1
|
Li G, Zhao X, Yang J, Hu S, Ponnu J, Kimura S, Hwang I, Torii KU, Hou H. Water wisteria genome reveals environmental adaptation and heterophylly regulation in amphibious plants. PLANT, CELL & ENVIRONMENT 2024; 47:4720-4740. [PMID: 39076061 DOI: 10.1111/pce.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Heterophylly is a phenomenon whereby an individual plant dramatically changes leaf shape in response to the surroundings. Hygrophila difformis (Acanthaceae; water wisteria), has recently emerged as a model plant to study heterophylly because of its striking leaf shape variation in response to various environmental factors. When submerged, H. difformis often develops complex leaves, but on land it develops simple leaves. Leaf complexity is also influenced by other factors, such as light density, humidity, and temperature. Here, we sequenced and assembled the H. difformis chromosome-level genome (scaffold N50: 60.43 Mb, genome size: 871.92 Mb), which revealed 36 099 predicted protein-coding genes distributed over 15 pseudochromosomes. H. difformis diverged from its relatives during the Oligocene climate-change period and expanded gene families related to its amphibious habit. Genes related to environmental stimuli, leaf development, and other pathways were differentially expressed in submerged and terrestrial conditions, possibly modulating morphological and physiological acclimation to changing environments. We also found that auxin plays a role in H. difformis heterophylly. Finally, we discovered candidate genes that respond to different environmental conditions and elucidated the role of LATE MERISTEM IDENTITY 1 (LMI1) in heterophylly. We established H. difformis as a model for studying interconnections between environmental adaptation and morphogenesis.
Collapse
Affiliation(s)
- Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Hu
- Laboratory of Marine Biological Resources Development and Utilization, Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, China
| | - Jathish Ponnu
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Keiko U Torii
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
van Veen H, Müller JT, Bartylla MM, Akman M, Sasidharan R, Mustroph A. Phylotranscriptomics provides a treasure trove of flood-tolerance mechanisms in the Cardamineae tribe. PLANT, CELL & ENVIRONMENT 2024; 47:4464-4480. [PMID: 39012097 DOI: 10.1111/pce.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
Flooding events are highly detrimental to most terrestrial plant species. However, there is an impressive diversity of plant species that thrive in flood-prone regions and represent a treasure trove of unexplored flood-resilience mechanisms. Here we surveyed a panel of four species from the Cardamineae tribe representing a broad tolerance range. This included the flood-tolerant Cardamine pratensis, Rorippa sylvestris and Rorippa palustris and the flood-sensitive species Cardamine hirsuta. All four species displayed a quiescent strategy, evidenced by the repression of shoot growth underwater. Comparative transcriptomics analyses between the four species and the sensitive model species Arabidopsis thaliana were facilitated via de novo transcriptome assembly and identification of 16 902 universal orthogroups at a high resolution. Our results suggest that tolerance likely evolved separately in the Cardamine and Rorippa species. While the Rorippa response was marked by a strong downregulation of cell-cycle genes, Cardamine minimized overall transcriptional regulation. However, a weak starvation response was a universal trait of tolerant species, potentially achieved in multiple ways. It could result from a strong decline in cell-cycle activity, but is also intertwined with autophagy, senescence, day-time photosynthesis and night-time fermentation capacity. Our data set provides a rich source to study adaptational mechanisms of flooding tolerance.
Collapse
Affiliation(s)
- Hans van Veen
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jana T Müller
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Malte M Bartylla
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Melis Akman
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
3
|
Pucciariello C, Perata P. Plant quiescence strategy and seed dormancy under hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6047-6055. [PMID: 38622943 DOI: 10.1093/jxb/erae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, leading to metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene-responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth.
Collapse
Affiliation(s)
- Chiara Pucciariello
- Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- NanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
4
|
Mira MM, Hill RD, Stasolla C. Low-oxygen-induced root bending is altered by phytoglobin1 through mediation of ethylene response factors (ERFs) and auxin signaling. PLANTA 2024; 260:54. [PMID: 39012577 DOI: 10.1007/s00425-024-04482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
MAIN CONCLUSION phytoglobin1 positively regulates root bending in hypoxic Arabidopsis roots through regulation of ethylene response factors and auxin transport. Hypoxia-induced root bending is known to be mediated by the redundant activity of the group VII ethylene response factors (ERFVII) RAP2.12 and HRE2, causing changes in polar auxin transport (PAT). Here, we show that phytoglobin1 (Pgb1), implicated in hypoxic adaptation through scavenging of nitric oxide (NO), can alter root direction under low oxygen. Hypoxia-induced bending is exaggerated in roots over-expressing Pgb1 and attenuated in those where the gene is suppressed. These effects were attributed to Pgb1 repressing both RAP2.12 and HRE2. Expression, immunological and genetic data place Pgb1 upstream of RAP2.12 and HRE2 in the regulation of root bending in oxygen-limiting environments. The attenuation of slanting in Pgb1-suppressing roots was associated with depletion of auxin activity at the root tip because of depression in PAT, while exaggeration of root bending in Pgb1-over-expressing roots with the retention of auxin activity. Changes in PIN2 distribution patterns, suggestive of redirection of auxin movement during hypoxia, might contribute to the differential root bending responses of the transgenic lines. In the end, Pgb1, by regulating NO levels, controls the expression of 2 ERFVIIs which, in a cascade, modulate PAT and, therefore, root bending.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
5
|
Koga H, Ikematsu S, Kimura S. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:579-604. [PMID: 38424069 DOI: 10.1146/annurev-arplant-062923-024919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Amphibious plants can grow and survive in both aquatic and terrestrial environments. This review explores the diverse adaptations that enable them to thrive in such contrasting habitats. Plants with amphibious lifestyles possess fascinating traits, and their phenotypic plasticity plays an important role in adaptations. Heterophylly, the ability to produce different leaf forms, is one such trait, with submerged leaves generally being longer, narrower, and thinner than aerial leaves. In addition to drastic changes in leaf contours, amphibious plants display significant anatomical and physiological changes, including a reduction in stomatal number and cuticle thickness and changes in photosynthesis mode. This review summarizes and compares the regulatory mechanisms and evolutionary origins of amphibious plants based on molecular biology studies actively conducted in recent years using novel model amphibious plant species. Studying amphibious plants will enhance our understanding of plant adaptations to aquatic environments.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Shuka Ikematsu
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
| | - Seisuke Kimura
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan
| |
Collapse
|
6
|
Xiong Z, Xiao J, Zhao J, Liu S, Yang D, Xiong D, Cui K, Peng S, Huang J. Estimation of Photosynthetic Induction Is Significantly Affected by Light Environments of Local Leaves and Whole Plants in Oryza Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1646. [PMID: 38931077 PMCID: PMC11207834 DOI: 10.3390/plants13121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Photosynthetic induction and stomatal kinetics are acknowledged as pivotal factors in regulating both plant growth and water use efficiency under fluctuating light conditions. However, the considerable variability in methodologies and light regimes used to assess the dynamics of photosynthesis (A) and stomatal conductance (gs) during light induction across studies poses challenges for comparison across species. Moreover, the influence of stomatal morphology on both steady-state and non-steady-state gs remains poorly understood. In this study, we show the strong impact of IRGA Chamber Illumination and Whole Plant Illumination on the photosynthetic induction of two rice species. Our findings reveal that these illuminations significantly enhance photosynthetic induction by modulating both stomatal and biochemical processes. Moreover, we observed that a higher density of smaller stomata plays a critical role in enhancing the stomatal opening and photosynthetic induction to fluctuating light conditions, although it exerts minimal influence on steady-state gs and A under constant light conditions. Therefore, future studies aiming to estimate photosynthetic induction and stomatal kinetics should consider the light environments at both the leaf and whole plant levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.X.); (S.L.); (D.X.); (K.C.); (S.P.)
