1
|
Hoffmann N, McFarlane HE. Xyloglucan side chains enable polysaccharide secretion to the plant cell wall. Dev Cell 2024; 59:2609-2625.e8. [PMID: 38971156 DOI: 10.1016/j.devcel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
2
|
Jia B, Feng P, Song J, Zhou C, Wang Y, Zhang B, Wu M, Zhang J, Chen Q, Yu J. Transcriptome Analysis and Identification of Genes Associated with Cotton Seed Size. Int J Mol Sci 2024; 25:9812. [PMID: 39337299 PMCID: PMC11432076 DOI: 10.3390/ijms25189812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cotton seeds, as the main by-product of cotton, are not only an important raw material for edible oil and feed but also a source of biofuel. The quality of cotton seeds directly affects cotton planting and is closely related to the yield and fiber quality. However, the molecular mechanism governing cotton seed size remains largely unexplored. This study investigates the regulatory mechanisms of cotton seed size by focusing on two cotton genotypes, N10 and N12, which exhibit notable phenotypic variations across multiple environments. Developing seeds were sampled at various stages (5, 20, 30, and 35 DPA) and subjected to RNA-seq. Temporal pattern clustering and WGCNA on differentially expressed genes identified 413 candidate genes, including these related to sugar metabolism that were significantly enriched in transcriptional regulation. A genetic transformation experiment indicated that the overexpression of the GhUXS5 gene encoding UDP-glucuronate decarboxylase 5 significantly increased seed size, suggesting an important role of GhUXS5 in regulating cotton seed size. This discovery provides crucial insights into the molecular mechanisms controlling cotton seed size, helping to unravel the complex regulatory network and offering new strategies and targets for cotton breeding to enhance the economic value of cotton seeds and overall cotton yield.
Collapse
Affiliation(s)
- Bing Jia
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Pan Feng
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Caoyi Zhou
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Yajie Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
- College of Agriculture, Tarim University, Alaer 843300, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 880033, USA;
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
| | - Jiwen Yu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (B.J.); (P.F.); (C.Z.)
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (J.S.); (Y.W.); (B.Z.); (M.W.)
| |
Collapse
|
3
|
Wannitikul P, Dachphun I, Sakulkoo J, Suttangkakul A, Wonnapinij P, Simister R, Gomez LD, Vuttipongchaikij S. In Vivo Proximity Cross-Linking and Immunoprecipitation of Cell Wall Epitopes Identify Proteins Associated with the Biosynthesis of Matrix Polysaccharides. ACS OMEGA 2024; 9:31438-31454. [PMID: 39072051 PMCID: PMC11270709 DOI: 10.1021/acsomega.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Identification of proteins involved in cell wall matrix polysaccharide biosynthesis is crucial to understand plant cell wall biology. We utilized in vivo cross-linking and immunoprecipitation with cell wall antibodies that recognized xyloglucan, xylan, mannan, and homogalacturonan to capture proteins associated with matrix polysaccharides in Arabidopsis protoplasts. The use of cross-linkers allowed us to capture proteins actively associated with cell wall polymers, including those directly interacting with glycans via glycan-protein (GP) cross-linkers and those associated with proteins linked to glycans via a protein-protein (PP) cross-linker. Immunoprecipitations led to the identification of 65 Arabidopsis protein IDs localized in the Golgi, ER, plasma membrane, and others without subcellular localization data. Among these, we found several glycosyltransferases directly involved in polysaccharide synthesis, along with proteins related to cell wall modification and vesicle trafficking. Protein interaction networks from DeepAraPPI and AtMAD databases showed interactions between various IDs, including those related to cell-wall-associated proteins and membrane/vesicle trafficking proteins. Gene expression and coexpression analyses supported the presence and relevance of the proteins to the cell wall processes. Reverse genetic studies using T-DNA insertion mutants of selected proteins revealed changes in cell wall composition and saccharification, further supporting their potential roles in cell wall biosynthesis. Overall, our approach represents a novel approach for studying cell wall polysaccharide biosynthesis and associated proteins, providing advantages over traditional immunoprecipitation techniques. This study provides a list of putative proteins associated with different matrix polysaccharides for further investigation and highlights the complexity of cell wall biosynthesis and trafficking within plant cells.
Collapse
Affiliation(s)
- Pitchaporn Wannitikul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Issariya Dachphun
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Jenjira Sakulkoo
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Anongpat Suttangkakul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Rachael Simister
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Leonardo D. Gomez
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Supachai Vuttipongchaikij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
4
|
Krueger CB, Ray JD, Smith JR, Dhanapal AP, Arifuzzaman M, Gao F, Fritschi FB. Identification of QTLs for symbiotic nitrogen fixation and related traits in a soybean recombinant inbred line population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:89. [PMID: 38536528 DOI: 10.1007/s00122-024-04591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
KEY MESSAGE The genetic architecture of symbiotic N fixation and related traits was investigated in the field. QTLs were identified for percent N derived from the atmosphere, shoot [N] and C to N ratio. Soybean [Glycine max (L.) Merr.] is cultivated worldwide and is the most abundant source of plant-based protein. Symbiotic N2 fixation (SNF) in legumes such as soybean is of great importance; however, yields may still be limited by N in both high yielding and stressful environments. To better understand the genetic architecture of SNF and facilitate the development of high yielding cultivars and sustainable soybean production in stressful environments, a recombinant inbred line population consisting of 190 lines, developed from a cross between PI 442012A and PI 404199, was evaluated for N derived from the atmosphere (Ndfa), N concentration ([N]), and C to N ratio (C/N) in three environments. Significant genotype, environment and genotype × environment effects were observed for all three traits. A linkage map was constructed containing 3309 single nucleotide polymorphism (SNP) markers. QTL analysis was performed for additive effects of QTLs, QTL × environment interactions, and QTL × QTL interactions. Ten unique additive QTLs were identified across all traits and environments. Of these, two QTLs were detected for Ndfa and eight for C/N. Of the eight QTLs for C/N, four were also detected for [N]. Using QTL × environment analysis, six QTLs were detected, of which five were also identified in the additive QTL analysis. The QTL × QTL analysis identified four unique epistatic interactions. The results of this study may be used for genomic selection and introgression of favorable alleles for increased SNF, [N], and C/N via marker-assisted selection.
