1
|
Ao Y, Wu Q, Zheng J, Zhang C, Zhao Y, Xu R, Xue K, Dai C, Yang M. Building the physiological barrier: Suberin plasticity in response to environmental stimuli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112300. [PMID: 39442632 DOI: 10.1016/j.plantsci.2024.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In response to environmental changes, plant roots undergo two major differentiations: the formation of the Casparian strip and the suberin lamella, both of them are widely recognized as an apoplastic diffusion barrier for nutrient and water exchange between the soil and the root vascular bundle. Suberin is a complex biopolyester composed of glycerol esters and phenolic compounds deposited in the cell walls of specific tissues such as endodermis, exodermis, periderm, seed coat and other marginal tissues. Recently, significant progress has been made due to the development of biochemical and genetic techniques. In this review, we not only summarize the aspect of suberin biosynthesis, transport and polymerization, but also elucidate the molecular mechanisms regarding its regulatory network, as well as its adaptive role in abiotic or biotic stress. This will provide important theoretical references for improving crop growth by modifying their adaptive root suberin structure when exposed to environmental changes.
Collapse
Affiliation(s)
- Yan Ao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Qi Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jiqing Zheng
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Chi Zhang
- Shanghai Lixin University of Accounting and Finance, Shanghai 200032, China
| | - Yu Zhao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kaili Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Miaoyan Yang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Chen Y, Wang C, Tian S, Yao L, Zhu N, Yang X, Bai Z, Liu L, Zhang Y, Sun H, Li C, Zhang K. Abscisic Acid and Ethylene Antagonistically Regulate Root Endodermal Suberization to Mitigate Nonuniform Salt Stress in Cotton. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39718122 DOI: 10.1111/pce.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
The heterogeneity of soil salinity is a critical attribute of saline agricultural environments, particularly for the physiological adaptability of cotton (Gossypium hirsutum L.) plants. However, the mechanisms by which cotton plants acclimate to heterogenous salinity remain poorly understood. To investigate the responses of cotton seedlings to nonuniform salinity, a split-root system using germination paper was employed to replicate spatially variable salinity conditions within the root zone. The root endodermal barriers, consisting of the suberin lamellae and Casparian strip, were found to be enhanced in the roots on the saline side of this system relative to the nonsaline side, playing a crucial role in maintaining ion balance for cotton seedlings under heterogeneous salt environment. Ethylene levels were higher in roots on the nonsaline side, but significantly lower in roots on the saline side. Notably, abscisic acid (ABA) levels increased in roots on both sides. The delicate balance between ABA and ethylene can modify the root endodermal suberization, thereby regulating the adaptability of cotton seedlings to diverse salt environments.
Collapse
Affiliation(s)
- Yixin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Shijun Tian
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liying Yao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ningxin Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiubo Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Chen X, Liu K, Luo T, Zhang B, Yu J, Ma D, Sun X, Zheng H, Xin B, Xia J. Four MYB transcription factors regulate suberization and nonlocalized lignification at the root endodermis in rice. THE PLANT CELL 2024; 37:koae278. [PMID: 39405464 DOI: 10.1093/plcell/koae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
In response to variable environments, rice (Oryza sativa) roots have developed lignified and suberized diffusion barriers at the endodermis to permit selective nutrient uptake for optimal growth. Here, we demonstrate that endodermal suberization and nonlocalized lignification are redundantly regulated by 4 MYB transcription factors: OsMYB39a, OsMYB41, OsMYB92a, and OsMYB92b. These transcription factors function downstream of the OsMYB36a/b/c, CASPARIAN STRIP INTEGRITY FACTOR (OsCIF)-SCHENGEN3 (OsSGN3), and stress-inducible signaling pathways in rice. Knockout of all 4 MYB genes resulted in the complete absence of endodermal suberin lamellae (SL) and almost no lignin deposition between the Casparian strip and the cortex-facing lignified band at cell corners under all conditions examined. In contrast, endodermis-specific overexpression of any of these MYB genes was sufficient to induce strong endodermal suberization and nonlocalized lignification near the root tip. Furthermore, OsMYB92a-overexpressing lines showed an altered ionomic profile and enhanced salinity tolerance. Transcriptome analysis identified 152 downstream genes regulated by OsMYB39a/41/92a/92b, including the key SL formation gene OsCYP86A1 and other genes involved in endodermal lignification and suberization under normal and stress conditions. Our results provide important insights into the molecular mechanisms underlying suberization and nonlocalized lignification at the root endodermis and their physiological significance in ion homeostasis and acclimation to environmental stress.
Collapse
Affiliation(s)
- Xingxiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Kui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Tingting Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinyu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoqian Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Huawei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Boning Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Kim RJ, Zhang Y, Suh MC. ATP-binding cassette G23 is required for Arabidopsis seed coat suberization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112361. [PMID: 39701303 DOI: 10.1016/j.plantsci.2024.112361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Suberin is an extracellular hydrophobic polymer deposited in seed coats that acts as a barrier to regulate the movement of ions, water, and gases, and protects seeds against pathogens. However, the molecular mechanisms underlying suberin deposition in the seed coat remain unknown. In this study, the in planta role of ATP-binding cassette G23 (ABCG23) was investigated in the Arabidopsis seed coat. ABCG23 transcripts were predominantly expressed in the outer integument1 (oi1) of seed coats and the endodermal cells of roots. The fluorescence of the eYFP:ABCG23 construct was observed in the plasma membranes of the tobacco epidermis, seed coat oi1, and root endodermal cells. Seed coats of abcg23-1 and abcg23-2 mutants exhibited reduced autofluorescence under UV light and increased permeability to tetrazolium salts. Total suberin loads and major suberin components, C24 ω-hydroxy fatty acids and 1, ω-dicarboxylic acids were significantly decreased in the mutant seed coats. The ratio of seed germination and seedling establishment of abcg23-1 and abcg23-2 was significantly reduced compared to the WT under salt and osmotic stress conditions. The bimolecular fluorescence complementation assay showed homodimeric interactions of ABCG-2, -6, -20, and -23 and heterodimeric interactions between ABCG23 and ABCG-2, -6, -11, or -20. Our findings indicate that ABCG23 contributes to the transport of suberin monomers in the Arabidopsis seed coats.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Yuyang Zhang
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
5
|
Huang Z, Xiang X, Xu W, Song L, Tang R, Chen D, Li Q, Zhou Y, Jiang CZ. The transcription factor MfbHLH104 from Myrothamnus flabellifolia promotes drought tolerance of Arabidopsis thaliana by enhancing stability of the photosynthesis system. J Biotechnol 2024; 396:89-103. [PMID: 39481548 DOI: 10.1016/j.jbiotec.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
The resurrection plant Myrothamnus flabellifolia can survive extreme drought and desiccation conditions, and quickly recover after rewatering. However, little is known about the mechanism underlying the drought tolerance of M. flabellifolia. In this study, MfbHLH104 was cloned and introduced into Arabidopsis thaliana due to the lack of a transgenic system for M. flabellifolia. MfbHLH104 is localized in the nucleus. Its N-terminal region has transactivation ability in yeast, and the C-terminal region may inhibit the transactivation ability. Overexpressing MfbHLH104 significantly increased drought and salt tolerance of A. thaliana at both seedling and adult stages. It enhanced leaf water retention capacity by decreasing water loss rate and increasing drought- and abscisic acid (ABA) -induced stomatal closure. Additionally, it boosted osmolyte accumulation and ROS scavenging ability by up-regulating genes associated with osmolyte biosynthesis and antioxidant enzymes, and enhancing antioxidant enzyme activities. The expression of ABA-responsive genes were also promoted by MfbHLH104. Remarkably, RNA-seq analysis indicated that MfbHLH104 significantly up-regulated 32 genes (FDR < 0.05 and fold change ≥1.5) involved in photosynthesis related pathways (KEGG pathway No: ko00195, ko00196) under drought, which account for 18.7 % of the total up-regulated genes and the most enriched KEGG pathways. This result suggested that it may help to maintain the stability of the photosynthesis system under drought conditions.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Xiangying Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Rong Tang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Duoer Chen
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Qiao Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Yujue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA; Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Gao YQ, Su Y, Chao DY. Exploring the function of plant root diffusion barriers in sealing and shielding for environmental adaptation. NATURE PLANTS 2024; 10:1865-1874. [PMID: 39638869 DOI: 10.1038/s41477-024-01842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Plant roots serve as the primary interface between the plant and the soil, encountering numerous challenges ranging from water balance to nutrient uptake. One of the central mechanisms enabling plants to thrive in diverse ecosystems is the building of apoplastic diffusion barriers. These barriers control the flow of solutes into and out of the roots, maintaining water and nutrient homeostasis. In this Review, we summarize recent advances in understanding the establishment, function and ecological significance of root apoplastic diffusion barriers. We highlight the plasticity of apoplastic diffusion barriers under various abiotic stresses such as drought, salinity and nutrient deficiency. We also propose new frontiers by discussing the current bottlenecks in the study of plant apoplastic diffusion barriers.