| |
Collapse
|
7
|
Fagerstedt KV, Pucciariello C, Pedersen O, Perata P. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1217-1233. [PMID: 37991267 PMCID: PMC10901210 DOI: 10.1093/jxb/erad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Chiara Pucciariello
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| |
Collapse
|
8
|
Chen S, Ten Tusscher KHWJ, Sasidharan R, Dekker SC, de Boer HJ. Parallels between drought and flooding: An integrated framework for plant eco-physiological responses to water stress. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:175-187. [PMID: 37583875 PMCID: PMC10423978 DOI: 10.1002/pei3.10117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 08/17/2023]
Abstract
Drought and flooding occur at opposite ends of the soil moisture spectrum yet their resulting stress responses in plants share many similarities. Drought limits root water uptake to which plants respond with stomatal closure and reduced leaf gas exchange. Flooding limits root metabolism due to soil oxygen deficiency, which also limits root water uptake and leaf gas exchange. As drought and flooding can occur consecutively in the same system and resulting plant stress responses share similar mechanisms, a single theoretical framework that integrates plant responses over a continuum of soil water conditions from drought to flooding is attractive. Based on a review of recent literature, we integrated the main plant eco-physiological mechanisms in a single theoretical framework with a focus on plant water transport, plant oxygen dynamics, and leaf gas exchange. We used theory from the soil-plant-atmosphere continuum modeling as "backbone" for our framework, and subsequently incorporated interactions between processes that regulate plant water and oxygen status, abscisic acid and ethylene levels, and the resulting acclimation strategies in response to drought, waterlogging, and complete submergence. Our theoretical framework provides a basis for the development of mathematical models to describe plant responses to the soil moisture continuum from drought to flooding.
Collapse
Affiliation(s)
- Siluo Chen
- Computational Developmental Biology, Department of Biology Utrecht University Utrecht The Netherlands
- Centre for Complex System Studies Utrecht University Utrecht The Netherlands
| | | | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology Utrecht University Utrecht The Netherlands
| | - Stefan C Dekker
- Environmental Sciences, Copernicus Institute of Sustainable Development Utrecht University Utrecht The Netherlands
| | - Hugo J de Boer
- Environmental Sciences, Copernicus Institute of Sustainable Development Utrecht University Utrecht The Netherlands
| |
Collapse
|
9
|
Brenya E, Dutta E, Herron B, Walden LH, Roberts DM, Binder BM. Ethylene-mediated metabolic priming increases photosynthesis and metabolism to enhance plant growth and stress tolerance. PNAS NEXUS 2023; 2:pgad216. [PMID: 37469928 PMCID: PMC10353721 DOI: 10.1093/pnasnexus/pgad216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
Enhancing crop yields is a major challenge because of an increasing human population, climate change, and reduction in arable land. Here, we demonstrate that long-lasting growth enhancement and increased stress tolerance occur by pretreatment of dark grown Arabidopsis seedlings with ethylene before transitioning into light. Plants treated this way had longer primary roots, more and longer lateral roots, and larger aerial tissue and were more tolerant to high temperature, salt, and recovery from hypoxia stress. We attributed the increase in plant growth and stress tolerance to ethylene-induced photosynthetic-derived sugars because ethylene pretreatment caused a 23% increase in carbon assimilation and increased the levels of glucose (266%), sucrose/trehalose (446%), and starch (87%). Metabolomic and transcriptomic analyses several days posttreatment showed a significant increase in metabolic processes and gene transcripts implicated in cell division, photosynthesis, and carbohydrate metabolism. Because of this large effect on metabolism, we term this "ethylene-mediated metabolic priming." Reducing photosynthesis with inhibitors or mutants prevented the growth enhancement, but this was partially rescued by exogenous sucrose, implicating sugars in this growth phenomenon. Additionally, ethylene pretreatment increased the levels of CINV1 and CINV2 encoding invertases that hydrolyze sucrose, and cinv1;cinv2 mutants did not respond to ethylene pretreatment with increased growth indicating increased sucrose breakdown is critical for this trait. A model is proposed where ethylene-mediated metabolic priming causes long-term increases in photosynthesis and carbohydrate utilization to increase growth. These responses may be part of the natural development of seedlings as they navigate through the soil to emerge into light.
Collapse
Affiliation(s)
- Eric Brenya
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Esha Dutta
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996, USA
| | - Brittani Herron
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Lauren H Walden
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel M Roberts
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
10
|
Geldhof B, Pattyn J, Van de Poel B. From a different angle: genetic diversity underlies differentiation of waterlogging-induced epinasty in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1178778. [PMID: 37324684 PMCID: PMC10264670 DOI: 10.3389/fpls.2023.1178778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
In tomato, downward leaf bending is a morphological adaptation towards waterlogging, which has been shown to induce a range of metabolic and hormonal changes. This kind of functional trait is often the result of a complex interplay of regulatory processes starting at the gene level, gated through a plethora of signaling cascades and modulated by environmental cues. Through phenotypical screening of a population of 54 tomato accessions in a Genome Wide Association Study (GWAS), we have identified target genes potentially involved in plant growth and survival during waterlogging and subsequent recovery. Changes in both plant growth rate and epinastic descriptors revealed several associations to genes possibly supporting metabolic activity in low oxygen conditions in the root zone. In addition to this general reprogramming, some of the targets were specifically associated to leaf angle dynamics, indicating these genes might play a role in the induction, maintenance or recovery of differential petiole elongation in tomato during waterlogging.
Collapse
Affiliation(s)
- Batist Geldhof
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jolien Pattyn
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Lab, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Medina-Chávez L, Camacho C, Martínez-Rodríguez JA, Barrera-Figueroa BE, Nagel DH, Juntawong P, Peña-Castro JM. Submergence Stress Alters the Expression of Clock Genes and Configures New Zeniths and Expression of Outputs in Brachypodium distachyon. Int J Mol Sci 2023; 24:ijms24108555. [PMID: 37239900 DOI: 10.3390/ijms24108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Plant networks of oscillating genes coordinate internal processes with external cues, contributing to increased fitness. We hypothesized that the response to submergence stress may dynamically change during different times of the day. In this work, we determined the transcriptome (RNA sequencing) of the model monocotyledonous plant, Brachypodium distachyon, during a day of submergence stress, low light, and normal growth. Two ecotypes of differential tolerance, Bd21 (sensitive) and Bd21-3 (tolerant), were included. We submerged 15-day-old plants under a long-day diurnal cycle (16 h light/8 h dark) and collected samples after 8 h of submergence at ZT0 (dawn), ZT8 (midday), ZT16 (dusk), ZT20 (midnight), and ZT24 (dawn). Rhythmic processes were enriched both with up- and down-regulated genes, and clustering highlighted that the morning and daytime oscillator components (PRRs) show peak expression in the night, and a decrease in the amplitude of the clock genes (GI, LHY, RVE) was observed. Outputs included photosynthesis-related genes losing their known rhythmic expression. Up-regulated genes included oscillating suppressors of growth, hormone-related genes with new late zeniths (e.g., JAZ1, ZEP), and mitochondrial and carbohydrate signaling genes with shifted zeniths. The results highlighted genes up-regulated in the tolerant ecotype such as METALLOTHIONEIN3 and ATPase INHIBITOR FACTOR. Finally, we show by luciferase assays that Arabidopsis thaliana clock genes are also altered by submergence changing their amplitude and phase. This study can guide the research of chronocultural strategies and diurnal-associated tolerance mechanisms.
