1
|
Fu J, Liao L, Jin J, Lu Z, Sun J, Song L, Huang Y, Liu S, Huang D, Xu Y, He J, Hu B, Zhu Y, Wu F, Wang X, Deng X, Xu Q. A transcriptional cascade involving BBX22 and HY5 finely regulates both plant height and fruit pigmentation in citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1752-1768. [PMID: 38961693 DOI: 10.1111/jipb.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii "SJG") promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.
Collapse
Affiliation(s)
- Jialing Fu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Li Liao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiajing Jin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihao Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhi Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ding Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaxian He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiqun Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pomelo, Shangrao, 334000, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Wei J, Zhang Q, Zhang Y, Yang L, Zeng Z, Zhou Y, Chen B. Advance in the Thermoinhibition of Lettuce ( Lactuca sativa L.) Seed Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:2051. [PMID: 39124169 PMCID: PMC11314492 DOI: 10.3390/plants13152051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Thermoinhibition refers to the inability of seeds to germinate when inhibited by high temperatures, but when environmental conditions return to normal, the seeds are able to germinate rapidly again, which is different from thermodormancy. Meanwhile, with global warming, the effect of the thermoinhibition phenomenon on the yield and quality of crops in agricultural production is becoming common. Lettuce, as a horticultural crop sensitive to high temperature, is particularly susceptible to the effects of thermoinhibition, resulting in yield reduction. Therefore, it is crucial to elucidate the intrinsic mechanism of action of thermoinhibition in lettuce seeds. This review mainly outlines several factors affecting thermoinhibition of lettuce seed germination, including endosperm hardening, alteration of endogenous or exogenous phytohormone concentrations, action of photosensitizing pigments, production and inhibition of metabolites, maternal effects, genetic expression, and other physical and chemical factors. Finally, we also discuss the challenges and potential of lettuce seed germination thermoinhibition research. The purpose of this study is to provide theoretical support for future research on lettuce seed germination thermoinhibition, and with the aim of revealing the mechanisms and effects behind lettuce seed thermoinhibition. This will enable the identification of more methods to alleviate seed thermoinhibition or the development of superior heat-tolerant lettuce seeds.
Collapse
Affiliation(s)
- Jinpeng Wei
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yixin Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Le Yang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zeng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510550, China
| | - Yuliang Zhou
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Carrera-Castaño G, Mira S, Fañanás-Pueyo I, Sánchez-Montesino R, Contreras Á, Weiste C, Dröge-Laser W, Gómez L, Oñate-Sánchez L. Complex control of seed germination timing by ERF50 involves RGL2 antagonism and negative feedback regulation of DOG1. THE NEW PHYTOLOGIST 2024; 242:2026-2042. [PMID: 38494681 DOI: 10.1111/nph.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.
Collapse
Affiliation(s)
- Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Sara Mira
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Ángela Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Luis Gómez
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, 28040, Madrid, Spain
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| |
Collapse
|
4
|
Fu Y, Ma L, Li J, Hou D, Zeng B, Zhang L, Liu C, Bi Q, Tan J, Yu X, Bi J, Luo L. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1319. [PMID: 38794390 PMCID: PMC11125191 DOI: 10.3390/plants13101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Seed dormancy and germination play pivotal roles in the agronomic traits of plants, and the degree of dormancy intuitively affects the yield and quality of crops in agricultural production. Seed priming is a pre-sowing seed treatment that enhances and accelerates germination, leading to improved seedling establishment. Seed priming technologies, which are designed to partially activate germination, while preventing full seed germination, have exerted a profound impact on agricultural production. Conventional seed priming relies on external priming agents, which often yield unstable results. What works for one variety might not be effective for another. Therefore, it is necessary to explore the internal factors within the metabolic pathways that influence seed physiology and germination. This review unveils the underlying mechanisms of seed metabolism and germination, the factors affecting seed dormancy and germination, as well as the current seed priming technologies that can result in stable and better germination.
Collapse
Affiliation(s)
- Yanfeng Fu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Ma
- Institute for Sustainable Horticulture, Kwantlen Polytechnic University, 20901 Langley Bypass, Langley, BC V3A 8G9, Canada;
| | - Juncai Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danping Hou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zeng
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Like Zhang
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Chunqing Liu
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Qingyu Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Tan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Huang X, Gao F, Zhou P, Ma C, Tan W, Ma Y, Li M, Ni Z, Shi T, Hayat F, Li Y, Gao Z. Allelic variation of PmCBF03 contributes to the altitude and temperature adaptability in Japanese apricot (Prunus mume Sieb. et Zucc.). PLANT, CELL & ENVIRONMENT 2024; 47:1379-1396. [PMID: 38221869 DOI: 10.1111/pce.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Abstract
Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.
Collapse
Affiliation(s)
- Xiao Huang
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng Gao
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengyu Zhou
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengdong Ma
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Tan
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yufan Ma
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minglu Li
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaojun Ni
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ting Shi
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faisal Hayat
- Department of Pomology, College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongping Li
- Department of Special Fruit Tree Germplasm Resources, Yunnan Green Food Development Center, Kunming, Yunnan, China
| | - Zhihong Gao
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Krzyszton M, Sacharowski SP, Manjunath VH, Muter K, Bokota G, Wang C, Plewczyński D, Dobisova T, Swiezewski S. Dormancy heterogeneity among Arabidopsis thaliana seeds is linked to individual seed size. PLANT COMMUNICATIONS 2024; 5:100732. [PMID: 37828740 PMCID: PMC10873894 DOI: 10.1016/j.xplc.2023.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds have higher expression of translation-related genes implicated in germination competence. By contrast, small seeds have elevated expression of many positive regulators of dormancy, including a key regulator of this process, the DOG1 gene. Differences in DOG1 expression are associated with differential production of its alternative cleavage and polyadenylation isoforms; in small seeds, the proximal poly(A) site is selected, resulting in a short mRNA isoform. Furthermore, single-seed RNA sequencing analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single-seed level, expression of genes affected by seed size is correlated with expression of genes that position seeds on the path toward germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species that produces highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.