Collapse
Affiliation(s)
- Yi-Qun Gao
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Wang W, Chi M, Liu S, Zhang Y, Song J, Xia G, Liu S. TaGPAT6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39601645 DOI: 10.1111/jipb.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
One mechanism plants use to tolerate high salinity is the deposition of cutin and suberin to form apoplastic barriers that limit the influx of ions. However, the mechanism underlying barrier formation under salt stress is unclear. Here, we characterized the glycerol-3-phosphate acyltransferase (GPAT) family gene TaGPAT6, encoding a protein involved in cutin and suberin biosynthesis for apoplastic barrier formation in wheat (Triticum aestivum). TaGPAT6 has both acyltransferase and phosphatase activities, which are responsible for the synthesis of sn-2-monoacylglycerol (sn-2 MAG), the precursor of cutin and suberin. Overexpressing TaGPAT6 promoted the deposition of cutin and suberin in the seed coat and the outside layers of root tip cells and enhanced salt tolerance by reducing sodium ion accumulation within cells. By contrast, TaGPAT6 knockout mutants showed increased sensitivity to salt stress due to reduced cutin and suberin deposition and enhanced sodium ion accumulation. Yeast-one-hybrid and electrophoretic mobility shift assays identified TaABI5 as the upstream regulator of TaGPAT6. TaABI5 knockout mutants showed suppressed expression of TaGPAT6 and decreased barrier formation in the seed coat. These results indicate that TaGPAT6 is involved in cutin and suberin biosynthesis and the resulting formation of an apoplastic barrier that enhances salt tolerance in wheat.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Menghan Chi
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shupeng Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiawang Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Science, Shandong University, Qingdao, 266237, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257345, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
8
|
Zhu Y, Che R, Dong Z, Guo T, He X, Li J, Wang F. Metabolomics reveals the potential mechanism of La(III) promoting enrichment of Sodium hydrogen arsenate and Roxarsone in Solanum nigrum L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175990. [PMID: 39245378 DOI: 10.1016/j.scitotenv.2024.175990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The rare earth element lanthanum (La(III)) has been found to effectively enhance crop yields and improve plant growth and development. Arsenic (As), as a class of toxic metals widely found in the environment, poses a serious threat to both ecological and human health. Research on the application of La(III) in phytoremediation to enhance remediation efficiency is currently lacking. This study examined the impact of La(III) on physiological and biochemical indicators of Solanum nigrum L. (S. nigrum) exposed to Sodium hydrogen arsenate (SA) and Roxarsone (ROX) treatments under hydroponic conditions. Results indicated that La(III) treatment increased S. nigrum's aboveground As transport capacity by 58.68 %-213 % compared to no La(III) application. Additionally, foliar spraying of La(III) significantly inhibited the expression of toxic metabolites in the root system of S. nigrum, reducing Benzamide by 99.79 % under SA treatment and ZON by 87.72 % under ROX treatment. La(III) is likely to promote the transport of toxins and nutrients within and out of cells by activating ABC transporters, thereby enhancing S. nigrum's arsenic tolerance and metabolic activity. These findings provide molecular-scale insights into La(III) enhancement of the resilience of hyper-enriched plants and the remediation potential of contaminated sites.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Zhongtian Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xin He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
9
|
Liu C, Bai Z, Luo Y, Zhang Y, Wang Y, Liu H, Luo M, Huang X, Chen A, Ma L, Chen C, Yuan J, Xu Y, Zhu Y, Mu J, An R, Yang C, Chen H, Chen J, Li Z, Li X, Dong Y, Zhao J, Shen X, Jiang L, Feng X, Yu P, Wang D, Chen X, Li N. Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation. Nat Commun 2024; 15:9732. [PMID: 39523413 PMCID: PMC11551189 DOI: 10.1038/s41467-024-54112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Many plants associate with endophytic microbes that improve root phosphorus (P) uptake. Understanding the interactions between roots and endophytes can enable efforts to improve P utilization. Here, we characterize the interactions between lateral roots of endophytes in a core collection of 50 rapeseed (Brassica napus L.) genotypes with differing sensitivities to low P conditions. With the correlation analysis result between bacterial abundance and plant physiological indices of rapeseeds, and inoculation experiments on plates and soil, we identify one Flavobacterium strain (C2) that significantly alleviates the P deficiency phenotype of rapeseeds. The underlying mechanisms are explored by performing the weighted gene coexpression network analysis (WGCNA), and conducting genome-wide association studies (GWAS) using Flavobacterium abundance as a quantitative trait. Under P-limited conditions, C2 regulates fatty acid and lipid metabolic pathways. For example, C2 improves metabolism of linoleic acid, which mediates root suberin biosynthesis, and enhances P uptake efficiency. In addition, C2 suppresses root jasmonic acid biosynthesis, which depends on α-linolenic acid metabolism, improving C2 colonization and activating P uptake. This study demonstrates that adjusting the endophyte composition can modulate P uptake in B. napus plants, providing a basis for developing agricultural microbial agents.
Collapse
Affiliation(s)
- Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Zhen Bai
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hexin Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Meng Luo
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xiaofang Huang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Anle Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lige Ma
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Chen Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jinwei Yuan
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Cuiling Yang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hao Chen
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Jiajie Chen
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Zaifang Li
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Xiaodan Li
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Yachen Dong
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Jianhua Zhao
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xingxing Shen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianzhong Feng
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
- Plant Genetics, School of Life Sciences, Technical University of Munich, Freising, D-85354, Germany.
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China.
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
10
|
Fei L, Liu J, Liao Y, Sharif R, Liu F, Lei J, Chen G, Zhu Z, Chen C. The CaABCG14 transporter gene regulates the capsaicin accumulation in Pepper septum. Int J Biol Macromol 2024; 280:136122. [PMID: 39343282 DOI: 10.1016/j.ijbiomac.2024.136122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Capsaicin (CAP), a crucial compound found in chili peppers, not only contributes to their spicy flavor but also possesses several industrial applications. CAP biosynthetic pathway is well known, while its transport mechanism remains elusive. Herein, we performed a comparative transcriptome analysis conducted on pepper fruit tissues at three different stages of development. Four important CAP transporter genes, including one MATE and three ABCs, were identified by differential expression and WGCNA analysis. Specifically, the expression patterns of three ABC genes were assessed in the septum of fruits from nine distinct genotypes of peppers with high capsaicin levels. Interestingly, CaABCG14 was associated with variations in CAP concentration and co-expressed with genes involved in CAP biosynthesis. Transient expression assay revealed that CaABCG14 is localized to the membrane and nucleus. Silencing of CaABCG14 resulted in a notable reduction in the levels of CAP contents and the expression of its biosynthetic genes in the septum of pepper. The overexpression of CaABCG14 greatly intensified the cytotoxic effects of CAP on the yeast cells. Taken together, we for the first time identified a new transporter gene CaABCG14, regulating the CAP accumulation in pepper septum. These findings offer a fresh molecular theoretical framework for CAP transport and accumulation.
Collapse
Affiliation(s)
- Liuying Fei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiarong Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yi Liao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Rahat Sharif
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jianjun Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guoju Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Zhangsheng Zhu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Changming Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Hu L, Lv X, Zhang Y, Du W, Fan S, Kong L. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Int J Mol Sci 2024; 25:10430. [PMID: 39408761 PMCID: PMC11476764 DOI: 10.3390/ijms251910430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wheat is the most widely grown crop in the world; its production is severely disrupted by increasing water deficit. Plant roots play a crucial role in the uptake of water and perception and transduction of water deficit signals. In the past decade, the mechanisms of drought tolerance have been frequently reported; however, the transcriptome and metabolome regulatory network of root responses to water stress has not been fully understood in wheat. In this study, the global transcriptomic and metabolomics profiles were employed to investigate the mechanisms of roots responding to water stresses using the drought-tolerant (DT) and drought-susceptible (DS) wheat genotypes. The results showed that compared with the control group, wheat roots exposed to polyethylene glycol (PEG) had 25941 differentially expressed genes (DEGs) and more upregulated genes were found in DT (8610) than DS (7141). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs of the drought-tolerant genotype were preferably enriched in the flavonoid biosynthetic process, anthocyanin biosynthesis and suberin biosynthesis. The integrated analysis of the transcriptome and metabolome showed that in DT, the KEGG pathways, including flavonoid biosynthesis and arginine and proline metabolism, were shared by differentially accumulated metabolites (DAMs) and DEGs at 6 h after treatment (HAT) and pathways including alanine, aspartate, glutamate metabolism and carbon metabolism were shared at 48 HAT, while in DS, the KEGG pathways shared by DAMs and DEGs only included arginine and proline metabolism at 6 HAT and the biosynthesis of amino acids at 48 HAT. Our results suggest that the drought-tolerant genotype may relieve the drought stress by producing more ROS scavengers, osmoprotectants, energy and larger roots. Interestingly, hormone signaling plays an important role in promoting the development of larger roots and a higher capability to absorb and transport water in drought-tolerant genotypes.