Collapse
Affiliation(s)
- Lucisabel Medina-Chávez
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico
- Programa de Doctorado en Biotecnología, División de Estudios de Posgrado, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico
| | - Christian Camacho
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jorge Arturo Martínez-Rodríguez
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico
| | - Blanca Estela Barrera-Figueroa
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico
| | - Dawn H Nagel
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Julián Mario Peña-Castro
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico
| |
Collapse
|
12
|
Hu J, Duan Y, Yang J, Gan L, Chen W, Yang J, Xiao G, Guan L, Chen J. Transcriptome Analysis Reveals Genes Associated with Flooding Tolerance in Mulberry Plants. Life (Basel) 2023; 13:life13051087. [PMID: 37240733 DOI: 10.3390/life13051087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Mulberry (Morus alba), a widely distributed economic plant, can withstand long-term flooding stress. However, the regulatory gene network underlying this tolerance is unknown. In the present study, mulberry plants were subjected to submergence stress. Subsequently, mulberry leaves were collected to perform quantitative reverse-transcription PCR (qRT-PCR) and transcriptome analysis. Genes encoding ascorbate peroxidase and glutathione S-transferase were significantly upregulated after submergence stress, indicating that they could protect the mulberry plant from flood damage by mediating ROS homeostasis. Genes that regulate starch and sucrose metabolism; genes encoding pyruvate kinase, alcohol dehydrogenase, and pyruvate decarboxylase (enzymes involved in glycolysis and ethanol fermentation); and genes encoding malate dehydrogenase and ATPase (enzymes involved in the TCA cycle) were also obviously upregulated. Hence, these genes likely played a key role in mitigating energy shortage during flooding stress. In addition, genes associated with ethylene, cytokinin, abscisic acid, and MAPK signaling; genes involved in phenylpropanoid biosynthesis; and transcription factor genes also showed upregulation under flooding stress in mulberry plants. These results provide further insights into the adaptation mechanisms and genetics of submergence tolerance in mulberry plants and could aid in the molecular breeding of these plants.
Collapse
Affiliation(s)
- Jingtao Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yanyan Duan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Junnian Yang
- College of Teacher Education, Chongqing Three Gorges University, Chongqing 404100, China
| | - Liping Gan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Wenjing Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Jin Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| |
Collapse
|
13
|
Somaddar U, Mia S, Khalil MI, Sarker UK, Uddin MR, Kaysar MS, Chaki AK, Robin AHK, Hashem A, Abd_Allah EF, Ha CV, Gupta A, Park JI, Tran LSP, Saha G. Effect of Reproductive Stage-Waterlogging on the Growth and Yield of Upland Cotton ( Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2023; 12:1548. [PMID: 37050174 PMCID: PMC10096827 DOI: 10.3390/plants12071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The reproductive stage of cotton (Gossypium sp.) is highly sensitive to waterlogging. The identification of potential elite upland cotton (Gossypium hirsutum) cultivar(s) having higher waterlogging tolerance is crucial to expanding cotton cultivation in the low-lying areas. The present study was designed to investigate the effect of waterlogging on the reproductive development of four elite upland cotton cultivars, namely, Rupali-1, CB-12, CB-13, and DM-3, against four waterlogging durations (e.g., 0, 3, 6, and 9-day). Waterlogging stress significantly impacted morpho-physiological, biochemical, and yield attributes of cotton. Two cotton cultivars, e.g., CB-12 and Rupali-1, showed the lowest reduction in plant height (6 and 9%, respectively) and boll weight (8 and 5%, respectively) at the highest waterlogging duration of 9 days. Physiological and biochemical data revealed that higher leaf chlorophyll, proline, and relative water contents, and lower malondialdehyde contents, particularly in CB-12 and Rupali-1, were positively correlated with yield. Notably, CB-12 and Rupali-1 had higher seed cotton weight (90.34 and 83.10 g, respectively), lint weight (40.12 and 39.32 g, respectively), and seed weight (49.47 and 43.78 g, respectively) per plant than CB-13 and DM-3 in response to the highest duration of waterlogging of 9 days. Moreover, extensive multivariate analyses like Spearman correlation and the principle component analysis revealed that CB-12 and Rupali-1 had greater coefficients in yield and physiological attributes at 9-day waterlogging, whereas CB-13 and DM-3 were sensitive cultivars in response to the same levels of waterlogging. Thus, CB-12 and Rupali-1 might be well adapted to the low-lying waterlogging-prone areas for high and sustained yield.
Collapse
Affiliation(s)
- Uzzal Somaddar
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Shamim Mia
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md. Ibrahim Khalil
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Uttam Kumer Sarker
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Romij Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Salahuddin Kaysar
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Apurbo Kumar Chaki
- On Farm Research Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (A.H.)
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (E.F.A.)
| | - Chien Van Ha
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Aarti Gupta
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Gopal Saha
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| |
Collapse
|
14
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
15
|
He N, Umer MJ, Yuan P, Wang W, Zhu H, Lu X, xing Y, Gong C, Batool R, Sun X, Liu W. Physiological, biochemical, and metabolic changes in diploid and triploid watermelon leaves during flooding. FRONTIERS IN PLANT SCIENCE 2023; 14:1108795. [PMID: 36968389 PMCID: PMC10033695 DOI: 10.3389/fpls.2023.1108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Background Flooding is a major stress factor impacting watermelon growth and production globally. Metabolites play a crucial role in coping with both biotic and abiotic stresses. Methods In this study, diploid (2X) and triploid (3X) watermelons were investigated to determine their flooding tolerance mechanisms by examining physiological, biochemical, and metabolic changes at different stages. Metabolite quantification was done using UPLC-ESI-MS/MS and a total of 682 metabolites were detected. Results The results showed that 2X watermelon leaves had lower chlorophyll content and fresh weights compared to 3X. The activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were higher in 3X than in 2X. 3X watermelon leaves showed lower O2 production rates, MDA, and hydrogen peroxide (H2O2) levels in response to flooding, while higher ethylene production was observed. 3X had higher levels of dehydrogenase activity (DHA) and ascorbic acid + dehydrogenase (AsA + DHA), but both 2X and 3X showed a significant decline in the AsA/DHA ratio at later stages of flooding. Among them, 4-guanidinobutyric acid (mws0567), an organic acid, may be a candidate metabolite responsible for flooding tolerance in watermelon and had higher expression levels in 3X watermelon, suggesting that triploid watermelon is more tolerant to flooding. Conclusion This study provides insights into the response of 2X and 3X watermelon to flooding and the physiological, biochemical, and metabolic changes involved. It will serve as a foundation for future in-depth molecular and genetic studies on flooding response in watermelon.
Collapse
Affiliation(s)
- Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Department of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Pingli Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weiwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yan xing
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chengsheng Gong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowu Sun
- Department of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
16
|
Dalle Carbonare L, Jiménez JDLC, Lichtenauer S, van Veen H. Plant responses to limited aeration: Advances and future challenges. PLANT DIRECT 2023; 7:e488. [PMID: 36993903 PMCID: PMC10040318 DOI: 10.1002/pld3.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.
Collapse
Affiliation(s)
| | | | - Sophie Lichtenauer
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Hans van Veen
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
17
|
Xie LJ, Wang JH, Liu HS, Yuan LB, Tan YF, Tan WJ, Zhou Y, Chen QF, Qi H, Li JF, Chen YQ, Qiu RL, Chen MX, Xiao S. MYB30 integrates light signals with antioxidant biosynthesis to regulate plant responses during postsubmergence recovery. THE NEW PHYTOLOGIST 2023; 237:2238-2254. [PMID: 36513604 DOI: 10.1111/nph.18674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.
Collapse
Affiliation(s)
- Li-Juan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Hong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hui-Shan Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li-Bing Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi-Fang Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei-Juan Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qin-Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Feng Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yue-Qin Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Mo-Xian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
18
|
Shekhawat K, Fröhlich K, García-Ramírez GX, Trapp MA, Hirt H. Ethylene: A Master Regulator of Plant-Microbe Interactions under Abiotic Stresses. Cells 2022; 12:cells12010031. [PMID: 36611825 PMCID: PMC9818225 DOI: 10.3390/cells12010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The plant phytohormone ethylene regulates numerous physiological processes and contributes to plant-microbe interactions. Plants induce ethylene production to ward off pathogens after recognition of conserved microbe-associated molecular patterns (MAMPs). However, plant immune responses against pathogens are essentially not different from those triggered by neutral and beneficial microbes. Recent studies indicate that ethylene is an important factor for beneficial plant-microbial association under abiotic stress such as salt and heat stress. The association of beneficial microbes with plants under abiotic stresses modulates ethylene levels which control the expression of ethylene-responsive genes (ERF), and ERFs further regulate the plant transcriptome, epi-transcriptome, Na+/K+ homeostasis and antioxidant defense mechanisms against reactive oxygen species (ROS). Understanding ethylene-dependent plant-microbe interactions is crucial for the development of new strategies aimed at enhancing plant tolerance to harsh environmental conditions. In this review, we underline the importance of ethylene in beneficial plant-microbe interaction under abiotic stresses.
