1
|
Fang X, Liu B, Kong H, Zeng J, Feng Y, Xiao C, Shao Q, Huang X, Wu Y, Bao A, Li J, Luan S, He K. Two calcium sensor-activated kinases function in root hair growth. PLANT PHYSIOLOGY 2024; 196:1534-1545. [PMID: 38980916 DOI: 10.1093/plphys/kiae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/11/2024]
Abstract
Plant pollen tubes and root hairs typically polarized tip growth. It is well established that calcium ions (Ca2+) play essential roles in maintaining cell polarity and guiding cell growth orientation. Ca2+ signals are encoded by Ca2+ channels and transporters and are decoded by a variety of Ca2+-binding proteins often called Ca2+ sensors, in which calcineurin B-like protein (CBL) proteins function by interacting with and activating a group of kinases and activate CBL-interacting protein kinases (CIPKs). Some CBL-CIPK complexes, such as CBL2/3-CIPK12/19, act as crucial regulators of pollen tube growth. Whether these calcium decoding components regulate the growth of root hairs, another type of plant cell featuring Ca2+-regulated polarized growth, remains unknown. In this study, we identified CIPK13 and CIPK18 as genes specifically expressed in Arabidopsis (Arabidopsis thaliana) root hairs. The cipk13 cipk18 double mutants showed reduced root hair length and lower growth rates. The calcium oscillations at the root hair tip were attenuated in the cipk13 cipk18 mutants as compared to the wild-type plants. Through yeast 2-hybrid screens, CBL2 and CBL3 were identified as interacting with CIPK13 and CIPK18. cbl2 cbl3 displayed a shortened root hair phenotype similar to cipk13 cipk18. This genetic analysis, together with biochemical assays showing activation of CIPK13/18 by CBL2/3, supported the conclusion that CBL2/3 and CIPK13/18 may work as Ca2+-decoding modules in controlling root hair growth. Thus, the findings that CIPK12/19 and CIPK13/18 function in pollen tube and root hair growth, respectively, illustrate a molecular mechanism in which the same CBLs recruit distinct CIPKs in regulating polarized tip growth in different types of plant cells.
Collapse
Affiliation(s)
- Xianming Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haiyan Kong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingyou Zeng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yixin Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qianshuo Shao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuemei Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yujun Wu
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
| | - Aike Bao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Hu X, Cheng J, Lu M, Fang T, Zhu Y, Li Z, Wang X, Wang Y, Guo Y, Yang S, Gong Z. Ca 2+-independent ZmCPK2 is inhibited by Ca 2+-dependent ZmCPK17 during drought response in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1313-1333. [PMID: 38751035 DOI: 10.1111/jipb.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/12/2024]
Abstract
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
Collapse
Affiliation(s)
- Xiaoying Hu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minmin Lu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tingting Fang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujuan Zhu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiqing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
3
|
Yuan G, Nong T, Hunpatin OS, Shi C, Su X, Wang Q, Liu H, Dai P, Ning Y. Research Progress on Plant Shaker K + Channels. PLANTS (BASEL, SWITZERLAND) 2024; 13:1423. [PMID: 38794493 PMCID: PMC11125005 DOI: 10.3390/plants13101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Plant growth and development are driven by intricate processes, with the cell membrane serving as a crucial interface between cells and their external environment. Maintaining balance and signal transduction across the cell membrane is essential for cellular stability and a host of life processes. Ion channels play a critical role in regulating intracellular ion concentrations and potentials. Among these, K+ channels on plant cell membranes are of paramount importance. The research of Shaker K+ channels has become a paradigm in the study of plant ion channels. This study offers a comprehensive overview of advancements in Shaker K+ channels, including insights into protein structure, function, regulatory mechanisms, and research techniques. Investigating Shaker K+ channels has enhanced our understanding of the regulatory mechanisms governing ion absorption and transport in plant cells. This knowledge offers invaluable guidance for enhancing crop yields and improving resistance to environmental stressors. Moreover, an extensive review of research methodologies in Shaker K+ channel studies provides essential reference solutions for researchers, promoting further advancements in ion channel research.
Collapse
Affiliation(s)
- Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Oluwaseyi Setonji Hunpatin
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Su
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peigang Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
4
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Scheible N, Henning PM, McCubbin AG. Calmodulin-Domain Protein Kinase PiCDPK1 Interacts with the 14-3-3-like Protein NtGF14 to Modulate Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:451. [PMID: 38337984 PMCID: PMC10857193 DOI: 10.3390/plants13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand the role of PiCDPK1 in pollen tube extension, we designed a pull-down study to identify additional substrates of this kinase. These experiments identified 123 putative interactors. Two of the identified proteins were predicted to directly interact with PiCDPK1, and this possibility was investigated in planta. The first, NtGF14, a 14-3-3-like protein, did not produce a noticeable phenotype when overexpressed in pollen alone but partially rescued the spherical tube phenotype caused by PiCDPK1 over-expression when co-over-expressed with the kinase. The second, NtREN1, a GTPase activating protein (GAP), severely inhibited pollen tube germination when over-expressed, and its co-over-expression with PiCDPK1 did not substantially affect this phenotype. These results suggest a novel in vivo interaction between NtGF14 and PiCDPK1 but do not support the direct interaction between PiCDPK1 and NtREN1. We demonstrate the utility of the methodology used to identify potential protein interactions while confirming the necessity of additional studies to confirm their validity. Finally, additional support was found for intersection between PiCDPK1 and RopGTPase pathways to control polar growth at the pollen tube tip.
Collapse
Affiliation(s)
| | | | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (N.S.); (P.M.H.)
| |
Collapse
|
6
|
Lian W, Geng A, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of Potassium Absorption, Transport, and Utilization in Rice. Int J Mol Sci 2023; 24:16682. [PMID: 38069005 PMCID: PMC10705939 DOI: 10.3390/ijms242316682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Potassium is essential for plant growth and development and stress adaptation. The maintenance of potassium homeostasis involves a series of potassium channels and transporters, which promote the movement of potassium ions (K+) across cell membranes and exhibit complex expression patterns and regulatory mechanisms. Rice is a major food crop in China. The low utilization rate of potassium fertilizer limits the yield and quality of rice. Elucidating the molecular mechanisms of potassium absorption, transport, and utilization is critical in improving potassium utilization efficiency in rice. Although some K+ transporter genes have been identified from rice, research on the regulatory network is still in its infancy. Therefore, this review summarizes the relevant information on K+ channels and transporters in rice, covering the absorption of K+ in the roots, transport to the shoots, the regulation pathways, the relationship between K+ and the salt tolerance of rice, and the synergistic regulation of potassium, nitrogen, and phosphorus signals. The related research on rice potassium nutrition has been comprehensively reviewed, the existing research foundation and the bottleneck problems to be solved in this field have been clarified, and the follow-up key research directions have been pointed out to provide a theoretical framework for the cultivation of potassium-efficient rice.
Collapse
Affiliation(s)
- Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
7
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
8
|
Lei X, Chen M, Xu K, Sun R, Zhao S, Wu N, Zhang S, Yang X, Xiao K, Zhao Y. The miR166d/ TaCPK7-D Signaling Module Is a Critical Mediator of Wheat ( Triticum aestivum L.) Tolerance to K + Deficiency. Int J Mol Sci 2023; 24:ijms24097926. [PMID: 37175632 PMCID: PMC10178733 DOI: 10.3390/ijms24097926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
It is well established that potassium (K+) is an essential nutrient for wheat (Triticum aestivum L.) growth and development. Several microRNAs (miRNAs), including miR166, are reportedly vital roles related to plant growth and stress responses. In this study, a K+ starvation-responsive miRNA (miR166d) was identified, which showed increased expression in the roots of wheat seedlings exposed to low-K+ stress. The overexpression of miR166d considerably increased the tolerance of transgenic Arabidopsis plants to K+ deprivation treatment. Furthermore, disrupting miR166d expression via virus-induced gene silencing (VIGS) adversely affected wheat adaptation to low-K+ stress. Additionally, miR166d directly targeted the calcium-dependent protein kinase 7-D gene (TaCPK7-D) in wheat. The TaCPK7-D gene expression was decreased in wheat seedling roots following K+ starvation treatment. Silencing TaCPK7-D in wheat increased K+ uptake under K+ starvation. Moreover, we observed that the miR166d/TaCPK7-D module could affect wheat tolerance to K+ starvation stress by regulating TaAKT1 and TaHAK1 expression. Taken together, our results indicate that miR166d is vital for K+ uptake and K+ starvation tolerance of wheat via regulation of TaCPK7-D.