Collapse
Affiliation(s)
- Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| | - Sebastian P Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Veena Halale Manjunath
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Katarzyna Muter
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ce Wang
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Dariusz Plewczyński
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland.
| |
Collapse
|
7
|
Vollmeister E, Phokas A, Meyberg R, Böhm CV, Peter M, Kohnert E, Yuan J, Grosche C, Göttig M, Ullrich KK, Perroud PF, Hiltbrunner A, Kreutz C, Coates JC, Rensing SA. A DELAY OF GERMINATION 1 (DOG1)-like protein regulates spore germination in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:909-923. [PMID: 37953711 DOI: 10.1111/tpj.16537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Clemens V Böhm
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marlies Peter
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Jinhong Yuan
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marco Göttig
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Wang Y, Wang J, Sarwar R, Zhang W, Geng R, Zhu KM, Tan XL. Research progress on the physiological response and molecular mechanism of cold response in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1334913. [PMID: 38352650 PMCID: PMC10861734 DOI: 10.3389/fpls.2024.1334913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Low temperature is a critical environmental stress factor that restricts crop growth and geographical distribution, significantly impacting crop quality and yield. When plants are exposed to low temperatures, a series of changes occur in their external morphology and internal physiological and biochemical metabolism. This article comprehensively reviews the alterations and regulatory mechanisms of physiological and biochemical indices, such as membrane system stability, redox system, fatty acid content, photosynthesis, and osmoregulatory substances, in response to low-temperature stress in plants. Furthermore, we summarize recent research on signal transduction and regulatory pathways, phytohormones, epigenetic modifications, and other molecular mechanisms mediating the response to low temperatures in higher plants. In addition, we outline cultivation practices to improve plant cold resistance and highlight the cold-related genes used in molecular breeding. Last, we discuss future research directions, potential application prospects of plant cold resistance breeding, and recent significant breakthroughs in the research and application of cold resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
10
|
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3632. [PMID: 37896095 PMCID: PMC10610530 DOI: 10.3390/plants12203632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Joseph Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Benoît Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Jérôme Verdier
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Julia Buitink
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Olivier Leprince
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| |
Collapse
|
11
|
Sun J, Huang S, Lu Q, Li S, Zhao S, Zheng X, Zhou Q, Zhang W, Li J, Wang L, Zhang K, Zheng W, Feng X, Liu B, Kong F, Xiang F. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun 2023; 14:6262. [PMID: 37805547 PMCID: PMC10560287 DOI: 10.1038/s41467-023-41824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Plant height is a key agronomic trait that affects yield and is controlled by both phytohormone gibberellin (GA) and ultraviolet-B (UV-B) irradiation. However, whether and how plant height is modulated by UV-B-mediated changes in GA metabolism are not well understood. It has not been reported that the E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) is involved in the regulation of plant growth in response to environmental factors. We perform a forward genetic screen in soybean and find that a mutation in Glycine max Increased Leaf Petiole Angle1 (GmILPA1), encoding a subunit of the APC/C, lead to dwarfism under UV-B irradiation. UV-B promotes the accumulation of GmILPA1, which ubiquitinate the GA catabolic enzyme GA2 OXIDASE-like (GmGA2ox-like), resulting in its degradation in a UV-B-dependent manner. Another E3 ligase, GmUBL1, also ubiquitinate GmGA2ox-like and enhance the GmILPA1-mediated degradation of GmGA2ox-like, which suggest that GmILPA1-GmGA2ox-like module counteract the UV-B-mediated reduction of bioactive GAs. We also determine that GmILPA1 is a target of selection during soybean domestication and breeding. The deletion (Indel-665) in the promoter might facilitate the adaptation of soybean to high UV-B irradiation. This study indicates that an evolutionary GmILPA1 variant has the capability to develop ideal plant architecture with soybean cultivars.
Collapse
Affiliation(s)
- Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shiyu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shizhen Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaojian Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qian Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lili Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenyu Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130000, China.
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
12
|
Temmerman A, De Keyser A, Boyer FD, Struk S, Goormachtig S. Histone Deacetylases Regulate MORE AXILLARY BRANCHED 2-Dependent Germination of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1008-1020. [PMID: 37279553 DOI: 10.1093/pcp/pcad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/21/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Under specific conditions, the germination of Arabidopsis thaliana is dependent on the activation of the KARRIKIN INSENSITIVE 2 (KAI2) signaling pathway by the KAI2-dependent perception of karrikin or the artificial strigolactone analogue, rac-GR24. To regulate the induction of germination, the KAI2 signaling pathway relies on MORE AXILLARY BRANCHED 2- (MAX2-)dependent ubiquitination and proteasomal degradation of the repressor protein SUPPRESSOR OF MAX2 1 (SMAX1). It is not yet known how the degradation of SMAX1 proteins eventually results in the regulation of seed germination, but it has been hypothesized that SMAX1-LIKE generally functions as transcriptional repressors through the recruitment of co-repressors TOPLESS (TPL) and TPL-related, which in turn interact with histone deacetylases. In this article, we show the involvement of histone deacetylases HDA6, HDA9, HDA19 and HDT1 in MAX2-dependent germination of Arabidopsis, and more specifically, that HDA6 is required for the induction of DWARF14-LIKE2 expression in response to rac-GR24 treatment.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, UPR2301, Université Paris-Sud, Université Paris-Saclay, Aveue de la Terrasse 1, Gif-sur-Yvette 91198, France
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Gent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Gent 9052, Belgium
| |
Collapse
|
13
|
Deng G, Sun H, Hu Y, Yang Y, Li P, Chen Y, Zhu Y, Zhou Y, Huang J, Neill SJ, Hu X. A transcription factor WRKY36 interacts with AFP2 to break primary seed dormancy by progressively silencing DOG1 in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:688-704. [PMID: 36653950 DOI: 10.1111/nph.18750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The phytohormones abscisic acid (ABA) and gibberellic acid (GA) antagonistically control the shift between seed dormancy and its alleviation. DELAY OF GERMINATION1 (DOG1) is a critical regulator that determines the intensity of primary seed dormancy, but its underlying regulatory mechanism is unclear. In this study, we combined physiological, biochemical, and genetic approaches to reveal that a bHLH transcriptional factor WRKY36 progressively silenced DOG1 expression to break seed dormancy through ABI5-BINDING PROTEIN 2 (AFP2) as the negative regulator of ABA signal. AFP2 interacted with WRKY36, which recognizes the W-BOX in the DOG1 promoter to suppress its expression; Overexpressing WRKY36 broke primary seed dormancy, whereas wrky36 mutants showed strong primary seed dormancy. In addition, AFP2 recruited the transcriptional corepressor TOPLESS-RELATED PROTEIN2 (TPR2) to reduce histone acetylation at the DOG1 locus, ultimately mediating WRKY36-dependent inhibition of DOG1 expression to break primary seed dormancy. Our result proposes that the WRKY36-AFP2-TPR2 module progressively silences DOG1 expression epigenetically, thereby fine-tuning primary seed dormancy.
