberrations in the mitogen activated protein kinase (MAPK) mutant mpk4. We further demonstrate, in a qualitative and quantitative manner, colocalizations between MPK6 and unknown dually phosphorylated and activated MAPK species and we follow the localization of the microtubule associated protein 65-3 (MAP65-3) in telophase and cytokinetic microtubular arrays. CONCLUSIONS 3D SIM is a powerful, versatile and adaptable microscopy method for elucidating spatial relationships between subcellular compartments. Improved methods of sample preparation aiming to the compensation of refractive index mismatches, allow the use of 3D SIM in the documentation of complex plant cell structures, such as microtubule arrays and the elucidation of their interactions with microtubule associated proteins.
Collapse
Affiliation(s)
- T. Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - O. Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Křenek
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - M. Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Floková
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - R. Šnaurová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - J. Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - G. Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
32
|
Vaškebová L, Šamaj J, Ovečka M. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. ANNALS OF BOTANY 2018; 122:889-901. [PMID: 29293922 PMCID: PMC6215051 DOI: 10.1093/aob/mcx180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. METHODS Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. KEY RESULTS Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. CONCLUSIONS Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development.
Collapse
Affiliation(s)
- L Vaškebová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - J Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - M Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
33
|
Lian K, Gao F, Sun T, van Wersch R, Ao K, Kong Q, Nitta Y, Wu D, Krysan P, Zhang Y. MKK6 Functions in Two Parallel MAP Kinase Cascades in Immune Signaling. PLANT PHYSIOLOGY 2018; 178:1284-1295. [PMID: 30185442 PMCID: PMC6236617 DOI: 10.1104/pp.18.00592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/27/2018] [Indexed: 05/04/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) MAP KINASE (MPK) proteins can function in multiple MAP kinase cascades and physiological processes. For instance, MPK4 functions in regulating development as well as in plant defense by participating in two independent MAP kinase cascades: the MEKK1-MKK1/MKK2-MPK4 cascade promotes basal resistance against pathogens and is guarded by the NB-LRR protein SUMM2, whereas the ANPs-MKK6-MPK4 cascade plays an essential role in cytokinesis. Here, we report a novel role for MKK6 in regulating plant immune responses. We found that MKK6 functions similarly to MKK1/MKK2 and works together with MEKK1 and MPK4 to prevent autoactivation of SUMM2-mediated defense responses. Interestingly, loss of MKK6 or ANP2/ANP3 results in constitutive activation of plant defense responses. The autoimmune phenotypes of mkk6 and anp2 anp3 mutant plants can be largely suppressed by a constitutively active mpk4 mutant. Further analysis showed that the constitutive defense response in anp2 anp3 is dependent on the defense regulators PAD4 and EDS1, but not on SUMM2, suggesting that the ANP2/ANP3-MKK6-MPK4 cascade may be guarded by a TIR-NB-LRR protein. Our study shows that MKK6 has multiple functions in plant defense responses in addition to cytokinesis.
Collapse
Affiliation(s)
- Kehui Lian
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Fang Gao
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rowan van Wersch
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Qing Kong
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yukino Nitta
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Di Wu
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrick Krysan
- Department of Horticulture and Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
34
|
Dang X, Yu P, Li Y, Yang Y, Zhang Y, Ren H, Chen B, Lin D. Reactive oxygen species mediate conical cell shaping in Arabidopsis thaliana petals. PLoS Genet 2018; 14:e1007705. [PMID: 30296269 PMCID: PMC6203401 DOI: 10.1371/journal.pgen.1007705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 10/26/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Plants have evolved diverse cell types with distinct sizes, shapes, and functions. For example, most flowering plants contain specialized petal conical epidermal cells that are thought to attract pollinators and influence light capture and reflectance, but the molecular mechanisms controlling conical cell shaping remain unclear. Here, through a genetic screen in Arabidopsis thaliana, we demonstrated that loss-of-function mutations in ANGUSTIFOLIA (AN), which encodes for a homolog of mammalian CtBP/BARs, displayed conical cells phenotype with wider tip angles, correlating with increased accumulation of reactive oxygen species (ROS). We further showed that exogenously supplied ROS generated similar conical cell phenotypes as the an mutants. Moreover, reduced endogenous ROS levels resulted in deceased tip sharpening of conical cells. Furthermore, through enhancer screening, we demonstrated that mutations in katanin (KTN1) enhanced conical cell phenotypes of the an-t1 mutants. Genetic analyses showed that AN acted in parallel with KTN1 to control conical cell shaping. Both increased or decreased ROS levels and mutations in AN suppressed microtubule organization into well-ordered circumferential arrays. We demonstrated that the AN-ROS pathway jointly functioned with KTN1 to modulate microtubule ordering, correlating with the tip sharpening of conical cells. Collectively, our findings revealed a mechanistic insight into ROS homeostasis regulation of microtubule organization and conical cell shaping.