Collapse
Affiliation(s)
- Xiaotong Lei
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Miaomiao Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ruoxi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Sihang Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Ningjing Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Shuhua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Xueju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
9
|
Li J, Zhu R, Zhang M, Cao B, Li X, Song B, Liu Z, Wu J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:124-141. [PMID: 36710644 DOI: 10.1111/tpj.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.
Collapse
Affiliation(s)
- Jiaming Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rongxiang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Beibei Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311200, China
| | - Bobo Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Jun Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
10
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
11
|
Dekomah SD, Bi Z, Dormatey R, Wang Y, Haider FU, Sun C, Yao P, Bai J. The role of CDPKs in plant development, nutrient and stress signaling. Front Genet 2022; 13:996203. [PMID: 36246614 PMCID: PMC9561101 DOI: 10.3389/fgene.2022.996203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The second messenger calcium (Ca2+) is a ubiquitous intracellular signaling molecule found in eukaryotic cells. In plants, the multigene family of calcium-dependent protein kinases (CDPKs) plays an important role in regulating plant growth, development, and stress tolerance. CDPKs sense changes in intracellular Ca2+ concentration and translate them into phosphorylation events that initiate downstream signaling processes. Several functional and expression studies on different CDPKs and their encoding genes have confirmed their multifunctional role in stress. Here, we provide an overview of the signal transduction mechanisms and functional roles of CDPKs. This review includes details on the regulation of secondary metabolites, nutrient uptake, regulation of flower development, hormonal regulation, and biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Simon Dontoro Dekomah
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yihao Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Fasih Ullah Haider
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jiangping Bai,
| |
Collapse
|
12
|
Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat Commun 2022; 13:5682. [PMID: 36167696 PMCID: PMC9515098 DOI: 10.1038/s41467-022-33420-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The voltage-gated potassium channel AKT1 is responsible for primary K+ uptake in Arabidopsis roots. AKT1 is functionally activated through phosphorylation and negatively regulated by a potassium channel α-subunit AtKC1. However, the molecular basis for the modulation mechanism remains unclear. Here we report the structures of AKT1, phosphorylated-AKT1, a constitutively-active variant, and AKT1-AtKC1 complex. AKT1 is assembled in 2-fold symmetry at the cytoplasmic domain. Such organization appears to sterically hinder the reorientation of C-linkers during ion permeation. Phosphorylated-AKT1 adopts an alternate 4-fold symmetric conformation at cytoplasmic domain, which indicates conformational changes associated with symmetry switch during channel activation. To corroborate this finding, we perform structure-guided mutagenesis to disrupt the dimeric interface and identify a constitutively-active variant Asp379Ala mediates K+ permeation independently of phosphorylation. This variant predominantly adopts a 4-fold symmetric conformation. Furthermore, the AKT1-AtKC1 complex assembles in 2-fold symmetry. Together, our work reveals structural insight into the regulatory mechanism for AKT1. Arabidopsis thaliana potassium channel AKT1 is responsible for primary K + uptake from soil, which is functionally activated through phosphorylation and negatively regulated by an α-subunit AtKC1. Here, the authors report the structures of AKT1 at different states, revealing a 2- fold to 4-fold symmetry switch at cytoplasmic domain associated with AKT1 activity regulation.
Collapse
|
13
|
Ranjan R, Malik N, Sharma S, Agarwal P, Kapoor S, Tyagi AK. OsCPK29 interacts with MADS68 to regulate pollen development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111297. [PMID: 35696904 DOI: 10.1016/j.plantsci.2022.111297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Pollen development and its germination are obligatory for the reproductive success of flowering plants. Calcium-dependent protein kinases (CPKs, also known as CDPKs) regulate diverse signaling pathways controlling plant growth and development. Here, we report the functional characterization of a novel OsCPK29 from rice, which is mainly expressed during pollen maturation stages of the anther. OsCPK29 exclusively localizes in the nucleus, and its N-terminal variable domain is responsible for retaining it in the nucleus. OsCPK29 knockdown rice plants exhibit reduced fertility, set fewer seeds, and produce collapsed non-viable pollen grains that do not germinate. Cytological analysis of anther semi-thin sections during different developmental stages suggested that pollen abnormalities appear after the vacuolated pollen stage. Detailed microscopic study of pollen grains further revealed that they were lacking the functional intine layer although exine layer was present. Consistent with that, downregulation of known intine development-related rice genes was also observed in OsCPK29 silenced anthers. Furthermore, it has been demonstrated that OsCPK29 interacts in vitro as well as in vivo with the MADS68 transcription factor which is a known regulator of pollen development. Therefore, phenotypic observations and molecular studies suggest that OsCPK29 is an important regulator of pollen development in rice.
Collapse
Affiliation(s)
- Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India; Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India; Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), New Delhi 110021, India.
| |
Collapse
|
14
|
Wei L, Du H, Li X, Fan Y, Qian M, Li Y, Wang H, Qu C, Qian W, Xu X, Tang Z, Zhang K, Li J, Lu K. Spatio-temporal transcriptome profiling and subgenome analysis in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1123-1138. [PMID: 35763512 DOI: 10.1111/tpj.15881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Brassica napus is an important oil crop and an allotetraploid species. However, the detailed analysis of gene function and homoeologous gene expression in all tissues at different developmental stages was not explored. In this study, we performed a global transcriptome analysis of 24 vegetative and reproductive tissues at six developmental stages (totally 111 tissues). These samples were clustered into eight groups. The gene functions of silique pericarp were similar to roots, stems and leaves. In particular, glucosinolate metabolic process was associated with root and silique pericarp. Genes involved in protein phosphorylation were often associated with stamen, anther and the early developmental stage of seeds. Transcription factor (TF) genes were more specific than structural genes. A total of 17 100 genes that were preferentially expressed in one tissue (tissue-preferred genes, TPGs), including 889 TFs (5.2%), were identified in the 24 tissues. Some TPGs were identified as hub genes in the co-expression network analysis, and some TPGs in different tissues were involved in different hormone pathways. About 67.0% of the homoeologs showed balanced expression, whereas biased expression of homoeologs was associated with structural divergence. In addition, the spatiotemporal expression of homoeologs was related to the presence of transposable elements (TEs) and regulatory elements (REs); more TEs and fewer REs in the promoters resulted in divergent expression in different tissues. This study provides a valuable transcriptional map for understanding the growth and development of B. napus, for identifying important genes for future crop improvement, and for exploring gene expression patterns in the B. napus.