Collapse
Affiliation(s)
- Guoli Deng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Haiqing Sun
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yulan Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yaru Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yilin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, Zhejiang, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Steven J Neill
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
14
|
Sybilska E, Daszkowska-Golec A. Alternative splicing in ABA signaling during seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1144990. [PMID: 37008485 PMCID: PMC10060653 DOI: 10.3389/fpls.2023.1144990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is an essential step in a plant's life cycle. It is controlled by complex physiological, biochemical, and molecular mechanisms and external factors. Alternative splicing (AS) is a co-transcriptional mechanism that regulates gene expression and produces multiple mRNA variants from a single gene to modulate transcriptome diversity. However, little is known about the effect of AS on the function of generated protein isoforms. The latest reports indicate that alternative splicing (AS), the relevant mechanism controlling gene expression, plays a significant role in abscisic acid (ABA) signaling. In this review, we present the current state of the art about the identified AS regulators and the ABA-related changes in AS during seed germination. We show how they are connected with the ABA signaling and the seed germination process. We also discuss changes in the structure of the generated AS isoforms and their impact on the functionality of the generated proteins. Also, we point out that the advances in sequencing technology allow for a better explanation of the role of AS in gene regulation by more accurate detection of AS events and identification of full-length splicing isoforms.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
15
|
Chen Y, Song S, Hu P. Temperature-dependent regulation of seed dormancy. MOLECULAR PLANT 2023; 16:500-502. [PMID: 36514284 DOI: 10.1016/j.molp.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Ying Chen
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
16
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
17
|
Transcriptomic insights into the effects of abscisic acid on the germination of Magnolia sieboldii K. Koch seed. Gene 2023; 853:147066. [PMID: 36455787 DOI: 10.1016/j.gene.2022.147066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Magnolia sieboldii K. Koch is a deciduous tree species. However, the wild resource of M. sieboldii has been declining due to excessive utilization and seed dormancy. In our previous research, M. sieboldii seeds have morphophysiological dormancy and low germination rates under natural conditions. The aim of the present study was to identify the genes involved in dormancy maintenance. In this study, the germination percentage of M. sieboldii seeds negatively correlated with the content of endogenous abscisic acid (ABA). The hydration of seeds for germination showed three distinct phases. Five key time points were identified: 0 h imbibition (dry seed, GZ), 0 day after imbibition (DAI), 16 DAI, 40 DAI, and 56 DAI. The comprehensive transcript profiles of M. sieboldii seeds treated with ABA and water at the five key germinating stages were obtained. A total of 9641 differentially expressed genes (DEGs) were identified, and 208 and 197 common DEGs were found throughout the ABA and water treatments, respectively. Compared with that in the GZ, 518, 696, 2133, and 1535 DEGs were identified in the SH group at 0, 16, 40 and 56 DAI, respectively. 666, 1725, 1560 and 1415 DEGs were identified in the ABA group at 0, 16, 40, and 56 DAI, respectively. Among the identified DEGs, 12 722 were annotated with GO terms, the top three enriched GO terms were different among the DEGs at 56 DAI in the ABA vs. SH treatments. KEGG pathway enrichment analysis for DEGs indicated that oxidative phosphorylation, protein processing in endoplasmic reticulum, starch and sucrose metabolism play an important role in seed response to ABA. 1926 TFs are obtained and classified into 72 families from the M. sieboldii transcriptome. Results of differential gene expression analysis together with qRT-PCR indicated that phase II is crucial for rapid and successful seed germination. This study is the first to present the global expression patterns of ABA-regulated transcripts in M. sieboldii seeds at different germinating phases.
Collapse
|
18
|
Impact of climate perturbations on seeds and seed quality for global agriculture. Biochem J 2023; 480:177-196. [PMID: 36749123 DOI: 10.1042/bcj20220246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
In agriculture, seeds are the most basic and vital input on which croplands productivity depends. These implies a good starting material, good production lines and good storage options. High-quality seed lots must be free of pests and pathogens and contain a required degree of genetic purity. Seeds need also to be stored in good condition between harvest and later sowing, to insure later on the field a good plant density and higher crop yield. In general, these parameters are already widely accepted and considered in many countries where advanced technologies evaluate them. However, the more and more frequently devastating climate changes observed around the world has put seed quality under threat, and current seeds may not be adapted to hazardous and unpredictable conditions. Climate-related factors such as temperature and water availability directly affect seed development and later germination. For these reasons, investigating seed quality in response to climate changes is a step to propose new crop varieties and practices that will bring solutions for our future.
Collapse
|
19
|
Jiang H, Gao W, Jiang BL, Liu X, Jiang YT, Zhang LT, Zhang Y, Yan SN, Cao JJ, Lu J, Ma CX, Chang C, Zhang HP. Identification and validation of coding and non-coding RNAs involved in high-temperature-mediated seed dormancy in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1107277. [PMID: 36818881 PMCID: PMC9929302 DOI: 10.3389/fpls.2023.1107277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Seed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusiveSeed dormancy (SD) significantly decreases under high temperature (HT) environment during seed maturation, resulting in pre-harvest sprouting (PHS) damage under prolonged rainfall and wet weather during wheat harvest. However, the molecular mechanism underlying HT-mediated SD remains elusive. METHODS Here, the wheat landrace 'Waitoubai' with strong SD and PHS resistance was treated with HT from 21 to 35 days post anthesis (DPA). Then, the seeds under HT and normal temperature (NT) environments were collected at 21 DPA, 28 DPA, and 35 DPA and subjected to whole-transcriptome sequencing. RESULTS The phenotypic data showed that the seed germination percentage significantly increased, whereas SD decreased after HT treatment compared with NT, consistent with the results of previous studies. In total, 5128 mRNAs, 136 microRNAs (miRNAs), 273 long non-coding RNAs (lncRNAs), and 21 circularRNAs were found to be responsive to HT, and some of them were further verified through qRT-PCR. In particular, the known gibberellin (GA) biosynthesis gene TaGA20ox1 (TraesCS3D02G393900) was proved to be involved in HT-mediated dormancy by using the EMS-mutagenized wheat cultivar Jimai 22. Similarly, a novel gene TaCDPK21 (TraesCS7A02G267000) involved in the calcium signaling pathway was validated to be associated with HT-mediated dormancy by using the EMS mutant. Moreover, TaCDPK21 overexpression in Arabidopsis and functional complementarity tests supported the negative role of TaCDPK21 in SD. We also constructed a co-expression regulatory network based on differentially expressed mRNAs, miRNAs, and lncRNAs and found that a novel miR27319 was located at a key node of this regulatory network. Subsequently, using Arabidopsis and rice lines overexpressing miR27319 precursor or lacking miR27319 expression, we validated the positive role of miR27319 in SD and further preliminarily dissected the molecular mechanism of miR27319 underlying SD regulation through phytohormone abscisic acid and GA biosynthesis, catabolism, and signaling pathways. DISCUSSION These findings not only broaden our understanding of the complex regulatory network of HT-mediated dormancy but also provide new gene resources for improving wheat PHS resistance to minimize PHS damage by using the molecular pyramiding approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cheng Chang
- *Correspondence: Cheng Chang, ; Hai-ping Zhang,
| | | |
Collapse
|
20
|
Xu F, Tang J, Wang S, Cheng X, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C, Chu C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet 2022; 54:1972-1982. [PMID: 36471073 DOI: 10.1038/s41588-022-01240-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Preharvest sprouting (PHS) due to lack of seed dormancy seriously threatens crop production worldwide. As a complex quantitative trait, breeding of crop cultivars with suitable seed dormancy is hindered by limited useful regulatory genes. Here by repeatable phenotypic characterization of fixed recombinant individuals, we report a quantitative genetic locus, Seed Dormancy 6 (SD6), from aus-type rice, encoding a basic helix-loop-helix (bHLH) transcription factor, which underlies the natural variation of seed dormancy. SD6 and another bHLH factor inducer of C-repeat binding factors expression 2 (ICE2) function antagonistically in controlling seed dormancy by directly regulating the ABA catabolism gene ABA8OX3, and indirectly regulating the ABA biosynthesis gene NCED2 via OsbHLH048, in a temperature-dependent manner. The weak-dormancy allele of SD6 is common in cultivated rice but undergoes negative selection in wild rice. Notably, by genome editing SD6 and its wheat homologs, we demonstrated that SD6 is a useful breeding target for alleviating PHS in cereals under field conditions.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Hongru Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
22
|
Zhao K, Chen R, Duan W, Meng L, Song H, Wang Q, Li J, Xu X. Chilling injury of tomato fruit was alleviated under low-temperature storage by silencing Sly-miR171e with short tandem target mimic technology. Front Nutr 2022; 9:906227. [PMID: 35938134 PMCID: PMC9355414 DOI: 10.3389/fnut.2022.906227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the role of Sly-miR171e on post-harvest cold tolerance of tomato fruit was researched. The results showed that overexpression of Sly-miR171e (miR171e-OE) promoted postharvest chilling injury (CI) of tomato fruit at the mature red (MR) and mature green (MG) stage. Contrasted with the wild type (WT) and miR171e-OE fruit, the knockdown of Sly-miR171e (miR171e-STTM) showed a lower CI index, lower hydrogen peroxide (H2O2) content, and higher fruit firmness after harvest. In the fruit of miR171e-STTM, the expression level of GRAS24, CBF1, GA2ox1, and COR, and the GA3 content were ascended, while the expression levels of GA20ox1 and GA3ox1 were descended. The research demonstrated that CI in tomato fruit was alleviated at low temperature storage by silencing Sly-miR171e with short tandem target mimic (STTM) technology. Furthermore, it also provided helpful information for genetic modification of miR171e and control of CI in the postharvest fruit.