Collapse
Affiliation(s)
- Xie Dang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peihang Yu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yajun Li
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqiu Yang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huibo Ren
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binqinq Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deshu Lin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Winnicki K, Żabka A, Polit JT, Maszewski J. Mitogen-activated protein kinases concentrate in the vicinity of chromosomes and may regulate directly cellular patterning in Vicia faba embryos. PLANTA 2018; 248:307-322. [PMID: 29721610 DOI: 10.1007/s00425-018-2905-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinases seem to mark genes which are set up to be activated in daughter cells and thus they may play a direct role in cellular patterning during embryogenesis. Embryonic patterning starts very early and after the first division of zygote different genes are expressed in apical and basal cells. However, there is an ongoing debate about the way these different transcription patterns are established during embryogenesis. The presented data indicate that mitogen-activated protein kinases (MAPKs) concentrate in the vicinity of chromosomes and form visible foci there. Cells in the apical and basal regions differ in number of foci observed during the metaphase which suggests that cellular patterning may be determined by activation of diverse MAPK-dependent genes. Different number of foci in each group of separating chromatids and the specified direction of these mitoses in apical-basal axis indicate that the unilateral auxin accumulation in a single cell may regulate the number of foci in each group of chromatids. Thus, we put forward a hypothesis that MAPKs localized in the vicinity of chromosomes during mitosis mark those genes which are set up to be activated in daughter cells after division. It implies that the chromosomal localization of MAPKs may be one of the mechanisms involved in establishment of cellular patterns in some plant species.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland.
| | - Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
36
|
Lin C, Chen S. New functions of an old kinase MPK4 in guard cells. PLANT SIGNALING & BEHAVIOR 2018; 13:e1477908. [PMID: 29944443 PMCID: PMC6103285 DOI: 10.1080/15592324.2018.1477908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinase (MPK) cascades play important roles in plant development, immune signaling and stress responses. MPK4 was initially identified as a negative regulator in systemic acquired resistance (SAR) because the levels of salicylic acid (SA) and reactive oxygen species (ROS) were higher in the Arabidopsis mpk4 mutant. MPK4 is highly expressed in guard cells, specialized epidermal cells forming stomatal pores on leaf surface that function at the frontline of bacterial pathogen invasion. In addition to biotic stresses, stomatal guard cells also mediate cellular responses to abiotic stimuli such as drought and CO2 changes. MPK4 appears to play different roles in different plant systems. In this review, we briefly discuss the protein kinase MPK4 functions and focus on its signaling roles in different plant systems, especially in stomatal guard cells.