Collapse
Affiliation(s)
- Lijuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Yali Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Huiyi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Xinfu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Zhanglin Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Kai Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| |
Collapse
|
15
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
16
|
Deepika D, Poddar N, Kumar S, Singh A. Molecular Characterization Reveals the Involvement of Calcium Dependent Protein Kinases in Abiotic Stress Signaling and Development in Chickpea ( Cicer arietinum). FRONTIERS IN PLANT SCIENCE 2022; 13:831265. [PMID: 35498712 PMCID: PMC9039462 DOI: 10.3389/fpls.2022.831265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are a major group of calcium (Ca2+) sensors in plants. CDPKs play a dual function of "Ca2+ sensor and responder." These sensors decode the "Ca2+ signatures" generated in response to adverse growth conditions such as drought, salinity, and cold and developmental processes. However, knowledge of the CDPK family in the legume crop chickpea is missing. Here, we have identified a total of 22 CDPK genes in the chickpea genome. The phylogenetic analysis of the chickpea CDPK family with other plants revealed their evolutionary conservation. Protein homology modeling described the three-dimensional structure of chickpea CDPKs. Defined arrangements of α-helix, β-strands, and transmembrane-helix represent important structures like kinase domain, inhibitory junction domain, N and C-lobes of EF-hand motifs. Subcellular localization analysis revealed that CaCDPK proteins are localized mainly at the cytoplasm and in the nucleus. Most of the CaCDPK promoters had abiotic stress and development-related cis-regulatory elements, suggesting the functional role of CaCDPKs in abiotic stress and development-related signaling. RNA sequencing (RNA-seq) expression analysis indicated the role of the CaCDPK family in various developmental stages, including vegetative, reproductive development, senescence stages, and during seed stages of early embryogenesis, late embryogenesis, mid and late seed maturity. The real-time quantitative PCR (qRT-PCR) analysis revealed that several CaCDPK genes are specifically as well as commonly induced by drought, salt, and Abscisic acid (ABA). Overall, these findings indicate that the CDPK family is probably involved in abiotic stress responses and development in chickpeas. This study provides crucial information on the CDPK family that will be utilized in generating abiotic stress-tolerant and high-yielding chickpea varieties.
Collapse
Affiliation(s)
- Deepika Deepika
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Nikita Poddar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
17
|
Wang J, Chen J, Huang S, Han D, Li J, Guo D. Investigating the Mechanism of Unilateral Cross Incompatibility in Longan ( Dimocarpus longan Lour.) Cultivars (Yiduo × Shixia). FRONTIERS IN PLANT SCIENCE 2022; 12:821147. [PMID: 35222456 PMCID: PMC8874016 DOI: 10.3389/fpls.2021.821147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important subtropical fruit tree in China. Nearly 90% of longan fruit imports from Thailand are from the cultivar Yiduo. However, we have observed that there exists a unilateral cross incompatibility (UCI) when Yiduo is used as a female parent and Shixia (a famous Chinese cultivar) as a male parent. Here, we performed a comparative transcriptome analysis coupled with microscopy of pistils from two reciprocal pollination combinations [Shixia♂ × Yiduo♀(SY) and Yiduo♀ × Shixia♂(YS)] 4, 8, 12, and 24 h after pollination. We also explored endogenous jasmonic acid (JA) and jasmonyl isoleucine (JA-Ile) levels in pistils of the crosses. The microscopic observations showed that the UCI was sporophytic. The endogenous JA and JA-Ile levels were higher in YS than in SY at the studied time points. We found 7,251 differentially expressed genes from the transcriptome analysis. Our results highlighted that genes associated with JA biosynthesis and signaling, pollen tube growth, cell wall modification, starch and sucrose biosynthesis, and protein processing in endoplasmic reticulum pathways were differentially regulated between SY and YS. We discussed transcriptomic changes in the above-mentioned pathways regarding the observed microscopic and/or endogenous hormone levels. This is the first report on the elaboration of transcriptomic changes in longan reciprocal pollination combination showing UCI. The results presented here will enable the longan breeding community to better understand the mechanisms of UCI.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ji Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shilian Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianguang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
18
|
Scheible N, Yoon GM, McCubbin AG. Calmodulin Domain Protein Kinase PiCDPK1 Regulates Pollen Tube Growth Polarity through Interaction with RhoGDI. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030254. [PMID: 35161234 PMCID: PMC8838988 DOI: 10.3390/plants11030254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 05/14/2023]
Abstract
The pollen-specific calcium-dependent protein kinase PiCDPK1 of Petunia inflata has previously been shown to regulate polarity in tip growth in pollen tubes. Here we report the identification of a Rho Guanine Dissociation Inhibitor (PiRhoGDI1) as a PiCDPK1 interacting protein. We demonstrate that PiRhoGDI1 and PiCDPK1 interact in a yeast 2-hybrid assay, as well as in an in vitro pull-down assay, and that PiRhoGDI1 is phosphorylated by PiCDPK1 in vitro. We further demonstrate the PiRhoGDI1 is capable of rescuing the loss of growth polarity phenotype caused by over-expressing PiCDPK1 in vivo using stable transgenic plants. We confirmed that PiRhoGDI1 interacts with a pollen-expressed ROP GTPase isoform consistent with the established role of RhoGDIs in negatively regulating GTPases through their membrane removal and locking them in an inactive cytosolic complex. ROP is a central regulator of polarity in tip growth, upstream of Ca2+, and PiCDPK1 over-expression has been previously reported to lead to dramatic elevation of cytosolic Ca2+ through a positive feedback loop. The discovery that PiCDPK1 impacts ROP regulation via PiRhoGDI1 suggests that PiCDPK1 acts as RhoGDI displacement factor and leads us to propose a model which we hypothesize regulates the rapid recycling of ROP GTPase at the pollen tube tip.
Collapse
|
19
|
Li X, Gao Y, Wu W, Chen L, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:143-157. [PMID: 34498364 PMCID: PMC8710898 DOI: 10.1111/pbi.13701] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Stomatal closure is an important process to prevent water loss in plants response to drought stress, which is finely modulated by ion channels together with their regulators in guard cells, especially the S-type anion channel AtSLAC1 in Arabidopsis. However, the functional characterization and regulation analyses of anion channels in gramineous crops, such as in maize guard cells are still limited. In this study, we identified an S-type anion channel ZmSLAC1 that was preferentially expressed in maize guard cells and involved in stomatal closure under drought stress. We found that two Ca2+ -dependent protein kinases ZmCPK35 and ZmCPK37 were expressed in maize guard cells and localized on the plasma membrane. Lesion of ZmCPK37 resulted in drought-sensitive phenotypes. Mutation of ZmSLAC1 and ZmCPK37 impaired ABA-activated S-type anion currents in maize guard cells, while the S-type anion currents were increased in the guard cells of ZmCPK35- and ZmCPK37-overexpression lines. Electrophysiological characterization in maize guard cells and Xenopus oocytes indicated that ZmCPK35 and ZmCPK37 could activate ZmSLAC1-mediated Cl- and NO3- currents. The maize inbred and hybrid lines overexpressing ZmCPK35 and ZmCPK37 exhibited enhanced tolerance and increased yield under drought conditions. In conclusion, our results demonstrate that ZmSLAC1 plays crucial roles in stomatal closure in maize, whose activity is regulated by ZmCPK35 and ZmCPK37. Elevation of ZmCPK35 and ZmCPK37 expression levels is a feasible way to improve maize drought tolerance as well as reduce yield loss under drought stress.
Collapse
Affiliation(s)
- Xi‐Dong Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yong‐Qiang Gao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wei‐Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Li‐Mei Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB)College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
20
|
A Decade of Pollen Phosphoproteomics. Int J Mol Sci 2021; 22:ijms222212212. [PMID: 34830092 PMCID: PMC8619407 DOI: 10.3390/ijms222212212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.
Collapse
|
21
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
22
|
P2K1 Receptor, Heterotrimeric Gα Protein and CNGC2/4 Are Involved in Extracellular ATP-Promoted Ion Influx in the Pollen of Arabidopsis thaliana. PLANTS 2021; 10:plants10081743. [PMID: 34451790 PMCID: PMC8400636 DOI: 10.3390/plants10081743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
As an apoplastic signal, extracellular ATP (eATP) is involved in plant growth and development. eATP promotes tobacco pollen germination (PG) and pollen tube growth (PTG) by stimulating Ca2+ or K+ absorption. Nevertheless, the mechanisms underlying eATP-stimulated ion uptake and their role in PG and PTG are still unclear. Here, ATP addition was found to modulate PG and PTG in 34 plant species and showed a promoting effect in most of these species. Furthermore, by using Arabidopsis thaliana as a model, the role of several signaling components involved in eATP-promoted ion (Ca2+, K+) uptake, PG, and PTG were investigated. ATP stimulated while apyrase inhibited PG and PTG. Patch-clamping results showed that ATP promoted K+ and Ca2+ influx into pollen protoplasts. In loss-of-function mutants of P2K1 (dorn1-1 and dorn1-3), heterotrimeric G protein α subunit (gpa1-1, gpa1-2), or cyclic nucleotide gated ion channel (cngc2, cngc4), eATP-stimulated PG, PTG, and ion influx were all impaired. Our results suggest that these signaling components may be involved in eATP-promoted PG and PTG by regulating Ca2+ or K+ influx in Arabidopsis pollen grains.