Collapse
Affiliation(s)
- Keyan Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Rulong Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Wenhui Duan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hongmiao Song
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qing Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
- *Correspondence: Xiangbin Xu
| |
Collapse
|
23
|
QTL Mapping and Candidate Gene Analysis for Seed Germination Response to Low Temperature in Rice. Int J Mol Sci 2022; 23:ijms23137379. [PMID: 35806382 PMCID: PMC9266303 DOI: 10.3390/ijms23137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Low temperature is a serious threat to the seed emergence of rice, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In the current experiment, 120 lines of the Cheongcheong Nagdong Double Haploid (CNDH) population were used for quantitative trait locus (QTL) analysis of low-temperature germinability. The results showed a significant difference in germination under low different temperature (LDT) (15 °C, 20 °C) conditions. In total, four QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the four QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real-time polymerase chain reaction (qRT-PCR). Based on gene function annotation and level of expression under low-temperature, our study suggested the OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding and lay the basis for further mining molecular mechanisms of low-temperature germination tolerance in rice.
Collapse
|
24
|
Zaretskaya MV, Lebedeva ON, Fedorenko OM. Role of DOG1 and FT, Key Regulators of Seed Dormancy, in Adaptation of Arabidopsis thaliana from the Northern Natural Populations. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Zhang Y, Liu Y, Sun L, Baskin CC, Baskin JM, Cao M, Yang J. Seed dormancy in space and time: global distribution, paleoclimatic and present climatic drivers, and evolutionary adaptations. THE NEW PHYTOLOGIST 2022; 234:1770-1781. [PMID: 35292965 DOI: 10.1111/nph.18099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Seed dormancy is an important life history state that increases survival and fitness of seed plants, and thus it has attracted much attention. However, global biogeography, effects of paleoenvironment, evolutionary roles of dormancy transitions, and differences in adaptations of seed dormancy between life-forms are poorly understood. We compiled global distribution records for seed dormancy of 12 743 species and their phylogeny to explore the biogeographic patterns, environmental drivers, and evolutionary transitions between seed dormancy and nondormancy. Biogeographic patterns reveal a low proportion of dormancy in tropical rainforest regions and arctic regions and a high proportion of dormancy in remaining tropical, subtropical, and temperate regions for all species and woody species. Herbaceous plants show a greater proportion of dormancy in most global regions except arctic regions. Seasonal environments have a consistent positive influence on the dormancy pattern for both life-forms, but precipitation and temperature were important driving factors for woody and herbaceous plants, respectively. Seed dormancy was the dominating state during the evolutionary history of seed plants, and dormancy transitions had a significant relationship with paleotemperatures. Dormancy and nondormancy transitions in response to fluctuating environments during long-term evolutionary history may have played important roles in the diversification of seed plants. Our results add to the current knowledge about seed dormancy from macro-adaptive perspectives and the potential adaptive mechanisms of seed plants.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yuan Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
26
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Chandrasekaran U, Zhao X, Luo X, Wei S, Shu K. Endosperm weakening: The gateway to a seed's new life. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:31-39. [PMID: 35276594 DOI: 10.1016/j.plaphy.2022.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Seed germination is a crucial stage in a plant's life cycle, during which the embryo, surrounded by several tissues, undergoes a transition from the quiescent to a highly active state. Endosperm weakening, a key step in this transition, plays an important role in radicle protrusion. Endosperm weakening is initiated upon water uptake, followed by multiple key molecular events occurring within and outside endosperm cells. Although available transcriptomes have provided information about pivotal genes involved in this process, a complete understanding of the signaling pathways are yet to be elucidated. Much remains to be learnt about the diverse intercellular signals, such as reactive oxygen species-mediated redox signals, phytohormone crosstalk, environmental cue-dependent oxidative phosphorylation, peroxisomal-mediated pectin degradation, and storage protein mobilization during endosperm cell wall loosening. This review discusses the evidences from recent researches into the mechanism of endosperm weakening. Further, given that the endosperm has great potential for manipulation by crop breeding and biotechnology, we offer several novel insights, which will be helpful in this research field and in its application to the improvement of crop production.
Collapse
Affiliation(s)
| | - Xiaoting Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
| |
Collapse
|
28
|
Ali F, Qanmber G, Li F, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 2022; 35:199-214. [PMID: 35003801 PMCID: PMC8721241 DOI: 10.1016/j.jare.2021.03.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Functional ABA biosynthesis genes show specific roles for ABA accumulation at different stages of seed development and seedling establishment. De novo ABA biosynthesis during embryogenesis is required for late seed development, maturation, and induction of primary dormancy. ABA plays multiple roles with the key LAFL hub to regulate various downstream signaling genes in seed and seedling development. Key ABA signaling genes ABI3, ABI4, and ABI5 play important multiple functions with various cofactors during seed development such as de-greening, desiccation tolerance, maturation, dormancy, and seed vigor. The crosstalk between ABA and other phytohormones are complicated and important for seed development and seedling establishment.