Collapse
Affiliation(s)
- Ling Hu
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China;
| | - Xuemei Lv
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
12
|
Hu J, Zhu T, Yao C, Hao C, Yan H, Pu Z, Ma W, Gao B, Gao H, Kong L, Zhang H, Wang J. PaMYB11 promotes suberin deposition in Norway spruce embryogenic tissue during cryopreservation: A novel resistance mechanism against osmosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2199-2216. [PMID: 38990506 DOI: 10.1111/tpj.16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The osmotic resistance mechanism has been extensively studied in whole plants or plant tissues. However, little is known about it in embryogenic tissue (ET) which is widely used in plant-based biotechnological systems. Suberin, a cell wall aliphatic and aromatic heteropolymer, plays a critical role in plant cells against osmosis stress. The suberin regulatory biosynthesis has rarely been studied in gymnosperms. Here, PaMYB11, a subgroup 11 R2R3-MYB transcription factor, plays a key role in the osmotic resistance of Norway spruce (Picea abies) ETs during cryoprotectant pretreatment. Thus, RNA-seq, histological, and analytical chemical analyses are performed on the stable transformations of PaMYB11-OE and PaMYB11-SRDX in Norway spruce ETs. DAP-seq, Y1H, and LUC are further combined to explore the PaMYB11 targets. Activation of PaMYB11 is necessary and sufficient for suberin lamellae deposition on Norway spruce embryogenic cell walls, which plays a decisive role in ET survival under osmotic stress. Transcriptome analysis shows that PaMYB11 enhances suberin lamellae monomer synthesis by promoting very long-chain fatty acid (VLCFA) synthesis. PaPOP, PaADH1, and PaTET8L, the first two (PaADH1 and PaPOP, included) involved in VLCFA synthesis, are proved to be the direct targets of PaMYB11. Our study identified a novel osmotic response directed by PaMYB11 in Norway spruce ET, which provides a new understanding of the resistance mechanism against osmosis in gymnosperms.
Collapse
Affiliation(s)
- Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chengcheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chunhui Hao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ziyan Pu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Benwang Gao
- Management Office of Three Gorges Botanical Garden, Yichang, Hubei, 443111, China
| | - Han Gao
- Management Office of Three Gorges Botanical Garden, Yichang, Hubei, 443111, China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
13
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
14
|
Li F, Hou Z, Xu S, Han D, Li B, Hu H, Liu J, Cai S, Gan Z, Gu Y, Zhang X, Zhou X, Wang S, Zhao J, Mei Y, Zhang J, Wang Z, Wang J. Haplotype-resolved genomes of octoploid species in Phyllanthaceae family reveal a critical role for polyploidization and hybridization in speciation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:348-363. [PMID: 38606539 DOI: 10.1111/tpj.16767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.
Collapse
Affiliation(s)
- Fangping Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jieying Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shike Cai
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Zhenpeng Gan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Xiufeng Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, 530005, China
| | - Zefu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| |
Collapse
|
15
|
Armendariz I, López de Heredia U, Soler M, Puigdemont A, Ruiz MM, Jové P, Soto Á, Serra O, Figueras M. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation. BMC PLANT BIOLOGY 2024; 24:488. [PMID: 38825683 PMCID: PMC11145776 DOI: 10.1186/s12870-024-05192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.
Collapse
Affiliation(s)
- Iker Armendariz
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Unai López de Heredia
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Marçal Soler
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Adrià Puigdemont
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Maria Mercè Ruiz
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Patricia Jové
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Álvaro Soto
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Olga Serra
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Mercè Figueras
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain.
| |
Collapse
|
16
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
17
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Kawa D, Thiombiano B, Shimels MZ, Taylor T, Walmsley A, Vahldick HE, Rybka D, Leite MFA, Musa Z, Bucksch A, Dini-Andreote F, Schilder M, Chen AJ, Daksa J, Etalo DW, Tessema T, Kuramae EE, Raaijmakers JM, Bouwmeester H, Brady SM. The soil microbiome modulates the sorghum root metabolome and cellular traits with a concomitant reduction of Striga infection. Cell Rep 2024; 43:113971. [PMID: 38537644 PMCID: PMC11063626 DOI: 10.1016/j.celrep.2024.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Sorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed. Here, we demonstrate the functional potential of the soil microbiome to suppress Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation and with depletion of haustorium-inducing factors, compounds required for the initial stages of Striga infection. We further identify specific bacterial taxa that trigger the observed Striga-suppressive traits. Collectively, our study describes the importance of the soil microbiome in the early stages of root infection by Striga and pinpoints mechanisms of Striga suppression. These findings open avenues to broaden the effectiveness of integrated Striga management practices.
Collapse
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA; Plant Stress Resilience, Department of Biology, Utrecht University, 3508 TC Utrecht, the Netherlands; Environmental and Computational Plant Development, Department of Biology, Utrecht University, 3508 TC Utrecht, the Netherlands.
| | - Benjamin Thiombiano
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Mahdere Z Shimels
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Tamera Taylor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA; Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Aimee Walmsley
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Hannah E Vahldick
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Dominika Rybka
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Marcio F A Leite
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Zayan Musa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Alexander Bucksch
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Francisco Dini-Andreote
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands; Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mario Schilder
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Alexander J Chen
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jiregna Daksa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Desalegn W Etalo
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands; Wageningen University and Research, Laboratory of Phytopathology, Wageningen, the Netherlands
| | - Taye Tessema
- Ethiopian Institute of Agricultural Research, 3G53+6XC Holeta, Ethiopia
| | - Eiko E Kuramae
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands; Ecology and Biodiversity, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jos M Raaijmakers
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, the Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Villarino G, Dahlberg-Wright S, Zhang L, Schaedel M, Wang L, Miller K, Bartlett J, Vu AMD, Busch W. PAT (Periderm Assessment Toolkit): A Quantitative and Large-Scale Screening Method for Periderm Measurements. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0156. [PMID: 38560381 PMCID: PMC10981931 DOI: 10.34133/plantphenomics.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/10/2024] [Indexed: 04/04/2024]
Abstract
The periderm is a vital protective tissue found in the roots, stems, and woody elements of diverse plant species. It plays an important function in these plants by assuming the role of the epidermis as the outermost layer. Despite its critical role for protecting plants from environmental stresses and pathogens, research on root periderm development has been limited due to its late formation during root development, its presence only in mature root regions, and its impermeability. One of the most straightforward measurements for comparing periderm formation between different genotypes and treatments is periderm (phellem) length. We have developed PAT (Periderm Assessment Toolkit), a high-throughput user-friendly pipeline that integrates an efficient staining protocol, automated imaging, and a deep-learning-based image analysis approach to accurately detect and measure periderm length in the roots of Arabidopsis thaliana. The reliability and reproducibility of our method was evaluated using a diverse set of 20 Arabidopsis natural accessions. Our automated measurements exhibited a strong correlation with human-expert-generated measurements, achieving a 94% efficiency in periderm length quantification. This robust PAT pipeline streamlines large-scale periderm measurements, thereby being able to facilitate comprehensive genetic studies and screens. Although PAT proves highly effective with automated digital microscopes in Arabidopsis roots, its application may pose challenges with nonautomated microscopy. Although the workflow and principles could be adapted for other plant species, additional optimization would be necessary. While we show that periderm length can be used to distinguish a mutant impaired in periderm development from wild type, we also find it is a plastic trait. Therefore, care must be taken to include sufficient repeats and controls, to minimize variation, and to ensure comparability of periderm length measurements between different genotypes and growth conditions.
Collapse
Affiliation(s)
- Gonzalo Villarino
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Signe Dahlberg-Wright
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marianne Schaedel
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lin Wang
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karyssa Miller
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jack Bartlett
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Albert Martin Dang Vu
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory,
Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
20
|
Devi R, Goyal P, Verma B, Hussain S, Chowdhary F, Arora P, Gupta S. A transcriptome-wide identification of ATP-binding cassette (ABC) transporters revealed participation of ABCB subfamily in abiotic stress management of Glycyrrhiza glabra L. BMC Genomics 2024; 25:315. [PMID: 38532362 DOI: 10.1186/s12864-024-10227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.
Collapse
Affiliation(s)
- Ritu Devi
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Goyal
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Bhawna Verma
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fariha Chowdhary
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Suphla Gupta
- Plant Biotechnology Division, Jammu, India.