Collapse
|
19
|
Liu Z, Hartman S, van Veen H, Zhang H, Leeggangers HACF, Martopawiro S, Bosman F, de Deugd F, Su P, Hummel M, Rankenberg T, Hassall KL, Bailey-Serres J, Theodoulou FL, Voesenek LACJ, Sasidharan R. Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. PLANT PHYSIOLOGY 2022; 190:1365-1383. [PMID: 35640551 PMCID: PMC9516759 DOI: 10.1093/plphys/kiac245] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/29/2022] [Indexed: 05/20/2023]
Abstract
Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia survival.
Collapse
Affiliation(s)
| | | | | | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Hendrika A C F Leeggangers
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Shanice Martopawiro
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Femke Bosman
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Florian de Deugd
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Peng Su
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Maureen Hummel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Tom Rankenberg
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Kirsty L Hassall
- Intelligent Data Ecosystems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Julia Bailey-Serres
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | - Laurentius A C J Voesenek
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | | |
Collapse
|
20
|
Singh M, Singh A, Yadav N, Yadav DK. Current perspectives of ubiquitination and SUMOylation in abiotic stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:993194. [PMID: 36212351 PMCID: PMC9533872 DOI: 10.3389/fpls.2022.993194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Post-translational modification (PTM) is a critical and rapid mechanism to regulate all the major cellular processes through the modification of diverse protein substrates. Substrate-specific covalent attachment of ubiquitin and Small Ubiquitin-Like Modifier (SUMO) with the target proteins, known as ubiquitination and SUMOylation, respectively, are crucial PTMs that regulate almost every process in the cell by modulating the stability and fidelity of the proteins. Ubiquitination and SUMOylation play a very significant role to provide tolerance to the plants in adverse environmental conditions by activating/deactivating the pre-existing proteins to a great extent. We reviewed the importance of ubiquitination and SUMOylation in plants, implicating its prospects in various abiotic stress regulations. An exhaustive study of molecular mechanisms of ubiquitination and SUMOylation of plant proteins and their role will contribute to the understanding of physiology underlying mitigation of the abiotic stresses and survival in plants. It will be helpful to strategize the improvement of crops for abiotic stress tolerance.
Collapse
Affiliation(s)
- Madhavi Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Ananya Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Neelam Yadav
- Department of Botany, University of Allahabad, Prayagraj, India
| | - Dinesh Kumar Yadav
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| |
Collapse
|
21
|
The Role of Aquaporins in Plant Growth under Conditions of Oxygen Deficiency. Int J Mol Sci 2022; 23:ijms231710159. [PMID: 36077554 PMCID: PMC9456501 DOI: 10.3390/ijms231710159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Plants frequently experience hypoxia due to flooding caused by intensive rainfall or irrigation, when they are partially or completely submerged under a layer of water. In the latter case, some resistant plants implement a hypoxia avoidance strategy by accelerating shoot elongation, which allows lifting their leaves above the water surface. This strategy is achieved due to increased water uptake by shoot cells through water channels (aquaporins, AQPs). It remains a puzzle how an increased flow of water through aquaporins into the cells of submerged shoots can be achieved, while it is well known that hypoxia inhibits the activity of aquaporins. In this review, we summarize the literature data on the mechanisms that are likely to compensate for the decline in aquaporin activity under hypoxic conditions, providing increased water entry into cells and accelerated shoot elongation. These mechanisms include changes in the expression of genes encoding aquaporins, as well as processes that occur at the post-transcriptional level. We also discuss the involvement of hormones, whose concentration changes in submerged plants, in the control of aquaporin activity.
Collapse
|
22
|
He N, Umer MJ, Yuan P, Wang W, Zhu H, Zhao S, Lu X, Xing Y, Gong C, Liu W, Sun X. Expression dynamics of metabolites in diploid and triploid watermelon in response to flooding. PeerJ 2022. [DOI: 10.7717/peerj.13814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Watermelon (Citrullus lanatus) is an economically important cucurbitaceous crop worldwide. The productivity of watermelon is affected by both biotic and abiotic stresses. Flooding has significant impacts on the growth of watermelons by causing oxygen deficiency and a loss of agricultural productivity. Currently, we used the triploid and diploid watermelon Zhengzhou No.3 to study the dynamics of metabolites in response to flooding stress. Quantification of metabolites was performed by UPLC-ESI-MS/MS at different time intervals i.e., 0, 3, 5 and 7 days under flooding stress. We observed that the activities of oxidants were higher in the diploid watermelon, whereas the higher antioxidant activities in the triploid watermelon makes them more resistant to the flooding stress. We also observed that the root activity and the chlorophyll in the triploid watermelon plants were higher as compared to the diploid watermelon plants. Co-expression network analysis leads to the identification of twenty-four hub metabolites that might be the key metabolites linked to flooding tolerance. Resolving the underlying mechanisms for flooding tolerance and identification of key molecules serving as indicators for breeding criteria are necessary for developing flooding-resistant varieties.
Collapse
Affiliation(s)
- Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Department of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Pingli Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Weiwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yan Xing
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Chengsheng Gong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiaowu Sun
- Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
23
|
Zafari S, Vanlerberghe GC, Igamberdiev AU. The Role of Alternative Oxidase in the Interplay between Nitric Oxide, Reactive Oxygen Species, and Ethylene in Tobacco ( Nicotiana tabacum L.) Plants Incubated under Normoxic and Hypoxic Conditions. Int J Mol Sci 2022; 23:7153. [PMID: 35806157 PMCID: PMC9266549 DOI: 10.3390/ijms23137153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
The transgenic tobacco (Nicotiana tabacum L.) plants with the modified levels of alternative oxidase (AOX) were used to evaluate the physiological roles of AOX in regulating nitro-oxidative stress and metabolic changes after exposing plants to hypoxia for 6 h. Under normoxia, AOX expression resulted in the decrease of nitric oxide (NO) levels and of the rate of protein S-nitrosylation, while under hypoxia, AOX overexpressors exhibited higher NO and S-nitrosylation levels than knockdowns. AOX expression was essential in avoiding hypoxia-induced superoxide and H2O2 levels, and this was achieved via higher activities of catalase and glutathione reductase and the reduced expression of respiratory burst oxidase homolog (Rboh) in overexpressors as compared to knockdowns. The AOX overexpressing lines accumulated less pyruvate and exhibited the increased transcript and activity levels of pyruvate decarboxylase and alcohol dehydrogenase under hypoxia. This suggests that AOX contributes to the energy state of hypoxic tissues by stimulating the increase of pyruvate flow into fermentation pathways. Ethylene biosynthesis genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC oxidase, and ethylene-responsive factors (ERFs) were induced during hypoxia and correlated with AOX and NO levels. We conclude that AOX controls the interaction of NO, reactive oxygen species, and ethylene, triggering a coordinated downstream defensive response against hypoxia.
Collapse
Affiliation(s)
- Somaieh Zafari
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
24
|
Li L, Huang G, Xiang W, Zhu H, Zhang H, Zhang J, Ding Z, Liu J, Wu D. Integrated Transcriptomic and Proteomic Analyses Uncover the Regulatory Mechanisms of Myricaria laxiflora Under Flooding Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924490. [PMID: 35755690 PMCID: PMC9226631 DOI: 10.3389/fpls.2022.924490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 06/01/2023]
Abstract
Flooding is one of the major environmental stresses that severely influence plant survival and development. However, the regulatory mechanisms underlying flooding stress remain largely unknown in Myricaria laxiflora, an endangered plant mainly distributed in the flood zone of the Yangtze River, China. In this work, transcriptome and proteome were performed in parallel in roots of M. laxiflora during nine time-points under the flooding and post-flooding recovery treatments. Overall, highly dynamic and stage-specific expression profiles of genes/proteins were observed during flooding and post-flooding recovery treatment. Genes related to auxin, cell wall, calcium signaling, and MAP kinase signaling were greatly down-regulated exclusively at the transcriptomic level during the early stages of flooding. Glycolysis and major CHO metabolism genes, which were regulated at the transcriptomic and/or proteomic levels with low expression correlations, mainly functioned during the late stages of flooding. Genes involved in reactive oxygen species (ROS) scavenging, mitochondrial metabolism, and development were also regulated exclusively at the transcriptomic level, but their expression levels were highly up-regulated upon post-flooding recovery. Moreover, the comprehensive expression profiles of genes/proteins related to redox, hormones, and transcriptional factors were also investigated. Finally, the regulatory networks of M. laxiflora in response to flooding and post-flooding recovery were discussed. The findings deepen our understanding of the molecular mechanisms of flooding stress and shed light on the genes and pathways for the preservation of M. laxiflora and other endangered plants in the flood zone.