Background Seed is vital for plant survival and dispersion, however, its development and germination are influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phytohormones that influence seed development and germination. Until now, impressive progresses in ABA metabolism and signaling pathways during seed development and germination have been achieved. At the molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dormancy, and germination, the complete network of ABA in seed traits is still unclear. Aim of review Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dormancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and germination with the updated knowledge and draw a better network for the underlying mechanisms of the ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regulation. Key scientific concept of review Here, we review functions and mechanisms of ABA in different seed development stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators, more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
Collapse
Affiliation(s)
- Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
29
|
Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity (Edinb) 2022; 128:450-459. [PMID: 35013549 DOI: 10.1038/s41437-022-00497-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 11/08/2022] Open
Abstract
In the coming decades, maintaining a steady food supply for the increasing world population will require high-yielding crop plants which can be productive under increasingly variable conditions. Maintaining high yields will require the successful and uniform establishment of plants in the field under altered environmental conditions. Seed vigor, a complex agronomic trait that includes seed longevity, germination speed, seedling growth, and early stress tolerance, determines the duration and success of this establishment period. Elevated temperature during early seed development can decrease seed size, number, and fertility, delay germination and reduce seed vigor in crops such as cereals, legumes, and vegetable crops. Heat stress in mature seeds can reduce seed vigor in crops such as lettuce, oat, and chickpea. Warming trends and increasing temperature variability can increase seed dormancy and reduce germination rates, especially in crops that require lower temperatures for germination and seedling establishment. To improve seed germination speed and success, much research has focused on selecting quality seeds for replanting, priming seeds before sowing, and breeding varieties with improved seed performance. Recent strides in understanding the genetic basis of variation in seed vigor have used genomics and transcriptomics to identify candidate genes for improving germination, and several studies have explored the potential impact of climate change on the percentage and timing of germination. In this review, we discuss these recent advances in the genetic underpinnings of seed performance as well as how climate change is expected to affect vigor in current varieties of staple, vegetable, and other crops.
Collapse
|
30
|
Hisano H, Hoffie RE, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:37-46. [PMID: 34459083 PMCID: PMC8710902 DOI: 10.1111/pbi.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | | | - Hiromi Munemori
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Takakazu Matsuura
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Masaki Endo
- Institute of Agrobiological SciencesNAROTsukubaJapan
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | - Kazuhiro Sato
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| |
Collapse
|
31
|
Chen X, Yoong FY, O'Neill CM, Penfield S. Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. THE NEW PHYTOLOGIST 2021; 232:1311-1322. [PMID: 34314512 DOI: 10.1111/nph.17646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 05/08/2023]
Abstract
Temperature variation during seed set is an important modulator of seed dormancy and impacts the performance of crop seeds through effects on establishment rate. It remains unclear how changing temperature during maturation leads to dormancy and growth vigour differences in nondormant seedlings. Here we take advantage of the large seed size in Brassica oleracea to analyse effects of temperature on individual seed tissues. We show that warm temperature during seed maturation promotes seed germination, while removal of the endosperm from imbibed seeds abolishes temperature-driven effects on germination. We demonstrate that cool temperatures during early seed maturation lead to abscisic acid (ABA) retention specifically in the endosperm at desiccation. During this time temperature affects ABA dynamics in individual seed tissues and regulates ABA catabolism. We also show that warm-matured seeds preinduce a subset of germination-related programmes in the endosperm, whereas cold-matured seeds continue to store maturation-associated transcripts including DOG1 because of effects on mRNA degradation before quiescence, rather than because of the effect of temperature on transcription. We propose that effects of temperature on seed vigour are explained by endospermic ABA breakdown and the divergent relationships between temperature and mRNA breakdown and between temperature, seed moisture and the glass transition.
Collapse
Affiliation(s)
- Xiaochao Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fei-Yian Yoong
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Carmel M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
32
|
Alizadeh M, Hoy R, Lu B, Song L. Team effort: Combinatorial control of seed maturation by transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102091. [PMID: 34343847 DOI: 10.1016/j.pbi.2021.102091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Seed development is under tight spatiotemporal regulation. Here, we summarize how transcriptional regulation helps shape the major traits during seed maturation, which include storage reserve accumulation, dormancy, desiccation tolerance, and longevity. The regulation is rarely a solo task by an individual transcription factor (TF). Rather, it often involves coordinated recruitment or replacement of multiple TFs to achieve combinatorial regulation. We highlight recent progress on the transcriptional integration of activation and repression of seed maturation genes, and discuss potential research directions to further understand the TF networks of seed maturation.
Collapse
Affiliation(s)
- Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ryan Hoy
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
33
|
Chen F, Li Y, Li X, Li W, Xu J, Cao H, Wang Z, Li Y, Soppe WJJ, Liu Y. Ectopic expression of the Arabidopsis florigen gene FLOWERING LOCUS T in seeds enhances seed dormancy via the GA and DOG1 pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:909-924. [PMID: 34037275 DOI: 10.1111/tpj.15354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 05/13/2021] [Indexed: 05/27/2023]
Abstract
Ectopic expression of specific genes in seeds could be a tool for molecular design of crops to alter seed dormancy and germination, thereby improving production. Here, a seed-specific vector, 12S-pLEELA, was applied to study the roles of genes in Arabidopsis seeds. Transgenic lines containing FLOWERING LOCUS T (FT) driven by the 12S promoter exhibited significantly increased seed dormancy and earlier flowering. Mutated FT(Y85H) and TERMINAL FLOWER1 (TFL1) transgenic lines also showed increased seed dormancy but without altered flowering time. FT(Y85H) and TFL1 caused weaker seed dormancy enhancement compared to FT. The FT and TFL1 transgenic lines showed hypersensitivity to paclobutrazol, but not to abscisic acid in seed germination. The levels of bioactive gibberellin 3 (GA3 ) and GA4 were significantly reduced, consistent with decreased expression of COPALYL DIPHOSPHATE SYNTHASE (CPS), KAURENE OXIDASE (KO), GIBBERELLIN 3-OXIDASE2 (GA3ox2), and GA20ox1 in p12S::FT lines. Exogenous GA4+7 could recover the germination ability of FT transgenic lines. These results revealed that FT regulates GA biosynthesis. A genetic analysis indicated that the GA signaling regulator SPINDLY (SPY) is epistatic to FT in GA-mediated seed germination. Furthermore, DELAY OF GERMINATION1 (DOG1) showed significantly higher transcript levels in p12S::FT lines. Seed dormancy analysis of dog1-2 spy-3 p12S::FT-2 indicated that the combination of SPY and DOG1 is epistatic to FT in the regulation of dormancy. Overall, we showed that ectopic expression of FT and TFL1 in seeds enhances dormancy through affecting GA and DOG1 pathways.