Collapse
Affiliation(s)
- C. Lin
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
| | - S. Chen
- Department of Biology, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute (UFGI), Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| |
Collapse
|
37
|
Identification on mitogen-activated protein kinase signaling cascades by integrating protein interaction with transcriptional profiling analysis in cotton. Sci Rep 2018; 8:8178. [PMID: 29802301 PMCID: PMC5970168 DOI: 10.1038/s41598-018-26400-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/11/2018] [Indexed: 11/08/2022] Open
Abstract
Plant mitogen-activated protein kinase (MAPK) cascades play important roles in development and stress responses. In previous studies, we have systematically investigated the mitogen-activated protein kinase kinase (MKK) and MAPK gene families in cotton. However, the complete interactions between MAPK gene family members in MAPK signaling cascade is poorly characterized. Herein, we investigated the mitogen-activated protein kinase kinase kinase (MAPKKK) family members and identified a total of 89 MAPKKK genes in the Gossypium raimondii genome. We cloned 51 MAPKKKs in G. hirsutum and investigated the interactions between MKK and MAPKKK proteins through yeast-two hybrid assays. A total of 18 interactive protein pairs involved in 14 MAPKKKs and six MKKs were found. Among these, 13 interactive pairs had not been reported previously. Gene expression patterns revealed that 12 MAPKKKs were involved in diverse signaling pathways triggered by hormone treatments or abiotic stresses. By combining the MKK-MAPK and MKK-MAPKKK protein interactions with gene expression patterns, 38 potential MAPK signaling modules involved in the complicated cross-talks were identified, which provide a basis on elucidating biological function of the MAPK cascade in response to hormonal and/or stress responses. The systematic investigation in MAPK signaling cascades will lay a foundation for understanding the functional roles of different MAPK cascades in signal transduction pathways, and for the improvement of various defense responses in cotton.
Collapse
|
38
|
Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and Developmental Biology of Plant Mitogen-Activated Protein Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:237-265. [PMID: 29489398 DOI: 10.1146/annurev-arplant-042817-040314] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant mitogen-activated protein kinases (MAPKs) constitute a network of signaling cascades responsible for transducing extracellular stimuli and decoding them to dedicated cellular and developmental responses that shape the plant body. Over the last decade, we have accumulated information about how MAPK modules control the development of reproductive tissues and gametes and the embryogenic and postembryonic development of vegetative organs such as roots, root nodules, shoots, and leaves. Of key importance to understanding how MAPKs participate in developmental and environmental signaling is the characterization of their subcellular localization, their interactions with upstream signal perception mechanisms, and the means by which they target their substrates. In this review, we summarize the roles of MAPK signaling in the regulation of key plant developmental processes, and we survey what is known about the mechanisms guiding the subcellular compartmentalization of MAPK modules.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
39
|
Bequette CJ, Hind SR, Pulliam S, Higgins R, Stratmann JW. MAP kinases associate with high molecular weight multiprotein complexes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:643-654. [PMID: 29240956 PMCID: PMC5853780 DOI: 10.1093/jxb/erx424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/07/2017] [Indexed: 05/30/2023]
Abstract
Plant responses to the environment and developmental processes are mediated by a complex signaling network. The Arabidopsis thaliana mitogen-activated protein kinases (MAPKs) MPK3 and MPK6 and their orthologs in other plants are shared signal transducers that respond to many developmental and environmental signals and thus represent highly connected hubs in the cellular signaling network. In animals, specific MAPK signaling complexes are assembled which enable input-specific protein-protein interactions and thus specific signaling outcomes. In plants, not much is known about such signaling complexes. Here, we report that MPK3, MPK6, and MPK10 orthologs in tomato, tobacco, and Arabidopsis as well as tomato MAPK kinase 4 (MKK4) associate with high molecular weight (~250-550 kDa) multiprotein complexes. Elicitation by the defense-associated peptides flg22 and systemin resulted in phosphorylation and activation of the monomeric MAPKs, whereas the complex-associated MAPKs remained unphosphorylated and inactive. In contrast, treatment of tomato cells with a phosphatase inhibitor resulted in association of phosphorylated MPK1/2 with the complex. These results demonstrate that plant MAPKs and MAPKKs dynamically assemble into stable multiprotein complexes and this may depend on their phosphorylation status. Identification of the constituents of these multiprotein complexes promises a deeper understanding of signaling dynamics.