Collapse
Affiliation(s)
- Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haofei Zhu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haibo Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Zehong Ding
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Jihong Liu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| |
Collapse
|
25
|
Wang X, Komatsu S. The Role of Phytohormones in Plant Response to Flooding. Int J Mol Sci 2022; 23:6383. [PMID: 35742828 PMCID: PMC9223812 DOI: 10.3390/ijms23126383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
26
|
Akmakjian GZ, Bailey-Serres J. Gene regulatory circuitry of plant-environment interactions: scaling from cells to the field. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102122. [PMID: 34688206 DOI: 10.1016/j.pbi.2021.102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Plant growth and development is the product of layers of sensing and regulation that are modulated by multifactorial environmental cues. Innovations in genomics currently allow gene regulatory control to be quantified at multiple scales and high resolution in defined cell populations and even in individual cells or nuclei in plants. The application of these 'omic technologies in highly controlled, as well as field environments is revolutionizing the recognition of factors critical to spatial and temporal responses to single or multiple environmental cues. Within and pan-species comparisons illuminate deeply conserved circuitry and targets of selection. This knowledge can benefit the breeding and engineering of crops with greater resilience to climate variability and the ability to augment nutrition through plant-microbial interactions.
Collapse
Affiliation(s)
- Garo Z Akmakjian
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, CA, 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Botany and Plant Sciences Department, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
27
|
Understanding a Mechanistic Basis of ABA Involvement in Plant Adaptation to Soil Flooding: The Current Standing. PLANTS 2021; 10:plants10101982. [PMID: 34685790 PMCID: PMC8537370 DOI: 10.3390/plants10101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Soil flooding severely impairs agricultural crop production. Plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by the elaborated hormonal signaling network. The most prominent of these hormones is ethylene, which has been firmly established as a critical signal in flooding tolerance. ABA (abscisic acid) is also known as a “stress hormone” that modulates various responses to abiotic stresses; however, its role in flooding tolerance remains much less established. Here, we discuss the progress made in the elucidation of morphological adaptations regulated by ABA and its crosstalk with other phytohormones under flooding conditions in model plants and agriculturally important crops.
Collapse
|
28
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
29
|
Basu S, Kumari S, Kumar P, Kumar G, Rajwanshi R. Redox imbalance impedes photosynthetic activity in rice by disrupting cellular membrane integrity and induces programmed cell death under submergence. PHYSIOLOGIA PLANTARUM 2021; 172:1764-1778. [PMID: 33751571 DOI: 10.1111/ppl.13387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Climate change negatively impacts the global hydrological resources leading to detrimental flood events. Submergence impedes the cellular membrane integrity, consequently affecting the membrane fluidity. Different abiotic stresses influence membrane lipid composition. Therefore, the remodeling of membrane lipids plays a major role in stress adaptation. Submergence-induced membrane lipid peroxidation is well established in plants. However, dynamic changes in lipid composition for regulating submergence tolerance in rice remain so far unexplored. The present study explored the effect of submergence on the lipidomic profile of the Sub1 near-isogenic lines (NILs) of rice, viz. Swarna, and Swarna Sub1 with contrasting submergence tolerance. The study also examined the association of lipidomic alteration with the membrane integrity and submergence tolerance. Submergence caused increased accumulation of reactive oxygen species (ROS), which was significantly higher in Swarna than Swarna Sub1. The lipid profile was also considerably altered under submergence. Following submergence, Swarna exhibited a significant decrease in phospholipid content accompanied by increased lipid peroxidation and electrolyte leakage. Furthermore, the disintegration of the thylakoid membrane resulted in a significant decrease in the chlorophyll content and photosynthesis rate under submergence. Submergence-induced hypoxic condition also promoted starch depletion to fulfill the energy requirement. In contrast, submergence acclimation in Swarna Sub1 was associated with the shift to anaerobic respiration mediated by increased alcohol dehydrogenase (ADH) activity. Effective ROS detoxification in Swarna Sub1 facilitated by increased antioxidant enzyme activities contributed to the submergence tolerance by maintaining membrane integrity and photosynthetic activity. The present study established the direct association of lipid remodeling with membrane integrity, cell viability, and photosynthesis and also devised a crop model to reveal the molecular background of submergence tolerance in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Surbhi Kumari
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Pankaj Kumar
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, Bihar, India
| | - Ravi Rajwanshi
- Department of Biotechnology, Assam University, Silchar, Assam, India
| |
Collapse
|
30
|
Wang X, He Y, Zhang C, Tian YA, Lei X, Li D, Bai S, Deng X, Lin H. Physiological and transcriptional responses of Phalaris arundinacea under waterlogging conditions. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153428. [PMID: 33957505 DOI: 10.1016/j.jplph.2021.153428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
As a high-yielding forage grass, Phalaris arundinacea widely distributed in the Qinghai-Tibet Plateau region of China. To explore physiological and molecular response mechanism of Phalaris arundinacea under waterlogging, we analyzed the biomass and physiological indexes of three locally grown strains under the submerged condition of 10 cm. The material Z0611 showed the strongest waterlogging resistance while the YS showed the weakest performance. Transcriptome sequencing analysis demonstrated that the YS and Z0611 had 17010 and 7566 differently expression genes (DEGs), respectively, which were mainly concentrated in the metabolic process, cell, ribosome, phenylpropanoid biosynthesis pathway in GO and KEGG databases. We also identified a large number of genes involved in carbohydrate metabolism, hormone signaling regulation, transcription factors, antioxidant system, and ethylene signaling. Our research may provide a scientific basis for the restoration of wetland environment on the Qinghai-Tibet Plateau, and lay a foundation for further exploration of the waterlogging resistance genes of Phalaris arundinacea and breeding of new strains resistant with waterlogging stress.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065 Sichuan, China
| | - Ying He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065 Sichuan, China
| | - Changbing Zhang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China
| | - Yu-Ang Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065 Sichuan, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China.
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065 Sichuan, China.
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065 Sichuan, China.
| |
Collapse
|
31
|
Lessons from Comparison of Hypoxia Signaling in Plants and Mammals. PLANTS 2021; 10:plants10050993. [PMID: 34067566 PMCID: PMC8157222 DOI: 10.3390/plants10050993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Hypoxia is an important stress for organisms, including plants and mammals. In plants, hypoxia can be the consequence of flooding and causes important crop losses worldwide. In mammals, hypoxia stress may be the result of pathological conditions. Understanding the regulation of responses to hypoxia offers insights into novel approaches for crop improvement, particularly for the development of flooding-tolerant crops and for producing better therapeutics for hypoxia-related diseases such as inflammation and cancer. Despite their evolutionary distance, plants and mammals deploy strikingly similar mechanisms to sense and respond to the different aspects of hypoxia-related stress, including low oxygen levels and the resulting energy crisis, nutrient depletion, and oxidative stress. Over the last two decades, the ubiquitin/proteasome system and the ubiquitin-like protein SUMO have been identified as key regulators that act in concert to regulate core aspects of responses to hypoxia in plants and mammals. Here, we review ubiquitin and SUMO-dependent mechanisms underlying the regulation of hypoxia response in plants and mammals. By comparing and contrasting these mechanisms in plants and mammals, this review seeks to pinpoint conceptually similar mechanisms but also highlight future avenues of research at the junction between different fields of research.