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Kim RJ, Han S, Kim HJ, Hur JH, Suh MC. Tetracosanoic acids produced by 3-ketoacyl-CoA synthase 17 are required for synthesizing seed coat suberin in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1767-1780. [PMID: 37769208 DOI: 10.1093/jxb/erad381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
Very long-chain fatty acids (VLCFAs) are precursors for the synthesis of membrane lipids, cuticular waxes, suberins, and storage oils in plants. 3-Ketoacyl CoA synthase (KCS) catalyzes the condensation of C2 units from malonyl-CoA to acyl-CoA, the first rate-limiting step in VLCFA synthesis. In this study, we revealed that Arabidopsis KCS17 catalyzes the elongation of C22-C24 VLCFAs required for synthesizing seed coat suberin. Histochemical analysis of Arabidopsis plants expressing GUS (β-glucuronidase) under the control of the KCS17 promoter revealed predominant GUS expression in seed coats, petals, stigma, and developing pollen. The expression of KCS17:eYFP (enhanced yellow fluorescent protein) driven by the KCS17 promoter was observed in the outer integument1 of Arabidopsis seed coats. The KCS17:eYFP signal was detected in the endoplasmic reticulum of tobacco epidermal cells. The levels of C22 VLCFAs and their derivatives, primary alcohols, α,ω-alkane diols, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids increased by ~2-fold, but those of C24 VLCFAs, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids were reduced by half in kcs17-1 and kcs17-2 seed coats relative to the wild type (WT). The seed coat of kcs17 displayed decreased autofluorescence under UV and increased permeability to tetrazolium salt compared with the WT. Seed germination and seedling establishment of kcs17 were more delayed by salt and osmotic stress treatments than the WT. KCS17 formed homo- and hetero-interactions with KCR1, PAS2, and ECR, but not with PAS1. Therefore, KCS17-mediated VLCFA synthesis is required for suberin layer formation in Arabidopsis seed coats.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Sol Han
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Hyeon Jun Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Ji Hyun Hur
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
22
|
Zhou Y, Wang Y, Zhang D, Liang J. Endomembrane-biased dimerization of ABCG16 and ABCG25 transporters determines their substrate selectivity in ABA-regulated plant growth and stress responses. MOLECULAR PLANT 2024; 17:478-495. [PMID: 38327051 DOI: 10.1016/j.molp.2024.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
ATP-binding cassette (ABC) transporters are integral membrane proteins that have evolved diverse functions fulfilled via the transport of various substrates. In Arabidopsis, the G subfamily of ABC proteins is particularly abundant and participates in multiple signaling pathways during plant development and stress responses. In this study, we revealed that two Arabidopsis ABCG transporters, ABCG16 and ABCG25, engage in ABA-mediated stress responses and early plant growth through endomembrane-specific dimerization-coupled transport of ABA and ABA-glucosyl ester (ABA-GE), respectively. We first revealed that ABCG16 contributes to osmotic stress tolerance via ABA signaling. More specifically, ABCG16 induces cellular ABA efflux in both yeast and plant cells. Using FRET analysis, we showed that ABCG16 forms obligatory homodimers for ABA export activity and that the plasma membrane-resident ABCG16 homodimers specifically respond to ABA, undergoing notable conformational changes. Furthermore, we demonstrated that ABCG16 heterodimerizes with ABCG25 at the endoplasmic reticulum (ER) membrane and facilitates the ER entry of ABA-GE in both Arabidopsis and tobacco cells. The specific responsiveness of the ABCG16-ABCG25 heterodimer to ABA-GE and the superior growth of their double mutant support an inhibitory role of these two ABCGs in early seedling establishment via regulation of ABA-GE translocation across the ER membrane. Our endomembrane-specific analysis of the FRET signals derived from the homo- or heterodimerized ABCG complexes allowed us to link endomembrane-biased dimerization to the translocation of distinct substrates by ABCG transporters, providing a prototypic framework for understanding the omnipotence of ABCG transporters in plant development and stress responses.
Collapse
Affiliation(s)
- Yeling Zhou
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Yuzhu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dong Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jiansheng Liang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
23
|
Xu J, Liao R, Xue M, Shang S, Zhou M, Liu Z, Feng H, Huang S. Mutations in BrABCG26, encoding an ATP-binding cassette transporter, are responsible for male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:63. [PMID: 38427048 DOI: 10.1007/s00122-024-04573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
KEY MESSAGE The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis. Compared to the wild-type 'FT,' the stamens of mutants were completely degenerated and had no pollen, and other characters had no obvious differences. Cytological observation revealed that the failure of vacuolation of the mononuclear microspore, accompanied by abnormal tapetal degradation, resulted in anther abortion in mutants. Genetic analysis showed that a recessive gene controlled the mutant trait. MutMap combined with kompetitive allele specific PCR genotyping analyses showed that BraA01g038270.3C, encoding a transporter ABCG26 that played a vital role in pollen wall formation, was the candidate gene for msm3-1, named BrABCG26. Compared with wild-type 'FT,' the mutations existed on the second exon (C to T) and the sixth exon (C to T) of BrABCG26 gene in mutants msm3-1 and msm3-2, leading to the loss-of-function truncated protein, which verified the BrABCG26 function in stamen development. Subcellular localization and expression pattern analysis indicated that BrABCG26 was localized in the nucleus and was expressed in all organs, with the highest expression in flower buds. Compared to the wild-type 'FT,' the expressions of BrABCG26 were significantly reduced in flower buds and anthers of mutants. Promoter activity analysis showed that a strong GUS signal was detected in flower buds. These results indicated that BrABCG26 is responsible for the male sterility of msm3 mutants in Chinese cabbage.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Ruiqi Liao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Meihui Xue
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shayu Shang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Mingwei Zhou
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
24
|
Fu X, Zheng H, Wang Y, Liu H, Liu P, Li L, Zhao J, Sun X, Tang K. AaABCG20 transporter involved in cutin and wax secretion affects the initiation and development of glandular trichomes in Artemisia annua. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111959. [PMID: 38101619 DOI: 10.1016/j.plantsci.2023.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Glandular trichomes are specialized structures found on the surface of plants to produce specific compounds, including terpenes, alkaloids, and other organic substances. Artemisia annua, commonly known as sweet wormwood, synthesizes and stores the antimalarial drug artemisinin in glandular trichomes. Previous research indicated that increasing the glandular trichome density could enhance artemisinin production, and the cuticle synthesis affected the initiation and development of glandular trichomes in A. annua. In this study, AaABCG12 and AaABCG20 were isolated from A. annua that exhibited similar expression patterns to artemisinin biosynthetic genes. Of the two, AaABCG20 acted as a specific transporter in glandular trichomes. Downregulating the expression of AaABCG20 resulted in a notable reduction in the density of glandular trichome, while overexpressing AaABCG20 resulted in an increase in glandular trichome density. GC-MS analysis demonstrated that AaABCG20 was responsible for the transport of cutin and wax in A. annua. These findings indicated that AaABCG20 influenced the initiation and development of glandular trichomes through transporting cutin and wax in A. annua. This glandular trichome specific half-size ABCG-type transporter is crucial in facilitating the transportation of cutin and wax components, ultimately contributing to the successful initiation and development of glandular trichomes.
Collapse
Affiliation(s)
- Xueqing Fu
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Zheng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pin Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingya Zhao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofen Sun
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
25
|
Zhang Z, Sun M, Xiong T, Ye F, Zhao Z. Development and genetic regulation of pollen intine in Arabidopsis and rice. Gene 2024; 893:147936. [PMID: 38381507 DOI: 10.1016/j.gene.2023.147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Mengke Sun
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Ziwei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| |
Collapse
|
26
|
Zhao S, Luo J, Tang M, Zhang C, Song M, Wu G, Yan X. Analysis of the Candidate Genes and Underlying Molecular Mechanism of P198, an RNAi-Related Dwarf and Sterile Line. Int J Mol Sci 2023; 25:174. [PMID: 38203344 PMCID: PMC10778984 DOI: 10.3390/ijms25010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The genome-wide long hairpin RNA interference (lhRNAi) library is an important resource for plant gene function research. Molecularly characterizing lhRNAi mutant lines is crucial for identifying candidate genes associated with corresponding phenotypes. In this study, a dwarf and sterile line named P198 was screened from the Brassica napus (B. napus) RNAi library. Three different methods confirmed that eight copies of T-DNA are present in the P198 genome. However, only four insertion positions were identified in three chromosomes using fusion primer and nested integrated polymerase chain reaction. Therefore, the T-DNA insertion sites and copy number were further investigated using Oxford Nanopore Technologies (ONT) sequencing, and it was found that at least seven copies of T-DNA were inserted into three insertion sites. Based on the obtained T-DNA insertion sites and hairpin RNA (hpRNA) cassette sequences, three candidate genes related to the P198 phenotype were identified. Furthermore, the potential differentially expressed genes and pathways involved in the dwarfism and sterility phenotype of P198 were investigated by RNA-seq. These results demonstrate the advantage of applying ONT sequencing to investigate the molecular characteristics of transgenic lines and expand our understanding of the complex molecular mechanism of dwarfism and male sterility in B. napus.