Collapse
Affiliation(s)
- Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenlong Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Science and Technology Daily, Beijing, China
| | - Jimei Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Centre - University of Freiburg, Freiburg, Germany
| | | | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Tognacca RS, Botto JF. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. PLANT COMMUNICATIONS 2021; 2:100169. [PMID: 34327318 PMCID: PMC8299061 DOI: 10.1016/j.xplc.2021.100169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Seed dormancy is a developmental checkpoint that prevents mature seeds from germinating under conditions that are otherwise favorable for germination. Temperature and light are the most relevant environmental factors that regulate seed dormancy and germination. These environmental cues can trigger molecular and physiological responses including hormone signaling, particularly that of abscisic acid and gibberellin. The balance between the content and sensitivity of these hormones is the key to the regulation of seed dormancy. Temperature and light tightly regulate the transcription of thousands of genes, as well as other aspects of gene expression such as mRNA splicing, translation, and stability. Chromatin remodeling determines specific transcriptional outputs, and alternative splicing leads to different outcomes and produces transcripts that encode proteins with altered or lost functions. Proper regulation of chromatin remodeling and alternative splicing may be highly relevant to seed germination. Moreover, microRNAs are also critical for the control of gene expression in seeds. This review aims to discuss recent updates on post-transcriptional regulation during seed maturation, dormancy, germination, and post-germination events. We propose future prospects for understanding how different post-transcriptional processes in crop seeds can contribute to the design of genotypes with better performance and higher productivity.
Collapse
Affiliation(s)
- Rocío Soledad Tognacca
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Facultad de Ciencias Exactas y Naturales, CP1428 Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| | - Javier Francisco Botto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, CP1417 Buenos Aires, Argentina
| |
Collapse
|
35
|
Tuan PA, Nguyen TN, Jordan MC, Ayele BT. A shift in abscisic acid/gibberellin balance underlies retention of dormancy induced by seed development temperature. PLANT, CELL & ENVIRONMENT 2021; 44:2230-2244. [PMID: 33249604 DOI: 10.1111/pce.13963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 05/06/2023]
Abstract
Through a combination of physiological, pharmacological, molecular and targeted metabolomics approaches, we showed that retention of wheat (Triticum aestivum L.) seed dormancy levels induced by low and high seed development temperatures during post-desiccation phases is associated with modulation of gibberellin (GA) level and seed responsiveness to abscisic acid (ABA) and GA via expression of TaABI5 and TaGAMYB, respectively. Dormancy retention during imbibition, however, is associated with modulations of both ABA level and responsiveness via expression of specific ABA metabolism (TaNCED2 and TaCYP707A1) and signalling (TaPYL2, TaSnRK2, TaABI3, TaABI4 and TaABI5) genes, and alterations of GA levels and responsiveness through expression of specific GA biosynthesis (TaGA20ox1, TaGA20ox2 and TaGA3ox2) and signalling (TaGID1 and TaGID2) genes, respectively. Expression patterns of GA signalling genes, TaRHT1 and TaGAMYB, lacked positive correlation with that of GA regulated genes and dormancy level observed in seeds developed at the two temperatures, implying their regulation at post-transcriptional level. Our results overall implicate that a shift in ABA/GA balance underlies retention of dormancy levels induced by seed development temperature during post-desiccation and imbibition phases. Consistently, genes regulated by ABA and GA during imbibition overlapped with those differentially expressed between imbibed seeds developed at the two temperatures and mediate different biological functions.
Collapse
Affiliation(s)
- Pham A Tuan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark C Jordan
- Morden Research and Development Center, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Fernández Farnocchia RB, Benech-Arnold RL, Mantese A, Batlla D. Optimization of timing of next-generation emergence in Amaranthus hybridus is determined via modulation of seed dormancy by the maternal environment. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4283-4297. [PMID: 33822944 DOI: 10.1093/jxb/erab141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The timing of emergence of weed species has critical ecological and agronomical implications. In several species, emergence patterns largely depend on the level of dormancy of the seedbank, which is modulated by specific environmental factors. In addition, environmental conditions during seed maturation on the mother plant can have marked effects on the dormancy level at the time of seed dispersal. Hence, the maternal environment has been suggested to affect seedbank dormancy dynamics and subsequent emergence; however, this modulation has not been adequately examined under field conditions, and the mechanisms involved are only partly understood. Combining laboratory and field experiments with population-based models, we investigated how dormancy level and emergence in the field are affected by the sowing date and photoperiod experienced by the mother plant in Amaranthus hybridus, a troublesome weed worldwide. The results showed that an earlier sowing date and a longer photoperiod enhanced the level of dormancy by increasing the dormancy imposed by both the embryo and the seed coat. However, this did not affect the timing and extent of emergence in the field; on the contrary, the variations in dormancy level contributed to synchronizing the emergence of the next generation of plants with the time period that maximized population fitness. Our results largely correspond with effects previously observed in other species such as Polygonum aviculare and Arabidopsis, suggesting a common effect exists within different species.
Collapse
Affiliation(s)
- Rocio Belen Fernández Farnocchia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - Roberto Luis Benech-Arnold
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - Anita Mantese
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Recursos Naturales y Ambiente, Cátedra de Botánica General, Ciudad de Buenos Aires, Argentina
| | - Diego Batlla
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cerealicultura, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
37
|
Sano N, Marion-Poll A. ABA Metabolism and Homeostasis in Seed Dormancy and Germination. Int J Mol Sci 2021; 22:5069. [PMID: 34064729 PMCID: PMC8151144 DOI: 10.3390/ijms22105069] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8'-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.
Collapse
Affiliation(s)
| | - Annie Marion-Poll
- IJPB Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
38
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
39
|
Klupczyńska EA, Pawłowski TA. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment. Int J Mol Sci 2021; 22:1357. [PMID: 33572974 PMCID: PMC7866424 DOI: 10.3390/ijms22031357] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.
Collapse
Affiliation(s)
| | - Tomasz A. Pawłowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
| |
Collapse
|
40
|
Vergara R, Noriega X, Pérez FJ. VvDAM-SVPs genes are regulated by FLOWERING LOCUS T (VvFT) and not by ABA/low temperature-induced VvCBFs transcription factors in grapevine buds. PLANTA 2021; 253:31. [PMID: 33438039 DOI: 10.1007/s00425-020-03561-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
In deciduous fruit trees in which dormancy is induced by low temperatures, the expression of DORMACY-ASSOCIATED MADS-BOX genes (DAM) is regulated by CBF/DREB1 transcription factors. In Vitis vinifera, in which dormancy is induced by the photoperiod, VvDAM-SVPs gene expression is regulated by FLOWERING LOCUS T (VvFT). Using the sequences of the six peach (Prunus persica) DORMACY-ASSOCIATED MADS-box genes (DAM) as query, eight putative DAM genes belonging to the family of MADS-box transcription factors and related to the Arabidopsis floral regulators SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) were identified in the V. vinifera genome. Among these, five belong to the subfamily SVP-like genes which have been associated with the regulation of flowering and dormancy in annual and perennial plants, respectively. It has been proposed that they play a direct role in the induction and maintenance of endodormancy (ED) through the regulation of the FLOWERING LOCUS T (FT) gene. In the present study, it is demonstrated that in V. vinifera: (1) VvDAM-SVPs genes are not regulated by ABA/low temperature-induced VvCBFs transcription factors as described for other species of deciduous fruit trees. (2) A contrasting expression pattern between VvDAM3-SVP and VvFT was found under different experimental conditions related to the entry and exit of grapevine buds from ED. (3) Overexpression of VvFT in somatic grapevine embryos (SGE) repressed the expression of VvDAM3-SVP and VvDAM4-SVP. Taken together, the results suggest that VvDAM3-SVP could be associated with ED in grapevine buds, and that its expression could be regulated by VvFT.