Collapse
|
23
|
The expression of constitutively active CPK3 impairs potassium uptake and transport in Arabidopsis under low K + stress. Cell Calcium 2021; 98:102447. [PMID: 34333245 DOI: 10.1016/j.ceca.2021.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Potassium (K+) is a vital cation and is involved in multiple physiological functions in plants. K+ uptake from outer medium by roots is a tightly regulated process and is mainly carried out by two high affinity K+ transport proteins AKT1 and HAK5. It has been shown that calcium (Ca2+) signaling plays important roles in the regulation of K+ transport in plants. Ca2+-dependent protein kinases (CPKs) are involved in regulation of multiple K+ channels in different tissues. However, it remains to be studied whether CPKs are involved in the regulation of AKT1 and, thereby, K+ transport. Here, we have shown that constitutively active version of CPK3 (CPK3CA) is involved in K+ transport in Arabidopsis via regulating AKT1 under low K+ conditions. The constitutively active version of CPK3 (CPK3CA), as well as CPK21 (CPK21CA), inhibited K+ currents of AKT1 in Xenopus oocytes. CPK3CA inhibited only channel conductance but had no effect on channel open probability. Further, CPK3 in vivo interacted with AKT1. Under low K+ conditions, cpk3 knock-out mutants had no distinct phenotype, while the seedlings of 35S-CPK3CA overexpressing lines died even at normal K+ concentration. Further, the transgenic lines expressing CPK3CA under AKT1 promoter (ProAKT1-CPK3CA) exhibited the same phenotype as akt1 mutant with a defective root growth and leaf chlorosis. Moreover, ProAKT1-CPK3CA transgenic lines had lower root and shoot K+ contents than Col. Overall, the data reported here demonstrate that the expression of constitutively active of CPK3 impairs potassium uptake and transports in Arabidopsis under low K+ stress by inhibiting the activity of AKT1.
Collapse
|
24
|
Lhamo D, Luan S. Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. FRONTIERS IN PLANT SCIENCE 2021; 12:689545. [PMID: 34220911 PMCID: PMC8242960 DOI: 10.3389/fpls.2021.689545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three major macronutrients essential for plant life. These nutrients are acquired and transported by several large families of transporters expressed in plant roots. However, it remains largely unknown how these transporters are distributed in different cell-types that work together to transfer the nutrients from the soil to different layers of root cells and eventually reach vasculature for massive flow. Using the single cell transcriptomics data from Arabidopsis roots, we profiled the transcriptional patterns of putative nutrient transporters in different root cell-types. Such analyses identified a number of uncharacterized NPK transporters expressed in the root epidermis to mediate NPK uptake and distribution to the adjacent cells. Some transport genes showed cortex- and endodermis-specific expression to direct the nutrient flow toward the vasculature. For long-distance transport, a variety of transporters were shown to express and potentially function in the xylem and phloem. In the context of subcellular distribution of mineral nutrients, the NPK transporters at subcellular compartments were often found to show ubiquitous expression patterns, which suggests function in house-keeping processes. Overall, these single cell transcriptomic analyses provide working models of nutrient transport from the epidermis across the cortex to the vasculature, which can be further tested experimentally in the future.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
25
|
Wang Y, Dai X, Xu G, Dai Z, Chen P, Zhang T, Zhang H. The Ca 2+-CaM Signaling Pathway Mediates Potassium Uptake by Regulating Reactive Oxygen Species Homeostasis in Tobacco Roots Under Low-K + Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:658609. [PMID: 34163499 PMCID: PMC8216240 DOI: 10.3389/fpls.2021.658609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/31/2023]
Abstract
Potassium (K+) deficiency severely threatens crop growth and productivity. Calcium (Ca2+) signaling and its sensors play a central role in the response to low-K+ stress. Calmodulin (CaM) is an important Ca2+ sensor. However, the mechanism by which Ca2+ signaling and CaM mediate the response of roots to low-K+ stress remains unclear. In this study, we found that the K+ concentration significantly decreased in both shoots and roots treated with Ca2+ channel blockers, a Ca2+ chelator, and CaM antagonists. Under low-K+ stress, reactive oxygen species (ROS) accumulated, and the activity of antioxidant enzymes, NAD kinase (NADK), and NADP phosphatase (NADPase) decreased. This indicates that antioxidant enzymes, NADK, and NADPase might be downstream target proteins in the Ca2+-CaM signaling pathway, which facilitates K+ uptake in plant roots by mediating ROS homeostasis under low-K+ stress. Moreover, the expression of NtCNGC3, NtCNGC10, K+ channel genes, and transporter genes was significantly downregulated in blocker-treated, chelator-treated, and antagonist-treated plant roots in the low K+ treatment, suggesting that the Ca2+-CaM signaling pathway may mediate K+ uptake by regulating the expression of these genes. Overall, this study shows that the Ca2+-CaM signaling pathway promotes K+ absorption by regulating ROS homeostasis and the expression of K+ uptake-related genes in plant roots under low-K+ stress.
Collapse
|
26
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
27
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
28
|
Yang H, You C, Yang S, Zhang Y, Yang F, Li X, Chen N, Luo Y, Hu X. The Role of Calcium/Calcium-Dependent Protein Kinases Signal Pathway in Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:633293. [PMID: 33767718 PMCID: PMC7985351 DOI: 10.3389/fpls.2021.633293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 05/21/2023]
Abstract
Pollen tube (PT) growth as a key step for successful fertilization is essential for angiosperm survival and especially vital for grain yield in cereals. The process of PT growth is regulated by many complex and delicate signaling pathways. Among them, the calcium/calcium-dependent protein kinases (Ca2+/CPKs) signal pathway has become one research focus, as Ca2+ ion is a well-known essential signal molecule for PT growth, which can be instantly sensed and transduced by CPKs to control myriad biological processes. In this review, we summarize the recent progress in understanding the Ca2+/CPKs signal pathway governing PT growth. We also discuss how this pathway regulates PT growth and how reactive oxygen species (ROS) and cyclic nucleotide are integrated by Ca2+ signaling networks.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chen You
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Shaoyu Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yuping Zhang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fan Yang
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - Xue Li
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Ning Chen
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Luo
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
29
|
Dong Q, Bai B, Almutairi BO, Kudla J. Emerging roles of the CBL-CIPK calcium signaling network as key regulatory hub in plant nutrition. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153335. [PMID: 33388664 DOI: 10.1016/j.jplph.2020.153335] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 05/27/2023]
Abstract
Plant physiology and development essentially depend on sufficient uptake of various essential nutritive ions via their roots and their appropriate transport and distribution within the organism. Many of these essential nutrients are heterogeneously distributed in the soil or are available in fluctuating concentrations. This natural situation requires constant regulatory adjustment and balancing of nutrient uptake and homeostasis. Here, we review recent findings on the role of Ca2+ signals and Ca2+-dependent regulation via the CBL-CIPK Ca2+ sensor-protein kinase network in these processes. We put special emphasis on Ca2+ controlled processes that contribute to establishing the homeostasis of macro-nutrients like potassium (K+), nitrogen (N), and magnesium (Mg2+) and on the micro-nutrient iron (Fe). Increasing experimental evidence indicates the occurrence of nutrient-specific, spatially and temporally defined cytoplasmic Ca2+ elevations as early responses to nutrient fluctuations. Specific CBL-CIPK complexes translate these signals into phosphorylation regulation of important channels and transporters like AKT1, NPF6.3/NRT1.1, AMT1, SLAC1, TPK1 and IRT1. We discuss a crucial and coordinating role for these Ca2+ signaling mechanisms in regulating the sensing, uptake, distribution and storage of various ions. Finally, we reflect on the emerging multifaceted and potentially integrating role of the "nutrient" kinase CIPK23 in regulating multiple nutrient responses. From this inventory, we finally deduce potential mechanisms that can convey the coordinated regulation of distinct steps in the transport of one individual ion and mechanisms that can bring about the integration of adaptive responses to fluctuations of different ions to establish a faithfully balanced plant nutrient homeostasis.