Collapse
Affiliation(s)
- Shengbo Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Miaoying Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohong Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (S.Z.); (J.L.); (M.T.); (C.Z.); (M.S.)
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
27
|
Chang E, Guo W, Chen J, Zhang J, Jia Z, Tschaplinski TJ, Yang X, Jiang Z, Liu J. Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111874. [PMID: 37742724 DOI: 10.1016/j.plantsci.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, Shandong 271000, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zeping Jiang
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China.
| |
Collapse
|
28
|
Su Y, Feng T, Liu CB, Huang H, Wang YL, Fu X, Han ML, Zhang X, Huang X, Wu JC, Song T, Shen H, Yang X, Xu L, Lü S, Chao DY. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. NATURE PLANTS 2023; 9:1968-1977. [PMID: 37932483 DOI: 10.1038/s41477-023-01555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.
Collapse
Affiliation(s)
- Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Chen Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
| | - Xianpeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
29
|
Chang LF, Fei J, Wang YS, Ma XY, Zhao Y, Cheng H. Comparative Analysis of Cd Uptake and Tolerance in Two Mangrove Species ( Avicennia marina and Rhizophora stylosa) with Distinct Apoplast Barriers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3786. [PMID: 38005683 PMCID: PMC10674663 DOI: 10.3390/plants12223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
Mangrove plants demonstrate an impressive ability to tolerate environmental pollutants, but excessive levels of cadmium (Cd) can impede their growth. Few studies have focused on the effects of apoplast barriers on heavy metal tolerance in mangrove plants. To investigate the uptake and tolerance of Cd in mangrove plants, two distinct mangrove species, Avicennia marina and Rhizophora stylosa, are characterized by unique apoplast barriers. The results showed that both mangrove plants exhibited the highest concentration of Cd2+ in roots, followed by stems and leaves. The Cd2+ concentrations in all organs of R. stylosa consistently exhibited lower levels than those of A. marina. In addition, R. stylosa displayed a reduced concentration of apparent PTS and a smaller percentage of bypass flow when compared to A. marina. The root anatomical characteristics indicated that Cd treatment significantly enhanced endodermal suberization in both A. marina and R. stylosa roots, and R. stylosa exhibited a higher degree of suberization. The transcriptomic analysis of R. stylosa and A. marina roots under Cd stress revealed 23 candidate genes involved in suberin biosynthesis and 8 candidate genes associated with suberin regulation. This study has confirmed that suberized apoplastic barriers play a crucial role in preventing Cd from entering mangrove roots.
Collapse
Affiliation(s)
- Li-Fang Chang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Jiao Fei
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - You-Shao Wang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - Xiao-Yu Ma
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Yan Zhao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Hao Cheng
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| |
Collapse
|
30
|
Hibbert LE, Qian Y, Smith HK, Milner S, Katz E, Kliebenstein DJ, Taylor G. Making watercress ( Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. FRONTIERS IN PLANT SCIENCE 2023; 14:1279823. [PMID: 38023842 PMCID: PMC10662076 DOI: 10.3389/fpls.2023.1279823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Watercress (Nasturtium officinale) is a nutrient-dense salad crop with high antioxidant capacity and glucosinolate concentration and with the potential to contribute to nutrient security as a locally grown outdoor aquatic crop in northern temperate climates. However, phosphate-based fertilizers used to support plant growth contribute to the eutrophication of aquatic habitats, often pristine chalk streams, downstream of farms, increasing pressure to minimize fertilizer use and develop a more phosphorus-use efficient (PUE) crop. Here, we grew genetically distinct watercress lines selected from a bi-parental mapping population on a commercial watercress farm either without additional phosphorus (P-) or under a commercial phosphate-based fertilizer regime (P+), to decipher effects on morphology, nutritional profile, and the transcriptome. Watercress plants sustained shoot yield in P- conditions, through enhanced root biomass, but with shorter stems and smaller leaves. Glucosinolate concentration was not affected by P- conditions, but both antioxidant capacity and the concentration of sugars and starch in shoot tissue were enhanced. We identified two watercress breeding lines, with contrasting strategies for enhanced PUE: line 60, with highly plastic root systems and increased root growth in P-, and line 102, maintaining high yield irrespective of P supply, but less plastic. RNA-seq analysis revealed a suite of genes involved in cell membrane remodeling, root development, suberization, and phosphate transport as potential future breeding targets for enhanced PUE. We identified watercress gene targets for enhanced PUE for future biotechnological and breeding approaches enabling less fertilizer inputs and reduced environmental damage from watercress cultivation.
Collapse
Affiliation(s)
- Lauren E. Hibbert
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
- School of Biological Sciences, University of Southampton, Hampshire, United Kingdom
| | - Yufei Qian
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | | | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | - Gail Taylor
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
31
|
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3632. [PMID: 37896095 PMCID: PMC10610530 DOI: 10.3390/plants12203632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Joseph Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Benoît Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Jérôme Verdier
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Julia Buitink
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Olivier Leprince
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| |
Collapse
|
32
|
Kim GE, Sung J. ABA-dependent suberization and aquaporin activity in rice ( Oryza sativa L.) root under different water potentials. FRONTIERS IN PLANT SCIENCE 2023; 14:1219610. [PMID: 37746006 PMCID: PMC10512726 DOI: 10.3389/fpls.2023.1219610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023]
Abstract
Drought is one of the most stressful environments limiting crop growth and yield throughout the world. Therefore, most efforts have been made to document drought-derived genetic and physiological responses and to find better ways to improve drought tolerance. The interaction among them is unclear and/or less investigated. Therefore, the current study is to find a clue of metabolic connectivity among them in rice root experiencing different levels of drought condition. We selected 19 genes directly involved in abscisic acid (ABA) metabolism (6), suberization (6), and aquaporins (AQPs) activity (7) and analyzed the relatively quantitative gene expression using qRT-PCR from rice roots. In addition, we also analyzed proline, chlorophyll, and fatty acids and observed cross-sectional root structure (aerenchyma) and suberin lamella deposition in the endodermis. All drought conditions resulted in an obvious development of aerenchyma and two- to fourfold greater accumulation of proline. The limited water supply (-1.0 and -1.5 MPa) significantly increased gene expression (ABA metabolism, suberization, and AQPs) and developed greater layer of suberin lamella in root endodermis. In addition, the ratio of the unsaturated to the saturated fatty acids was increased, which could be considered as an adjusted cell permeability. Interestingly, these metabolic adaptations were an exception with a severe drought condition (hygroscopic coefficient, -3.1 MPa). Accordingly, we concluded that the drought-tolerant mechanism in rice roots is sophisticatedly regulated until permanent wilting point (-1.5 MPa), and ABA metabolism, suberization, and AQPs activity might be independent and/or concurrent process as a survival strategy against drought.
Collapse
Affiliation(s)
| | - Jwakyung Sung
- Deptment of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| |
Collapse
|
33
|
Liu L, Geng P, Jin X, Wei X, Xue J, Wei X, Zhang L, Liu M, Zhang L, Zong W, Mao L. Wounding induces suberin deposition, relevant gene expressions and changes of endogenous phytohormones in Chinese yam ( Dioscorea opposita) tubers. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:691-700. [PMID: 37437564 DOI: 10.1071/fp22280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Wounds on Chinese yam (Dioscorea opposita ) tubers can ocurr during harvest and handling, and rapid suberisation of the wound is required to prevent pathogenic infection and desiccation. However, little is known about the causal relationship among suberin deposition, relevant gene expressions and endogenous phytohormones levels in response to wounding. In this study, the effect of wounding on phytohormones levels and the expression profiles of specific genes involved in wound-induced suberisation were determined. Wounding rapidly increased the expression levels of genes, including PAL , C4H , 4CL , POD , KCSs , FARs , CYP86A1 , CYP86B1 , GPATs , ABCGs and GELPs , which likely involved in the biosynthesis, transport and polymerisation of suberin monomers, ultimately leading to suberin deposition. Wounding induced phenolics biosynthesis and being polymerised into suberin poly(phenolics) (SPP) in advance of suberin poly(aliphatics) (SPA) accumulation. Specifically, rapid expression of genes (e.g. PAL , C4H , 4CL , POD ) associated with the biosynthesis and polymerisation of phenolics, in consistent with SPP accumulation 3days after wounding, followed by the massive accumulation of SPA and relevant gene expressions (e.g. KCSs , FARs , CYP86A1 /B1 , GPATs , ABCGs , GELPs ). Additionally, wound-induced abscisic acid (ABA) and jasmonic acid (JA) consistently correlated with suberin deposition and relevant gene expressions indicating that they might play a central role in regulating wound suberisation in yam tubers.