Collapse
Affiliation(s)
- Ricardo Vergara
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
- Instituto de Investigaciones Agropecuarias, La Platina, Santiago, Chile
| | - Ximena Noriega
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Francisco J Pérez
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
41
|
Footitt S, Hambidge AJ, Finch-Savage WE. Changes in phenological events in response to a global warming scenario reveal greater adaptability of winter annual compared with summer annual arabidopsis ecotypes. ANNALS OF BOTANY 2021; 127:111-122. [PMID: 32722794 PMCID: PMC7750725 DOI: 10.1093/aob/mcaa141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals, respectively. METHODS Using a global warming scenario predicting a 4 °C temperature rise from 2011 to approx. 2080, we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle. KEY RESULTS In a winter life cycle, increasing temperatures advanced flowering time by 10.1 d °C-1 in the winter annual and 4.9 d °C-1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle. CONCLUSIONS Seedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to anthropogenic climate change.
Collapse
Affiliation(s)
- Steven Footitt
- School of Life Sciences, Wellesbourne Campus, University of Warwick, Warwickshire, UK
- Department of Molecular Biology and Genetics, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Angela J Hambidge
- School of Life Sciences, Wellesbourne Campus, University of Warwick, Warwickshire, UK
| | | |
Collapse
|
42
|
Soppe WJJ, Bentsink L. Seed dormancy back on track; its definition and regulation by DOG1. THE NEW PHYTOLOGIST 2020; 228:816-819. [PMID: 32267972 PMCID: PMC7586819 DOI: 10.1111/nph.16592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 05/06/2023]
Affiliation(s)
| | - Leónie Bentsink
- Wageningen Seed Science CentreLaboratory of Plant PhysiologyWageningen University6708 PBWageningenthe Netherlands
| |
Collapse
|
43
|
Laspina NV, Batlla D, Benech-Arnold RL. Dormancy cycling is accompanied by changes in ABA sensitivity in Polygonum aviculare seeds. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5924-5934. [PMID: 32706878 DOI: 10.1093/jxb/eraa340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Polygonum aviculare seeds show high levels of primary dormancy (PD). Low winter temperatures alleviate dormancy and high spring temperatures induce seeds into secondary dormancy (SD), naturally establishing stable seedbanks cycling through years. The objective of this work was to elucidate the mechanism(s) involved in PD expression and release, and in SD induction in these seeds, and the extent to which abscisic acid (ABA) and gibberellins (GAs) are part of these mechanisms. Quantification of endogenous ABA both prior to and during incubation, and sensitivity to ABA and GAs, were assessed in seeds with contrasting dormancy. Expression analysis was performed for candidate genes involved in hormone metabolism and signaling. It was found that endogenous ABA content does not explain either dormancy release or dormancy induction; moreover, it does not seem to play a role in dormancy maintenance. However, dormancy modifications were commonly accompanied by changes in ABA sensitivity. Concomitantly, induction into SD, but not PD, was characterized by a increased PaABI-5 and PaPYL transcription, and a rise in GA sensitivity as a possible counterbalance effect. These results suggest that dormancy cycling in this species is related to changes in embryo sensitivity to ABA; however, this sensitivity appears to be controlled by different molecular mechanisms in primary and secondary dormant seeds.
Collapse
Affiliation(s)
- Natalia Verónica Laspina
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| | - Diego Batlla
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cerealicultura, Ciudad de Buenos Aires, Argentina
| | - Roberto Luis Benech-Arnold
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Cultivos Industriales, Ciudad de Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
44
|
Yang L, Jiang Z, Jing Y, Lin R. PIF1 and RVE1 form a transcriptional feedback loop to control light-mediated seed germination in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1372-1384. [PMID: 32277734 DOI: 10.1111/jipb.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/09/2020] [Indexed: 05/22/2023]
Abstract
The phytochrome B (phyB) photoreceptor plays a major role that inputs light signals to regulate seed dormancy and germination. PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a key transcription factor repressing phyB-mediated seed germination, while REVEILLE1 (RVE1) factor functions as a curial regulator in controlling both seed dormancy and germination. However, the relationship between the PIF1- and RVE1-modulated signaling pathways remains mostly unknown. Here, we find that PIF1 physically interacts with RVE1. Genetic analysis indicates that RVE1 inhibition on seed germination requires PIF1; reciprocally, the repressive effect of PIF1 is partially dependent on RVE1. Strikingly, PIF1 and RVE1 directly bind to the promoter and activate the expression of each other. Furthermore, PIF1 and RVE1 coordinately regulate the transcription of many downstream genes involved in abscisic acid and gibberellin pathways. Moreover, PIF1 enhances the DNA-binding ability and transcriptional repression activity of RVE1 in regulating GIBBERELLIN 3-OXIDASE2, and RVE1 promotes PIF1's DNA-binding ability in modulating ABSCISIC ACID-INSENSITIVE3 expression. Thus, this study demonstrates that PIF1 and RVE1 form a transcriptional feedback loop that coordinately inhibits seed germination, providing a mechanistic understanding of how phyB-mediated light signal is transduced to the seeds.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Botany, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
45
|
Yang L, Liu S, Lin R. The role of light in regulating seed dormancy and germination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1310-1326. [PMID: 32729981 DOI: 10.1111/jipb.13001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 05/22/2023]
Abstract
Seed dormancy is an adaptive trait in plants. Breaking seed dormancy determines the timing of germination and is, thereby essential for ensuring plant survival and agricultural production. Seed dormancy and the subsequent germination are controlled by both internal cues (mainly hormones) and environmental signals. In the past few years, the roles of plant hormones in regulating seed dormancy and germination have been uncovered. However, we are only beginning to understand how light signaling pathways modulate seed dormancy and interaction with endogenous hormones. In this review, we summarize current views of the molecular mechanisms by which light controls the induction, maintenance and release of seed dormancy, as well as seed germination, by regulating hormone metabolism and signaling pathways.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
46
|