Collapse
Affiliation(s)
- Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Sarah Pulliam
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Rebecca Higgins
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | | |
Collapse
|
40
|
Krysan PJ, Colcombet J. Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them. FRONTIERS IN PLANT SCIENCE 2018; 9:1674. [PMID: 30538711 PMCID: PMC6277691 DOI: 10.3389/fpls.2018.01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
Mitogen activated protein kinase (MAPK) cascades play an important role in many aspects of plant growth, development, and environmental response. Because of their central role in many important processes, MAPKs have been extensively studied using biochemical and genetic approaches. This work has allowed for the identification of the MAPK genes and proteins involved in a number of different signaling pathways. Less well developed, however, is our understanding of how MAPK cascades and their corresponding signaling pathways are organized at subcellular levels. In this review, we will provide an overview of plant MAPK signaling, including a discussion of what is known about cellular mechanisms for achieving signaling specificity. Then we will explore what is currently known about the subcellular localization of MAPK proteins in resting conditions and after pathway activation. Finally, we will discuss a number of new experimental methods that have not been widely deployed in plants that have the potential to provide a deeper understanding of the spatial and temporal dynamics of MAPK signaling.
Collapse
Affiliation(s)
- Patrick J. Krysan
- Horticulture Department, University of Wisconsin–Madison, Madison, WI, United States
| | - Jean Colcombet
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
- *Correspondence: Jean Colcombet,
| |
Collapse
|
41
|
Rayapuram N, Bigeard J, Alhoraibi H, Bonhomme L, Hesse AM, Vinh J, Hirt H, Pflieger D. Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6. Mol Cell Proteomics 2017; 17:61-80. [PMID: 29167316 DOI: 10.1074/mcp.ra117.000135] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4, and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. Although some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4, and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. One hundred fifty-two peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar nonfermenting (SnRK) protein kinases.
Collapse
Affiliation(s)
- Naganand Rayapuram
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jean Bigeard
- §Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.,¶Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Hanna Alhoraibi
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ludovic Bonhomme
- ‖UMR INRA/UBP Génétique, Diversité et Écophysiologie des Céréales, Université de Clermont-Ferrand, 63039 Clermont-Ferrand, France
| | - Anne-Marie Hesse
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France
| | - Joëlle Vinh
- ‡‡ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex05, France
| | - Heribert Hirt
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Delphine Pflieger
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France.,§§CNRS, LAMBE UMR 8587, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
42
|
Chudinova EM, Karpov PA, Fokin AI, Yemets AI, Lytvyn DI, Nadezhdina ES, Blume YB. MAST-like protein kinase IREH1 from Arabidopsis thaliana co-localizes with the centrosome when expressed in animal cells. PLANTA 2017; 246:959-969. [PMID: 28717875 DOI: 10.1007/s00425-017-2742-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The similarity of IREH1 (Incomplete Root Hair Elongation 1) and animal MAST kinases was confirmed; IREH1cDNA was cloned while expressing in cultured animal cells co-localized with the centrosome. In mammals and fruit flies, microtubule-associated serine/threonine-protein kinases (MAST) are strongly involved in the regulation of the microtubule system. Higher plants also possess protein kinases homologous to MASTs, but their function and interaction with the cytoskeleton remain unclear. Here, we confirmed the sequence and structural similarity of MAST-related putative protein kinase IREH1 (At3g17850) and known animal MAST kinases. We report the first cloning of full-length cDNA of the IREH1 from Arabidopsis thaliana. Recombinant GFP-IREH1 protein was expressed in different cultured animal cells. It revealed co-localization with the centrosome without influencing cell morphology and microtubule arrangement. Structural N-terminal region of the IREH1 molecule co-localized with centrosome as well.