Collapse
Affiliation(s)
- Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, 48149, Münster, Germany.
| | - Bowen Bai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, 48149, Münster, Germany; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
30
|
Zhao P, Liu Y, Kong W, Ji J, Cai T, Guo Z. Genome-Wide Identification and Characterization of Calcium-Dependent Protein Kinase ( CDPK) and CDPK-Related Kinase ( CRK) Gene Families in Medicago truncatula. Int J Mol Sci 2021; 22:1044. [PMID: 33494310 PMCID: PMC7864493 DOI: 10.3390/ijms22031044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium-dependent protein kinase (CDPK or CPK) and CDPK-related kinase (CRK) play an important role in plant growth, development, and adaptation to environmental stresses. However, their gene families had been yet inadequately investigated in Medicago truncatula. In this study, six MtCRK genes were computationally identified, they were classified into five groups with MtCDPKs based on phylogenetic relationships. Six pairs of segmental duplications were observed in MtCDPK and MtCRK genes and the Ka/Ks ratio, an indicator of selection pressure, was below 0.310, indicating that these gene pairs underwent strong purifying selection. Cis-acting elements of morphogenesis, multiple hormone responses, and abiotic stresses were predicted in the promoter region. The spatial expression of MtCDPKs and MtCRKs displays diversity. The expression of MtCDPKs and MtCRKs could be regulated by various stresses. MtCDPK4, 14, 16, 22, and MtCRK6 harbor both N-myristoylation site and palmitoylation site and were anchored on plasma membrane, while MtCDPK7, 9, and 15 contain no or only one N-acylation site and were distributed in cytosol and nucleus, suggesting that the N-terminal acylation sites play a key role in subcellular localization of MtCDPKs and MtCRKs. In summary, comprehensive characterization of MtCDPKs and MtCRKs provide a subset of candidate genes for further functional analysis and genetic improvement against drought, cold, salt and biotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.Z.); (Y.L.); (W.K.); (J.J.); (T.C.)
| |
Collapse
|
31
|
Wu Y, Zhang L, Zhou J, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Feng H, Zhu H. Calcium-Dependent Protein Kinase GhCDPK28 Was Dentified and Involved in Verticillium Wilt Resistance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:772649. [PMID: 34975954 PMCID: PMC8715758 DOI: 10.3389/fpls.2021.772649] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 05/12/2023]
Abstract
Verticillium dahliae is a soil-borne fungus that causes vascular wilt through the roots of plants. Verticillium wilt caused by V. dahliae is one of the main diseases in cotton producing areas of the world, resulting in huge economic losses. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. Calcium-dependent protein kinases (CDPKs) play a pivotal role in plant innate immunity, including regulation of oxidative burst, gene expression as well as hormone signal transduction. However, the function of cotton CDPKs in response to V. dahliae stress remains unexplored. In this study, 96, 44 and 57 CDPKs were identified from Gossypium hirsutum, Gossypium raimondii and Gossypium arboretum, respectively. Phylogenetic analysis showed that these CDPKs could be divided into four branches. All GhCDPKs of the same clade are generally similar in gene structure and conserved domain arrangement. Cis-acting elements related to hormones, stress response, cell cycle and development were predicted in the promoter region. The expression of GhCDPKs could be regulated by various stresses. Gh_D11G188500.1 and Gh_A11G186100.1 was up-regulated under Vd0738 and Vd991 stress. Further phosphoproteomics analysis showed that Gh_A11G186100.1 (named as GhCDPK28-6) was phosphorylated under the stress of V. dahliae. Knockdown of GhCDPK28-6 expression, the content of reactive oxygen species was increased, a series of defense responses were enhanced, and the sensitivity of cotton to V. dahliae was reduced. Moreover, overexpression of GhCDPK28-6 in Arabidopsis thaliana weakened the resistance of plants to this pathogen. Subcellular localization revealed that GhCDPK28-6 was localized in the cell membrane. We also found that GhPBL9 and GhRPL12C may interact with GhCDPK28-6. These results indicate that GhCDPK28-6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
Affiliation(s)
- Yajie Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jinglong Zhou
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Hongjie Feng,
| | - Heqin Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Heqin Zhu,
| |
Collapse
|
32
|
Schulz P, Piepenburg K, Lintermann R, Herde M, Schöttler MA, Schmidt LK, Ruf S, Kudla J, Romeis T, Bock R. Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:74-86. [PMID: 32623825 PMCID: PMC7769235 DOI: 10.1111/pbi.13441] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 05/05/2023]
Abstract
Agriculture is by far the biggest water consumer on our planet, accounting for 70 per cent of all freshwater withdrawals. Climate change and a growing world population increase pressure on agriculture to use water more efficiently ('more crop per drop'). Water-use efficiency (WUE) and drought tolerance of crops are complex traits that are determined by many physiological processes whose interplay is not well understood. Here, we describe a combinatorial engineering approach to optimize signalling networks involved in the control of stress tolerance. Screening a large population of combinatorially transformed plant lines, we identified a combination of calcium-dependent protein kinase genes that confers enhanced drought stress tolerance and improved growth under water-limiting conditions. Targeted introduction of this gene combination into plants increased plant survival under drought and enhanced growth under water-limited conditions. Our work provides an efficient strategy for engineering complex signalling networks to improve plant performance under adverse environmental conditions, which does not depend on prior understanding of network function.
Collapse
Affiliation(s)
- Philipp Schulz
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Katrin Piepenburg
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | | | - Marco Herde
- Institut für BiologieFreie Universität BerlinBerlinGermany
- Present address:
Department of Molecular Nutrition and Biochemistry of PlantsLeibniz Universität HannoverHerrenhäuser Str. 2Hannover30419Germany
| | - Mark A. Schöttler
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Lena K. Schmidt
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐Universität MünsterMünsterGermany
| | - Stephanie Ruf
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms‐Universität MünsterMünsterGermany
| | - Tina Romeis
- Institut für BiologieFreie Universität BerlinBerlinGermany
- Present address:
Leibniz‐Institut für Pflanzenbiochemie (IPB)Weinberg 3Halle/SaaleD‐06120Germany
| | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| |
Collapse
|
33
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
34
|
Qin DB, Liu MY, Yuan L, Zhu Y, Li XD, Chen LM, Wang Y, Chen YF, Wu WH, Wang Y. CALCIUM-DEPENDENT PROTEIN KINASE 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5087-5097. [PMID: 32443150 DOI: 10.1093/jxb/eraa249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/18/2020] [Indexed: 05/20/2023]
Abstract
Protein kinase-mediated phosphorylation modulates the absorption of many nutrients in plants. CALCIUM-DEPENDENT PROTEIN KINASES (CPKs) are key players in plant signaling to translate calcium signals into diverse physiological responses. However, the regulatory role of CPKs in ammonium uptake remains largely unknown. Here, using methylammonium (MeA) toxicity screening, CPK32 was identified as a positive regulator of ammonium uptake in roots. CPK32 specifically interacted with AMMONIUM TRANSPORTER 1;1 (AMT1;1) and phosphorylated AMT1;1 at the non-conserved serine residue Ser450 in the C-terminal domain. Functional analysis in Xenopus oocytes showed that co-expression of CPK32 and AMT1;1 significantly enhanced the AMT1;1-mediated inward ammonium currents. In transgenic plants, the phosphomimic variant AMT1;1S450E, but not the non-phosphorylatable variant AMT1;1S450A, fully complemented the MeA insensitivity and restored high-affinity 15NH4+ uptake in both amt1;1 and cpk32 mutants. Moreover, in the CPK32 knockout background, AMT1;1 lost its ammonium transport activity entirely. These results indicate that CPK32 is a crucial positive regulator of ammonium uptake in roots and the ammonium transport activity of AMT1;1 is dependent on CPK32-mediated phosphorylation.