Collapse
Affiliation(s)
- Linyao Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Ping Geng
- College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xueyuan Jin
- College of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, Hainan 571126, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Jing Xue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xiaobo Wei
- School of Food and Wine, Ningxia University, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, 750021, China
| | - Lihua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Mengpei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Liang Zhang
- Wencheng Institution of Modern Agriculture and Healthcare Industry, Wenzhou 325300, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang R&D Center of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Zhou Y, Zhang T, Wang X, Wu W, Xing J, Li Z, Qiao X, Zhang C, Wang X, Wang G, Li W, Bai S, Li Z, Suo Y, Wang J, Niu Y, Zhang J, Lan C, Hu Z, Li B, Zhang X, Wang W, Galbraith DW, Chen Y, Guo S, Song CP. A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis. Nat Commun 2023; 14:4384. [PMID: 37474494 PMCID: PMC10359280 DOI: 10.1038/s41467-023-40013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
The unique dumbbell-shape of grass guard cells (GCs) is controlled by their cell walls which enable their rapid responses to the environment. The molecular mechanisms regulating the synthesis and assembly of GC walls are as yet unknown. Here we have identified BZU3, a maize gene encoding UDP-glucose 4-epimerase that regulates the supply of UDP-glucose during GC wall synthesis. The BZU3 mutation leads to significant decreases in cellular UDP-glucose levels. Immunofluorescence intensities reporting levels of cellulose and mixed-linkage glucans are reduced in the GCs, resulting in impaired local wall thickening. BZU3 also catalyzes the epimerization of UDP-N-acetylgalactosamine to UDP-N-acetylglucosamine, and the BZU3 mutation affects N-glycosylation of proteins that may be involved in cell wall synthesis and signaling. Our results suggest that the spatiotemporal modulation of BZU3 plays a dual role in controlling cell wall synthesis and glycosylation via controlling UDP-glucose/N-acetylglucosamine homeostasis during stomatal morphogenesis. These findings provide insights into the mechanisms controlling formation of the unique morphology of grass stomata.
Collapse
Affiliation(s)
- Yusen Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xiaocui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zuliang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Chunrui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Guangshun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Wenhui Li
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Yanli Niu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - David W Galbraith
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- School of Plant Sciences and Bio5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| |
Collapse
|
35
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
36
|
Sehar S, Adil MF, Askri SMH, Feng Q, Wei D, Sahito FS, Shamsi IH. Pan-transcriptomic Profiling Demarcates Serendipita Indica-Phosphorus Mediated Tolerance Mechanisms in Rice Exposed to Arsenic Toxicity. RICE (NEW YORK, N.Y.) 2023; 16:28. [PMID: 37354226 DOI: 10.1186/s12284-023-00645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qidong Feng
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongming Wei
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Falak Sehar Sahito
- Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Kashyap A, Jiménez-Jiménez Á, Figueras M, Serra O, Valls M, Coll NS. The Tomato Feruloyl Transferase FHT Promoter Is an Accurate Identifier of Early Development and Stress-Induced Suberization. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091890. [PMID: 37176949 PMCID: PMC10181283 DOI: 10.3390/plants12091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
As a wall polymer, suberin has a multifaceted role in plant development and stress responses. It is deposited between the plasma membrane and the primary cell wall in specialized tissues such as root exodermis, endodermis, phellem, and seed coats. It is formed de novo in response to stresses such as wounding, salt injury, drought, and pathogen attack and is a complex polyester mainly consisting of fatty acids, glycerol, and minor amounts of ferulic acid that are associated to a lignin-like polymer predominantly composed of ferulates. Metabolomic and transcriptomic studies have revealed that cell wall lignification precedes suberin deposition. The ferulic acid esterified to ω-hydroxy fatty acids, synthetized by the feruloyl transferase FHT (or ASFT), presumably plays a role in coupling both polymers, although the precise mechanism is not understood. Here, we use the promoter of tomato suberin feruloyl transferase (FHT/ASFT) fused to GUS (β-glucuronidase) to demonstrate that ferulate deposition agrees with the site of promoter FHT activation by using a combination of histochemical staining and UV microscopy. Hence, FHT promoter activation and alkali UV microscopy can be used to identify the precise localization of early suberizing cells rich in ferulic acid and can additionally be used as an efficient marker of early suberization events during plant development and stress responses. This line can be used in the future as a tool to identify emerging suberization sites via ferulate deposition in tomato plants, which may contribute to germplasm screening in varietal improvement programs.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Álvaro Jiménez-Jiménez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Department of Genetics, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001 Barcelona, Spain
| |
Collapse
|
38
|
Xu X, Guerriero G, Domergue F, Beine-Golovchuk O, Cocco E, Berni R, Sergeant K, Hausman JF, Legay S. Characterization of MdMYB68, a suberin master regulator in russeted apples. FRONTIERS IN PLANT SCIENCE 2023; 14:1143961. [PMID: 37021306 PMCID: PMC10067606 DOI: 10.3389/fpls.2023.1143961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have been done to better understand the complex interplay between pathways involved in the suberization process in model plants. However, the regulation mechanisms which orchestrate this complex process are still under investigation. Our previous studies highlighted a number of transcription factor candidates from the Myeloblastosis (MYB) transcription factor family which might regulate suberization in russeted or suberized apple fruit skin. Among these, we identified MdMYB68, which was co-expressed with number of well-known key suberin biosynthesis genes. METHOD To validate the MdMYB68 function, we conducted an heterologous transient expression in Nicotiana benthamiana combined with whole gene expression profiling analysis (RNA-Seq), quantification of lipids and cell wall monosaccharides, and microscopy. RESULTS MdMYB68 overexpression is able to trigger the expression of the whole suberin biosynthesis pathway. The lipid content analysis confirmed that MdMYB68 regulates the deposition of suberin in cell walls. Furthermore, we also investigated the alteration of the non-lipid cell wall components and showed that MdMYB68 triggers a massive modification of hemicelluloses and pectins. These results were finally supported by the microscopy. DISCUSSION Once again, we demonstrated that the heterologous transient expression in N. benthamiana coupled with RNA-seq is a powerful and efficient tool to investigate the function of suberin related transcription factors. Here, we suggest MdMYB68 as a new regulator of the aliphatic and aromatic suberin deposition in apple fruit, and further describe, for the first time, rearrangements occurring in the carbohydrate cell wall matrix, preparing this suberin deposition.
Collapse
Affiliation(s)
- Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Frederic Domergue
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS) – Unité Mixte de Recherche (UMR) 5200, Laboratoire de biogenèse Membranaire, Bâtiment A3 ‐ Institut Natitonal de la Recherche Agronomique (INRA) Bordeaux Aquitaine, Villenave d’Ornon, France
| | - Olga Beine-Golovchuk
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Roberto Berni
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
39
|
Choi J, Kim H, Suh MC. Disruption of the ABA1 encoding zeaxanthin epoxidase caused defective suberin layers in Arabidopsis seed coats. FRONTIERS IN PLANT SCIENCE 2023; 14:1156356. [PMID: 37008500 PMCID: PMC10050373 DOI: 10.3389/fpls.2023.1156356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Suberin, a complex polyester deposited in the seed coat outer integument, acts as a hydrophobic barrier to control the movement of water, ions, and gas. However, relatively little is known about the signal transduction involved in suberin layer formation during seed coat development. In this study, the effect of the plant hormone abscisic acid (ABA) on suberin layer formation in seed coats was investigated by characterizing mutations in Arabidopsis related to ABA biosynthesis and signaling. Seed coat permeability to tetrazolium salt was noticeably elevated in aba1-1 and abi1-1 mutants, but not significantly altered in snrk2.2/3/6, abi3-8, abi5-7, and pyr1pyl1pyl2pyl4 quadruple mutants compared with that in the wild-type (WT). ABA1 encodes a zeaxanthin epoxidase that functions in the first step of ABA biosynthesis. aba1-1 and aba1-8 mutant seed coats showed reduced autofluorescence under UV light and increased tetrazolium salt permeability relative to WT levels. ABA1 disruption resulted in decreased total seed coat polyester levels by approximately 3%, with a remarkable reduction in levels of C24:0 ω-hydroxy fatty acids and C24:0 dicarboxylic acids, which are the most abundant aliphatic compounds in seed coat suberin. Consistent with suberin polyester chemical analysis, RT-qPCR analysis showed a significant reduction in transcript levels of KCS17, FAR1, FAR4, FAR5, CYP86A1, CYP86B1, ASFT, GPAT5, LTPG1, LTPG15, ABCG2, ABCG6, ABCG20, ABCG23, MYB9, and MYB107, which are involved in suberin accumulation and regulation in developing aba1-1 and aba1-8 siliques, as compared with WT levels. Together, seed coat suberization is mediated by ABA and partially processed through canonical ABA signaling.