Collapse
Affiliation(s)
- Elena M Chudinova
- Institute of Protein Research of Russian Academy of Sciences, Moscow, Russia.
| | - Pavel A Karpov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Artem I Fokin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Dmytro I Lytvyn
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Elena S Nadezhdina
- Institute of Protein Research of Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
43
|
Zhou S, Chen Q, Li X, Li Y. MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:112-121. [PMID: 28969791 DOI: 10.1016/j.plantsci.2017.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 05/07/2023]
Abstract
Microtubules (MTs) are highly dynamical structures that play crucial roles in plant development and in response to environmental signals and stress conditions. MT-associated proteins (MAPs) play important roles in regulating the organization of MT arrays. MAP65 is a family of plant MT-bundling proteins. Here, we determined the role of MAP65-1 in the response to salt stress. MAP65-1 is involved not only in regulating the depolymerization, but also in the following reorganization of cortical MTs in salt stress responses. In addition, the depolymerization of the cortical MTs affected the survival of seedlings during salt stress, and map65-1 mutants had enhanced salt hypersensitivity levels. MAP65-1 interacted with mitogen-activated protein kinase (MPK) 3 and 6; however, only the mpk6 mutant exhibited hypersensitivity to salt stress, and MPK6 was involved in regulating the salt stress-induced depolymerization of cortical MTs. Thus, MAP65-1 plays a critical role in the response to salt stress and is required for regulating the rapid depolymerization and reorganization of cortical MTs. MAP65-1 interacts with MPK6, not MPK3, affecting the MT's dynamic instability which is critical for plant salt-stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Zhou S, Chen Q, Sun Y, Li Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1512-1530. [PMID: 28337773 DOI: 10.1111/pce.12950] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 05/23/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes - DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen-activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress-induced MT depolymerization, and the PTP-MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
45
|
Takáč T, Šamajová O, Pechan T, Luptovčiak I, Šamaj J. Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants. Mol Cell Proteomics 2017; 16:1591-1609. [PMID: 28706004 DOI: 10.1074/mcp.m117.068015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
Collapse
Affiliation(s)
- Tomáš Takáč
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- §Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, Mississippi 39759
| | - Ivan Luptovčiak
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
46
|
Hamid MH, Rozano L, Yeong WC, Abdullah JO, Saidi NB. Analysis of MAP kinase MPK4/MEKK1/MKK genes of Carica papaya L. comparative to other plant homologues. Bioinformation 2017; 13:31-41. [PMID: 28642634 PMCID: PMC5463617 DOI: 10.6026/97320630013031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
Mitogen-activated protein kinase 4 (MPK4) interacts with the (Mitogen-activated protein kinase kinase kinase 1) MEKK1/ Mitogenactivated protein kinase kinase 1 (MKK1)/ Mitogen-activated protein kinase kinase 2 (MKK2) complex to affect its function in plant development or against pathogen attacks. The KEGG (Kyoto Encyclopedia of Genes and Genomes) network analysis of Arabidopsis thaliana revealed close interactions between those four genes in the same plant-pathogen interaction pathway, which warrants further study of these genes due to their evolutionary conservation in different plant species. Through targeting the signature sequence in MPK4 of papaya using orthologs from Arabidopsis, the predicted sequence of MPK4 was studied using a comparative in silico approach between different plant species and the MAP cascade complex of MEKK1/MKK1/MKK2. This paper reported that MPK4 was highly conserved in papaya with 93% identical across more than 500 bases compared in each species predicted. Slight variations found in the MEKK1/MKK1/MKK2 complex nevertheless still illustrated sequence similarities between most of the species. Localization of each gene in the cascade network was also predicted, potentiating future functional verification of these genes interactions using knock out or/and gene silencing tactics.