Collapse
Affiliation(s)
- De-Bin Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng-Yuan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xi-Dong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Mei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Hu CH, Zeng QD, Tai L, Li BB, Zhang PP, Nie XM, Wang PQ, Liu WT, Li WQ, Kang ZS, Han DJ, Chen KM. Interaction between TaNOX7 and TaCDPK13 Contributes to Plant Fertility and Drought Tolerance by Regulating ROS Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7333-7347. [PMID: 32551586 DOI: 10.1021/acs.jafc.0c02146] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) homeostasis is critical for both physiological processes and stress responses of plants. NADPH oxidases (NOXs) are the key producers of ROS in plants. However, their functions in ROS homeostasis and plant growth regulation in wheat (Triticum aestivum) are little investigated. Here, we cloned and characterized a NOX isoform TaNOX7 in wheat. Overexpression of TaNOX7 in rice led to enhanced root length, ROS production, drought tolerance as well as bigger panicles and higher yield but shorter growth period duration. Further results indicate that TaCDPK13, a member of calcium-dependent protein kinases (CDPKs), can directly interact with TaNOX7 and enhance ROS production in plants. These results demonstrate that TaNOX7 plays crucial roles in wheat development, fertility, and drought tolerance via interaction with TaCDPK13, which may act as an upstream regulator of TaNOX7 to regulate ROS production in wheat.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, Henan, P. R. China
| | - Qing-Dong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peng-Qi Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhen-Sheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - De-Jun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
36
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
37
|
Saito S, Uozumi N. Calcium-Regulated Phosphorylation Systems Controlling Uptake and Balance of Plant Nutrients. FRONTIERS IN PLANT SCIENCE 2020; 11:44. [PMID: 32117382 PMCID: PMC7026023 DOI: 10.3389/fpls.2020.00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/14/2020] [Indexed: 05/18/2023]
Abstract
Essential elements taken up from the soil and distributed throughout the whole plant play diverse roles in different tissues. Cations and anions contribute to maintenance of intracellular osmolarity and the formation of membrane potential, while nitrate, ammonium, and sulfate are incorporated into amino acids and other organic compounds. In contrast to these ion species, calcium concentrations are usually kept low in the cytosol and calcium displays unique behavior as a cytosolic signaling molecule. Various environmental stresses stimulate increases in the cytosolic calcium concentration, leading to activation of calcium-regulated protein kinases and downstream signaling pathways. In this review, we summarize the stress responsive regulation of nutrient uptake and balancing by two types of calcium-regulated phosphorylation systems: CPK and CBL-CIPK. CPK is a family of protein kinases activated by calcium. CBL is a group of calcium sensor proteins that interact with CIPK kinases, which phosphorylate their downstream targets. In Arabidopsis, quite a few ion transport systems are regulated by CPKs or CBL-CIPK complexes, including channels/transporters that mediate transport of potassium (KAT1, KAT2, GORK, AKT1, AKT2, HAK5, SPIK), sodium (SOS1), ammonium (AMT1;1, AMT1;2), nitrate and chloride (SLAC1, SLAH2, SLAH3, NRT1.1, NRT2.4, NRT2.5), and proton (AHA2, V-ATPase). CPKs and CBL-CIPKs also play a role in C/N nutrient response and in acquisition of magnesium and iron. This functional regulation by calcium-dependent phosphorylation systems ensures the growth of plants and enables them to acquire tolerance against various environmental stresses. Calcium serves as the key factor for the regulation of membrane transport systems.
Collapse
Affiliation(s)
- Shunya Saito
- *Correspondence: Shunya Saito, ; Nobuyuki Uozumi,
| | | |
Collapse
|
38
|
Zhu L, Zheng B, Song W, Li H, Jin X. Evolutionary Analysis of Calcium-Dependent Protein Kinase in Five Asteraceae Species. PLANTS (BASEL, SWITZERLAND) 2019; 9:plants9010032. [PMID: 31878291 PMCID: PMC7020201 DOI: 10.3390/plants9010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 05/23/2023]
Abstract
Calcium-dependent protein kinase (CPK) is crucial in Ca2+ signal transduction, and is a large gene family in plants. In our previous work, we reported Hevea brasiliensis CPKs were important for natural rubber biosynthesis. However, this CPK gene family in other rubber producing plants has not been investigated. Here, we report the CPKs in five representative Asteraceae species, including three rubber-producing and two non-rubber species. A total of 34, 34, 40, 34 and 30 CPKs were identified from Taraxacum koksaghyz, Lactuca sativa, Helianthus annuus, Chrysanthemum nankingense and Cynara cardunculus, respectively. All CPKs were classified into four individual groups (group I to IV). In addition, 10 TkCPKs, 11 LsCPKs, 20 HaCPKs, 13 CnCPKs and 7 CcCPKs duplicated paralogs were identified. Further evolutionary analysis showed that, compared to other subfamilies, the group III had been expanded in the Asteraceae species, especially in the rubber-producing species. Meanwhile, the CPKs in group III from Asteraceae species tend to expand with low calcium binding capacity. This study provides a systematical evolutionary investigation of the CPKs in five representative Asteraceae species, suggesting that the sub-family specific expansion of CPKs might be related to natural rubber producing.
Collapse
Affiliation(s)
- Liping Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (L.Z.); (B.Z.); (W.S.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Bowen Zheng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (L.Z.); (B.Z.); (W.S.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Wangyang Song
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (L.Z.); (B.Z.); (W.S.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hongbin Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (L.Z.); (B.Z.); (W.S.)
- Correspondence: (H.L.); (X.J.)
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (L.Z.); (B.Z.); (W.S.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence: (H.L.); (X.J.)
| |
Collapse
|
39
|
Kim YJ, Zhang D, Jung KH. Molecular Basis of Pollen Germination in Cereals. TRENDS IN PLANT SCIENCE 2019; 24:1126-1136. [PMID: 31610991 DOI: 10.1016/j.tplants.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Understanding the molecular basis of pollen germination in cereals holds great potential to improve yield. Pollen, a highly specialized haploid male gametophyte, transports sperm cells through a pollen tube to the female ovule for fertilization, directly determining grain yield in cereal crops. Although insights into the regulation of pollen germination and gamete interaction have advanced rapidly in the model Arabidopsis thaliana (arabidopsis), the molecular mechanisms in monocot cereals remain largely unknown. Recently, pollen-specific genome-wide and mutant analyses in rice and maize have extended our understanding of monocot regulatory components. We highlight conserved and diverse mechanisms underlying pollen hydration, germination, and tube growth in cereals that provide ideas for translating this research from arabidopsis. Recent developments in gene-editing systems may facilitate further functional genetic research.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Dabing Zhang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
40
|
Podolyan A, Maksimov N, Breygina M. Redox-regulation of ion homeostasis in growing lily pollen tubes. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153050. [PMID: 31639533 DOI: 10.1016/j.jplph.2019.153050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/13/2023]
Abstract
The pollen tube is characterized by cytoplasm compartmentalization typical for cells with polar growth. This concept includes "ion zoning", i.e. gradient distribution of ionic currents across the plasma membrane and free inorganic ions in the cytoplasm. One of the putative mechanisms for maintaining "ion zoning" is indicated by the sensitivity of the ion transport systems to reactive oxygen species (ROS). Here we test the possibility of redox regulation of ionic gradients and membrane potential (MP) gradient in growing pollen tubes using quantitative fluorescence microscopy. ROS quencher MnTMPP and exogenic H2O2 cause different alterations of intracellular Ca2+ gradient, pH gradient and MP gradient during short-term exposure. MnTMPP significantly shifts the gradients of Ca2+ and MP at low concentrations while high concentration cause growth alterations (ballooned tips) and cytoplasm acidification. H2O2 at 0,5 and 1 mM affects ion homeostasis as well (MP, Ca2+, pH) but doesn't decrease viability or alter shape of the tubes. Here we present original quantitative data on the interconnection between ROS and ion transport during tip growth.