Collapse
|
32
|
Hartman S, Sasidharan R, Voesenek LACJ. The role of ethylene in metabolic acclimations to low oxygen. THE NEW PHYTOLOGIST 2021; 229:64-70. [PMID: 31856295 PMCID: PMC7754284 DOI: 10.1111/nph.16378] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
Submerged plants ultimately suffer from shortage in cellular oxygen availability (hypoxia) as a result of impaired gas diffusion underwater. The gaseous plant hormone ethylene is rapidly entrapped in submerged plant tissues and is an established regulator of morphological and anatomical flood-adaptive responses. Multiple recent discoveries suggest that ethylene also plays a crucial role in hypoxia anticipation and metabolic acclimation during plant submergence. Ethylene was shown to accelerate and enhance the hypoxic response through enhanced stability of specific transcription factors (group VII ethylene response factors). Moreover, we suggest that ethylene could play an important role in the induction of autophagy and promote reactive oxygen species amelioration, thereby contributing to enhanced survival during flooding, hypoxia, and reoxygenation stress.
Collapse
Affiliation(s)
- Sjon Hartman
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Rashmi Sasidharan
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | | |
Collapse
|
33
|
van Veen H, Sasidharan R. Shape shifting by amphibious plants in dynamic hydrological niches. THE NEW PHYTOLOGIST 2021; 229:79-84. [PMID: 31782798 PMCID: PMC7754317 DOI: 10.1111/nph.16347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/14/2019] [Indexed: 05/30/2023]
Abstract
Amphibious plants thrive in areas with fluctuating water levels, partly as a result of their capacity to make specialized leaves when submerged or emerged. The tailor-made leaves improve gas exchange underwater or prevent aerial desiccation. Aquatic leaves are thin with narrow or dissected forms, thin cuticles and fewer stomata. These traits can combine with carbon-concentrating mechanisms and various inorganic carbon utilization strategies. Signalling networks underlying this plasticity include conserved players like abscisic acid and ethylene, but closer inspection reveals greater variation in regulatory behaviours. Moreover, it seems that amphibious leaf development overrides and reverses conserved signalling pathways of their terrestrial counterparts. The diversity of physiology and signalling makes plant amphibians particularly attractive for gaining insights into the evolution of signalling and crop improvement.
Collapse
Affiliation(s)
- Hans van Veen
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Rashmi Sasidharan
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| |
Collapse
|
34
|
González-Guzmán M, Gómez-Cadenas A, Arbona V. Abscisic Acid as an Emerging Modulator of the Responses of Plants to Low Oxygen Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:661789. [PMID: 33981326 PMCID: PMC8107475 DOI: 10.3389/fpls.2021.661789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Different environmental and developmental cues involve low oxygen conditions, particularly those associated to abiotic stress conditions. It is widely accepted that plant responses to low oxygen conditions are mainly regulated by ethylene (ET). However, interaction with other hormonal signaling pathways as gibberellins (GAs), auxin (IAA), or nitric oxide (NO) has been well-documented. In this network of interactions, abscisic acid (ABA) has always been present and regarded to as a negative regulator of the development of morphological adaptations to soil flooding: hyponastic growth, adventitious root emergence, or formation of secondary aerenchyma in different plant species. However, recent evidence points toward a positive role of this plant hormone on the modulation of plant responses to hypoxia and, more importantly, on the ability to recover during the post-hypoxic period. In this work, the involvement of ABA as an emerging regulator of plant responses to low oxygen conditions alone or in interaction with other hormones is reviewed and discussed.
Collapse
|
35
|
Müller JT, van Veen H, Bartylla MM, Akman M, Pedersen O, Sun P, Schuurink RC, Takeuchi J, Todoroki Y, Weig AR, Sasidharan R, Mustroph A. Keeping the shoot above water - submergence triggers antithetical growth responses in stems and petioles of watercress (Nasturtium officinale). THE NEW PHYTOLOGIST 2021; 229:140-155. [PMID: 31792981 DOI: 10.1111/nph.16350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 05/25/2023]
Abstract
The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation.
Collapse
Affiliation(s)
- Jana T Müller
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Malte M Bartylla
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Melis Akman
- Plant and Microbial Biology, University of California, Berkeley, 361 Koshland Hall, Berkeley, CA, 94720, USA
- Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 2100, Copenhagen, Denmark
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Jun Takeuchi
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yasushi Todoroki
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Alfons R Weig
- Genomics & Bioinformatics, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
36
|
Buti S, Pantazopoulou CK, van Gelderen K, Hoogers V, Reinen E, Pierik R. A Gas-and-Brake Mechanism of bHLH Proteins Modulates Shade Avoidance. PLANT PHYSIOLOGY 2020; 184:2137-2153. [PMID: 33051265 PMCID: PMC7723099 DOI: 10.1104/pp.20.00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Plants detect proximity of competitors through reduction in the ratio between red and far-red light that triggers the shade avoidance syndrome, inducing responses such as accelerated shoot elongation and early flowering. Shade avoidance is regulated by PHYTOCHROME INTERACTING FACTORs, a group of basic helix-loop-helix (bHLH) transcription factors. Another (b)HLH protein, KIDARI (KDR), which is non-DNA-binding, was identified in de-etiolation studies and proposed to interact with LONG HYPOCOTYL IN FAR-RED1 (HFR1), a (b)HLH protein that inhibits shade avoidance. Here, we established roles of KDR in regulating shade avoidance in Arabidopsis (Arabidopsis thaliana) and investigated how KDR regulates the shade avoidance network. We showed that KDR is a positive regulator of shade avoidance and interacts with several negative growth regulators. We identified KDR interactors using a combination of yeast two-hybrid screening and dedicated confirmations with bimolecular fluorescence complementation. We demonstrated that KDR is translocated primarily to the nucleus when coexpressed with these interactors. A genetic approach confirmed that several of these interactions play a functional role in shade avoidance; however, we propose that KDR does not interact with HFR1 to regulate shade avoidance. Based on these observations, we propose that shade avoidance is regulated by a three-layered gas-and-brake mechanism of bHLH protein interactions, adding a layer of complexity to what was previously known.
Collapse
Affiliation(s)
- Sara Buti
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Kruytgebouw, 3584 CH Utrecht, the Netherlands
| | - Chrysoula K Pantazopoulou
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Kruytgebouw, 3584 CH Utrecht, the Netherlands
| | - Kasper van Gelderen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Kruytgebouw, 3584 CH Utrecht, the Netherlands
| | - Valérie Hoogers
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Kruytgebouw, 3584 CH Utrecht, the Netherlands
| | - Emilie Reinen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Kruytgebouw, 3584 CH Utrecht, the Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Kruytgebouw, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
37
|
High-resolution temporal transcriptome sequencing unravels ERF and WRKY as the master players in the regulatory networks underlying sesame responses to waterlogging and recovery. Genomics 2020; 113:276-290. [PMID: 33249174 DOI: 10.1016/j.ygeno.2020.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 01/15/2023]
Abstract
Major crops are generally sensitive to waterlogging, but our limited understanding of the waterlogging gene regulatory network hinders the efforts to develop waterlogging-tolerant cultivars. We generated high-resolution temporal transcriptome data from root of two contrasting sesame genotypes over a 48 h period waterlogging and drainage treatments. Three distinct chronological transcriptional phases were identified, including the early-waterlogging, late-waterlogging and drainage responses. We identified 47 genes representing the core waterlogging-responsive genes. Waterlogging/drainage-induced transcriptional changes were mainly driven by ERF and WRKY transcription factors (TF). The major difference between the two genotypes resides in the early transcriptional phase. A chronological transcriptional network model predicting putative causal regulations between TFs and downstream waterlogging-responsive genes was constructed and some interactions were validated through yeast one-hybrid assay. Overall, this study unveils the architecture and dynamic regulation of the waterlogging/drainage response in a non-model crop and helps formulate new hypotheses on stress sensing, signaling and sophisticated adaptive responses.