Wang Q, Lin Q, Wu T, Duan E, Huang Y, Yang C, Mou C, Lan J, Zhou C, Xie K, Liu X, Zhang X, Guo X, Wang J, Jiang L, Wan J. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110570. [PMID: 32771171 DOI: 10.1016/j.plantsci.2020.110570] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Seed dormancy is closely related to pre-harvest sprouting resistance. Both plant hormone abscisic acid (ABA) and DELAY OF GERMINATION 1 (DOG1) protein are key regulators of seed dormancy. Their relationship is well reported in Arabidopsis, but little is known in rice. Here, we show that a quantitative trait locus, qSd-1-1 contributes significantly to seed dormancy differences between the strongly dormant indica variety N22 and non-dormant japonica variety Nanjing35. It encodes a DOG1-like protein named OsDOG1L-3 with homology to Arabidopsis DOG1. There were evident promoter and expression differences in OsDOG1L-3 between N22 and Nanjing35, and overexpression or introduction of the N22 OsDOG1L-3 allele in Nanjing35 enhanced its seed dormancy. OsDOG1L-3 expression was positively correlated with seed dormancy and induced by ABA. OsbZIP75 and OsbZIP78 bound directly with the promoter of OsDOG1L-3 to induce its expression. Overexpression of OsbZIP75 increased OsDOG1L-3 protein abundance and promoted seed dormancy. OsDOG1L-3 upregulated expression of ABA-related genes and increased ABA content. We propose that the N22 OsDOG1L-3 allele is a candidate gene for the seed dormancy in QTL qSd-1-1, and that it participates in the ABA pathway to establish seed dormancy in rice.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Xie
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
47
|
Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. THE NEW PHYTOLOGIST 2020; 227:840-856. [PMID: 32201955 PMCID: PMC7383879 DOI: 10.1111/nph.16559] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
DELAY OF GERMINATION1 (DOG1) is a primary regulator of seed dormancy. Accumulation of DOG1 in seeds leads to deep dormancy and delayed germination in Arabidopsis. B3 domain-containing transcriptional repressors HSI2/VAL1 and HSL1/VAL2 silence seed dormancy and enable the subsequent germination and seedling growth. However, the roles of HSI2 and HSL1 in regulation of DOG1 expression and seed dormancy remain elusive. Seed dormancy was analysed by measurement of maximum germination percentage of freshly harvested Arabidopsis seeds. In vivo protein-protein interaction analysis, ChIP-qPCR and EMSA were performed and suggested that HSI2 and HSL1 can form dimers to directly regulate DOG1. HSI2 and HSL1 dimers interact with RY elements at DOG1 promoter. Both B3 and PHD-like domains are required for enrichment of HSI2 and HSL1 at the DOG1 promoter. HSI2 and HSL1 recruit components of polycomb-group proteins, including CURLY LEAF (CLF) and LIKE HETERCHROMATIN PROTEIN 1 (LHP1), for consequent deposition of H3K27me3 marks, leading to repression of DOG1 expression. Our findings suggest that HSI2- and HSL1-dependent histone methylation plays critical roles in regulation of seed dormancy during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Naichong Chen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| | - Hui Wang
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Haggag Abdelmageed
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Agricultural BotanyFaculty of AgricultureCairo UniversityGiza12613Egypt
| | | | - Million Tadege
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Randy D. Allen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| |
Collapse
|
48
|
Luo D, Qu L, Zhong M, Li X, Wang H, Miao J, Liu X, Zhao X. Vascular plant one-zinc finger 1 (VOZ1) and VOZ2 negatively regulate phytochrome B-mediated seed germination in Arabidopsis. Biosci Biotechnol Biochem 2020; 84:1384-1393. [DOI: 10.1080/09168451.2020.1740971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Seed germination is regulated by light. Phytochromes (Phys) act as red and far-red light photoreceptors to mediate seed germination. However, the mechanism of this process is not well understood. In this study, we found that the Arabidopsis thaliana mutants vascular plant one-zinc finger 1 (voz1) and voz2 showed higher seed germination percentage than wild type when PhyB was inactivated by far-red light. In wild type, VOZ1 and VOZ2 expression were downregulated after seed imbibition, repressed by PhyB, and upregulated by Phytochrome-interacting factor 1 (PIF1), a key negative regulator of seed germination. Red light irradiation and the voz1voz2 mutation caused increased expression of Gibberellin 3-oxidase 1 (GA3ox1), a gibberellin (GA) biosynthetic gene. We also found that VOZ2 is bound directly to the promoter of GA3ox1 in vitro and in vivo. Our findings suggest that VOZs play a negative role in PhyB-mediated seed germination, possibly by directly regulating GA3ox1 expression.
Collapse
Affiliation(s)
- Dan Luo
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Shenzhen Institute, Hunan University, Shenzhen, China
| | - Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Shenzhen Institute, Hunan University, Shenzhen, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Shenzhen Institute, Hunan University, Shenzhen, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Shenzhen Institute, Hunan University, Shenzhen, China
| | - Han Wang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Jiahui Miao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Shenzhen Institute, Hunan University, Shenzhen, China
| |
Collapse
|
49
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
50
|
Wu X, Wang Y, Tang H. Quantitative Metabonomic Analysis Reveals the Germination-Associated Dynamic and Systemic Biochemical Changes for Mung-Bean ( Vigna radiata) Seeds. J Proteome Res 2020; 19:2457-2470. [PMID: 32393034 DOI: 10.1021/acs.jproteome.0c00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Seed germination is essential for plant survival, germplasm resource preservation, and worldwide food supplies, although the germination-associated seed biochemical variations are not fully understood. With the NMR-based metabonomics, we quantitatively analyzed the comprehensive metabolite composition (metabonome) of mung-bean (Vigna radiata) seeds at eight time points of germination covering all three phases. We found that mung-bean seed metabonomes were dominated by 63 metabolites including lipids, amino acids, oligo-/monosaccharides, cyclitols, cholines, organic acids, nucleotides/-sides, nicotinates, and the shikimate pathway-mediated secondary metabolites. During germination, metabolic changes included mainly the degradation of proteins and raffinose family oligosaccharides, glycolysis, tricarboxylic acid (TCA) cycle, anaerobic respiration, biosynthesis of osmolytes and antioxidants together with the metabolisms of nucleotides/-sides, nicotinates, and amino acids. Oligosaccharide degradation was the primary energy source for germination, which coupled with the mobilization of starch and protein storages to produce sugars and amino acids for biomaterial and energy generations. Osmotic and redox regulations were prerequisites for seed germination together with mitochondrial reparations and generations to enable TCA cycle. During the postgermination growth stage (phase-3), the use of small molecules including amino acids and saccharides was switched to meet the growth demands of radicle cells. Small metabolites passed freely through seed testa leaking into the culture media during early germination but were reabsorbed by seed cells around the postgermination growth stage. Extra after-ripening accelerated these metabolic processes of seeds in phase-1, especially the biosynthesis of cyclitols, choline, and nicotinates, increasing the germination uniformity in terms of speed and percentage. Germination-resistant seeds were incapable of activating the germination-associated metabolic processes.
Collapse
Affiliation(s)
- Xiangyu Wu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, P. R. China
| | - Yunlong Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|