Collapse
Affiliation(s)
- Muhammad Hanam Hamid
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Lina Rozano
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia
| | - Wee Chien Yeong
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Livanos P, Galatis B, Quader H, Apostolakos P. ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis. PROTOPLASMA 2017; 254:569-586. [PMID: 27129324 DOI: 10.1007/s00709-016-0976-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Reactive oxygen species (ROS) are emerging players in several biological processes. The present work investigates their potential involvement in plant cytokinesis by the application of reagents disturbing ROS homeostasis in root-tip cells of Triticum turgidum. In particular, the NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, and menadione that leads to ROS overproduction were used. The effects on cytokinetic cells were examined using light, fluorescence, and transmission electron microscopy. ROS imbalance had a great impact on the cytokinetic process including the following: (a) formation of atypical "phragmoplasts" incapable of guiding vesicles to the equatorial plane, (b) inhibition of the dictyosomal and/or endosomal vesicle production that provides the developing cell plates with membranous and matrix polysaccharidic material, (c) disturbance of the fusion processes between vesicles arriving on the cell plate plane, (d) disruption of endocytic vesicle production that mediates the removal of the excess membrane material from the developing cell plate, and (e) the persistence of large callose depositions in treated cell plates. Consequently, either elevated or low ROS levels in cytokinetic root-tip cells resulted in a total inhibition of cell plate assembly or the formation of aberrant cell plates, depending on the stage of the affected cytokinetic cells. The latter failed to expand towards cell cortex and hence to give rise to complete daughter cell wall. These data revealed for the first time the necessity of ROS homeostasis for accomplishment of plant cytokinesis, since it seems to be a prerequisite for almost every aspect of this process.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15781, Greece
| | - Basil Galatis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15781, Greece
| | - Hartmut Quader
- Division of Cell Biology/Phycology, Biocenter Klein Flottbek, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Panagiotis Apostolakos
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15781, Greece.
| |
Collapse
|
48
|
Komis G, Luptovčiak I, Ovečka M, Samakovli D, Šamajová O, Šamaj J. Katanin Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in Arabidopsis thaliana Revealed by Advanced Live-Cell Imaging. FRONTIERS IN PLANT SCIENCE 2017; 8:866. [PMID: 28596780 PMCID: PMC5443160 DOI: 10.3389/fpls.2017.00866] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/09/2017] [Indexed: 05/02/2023]
Abstract
Katanin is the only microtubule severing protein identified in plants so far. Previous studies have documented its role in regulating cortical microtubule organization during cell growth and morphogenesis. Although, some cell division defects are reported in KATANIN mutants, it is not clear whether or how katanin activity may affect microtubule dynamics in interphase cells, as well as the progression of mitosis and cytokinesis and the orientation of cell division plane (CDP). For this reason, we characterized microtubule organization and dynamics in growing and dividing cotyledon cells of Arabidopsis ktn1-2 mutant devoid of KATANIN 1 activity. In interphase epidermal cells of ktn1-2 cortical microtubules exhibited aberrant and largely isotropic organization, reduced bundling and showed excessive branched microtubule formation. End-wise microtubule dynamics were not much affected, although a significantly slower rate of microtubule growth was measured in the ktn1-2 mutant where microtubule severing was completely abolished. KATANIN 1 depletion also brought about significant changes in preprophase microtubule band (PPB) organization and dynamics. In this case, many PPBs exhibited unisided organization and splayed appearance while in most cases they were broader than those of wild type cells. By recording PPB maturation, it was observed that PPBs in the mutant narrowed at a much slower pace compared to those in Col-0. The form of the mitotic spindle and the phragmoplast was not much affected in ktn1-2, however, the dynamics of both processes showed significant differences compared to wild type. In general, both mitosis and cytokinesis were considerably delayed in the mutant. Additionally, the mitotic spindle and the phragmoplast exhibited extensive rotational motions with the equatorial plane of the spindle being essentially uncoupled from the division plane set by the PPB. However, at the onset of its formation the phragmoplast undergoes rotational motion rectifying the expansion of the cell plate to match the original cell division plane. Conclusively, KATANIN 1 contributes to microtubule dynamics during interphase, regulates PPB formation and maturation and is involved in the positioning of the mitotic spindle and the phragmoplast.