Collapse
|
38
|
De Pedro LF, Mignolli F, Scartazza A, Melana Colavita JP, Bouzo CA, Vidoz ML. Maintenance of photosynthetic capacity in flooded tomato plants with reduced ethylene sensitivity. PHYSIOLOGIA PLANTARUM 2020; 170:202-217. [PMID: 32458443 DOI: 10.1111/ppl.13141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Ethylene is considered one of the most important plant hormones orchestrating plant responses to flooding stress. However, ethylene may induce deleterious effects on plants, especially when produced at high rates in response to stress. In this paper, we explored the effect of attenuated ethylene sensitivity in the Never ripe (Nr) mutant on leaf photosynthetic capacity of flooded tomato plants. We found out that reduced ethylene perception in Nr plants was associated with a more efficient photochemical and non-photochemical radiative energy dissipation capability in response to flooding. The data correlated with the retention of chlorophyll and carotenoids content in flooded Nr leaves. Moreover, leaf area and specific leaf area were higher in Nr, indicating that ethylene would exert a negative role in leaf growth and expansion under flooded conditions. Although stomatal conductance was hampered in flooded Nr plants, carboxylation activity was not affected by flooding in the mutant, suggesting that ethylene is responsible for inducing non-stomatal limitations to photosynthetic CO2 uptake. Upregulation of several cysteine protease genes and high protease activity led to Rubisco protein loss in response to ethylene under flooding. Reduction of Rubisco content would, at least in part, account for the reduction of its carboxylation efficiency in response to ethylene in flooded plants. Therefore, besides its role as a trigger of many adaptive responses, perception of ethylene entails limitations in light and dark photosynthetic reactions by speeding up the senescence process that leads to a progressive disassembly of the photosynthetic machinery in leaves of flooded tomato plants.
Collapse
Affiliation(s)
| | - Francesco Mignolli
- Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems, National Research Council, Pisa, Italy
| | - Juan Pablo Melana Colavita
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA, NEA-CONICET), Corrientes, Argentina
| | - Carlos Alberto Bouzo
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), ICi Agro-Litoral (UNL-CONICET), Santa Fe, Argentina
| | - María Laura Vidoz
- Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
39
|
Kaspary TE, Roma-Burgos N, Merotto A. Snorkeling Strategy: Tolerance to Flooding in Rice and Potential Application for Weed Management. Genes (Basel) 2020; 11:genes11090975. [PMID: 32842571 PMCID: PMC7564916 DOI: 10.3390/genes11090975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/28/2023] Open
Abstract
Flooding is an important strategy for weed control in paddy rice fields. However, terrestrial weeds had evolved mechanisms of tolerance to flooding, resulting in new 'snorkeling' ecotypes. The aim of this review is to discuss the mechanisms of flooding tolerance in cultivated and weedy rice at different plant stages and the putative utility of this trait for weed management. Knowledge about flooding tolerance is derived primarily from crop models, mainly rice. The rice model informs us about the possible flooding tolerance mechanisms in weedy rice, Echinochloa species, and other weeds. During germination, the gene related to carbohydrate mobilization and energy intake (RAmy3D), and genes involved in metabolism maintenance under anoxia (ADH, PDC, and OsB12D1) are the most important for flooding tolerance. Flooding tolerance during emergence involved responses promoted by ethylene and induction of RAmy3D, ADH, PDC, and OsB12D1. Plant species tolerant to complete submersion also employ escape strategies or the ability to become quiescent during the submergence period. In weedy rice, the expression of PDC1, SUS3, and SUB1 genes is not directly related to flooding tolerance, contrary to what was learned in cultivated rice. Mitigation of flooding tolerance in weeds could be achieved with biotechnological approaches and genetic manipulation of flood tolerance genes through RNAi and transposons, providing a potential new tool for weed management.
Collapse
Affiliation(s)
- Tiago Edu Kaspary
- Instituto Nacional de Investigación Agropecuaria, INIA, La Estanzuela, Colonia 70006, Uruguay;
| | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Correspondence:
| |
Collapse
|
40
|
Hartman S, van Dongen N, Renneberg DM, Welschen-Evertman RA, Kociemba J, Sasidharan R, Voesenek LA. Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species. PLANTS 2020; 9:plants9081022. [PMID: 32823611 PMCID: PMC7465973 DOI: 10.3390/plants9081022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The increasing occurrence of floods hinders agricultural crop production and threatens global food security. The majority of vegetable crops are highly sensitive to flooding and it is unclear how these plants use flooding signals to acclimate to impending oxygen deprivation (hypoxia). Previous research has shown that the early flooding signal ethylene augments hypoxia responses and improves survival in Arabidopsis. To unravel how cultivated and wild Solanum species integrate ethylene signaling to control subsequent hypoxia acclimation, we studied the transcript levels of a selection of marker genes, whose upregulation is indicative of ethylene-mediated hypoxia acclimation in Arabidopsis. Our results suggest that ethylene-mediated hypoxia acclimation is conserved in both shoots and roots of the wild Solanum species bittersweet (Solanum dulcamara) and a waterlogging-tolerant potato (Solanum tuberosum) cultivar. However, ethylene did not enhance the transcriptional hypoxia response in roots of a waterlogging-sensitive potato cultivar, suggesting that waterlogging tolerance in potato could depend on ethylene-controlled hypoxia responses in the roots. Finally, we show that ethylene rarely enhances hypoxia-adaptive genes and does not improve hypoxia survival in tomato (Solanum lycopersicum). We conclude that analyzing genes indicative of ethylene-mediated hypoxia acclimation is a promising approach to identifying key signaling cascades that confer flooding tolerance in crops.
Collapse
|
41
|
Nakamura M, Noguchi K. Tolerant mechanisms to O 2 deficiency under submergence conditions in plants. JOURNAL OF PLANT RESEARCH 2020; 133:343-371. [PMID: 32185673 PMCID: PMC7214491 DOI: 10.1007/s10265-020-01176-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH4+ as the nitrogen (N) source without NH4+-dependent respiratory increase, leading to efficient respiratory O2 consumption in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3- from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2--driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.
Collapse
Affiliation(s)
- Motoka Nakamura
- Department of Bio-Production, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
42
|
Fukushima A, Kuroha T, Nagai K, Hattori Y, Kobayashi M, Nishizawa T, Kojima M, Utsumi Y, Oikawa A, Seki M, Sakakibara H, Saito K, Ashikari M, Kusano M. Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites 2020; 10:metabo10020068. [PMID: 32075002 PMCID: PMC7074043 DOI: 10.3390/metabo10020068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
Rice varieties that can survive under submergence conditions respond to flooding either by enhancing internode elongation or by quiescence of shoot elongation. Despite extensive efforts to identify key metabolites triggered by complete submergence of rice possessing SUBMERGENCE 1 (SUB1) locus, metabolic responses of internode elongation of deepwater rice governed by the SNORKEL 1 and 2 genes remain elusive. This study investigated specific metabolomic responses under partial submergence (PS) to deepwater- (C9285) and non-deepwater rice cultivars (Taichung 65 (T65)). In addition, we examined the response in a near-isogenic line (NIL-12) that has a C9285 genomic fragment on chromosome 12 introgressed into the genetic background of T65. Under short-term submergence (0-24 h), metabolite profiles of C9285, NIL-12, and T65 were compared to extract significantly changed metabolites in deepwater rice under PS conditions. Comprehensive metabolite and phytohormone profiling revealed increases in metabolite levels in the glycolysis pathway in NIL-12 plants. Under long-term submergence (0-288 h), we found decreased amino acid levels. These metabolomic changes were opposite when compared to those in flood-tolerant rice with SUB1 locus. Auxin conjugate levels related to stress response decreased in NIL-12 lines relative to T65. Our analysis helped clarify the complex metabolic reprogramming in deepwater rice as an escape strategy.