Collapse
Affiliation(s)
- Alexandra Podolyan
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Nikita Maksimov
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Maria Breygina
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia; Pirogov Russian National Research Medical University, Ostrovitjanova Street 1, Moscow, 117997, Russia.
| |
Collapse
|
41
|
Villette J, Cuéllar T, Zimmermann SD, Verdeil JL, Gaillard I. Unique features of the grapevine VvK5.1 channel support novel functions for outward K+ channels in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6181-6193. [PMID: 31327013 PMCID: PMC6859719 DOI: 10.1093/jxb/erz341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 05/04/2023]
Abstract
Grapevine (Vitis vinifera L.), one of the most important fruit crops, is a model plant for studying the physiology of fleshy fruits. Here, we report on the characterization of a new grapevine Shaker-type K+ channel, VvK5.1. Phylogenetic analysis revealed that VvK5.1 belongs to the SKOR-like subfamily. Our functional characterization of VvK5.1 in Xenopus oocytes confirms that it is an outwardly rectifying K+ channel that displays strict K+ selectivity. Gene expression level analyses by real-time quantitative PCR showed that VvK5.1 expression was detected in berries, roots, and flowers. In contrast to its Arabidopsis thaliana counterpart that is involved in K+ secretion in the root pericycle, allowing root to shoot K+ translocation, VvK5.1 expression territory is greatly enlarged. Using in situ hybridization we showed that VvK5.1 is expressed in the phloem and perivascular cells of berries and in flower pistil. In the root, in addition to being expressed in the root pericycle like AtSKOR, a strong expression of VvK5.1 is detected in small cells facing the xylem that are involved in lateral root formation. This fine and selective expression pattern of VvK5.1 at the early stage of lateral root primordia supports a role for outward channels to switch on cell division initiation.
Collapse
Affiliation(s)
- Jérémy Villette
- BPMP, Université Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Jean-Luc Verdeil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Isabelle Gaillard
- BPMP, Université Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Correspondence:
| |
Collapse
|
42
|
Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:585-604. [PMID: 31369160 DOI: 10.1111/nph.16088] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 05/20/2023]
Abstract
Calcium is a ubiquitous second messenger that mediates plant responses to developmental and environmental cues. Calcium-dependent protein kinases (CDPKs) are key actors of plant signaling that convey calcium signals into physiological responses by phosphorylating various substrates including ion channels, transcription factors and metabolic enzymes. This large diversity of targets confers pivotal roles of CDPKs in shoot and root development, pollen tube growth, stomatal movements, hormonal signaling, transcriptional reprogramming and stress tolerance. On the one hand, specificity in CDPK signaling is achieved by differential calcium sensitivities, expression patterns, subcellular localizations and substrates. On the other hand, CDPKs also target some common substrates to ensure key cellular processes indispensable for plant growth and survival in adverse environmental conditions. In addition, the CDPK-related protein kinases (CRKs) might be closer to some CDPKs than previously anticipated and could contribute to calcium signaling despite their inability to bind calcium. This review highlights the regulatory properties of Arabidopsis CDPKs and CRKs that coordinate their multifaceted functions in development, immunity and abiotic stress responses.
Collapse
Affiliation(s)
- Tiffany Yip Delormel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry Val d'Essonne, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie Boudsocq
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry Val d'Essonne, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
43
|
Wen K, Chen Y, Zhou X, Chang S, Feng H, Zhang J, Chu Z, Han X, Li J, Liu J, Xi C, Zhao H, Han S, Wang Y. OsCPK21 is required for pollen late-stage development in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153000. [PMID: 31220626 DOI: 10.1016/j.jplph.2019.153000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
In flowering plants, pollen development is a critical step for reproductive success and necessarily involves complex genetic regulatory networks. Calcium-dependent protein kinases (CPKs) are plant-specific calcium sensors involved in the regulation of plant development and adaption to the environment; however, whether they play a role in regulating male reproduction remains elusive. Here, we found that the knockdown of spikelet-specific OsCPK21 causes pollen abortion in OsCPK21-RNAi transgenic plants. Severe defects in pollen development initiated at stage 10 of anther development and simultaneous cell death occurred in the pollen cells of OsCPK21-RNAi plants. Microarray analysis and qRT-PCR revealed that the transcription of OsCPK21 is coordinated with that of MIKC*-type MADS box transcription factors OsMADS62, OsMADS63, and OsMADS68 during rice anther development. We further showed that OsCPK21 indirectly up-regulates the transcription of OsMADS62, OsMADS63, and OsMADS68 through the potential MYB binding site, DRE/CRT element, and/or new ERF binding motif localised in the promoter region of these three MADS genes. These findings suggest that OsCPK21 plays an essential role in pollengenesis, possibly via indirectly regulating the transcription of MIKC*-type MADS box proteins.
Collapse
Affiliation(s)
- Kexin Wen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yixing Chen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaojin Zhou
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Hao Feng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jing Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaogang Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
44
|
Scheible N, McCubbin A. Signaling in Pollen Tube Growth: Beyond the Tip of the Polarity Iceberg. PLANTS (BASEL, SWITZERLAND) 2019; 8:E156. [PMID: 31181594 PMCID: PMC6630365 DOI: 10.3390/plants8060156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
The coordinated growth of pollen tubes through floral tissues to deliver the sperm cells to the egg and facilitate fertilization is a highly regulated process critical to the Angiosperm life cycle. Studies suggest that the concerted action of a variety of signaling pathways underlies the rapid polarized tip growth exhibited by pollen tubes. Ca2+ and small GTPase-mediated pathways have emerged as major players in the regulation of pollen tube growth. Evidence suggests that these two signaling pathways not only integrate with one another but also with a variety of other important signaling events. As we continue to elucidate the mechanisms involved in pollen tube growth, there is a growing importance in taking a holistic approach to studying these pathways in order to truly understand how tip growth in pollen tubes is orchestrated and maintained. This review considers our current state of knowledge of Ca2+-mediated and GTPase signaling pathways in pollen tubes, how they may intersect with one another, and other signaling pathways involved. There will be a particular focus on recent reports that have extended our understanding in these areas.
Collapse
Affiliation(s)
- Nolan Scheible
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | - Andrew McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
- Center for Reproductive Biology, Pullman, WA, 99164, USA.
| |
Collapse
|
45
|
Li M, Hu W, Ren L, Jia C, Liu J, Miao H, Guo A, Xu B, Jin Z. Identification, Expression, and Interaction Network Analyses of the CDPK Gene Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Biochem Genet 2019; 58:40-62. [PMID: 31144068 DOI: 10.1007/s10528-019-09916-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) play vital roles in the regulation of plant growth, development, and tolerance to various abiotic stresses. However, little information is available for this gene family in banana. In this study, 44 CDPKs were identified in banana and were classified into four groups based on phylogenetic, gene structure, and conserved motif analyses. The majority of MaCDPKs generally exhibited similar expression patterns in the different tissues. Transcriptome analyses revealed that many CDPKs showed strong transcript accumulation at the early stages of fruit development and postharvest ripening in both varieties. Interaction network and co-expression analysis further identified some CDPKs-mediated network that was potentially active at the early stages of fruit development. Comparative expression analysis suggested that the high levels of CDPK expression in FJ might be related to its fast ripening characteristic. CDPK expression following the abiotic stress treatments indicated a significant transcriptional response to osmotic, cold, and salt treatment, as well as differential expression profiles, between BX and FJ. The findings of this study elucidate the transcriptional control of CDPKs in development, ripening, and the abiotic stress response in banana. Some tissue-specific, development/ripening-dependent, and abiotic stress-responsive candidate MaCDPK genes were identified for further genetic improvement of banana.