Collapse
|
40
|
Xue S, Bi Y, Ackah S, Li Z, Li B, Wang B, Wang Y, Li Y, Prusky D. Sodium silicate treatment accelerates biosynthesis and polymerization of suberin polyaliphatics monomers at wounds of muskmelon. Food Chem 2023; 417:135847. [PMID: 36924714 DOI: 10.1016/j.foodchem.2023.135847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
Suberin polyaliphatics (SPA) is an important component of healing closing layer at fruit wounds. However, few study is available on the effect of sodium silicon treatment on SPA monomers biosynthesis and polymerization at muskmelon wounds. In this study, sodium silicate enhanced PLA2 (Phospholipase A2, PLA2) expression and enzyme activity, increased oleic acid, linoleic acid, and linolenic acid contents, and degree of fatty acids unsaturation at wounds. Sodium silicate upregulated the expressions of LACS4 (Long chain acyl CoA synthetase, LACS), KCS10 (β-ketoacyl CoA synthase, KCS), CYP86B1 (Cytochrome P450 oxygenase, CYP), FAR3 (Fatty acyl CoA reductase, FAR), GPAT1 (Glycerol-3-phosphate acyltransferase, GPAT) and ABCG6 (ATP-binding cassette transporter), as well as their enzymes activities and ABC content. It is suggested that sodium silicate accelerates the deposition of SPA at muskmelon wounds by increasing the degree of fatty acids unsaturation, and promoting SPA monomers biosynthesis.
Collapse
Affiliation(s)
- Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sabina Ackah
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhicheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Baojun Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
41
|
N. D. V, Matsumura H, Munshi AD, Ellur RK, Chinnusamy V, Singh A, Iquebal MA, Jaiswal S, Jat GS, Panigrahi I, Gaikwad AB, Rao AR, Dey SS, Behera TK. Molecular mapping of genomic regions and identification of possible candidate genes associated with gynoecious sex expression in bitter gourd. FRONTIERS IN PLANT SCIENCE 2023; 14:1071648. [PMID: 36938036 PMCID: PMC10017754 DOI: 10.3389/fpls.2023.1071648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Bitter gourd is an important vegetable crop grown throughout the tropics mainly because of its high nutritional value. Sex expression and identification of gynoecious trait in cucurbitaceous vegetable crops has facilitated the hybrid breeding programme in a great way to improve productivity. In bitter gourd, gynoecious sex expression is poorly reported and detailed molecular pathways involve yet to be studied. The present experiment was conducted to study the inheritance, identify the genomic regions associated with gynoecious sex expression and to reveal possible candidate genes through QTL-seq. Segregation for the gynoecious and monoecious sex forms in the F2 progenies indicated single recessive gene controlling gynoecious sex expression in the genotype, PVGy-201. Gynoecious parent, PVGy-201, Monoecious parent, Pusa Do Mausami (PDM), and two contrasting bulks were constituted for deep-sequencing. A total of 10.56, 23.11, 15.07, and 19.38 Gb of clean reads from PVGy-201, PDM, gynoecious bulk and monoecious bulks were generated. Based on the ΔSNP index, 1.31 Mb regions on the chromosome 1 was identified to be associated with gynoecious sex expression in bitter gourd. In the QTL region 293,467 PVGy-201 unique variants, including SNPs and indels, were identified. In the identified QTL region, a total of 1019 homozygous variants were identified between PVGy1 and PDM genomes and 71 among them were non-synonymous variants (SNPS and INDELs), out of which 11 variants (7 INDELs, 4 SNPs) were classified as high impact variants with frame shift/stop gain effect. In total twelve genes associated with male and female gametophyte development were identified in the QTL-region. Ethylene-responsive transcription factor 12, Auxin response factor 6, Copper-transporting ATPase RAN1, CBL-interacting serine/threonine-protein kinase 23, ABC transporter C family member 2, DEAD-box ATP-dependent RNA helicase 1 isoform X2, Polygalacturonase QRT3-like isoform X2, Protein CHROMATIN REMODELING 4 were identified with possible role in gynoecious sex expression. Promoter region variation in 8 among the 12 genes indicated their role in determining gynoecious sex expression in bitter gourd genotype, DBGy-1. The findings in the study provides insight about sex expression in bitter gourd and will facilitate fine mapping and more precise identification of candidate genes through their functional validation.
Collapse
Affiliation(s)
- Vinay N. D.
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hideo Matsumura
- Gene Research Centre, Shinshu University, Ueda, Nagano, Japan
| | - Anilabha Das Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ankita Singh
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gograj Singh Jat
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ipsita Panigrahi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ambika Baladev Gaikwad
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - A. R. Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
42
|
Huo X, Pan A, Lei M, Song Z, Chen Y, Wang X, Gao Y, Zhang J, Wang S, Zhao Y, Wang F, Zhang J. Genome-Wide Characterization and Functional Analysis of ABCG Subfamily Reveal Its Role in Cutin Formation in Cotton. Int J Mol Sci 2023; 24:ijms24032379. [PMID: 36768702 PMCID: PMC9916852 DOI: 10.3390/ijms24032379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
ATP-binding cassette transporter G (ABCG) has been shown to be engaged in export of broad-spectrum compounds with structural differences, but little is known concerning its role in cutin formation of cotton (Gossypium spp.). In this study, we conduct a genome-wide survey and detected 69, 71, 124 and 131 ABCG genes within G. arboretum, G. raimondii, G. hirsutum and G. barbadense, separately. The above ABCGs could be divided into four groups (Ia, Ib, Ic, II). Some ABCG genes such as GhABCG15, whose homologous gene transports cuticular lipid in Arabidopsis, was preferentially expressed in the development of fiber. A weighted gene co-expression network analysis (WGCNA) demonstrated that GhABCG expression was significantly associated with the amount of 16-Hydroxypalmitate (a main component of cutin precursor) in cotton fibers. Further, silencing of GhABCG15 by virus-induced gene silencing (VIGS) in cotton generated brightened and crinkled leaves as well as reduced thickness of cuticle and increased permeability. Chemical composition analysis showed the cutin content in GhABCG15-silenced leaves had decreased while the wax content had increased. Our results provide an insight for better understanding of the role of the Gossypium ABCG family and revealed the essential role of GhABCGs in cotton cutin formation.
Collapse
Affiliation(s)
- Xuehan Huo
- Life Science College, Shandong Normal University, Jinan 250358, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ao Pan
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mingyang Lei
- Life Science College, Shandong Normal University, Jinan 250358, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Wang
- Life Science College, Shandong Normal University, Jinan 250358, China
| | - Yang Gao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shengli Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanxiu Zhao
- Life Science College, Shandong Normal University, Jinan 250358, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Furong Wang
- Life Science College, Shandong Normal University, Jinan 250358, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jun Zhang
- Life Science College, Shandong Normal University, Jinan 250358, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
43
|
Comprehensive Insight into Tapetum-Mediated Pollen Development in Arabidopsis thaliana. Cells 2023; 12:cells12020247. [PMID: 36672181 PMCID: PMC9857336 DOI: 10.3390/cells12020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In flowering plants, pollen development is a key process that is essential for sexual reproduction and seed set. Molecular and genetic studies indicate that pollen development is coordinatedly regulated by both gametophytic and sporophytic factors. Tapetum, the somatic cell layer adjacent to the developing male meiocytes, plays an essential role during pollen development. In the early anther development stage, the tapetal cells secrete nutrients, proteins, lipids, and enzymes for microsporocytes and microspore development, while initiating programmed cell death to provide critical materials for pollen wall formation in the late stage. Therefore, disrupting tapetum specification, development, or function usually leads to serious defects in pollen development. In this review, we aim to summarize the current understanding of tapetum-mediated pollen development and illuminate the underlying molecular mechanism in Arabidopsis thaliana.