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Takeshi Kuroha
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Yoko Hattori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Tomoko Nishizawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Yoshinori Utsumi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 263-8522, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Correspondence:
| |
Collapse
|
43
|
Courbier S, Pierik R. Canopy Light Quality Modulates Stress Responses in Plants. iScience 2019; 22:441-452. [PMID: 31816531 PMCID: PMC6909002 DOI: 10.1016/j.isci.2019.11.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Plants growing at high density are in constant competition for light with each other. The shade avoidance syndrome (SAS) is an effective way to escape neighboring vegetation. Even though the molecular mechanisms regulating SAS have been long studied, interactions between light and other environmental signaling pathways have only recently received attention. Under natural conditions, plants deal with multiple stresses simultaneously. It is, therefore, key to identify commonalities, distinctions, and interactions between plant responses to different environmental cues. This review outlines the current understanding of the interplay between canopy light signaling and other stresses, both biotic and abiotic. Understanding plant responses to multiple stimuli, factoring in the dominance of light for plant life, is essential to generate crops with increased resilience against climate change.
Collapse
Affiliation(s)
- Sarah Courbier
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
44
|
Wagner S, Steinbeck J, Fuchs P, Lichtenauer S, Elsässer M, Schippers JHM, Nietzel T, Ruberti C, Van Aken O, Meyer AJ, Van Dongen JT, Schmidt RR, Schwarzländer M. Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. THE NEW PHYTOLOGIST 2019; 224:1668-1684. [PMID: 31386759 DOI: 10.1111/nph.16093] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/01/2019] [Indexed: 05/24/2023]
Abstract
Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.
Collapse
Affiliation(s)
- Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Joost T Van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Romy R Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| |
Collapse
|
45
|
Wang J, Sun H, Sheng J, Jin S, Zhou F, Hu Z, Diao Y. Transcriptome, physiological and biochemical analysis of Triarrhena sacchariflora in response to flooding stress. BMC Genet 2019; 20:88. [PMID: 31783726 PMCID: PMC6884903 DOI: 10.1186/s12863-019-0790-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background In recent decades, the frequency of flooding is increasing with the change of global climate. Flooding has become one of the major abiotic stresses that seriously affect growth and development of plants. Triarrhena sacchariflora Nakai has been considered a promising energy crop for utilization in ethanol production. Flooding stress is among the most severe abiotic stressors in the production of Nakai. However, the physiological and molecular biological mechanisms of Nakai response to flooding is still unclear. In the present study, in order to understand the molecular mechanisms of Nakai in response to flooding stress, the transcriptome, physiological and biochemical were investigated. Results The results demonstrated that significant physiological changes were observed in photosynthetic system, antioxidative enzyme activity, chlorophyll, carotenoid, proline, lipid peroxidation and soluble sugar content under normal and flooding treatments. Such as, the chlorophyll, carotenoid contents and photosynthetic system were significantly decreased. Whereas, the antioxidative enzyme activity, proline, lipid peroxidation and soluble sugar has increased first and then decreased under treatments compared with the normal plants. Additionally, a total of 8832, 6608 and 3649 unigenes were validated to be differentially expressed under different treatments, respectively. Besides, gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the different expression levels of genes also presented processes, which involved in photosynthesis, sucrose catabolism, glycolysis, stress response and defense, phytohormone biosynthesis and signal transduction. Conclusions The results provide a comprehensive view of the complex molecular events involved in the response to flooding stress of Nakai leaves, which also will promote the research in the development of flood-resistant crops and provide new tools for Nakai breeders.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Han Sun
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jiajin Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,College of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China
| | - Surong Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fasong Zhou
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Ying Diao
- College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China.
| |
Collapse
|
46
|
Root-associated microorganisms reprogram plant life history along the growth-stress resistance tradeoff. ISME JOURNAL 2019; 13:3093-3101. [PMID: 31511619 DOI: 10.1038/s41396-019-0501-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/30/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Growth-defense tradeoffs are a major constraint on plant evolution. While the genetics of resource allocation is well established, the regulatory role of plant-associated microorganisms is still unclear. Here, we demonstrate that plant-associated microorganisms can reposition the plant phenotype along the same growth-defense tradeoff that determines phenotypic effects of plant mutations. We grew plants with microorganisms altering ethylene balance, a key hormone regulating plant investment into growth and stress tolerance. Microbial ethylene reduction had a similar effect to mutations disrupting ethylene signaling: both increased plant growth but at the cost of a strong stress hypersensitivity. We conclude that microbial impact on phenotype can offset the effects of mutations and that apparent plant growth promotion has strong pleiotropic effects. This study confirms that plant life history should be addressed as a joint product of plant genotype and its associated microbiota.
Collapse
|
47
|
Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun 2019; 10:4020. [PMID: 31488841 PMCID: PMC6728379 DOI: 10.1038/s41467-019-12045-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.
Collapse
|
48
|
Armstrong W, Beckett PM, Colmer TD, Setter TL, Greenway H. Tolerance of roots to low oxygen: 'Anoxic' cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:92-108. [PMID: 31255944 DOI: 10.1016/j.jplph.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via 'anoxic' cores rather than being triggered by O2 sensors. The evidence for 'anoxic' cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the 'anaerobic enzymes' ADH and PDC in the 'anoxic' core, and inhibition of Cl- transport to the xylem. These cores are predicted to develop within 15-20 min after sudden transfer of a root to hypoxia, so that the cores are 'anoxically-shocked'. We suggest that 'anoxic' cores could emanate a signal(s), such as ACC the precursor of ethylene and/or propagation of a 'Ca2+ wave', to other tissue zones. There, the signalling would result in acclimation of the tissues to energy crisis metabolism. An O2 diffusion model for tissues with an 'anoxic' core, indicates that the phytoglobin-nitric oxide (Pgb-NO) cycle would only be engaged in a thin 'shell' (annulus) of tissue surrounding the 'anoxic' core, and so would only contribute small amounts of ATP on a whole organ basis (e.g. whole roots). A key feature within this annulus of tissue, where O2 is likely to be limiting, is that the ratio (ATP formed) / (O2 consumed) is 5-6, both when the NAD(P)H of glycolysis is converted to NAD(P)+ by the Pgb-NO cycle or by the TCA cycle linked to the electron transport chain. The main function of the Pgb-NO cycle may be the modulating of NO levels and O2 scavenging, thus preventing oxidative damage. We speculate that an 'anoxic' core in hypoxic plant organs may have a particularly high tolerance to anoxia because cells might receive a prolonged supply of carbohydrates and/or ATP from the regions still receiving sufficient O2 for oxidative phosphorylation. Severely hypoxic or 'anoxic' cores are well documented, but much research on responses of roots to hypoxia is still based on bulk tissue analyses. More research is needed on the interaction between 'anoxic' cores and tissues still receiving sufficient O2 for oxidative phosphorylation, both during a hypoxic exposure and during subsequent anoxia of the tissue/organ as a whole.
Collapse
Affiliation(s)
- William Armstrong
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia; Department of Biological Sciences, The University of Hull, Hull, UK
| | | | - Timothy D Colmer
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia.
| | - Timothy L Setter
- Agricultural and Environmental Consultant, P.O. Box 305, Bull Creek, 6149, WA, Australia
| | - Hank Greenway
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia
| |
Collapse
|
49
|
VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB. A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:559-583. [PMID: 30786237 DOI: 10.1146/annurev-arplant-050718-100114] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ecological specialization in plants occurs primarily through local adaptation to different environments. Local adaptation is widely thought to result in costly fitness trade-offs that result in maladaptation to alternative environments. However, recent studies suggest that such trade-offs are not universal. Further, there is currently a limited understanding of the molecular mechanisms responsible for fitness trade-offs associated with adaptation. Here, we review the literature on stress responses in plants to identify potential mechanisms underlying local adaptation and ecological specialization. We focus on drought, high and low temperature, flooding, herbivore, and pathogen stresses. We then synthesize our findings with recent advances in the local adaptation and plant molecular biology literature. In the process, we identify mechanisms that could cause fitness trade-offs and outline scenarios where trade-offs are not a necessary consequence of adaptation. Future studies should aim to explicitly integrate molecular mechanisms into studies of local adaptation.
Collapse
Affiliation(s)
- Acer VanWallendael
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ali Soltani
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathan C Emery
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Murilo M Peixoto
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jason Olsen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
50
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|