Collapse
Affiliation(s)
- Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Licheng Ren
- Department of Biology, Hainan Medical College, Haikou, China
| | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|
46
|
Ponvert N, Goldberg J, Leydon A, Johnson MA. Iterative subtraction facilitates automated, quantitative analysis of multiple pollen tube growth features. PLANT REPRODUCTION 2019; 32:45-54. [PMID: 30543045 DOI: 10.1007/s00497-018-00351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
In flowering plants, successful reproduction and generation of seed depends on the delivery of immotile sperm to female gametes via the pollen tube. As reproduction in flowering plants is the cornerstone of our agricultural industry, there is a need to uncover the genes, small molecules, and environmental conditions that affect pollen tube growth dynamics. However, methods for measuring pollen tube phenotypes are labor intensive, and suffer from a tradeoff between workload and resolution. To approach these problems, we use an image analysis technique called Automated Stack Iterative Subtraction (ASIST). Our tool converts growing pollen tube tips into closed particles, making the automated simultaneous extraction of multiple pollen tube phenotypes from hundreds of individual cells tractable via existing particle identification technology. Here we use our tool to analyze growth dynamics of pollen tubes in vitro, and semi in vivo. We show that ASIST provides a framework for robust, high throughput analysis of pollen tube growth behaviors in populations of cells, thus facilitating pollen tube phenomics.
Collapse
Affiliation(s)
- Nathaniel Ponvert
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jacob Goldberg
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Alexander Leydon
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
47
|
Wang B, Zhang Y, Bi Z, Liu Q, Xu T, Yu N, Cao Y, Zhu A, Wu W, Zhan X, Anis GB, Yu P, Chen D, Cheng S, Cao L. Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:52. [PMID: 30778363 PMCID: PMC6369234 DOI: 10.3389/fpls.2019.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L.); early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in es4 completely restored the normal phenotype. We used CRISPR/Cas9 for targeted disruption of OsCPK12 in ZH8015 and all the mutants exhibited the premature senescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12. Overexpression of OsCPK12 in ZH8015 enhanced the net photosynthetic rate (P n) and chlorophyll content. OsCPK12 was mainly expressed in green organs. The results of qRT-PCR analysis showed that the expression levels of some key genes involved in senescence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutant of OsCPK12 triggers the premature leaf senescence; however, the overexpression of OsCPK12 may delay its growth period and provide the potentially positive effect on productivity in rice.
Collapse
Affiliation(s)
- Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenzhen Bi
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Xu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr El Sheikh, Egypt
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
48
|
Li Y, Fei X, Dai H, Li J, Zhu W, Deng X. Genome-Wide Identification of Calcium-Dependent Protein Kinases in Chlamydomonas reinhardtii and Functional Analyses in Nitrogen Deficiency-Induced Oil Accumulation. FRONTIERS IN PLANT SCIENCE 2019; 10:1147. [PMID: 31695707 PMCID: PMC6818280 DOI: 10.3389/fpls.2019.01147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/22/2019] [Indexed: 05/15/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are recognized as important calcium (Ca2+) sensors in signal transduction and play multiple roles in plant growth and developmental processes, as well as in response to various environmental stresses. However, little information is available about the CDPK family in the green microalga Chlamydomonas reinhardtii. In this study, 15 CrCDPK genes were identified in C. reinhardtii genome, and their functions in nitrogen (N) deficiency-induced oil accumulation were analyzed. Our results showed that all CrCDPK proteins harbored the typical elongation factor (EF)-hand Ca2+-binding and protein kinase domains. Phylogenetic analysis revealed that these CrCDPKs were clustered into one group together with a subclade of several CPKs from Arabidopsis and rice, clearly separating from the remaining AtCPKs and OsCPKs. These genes were located in 10 chromosomes and one scaffold of C. reinhardtii and contained 6-17 exons. RNA sequencing and quantitative reverse transcription (qRT)-PCR assays indicated that most of these CrCDPKs were significantly induced by N deficiency and salt stress. Lanthanum chloride (LaCl3), a plasma membrane Ca2+ channel blocker, limited oil accumulation in C. reinhardtii under N-deficient conditions, suggesting that Ca2+ was involved in N deficiency-induced oil accumulation. Furthermore, RNA interference (RNAi) silencing analyses demonstrated that six CrCDPKs played positive roles and three CrCDPKs played negative roles in N deficiency-induced oil accumulation in C. reinhardtii.
Collapse
Affiliation(s)
- Yajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaowen Fei
- Biochemistry and Molecular Biology Department, Hainan Medical College, Haikou, China
| | - Haofu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiangyue Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiju Zhu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaodong Deng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- *Correspondence: Xiaodong Deng,
| |
Collapse
|
49
|
Tang Y, Zhao D, Meng J, Tao J. EGTA reduces the inflorescence stem mechanical strength of herbaceous peony by modifying secondary wall biosynthesis. HORTICULTURE RESEARCH 2019; 6:36. [PMID: 30854212 PMCID: PMC6395589 DOI: 10.1038/s41438-019-0117-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/19/2018] [Accepted: 12/30/2018] [Indexed: 05/12/2023]
Abstract
The mechanical strength of inflorescence stems is an important trait in cut flowers. Calcium ions (Ca2+) play a pivotal role in maintaining stem strength, but little is known about the underlying molecular mechanisms. In this study, we treated herbaceous peony (Paeonia lactiflora Pall.) with ethyl glycol tetraacetic acid (EGTA), an effective Ca2+ chelator, and used morphology indicators, spectroscopic analysis, histochemical staining, electron microscopy, and proteomic techniques to investigate the role of Ca2+ in inflorescence stem mechanical strength. The EGTA treatment reduced the mechanical strength of inflorescence stems, triggered the loss of Ca2+ from cell walls, and reduced lignin in thickened secondary walls in xylem cells as determined by spectroscopic analysis and histochemical staining. Electron microscopy showed that the EGTA treatment also resulted in significantly fewer xylem cell layers with thickened secondary walls as well as in reducing the thickness of these secondary walls. The proteomic analysis showed 1065 differentially expressed proteins (DEPs) at the full-flowering stage (S4). By overlapping the Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) analysis results, we identified 43 DEPs involved in signal transduction, transport, energy metabolism, carbohydrate metabolism, and secondary metabolite biosynthesis. Using quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we showed that EGTA treatment inhibited Ca2+ sensors and secondary wall biosynthesis-related genes. Our findings revealed that EGTA treatment reduced the inflorescence stem mechanical strength by reducing lignin deposition in xylem cells through altering the expression of genes involved in Ca2+ binding and secondary wall biosynthesis.
Collapse
Affiliation(s)
- Yuhan Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jiasong Meng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
50
|
Wu Y, Qin B, Feng K, Yan R, Kang E, Liu T, Shang Z. Extracellular ATP promoted pollen germination and tube growth of Nicotiana tabacum through promoting K + and Ca 2+ absorption. PLANT REPRODUCTION 2018; 31:399-410. [PMID: 29934740 DOI: 10.1007/s00497-018-0341-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/15/2018] [Indexed: 05/15/2023]
Abstract
Extracellular ATP (eATP) plays an essential role in plant growth, development, and stress tolerance. Here, we report that eATP participated in Nicotiana tabacum pollen germination (PG) and pollen tube growth (PTG) by regulating K+ and Ca2+ influx. Exogenous ATP or ADP effectively promoted PG and PTG in a dose-dependent manner; weakly hydrolysable ATP analog (ATPγS) showed a similar effect. AMP, adenosine, adenine, and phosphate did not affect PG or PTG. Within a certain range, higher concentrations of K+ or Ca2+ in the medium increased the effect of ATP in promoting PG and PTG. However, in mediums containing K+ or Ca2+ concentrations above this range, the effect of ATP was reversed, resulting in PG and PTG inhibition. Ca2+ chelators (EGTA), Ca2+ channel blockers, and K+ channel blockers suppressed ATP-promoted PG and PTG. Results from a patch clamp showed that ATP activated a K+ and Ca2+ influx in pollen protoplasts. These results suggest that, as an apoplastic signal, eATP may be involved in PG and PTG via regulating Ca2+ and K+ absorption.
Collapse
Affiliation(s)
- Yansheng Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Department of Chemistry Engineering and Biological Technology, Xingtai University, Xingtai, 054001, Hebei, China
| | - Baozhi Qin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Kaili Feng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruolin Yan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ting Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|