Collapse
|
44
|
Kim HJ, Liu Y, Thyssen GN, Naoumkina M, Frelichowski J. Phenomics and transcriptomics analyses reveal deposition of suberin and lignin in the short fiber cell walls produced from a wild cotton species and two mutants. PLoS One 2023; 18:e0282799. [PMID: 36893139 PMCID: PMC9997941 DOI: 10.1371/journal.pone.0282799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Fiber length is one of the major properties determining the quality and commercial value of cotton. To understand the mechanisms regulating fiber length, genetic variations of cotton species and mutants producing short fibers have been compared with cultivated cottons generating long and normal fibers. However, their phenomic variation other than fiber length has not been well characterized. Therefore, we compared physical and chemical properties of the short fibers with the long fibers. Fiber characteristics were compared in two sets: 1) wild diploid Gossypium raimondii Ulbrich (short fibers) with cultivated diploid G. arboreum L and tetraploid G. hirsutum L. (long fibers); 2) G. hirsutum short fiber mutants, Ligon-lintless 1 (Li1) and 2 (Li2) with their near isogenic line (NIL), DP-5690 (long fibers). Chemical analyses showed that the short fibers commonly consisted of greater non-cellulosic components, including lignin and suberin, than the long fibers. Transcriptomic analyses also identified up-regulation of the genes related to suberin and lignin biosynthesis in the short fibers. Our results may provide insight on how high levels of suberin and lignin in cell walls can affect cotton fiber length. The approaches combining phenomic and transcriptomic analyses of multiple sets of cotton fibers sharing a common phenotype would facilitate identifying genes and common pathways that significantly influence cotton fiber properties.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
- * E-mail:
| | - Yongliang Liu
- USDA-ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, LA, United States of America
| | - Gregory N. Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - Marina Naoumkina
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, United States of America
| | - James Frelichowski
- USDA-ARS-SPARC, Crop Germplasm Research Unit, College Station, TX, United States of America
| |
Collapse
|
45
|
Wang L, Yao W, Zhang X, Tang Y, Van Nocker S, Wang Y, Zhang C. The putative ABCG transporter VviABCG20 from grapevine ( Vitis vinifera) is strongly expressed in the seed coat of developing seeds and may participate in suberin biosynthesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:23-34. [PMID: 36733832 PMCID: PMC9886760 DOI: 10.1007/s12298-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Half-size ATP binding cassette G (ABCG) transporters participate in many biological processes by transporting specific substrates. Our previous study showed that VviABCG20 was strongly expressed in the seeds of seeded grape and the silencing of VviABCG20 homolog gene in tomato led to a reduction in seed number. To reveal the molecular mechanism of VviABCG20 gene involved in grape seed development/abortion, the gene expression and functional analysis of VviABCG20 were further carried out in the grapevine. It was shown that the gene expression of VviABCG20 was higher in seeds of seeded grapes compared with seedless. Further the expression of VviABCG20 in the seed coat was significantly higher than in ovules (young seeds) and endosperm. VviABCG20 was also induced by exogenous hormones (especially MeJA) in grape leaves. Subcellular localization analysis showed that VviABCG20 is a membrane protein. In overexpressed VviABCG20 transgenic callus of Thompson seedless, expression of genes GPAT5, FAR1 and FAR5 was increased significantly. After treatment with suberin precursors, the transgenic callus reduced the sensitivity to three cinnamic acid derivatives (cis-ferulic acid, caffeic acid, coumaric acid), succinic acid, and glycerol. In suspension cells, expression of VviABCG20 was increased significantly after treatment with suberin precursors. Our research suggested that VviABCG20 may function in seed development in grapevine, at least in part by participating in suberin biosynthesis in the seed coat.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Wang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Steve Van Nocker
- Department of Horticulture, Michigan State University, East Lansing, 48824 USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100 Shaanxi China
| |
Collapse
|
46
|
Lima LGAD, Ferreira SS, Simões MS, Cunha LXD, Fernie AR, Cesarino I. Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153900. [PMID: 36525838 DOI: 10.1016/j.jplph.2022.153900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Although several aspects of lignin metabolism have been extensively characterized, the mechanism(s) by which lignin monomers are transported across the plasma membrane remains largely unknown. Biochemical, proteomic, expression and co-expression analyses from several plant species support the involvement of active transporters, mainly those belonging to the ABC superfamily. Here, we report on the genome-wide characterization of the ABCG gene subfamily in the model C4 grass Setaria viridis and further identification of the members potentially involved in monolignol transport. A total of 48 genes encoding SvABCGs were found in the S. viridis genome, from which 21 SvABCGs were classified as full-size transporters and 27 as half-size transporters. Comprehensive analysis of the ABCG subfamily in S. viridis based on expression and co-expression analyses support a role for SvABCG17 in monolignol transport: (i) SvABCG17 is orthologous to AtABCG29, a monolignol transporter in Arabidopsis thaliana; (ii) SvABCG17 displays a similar expression profile to that of lignin biosynthetic genes in a set of different S. viridis tissues and along the elongating internode; (iii) SvABCG17 is highly co-expressed with lignin-related genes in a public transcriptomic database; (iv) SvABCG17displays particularly high expression in the top of the S. viridis elongating internode, a tissue undergoing active lignification; (v) SvABCG17 mRNA localization coincides with the histochemical pattern of lignin deposition; and (vi) the promoter of SvABCG17 is activated by secondary cell wall-associated transcription factors, especially by lignin-specific activators of the MYB family. Further studies might reveal further aspects of this potential monolignol transporter, including its real substrate specificity and whether it works redundantly with other ABC members during S. viridis lignification.
Collapse
Affiliation(s)
- Leydson Gabriel Alves de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Lucas Xavier da Cunha
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
47
|
Svobodníková L, Kummerová M, Zezulka Š, Martinka M, Klemš M, Čáslavský J. Pea root responses under naproxen stress: changes in the formation of structural barriers in the primary root in context with changes of auxin and abscisic acid levels. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1-11. [PMID: 36542231 DOI: 10.1007/s10646-022-02613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals belong to pseudo-persistent pollutants because of constant entry into the environment and hazardous potential for non-target organisms, including plants, in which they can influence biochemical and physiological processes. Detailed analysis of results obtained by microscopic observations using fluorescent dyes (berberine hemisulphate, Fluorol Yellow 088), detection of phytohormone levels (radioimmunoassay, enzyme-linked immune sorbent assay) and thermogravimetric analysis of lignin content proved that the drug naproxen (NPX) can stimulate the formation of root structural barriers. In the primary root of plants treated with 0.5, 1, and 10 mg/L NPX, earlier Casparian strip formation and development of the whole endodermis circle closer to its apex were found after five days of cultivation (by 9-20% as compared to control) and after ten days from 0.1 mg/L NPX (by 8-63%). Suberin lamellae (SL) were deposited in endodermal cells significantly closer to the apex under 10 mg/L NPX by up to 75%. Structural barrier formation under NPX treatment can be influenced indirectly by auxin-supported cell division and differentiation caused by its eight-times higher level under 10 mg/L NPX and directly by stimulated SL deposition induced by abscisic acid (higher from 0.5 mg/L NPX), as proved by the higher proportion of cells with SL in the primary root base (by 8-44%). The earlier modification of endodermis in plant roots can help to limit the drug transfer and maintain the homeostasis of the plant.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Marie Kummerová
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Science, Comenius University in Bratislava, Mlynská dolina B2, 842 15, Bratislava, Slovakia
| | - Marek Klemš
- Institute of Plant Biology, Faculty of Agronomy, Mendel University Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Josef Čáslavský
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| |
Collapse
|
48
|
Yang X, Xie H, Weng Q, Liang K, Zheng X, Guo Y, Sun X. Rice OsCASP1 orchestrates Casparian strip formation and suberin deposition in small lateral roots to maintain nutrient homeostasis. FRONTIERS IN PLANT SCIENCE 2022; 13:1007300. [PMID: 36600916 PMCID: PMC9807177 DOI: 10.3389/fpls.2022.1007300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis Casparian strip membrane domain proteins (CASPs) form a transmembrane scaffold to recruit lignin biosynthetic enzymes for Casparian strip (CS) formation. Rice is a semi-aquatic plant with a more complex root structure than Arabidopsis to adapt its growing conditions, where the different deposition of lignin and suberin is crucial for adaptive responses. Here, we observed the structure of rice primary and small lateral roots (SLRs), particularly the deposition patterns of lignin and suberin in wild type and Oscasp1 mutants. We found that the appearance time and structure of CS in the roots of rice are different from those of Arabidopsis and observed suberin deposition in the sclerenchyma in wild type roots. Rice CASP1 is highly similar to AtCASPs, but its expression is concentrated in SLR tips and can be induced by salt stress especially in the steles. The loss of OsCASP1 function alters the expression of the genes involved in suberin biosynthesis and the deposition of suberin in the endodermis and sclerenchyma and leads to delayed CS formation and uneven lignin deposition in SLRs. These different depositions may alter nutrient uptake, resulting in ion imbalance in plant, withered leaves, fewer tillers, and reduced tolerance to salt stress. Our findings suggest that OsCASP1 could play an important role in nutrient homeostasis and adaptation to the growth environment.
Collapse
|
49
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
50
|
Chen A, Liu T, Wang Z, Chen X. Plant root suberin: A layer of defence against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1056008. [PMID: 36507443 PMCID: PMC9732430 DOI: 10.3389/fpls.2022.1056008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Plant roots have important functions, such as acquiring nutrients and water from the surrounding soil and transporting them upwards to the shoots. Simultaneously, they must be able to exclude potentially harmful substances and prevent the entry of pathogens into the roots. The endodermis surrounds the vascular tissues and forms hydrophobic diffusion barriers including Casparian strips and suberin lamella. Suberin in cell walls can be induced by a range of environmental factors and contribute to against biotic and abiotic threats. Tremendous progress has been made in biosynthesis of suberin and its function, little is known about the effect of its plasticity and distribution on stress tolerance. In field conditions, biotic and abiotic stress can exist at the same time, and little is known about the change of suberization under that condition. This paper update the progress of research related to suberin biosynthesis and its function, and also discuss the change of suberization in plant roots and its role on biotic and abiotic stresses tolerance.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhou Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|