Collapse
|
49
|
Benhamman R, Bai F, Drory SB, Loubert-Hudon A, Ellis B, Matton DP. The Arabidopsis Mitogen-Activated Protein Kinase Kinase Kinase 20 (MKKK20) Acts Upstream of MKK3 and MPK18 in Two Separate Signaling Pathways Involved in Root Microtubule Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1352. [PMID: 28848569 PMCID: PMC5550695 DOI: 10.3389/fpls.2017.01352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/19/2017] [Indexed: 05/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling networks represent important means of signal transduction in plants and other eukaryotes, controlling intracellular signaling by linking perception of environmental or developmental cues to downstream targets. In the Arabidopsis MEKK subfamily, the MKKK19, 20, and 21 form a highly supported clade with the Solanaceous Fertilization-Related Kinases. In Arabidopsis, little is known about this group, except for MKKK20, which is involved in osmotic stress. Using a directed MKKK-MKK yeast two-hybrid (Y2H) screen, MKKK20 was found to interact only with MKK3, while a MKKK20 large-scale Y2H screen retrieved MPK18 as a direct interactant. In vitro phosphorylation assays showed that MKKK20 phosphorylates both MKK3 and MPK18. However, when all three kinases are combined, no synergistic effect is observed on MPK18 phosphorylation, suggesting a direct access to MPK18, consistent with the absence of interaction between MKK3 and MPK18 in protein-protein interaction assays. Since mpk18 mutant plants were previously shown to be defective in microtubule-related functions, phenotypes of mkkk20 single and mkkk20/mpk18 double mutants were investigated to determine if MKKK20 acts upstream of MPK18. This was the case, as mkkk20 root length was shorter than WT in media containing microtubule-disrupting drugs as previously observed for mpk18 plants. Surprisingly, mkk3 plants were also similarly affected, suggesting the presence of two non-complementary pathways involved in Arabidopsis cortical microtubule function, the first including MKKK20, MKK3 and an unknown MPK; the second, a non-canonical MAPK cascade made of MKKK20 and MPK18 that bypasses the need for an MKK intermediate.
Collapse
Affiliation(s)
- Rachid Benhamman
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Fangwen Bai
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Samuel B. Drory
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Audrey Loubert-Hudon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Daniel P. Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
- *Correspondence: Daniel P. Matton,
| |
Collapse
|
50
|
Gigli Bisceglia N, Savatin DV, Cervone F, Engelsdorf T, De Lorenzo G. Loss of the Arabidopsis Protein Kinases ANPs Affects Root Cell Wall Composition, and Triggers the Cell Wall Damage Syndrome. FRONTIERS IN PLANT SCIENCE 2017; 8:2234. [PMID: 29403509 PMCID: PMC5786559 DOI: 10.3389/fpls.2017.02234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/19/2017] [Indexed: 05/05/2023]
Abstract
The Arabidopsis NPK1-related Protein kinases ANP1, ANP2 and ANP3 belong to the MAP kinase kinase kinase (MAPKKK) superfamily and were previously described to be crucial for cytokinesis, elicitor-induced immunity and development. Here we investigate the basis of their role in development by using conditional β-estradiol-inducible triple mutants to overcome lethality. In seedlings, lack of ANPs causes root cell bulging, with the transition zone being the most sensitive region. We uncover a role of ANPs in the regulation of cell wall composition and suggest that developmental defects of the triple mutants, observed at the cellular level, might be a consequence of the alterations of the pectic and cellulosic cell wall components. Lack of ANPs also induced a typical cell wall damage syndrome (CWDS) similar to that observed in plants treated with the cellulose biosynthesis inhibitor isoxaben (ISX). Moreover, anp double mutants and plants overexpressing single ANPs (ANP1 or ANP3) respectively showed increased and reduced accumulation of jasmonic acid and PDF1.2 transcripts upon ISX treatment, suggesting that ANPs are part of the pathway targeted by this inhibitor and play a role in cell wall integrity surveillance. Highlights: The loss of ANP function affects cell wall composition and leads to typical cell wall damage-induced phenotypes, such as ectopic lignification and jasmonic acid accumulation.
Collapse
Affiliation(s)
- Nora Gigli Bisceglia
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniel V. Savatin
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Timo Engelsdorf
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
- *Correspondence: Giulia De Lorenzo,
| |
Collapse
|