Collapse
Affiliation(s)
- C Bennet Krueger
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Jeffery D Ray
- Crop Genetics Research Unit, USDA, Agricultural Research Service, 141 Experiment Station Rd, Stoneville, MS, 38776, USA
| | - James R Smith
- Crop Genetics Research Unit, USDA, Agricultural Research Service, 141 Experiment Station Rd, Stoneville, MS, 38776, USA
| | - Arun Prabhu Dhanapal
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Muhammad Arifuzzaman
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Fei Gao
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Felix B Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Li Z, Chen R, Wen Y, Liu H, Chen Y, Wu X, Yang Y, Wu X, Zhou Y, Liu J. Comprehensive analysis of the UDP-glucuronate decarboxylase (UXS) gene family in tobacco and functional characterization of NtUXS16 in Golgi apparatus in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:551. [PMID: 37936064 PMCID: PMC10631120 DOI: 10.1186/s12870-023-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND UDP-glucuronate decarboxylase (also named UXS) converts UDP-glucuronic acid (UDP-GlcA) to UDP-xylose (UDP-Xyl) by decarboxylation of the C6-carboxylic acid of glucuronic acid. UDP-Xyl is an important sugar donor that is required for the synthesis of plant cell wall polysaccharides. RESULTS In this study, we first carried out the genome-wide identification of NtUXS genes in tobacco. A total of 17 NtUXS genes were identified, which could be divided into two groups (Group I and II), and the Group II UXSs can be further divided into two subgroups (Group IIa and IIb). Furthermore, the protein structures, intrachromosomal distributions and gene structures were thoroughly analyzed. To experimentally verify the subcellular localization of NtUXS16 protein, we transformed tobacco BY-2 cells with NtUXS16 fused to the monomeric red fluorescence protein (mRFP) at the C terminus under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The fluorescent signals of NtUXS16-mRFP were localized to the medial-Golgi apparatus. Contrary to previous predictions, protease digestion analysis revealed that NtUXS16 is not a type II membrane protein. Overexpression of NtUXS16 in Arabidopsis seedling in darkness led to a significant increase in hypocotyl length and a reduction in root length compared with the wild type. In summary, these results suggest Golgi apparatus localized-NtUXS16 plays an important role in hypocotyl and root growth in the dark. CONCLUSION Our findings facilitate our understanding of the novel functions of NtUXS16 and provide insights for further exploration of the biological roles of NtUXS genes in tobacco.
Collapse
Affiliation(s)
- Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Runping Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yufang Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Hanxiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yangyang Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong Zhou
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.
| | - Jianping Liu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
6
|
Dang Z, Wang Y, Wang M, Cao L, Ruan N, Huang Y, Li F, Xu Q, Chen W. The Fragile culm19 (FC19) mutation largely improves plant lodging resistance, biomass saccharification, and cadmium resistance by remodeling cell walls in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132020. [PMID: 37429191 DOI: 10.1016/j.jhazmat.2023.132020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Cell wall is essential for plant upright growth, biomass saccharification, and stress resistance. Although cell wall modification is suggested as an effective means to increase biomass saccharification, it is a challenge to maintain normal plant growth with improved mechanical strength and stress resistance. Here, we reported two independent fragile culm mutants, fc19-1 and fc19-2, resulting from novel mutations of OsIRX10, produced by the CRISPR/Cas9 system. Compared to wild-type, the two mutants exhibited reduced contents of xylose, hemicellulose, and cellulose, and increased arabinose and lignin without significant alteration in levels of pectin and uronic acids. Despite brittleness, the mutants displayed increased breaking force, leading to improved lodging resistance. Furthermore, the altered cell wall and increased biomass porosity in fc19 largely increased biomass saccharification. Notably, the mutants showed enhanced cadmium (Cd) resistance with lower Cd accumulation in roots and shoots. The FC19 mutation impacts transcriptional levels of key genes contributing to Cd uptake, sequestration, and translocation. Moreover, transcriptome analysis revealed that the FC19 mutation resulted in alterations of genes mainly involved in carbohydrate and phenylpropanoid metabolism. Therefore, a hypothetic model was proposed to elucidate that the FC19 mutation-mediated cell wall remodeling leads to improvements in lodging resistance, biomass saccharification, and Cd resistance.
Collapse
Affiliation(s)
- Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China.
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Key Laboratory of Northern geng Super Rice Breeding, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
7
|
Jia X, Zhang H, Qin H, Li K, Liu X, Wang W, Ye M, Yin H. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:613-635. [PMID: 36799458 DOI: 10.1111/tpj.16156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongyan Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
8
|
Chen D, Kamran M, Chen S, Xing J, Qu Z, Liu C, Ren Z, Cai X, Chen X, Xu J. Two nucleotide sugar transporters are important for cell wall integrity and full virulence of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:374-390. [PMID: 36775579 PMCID: PMC10013753 DOI: 10.1111/mpp.13304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Cell wall polysaccharides play key roles in fungal development, virulence, and resistance to the plant immune system, and are synthesized from many nucleotide sugars in the endoplasmic reticulum (ER)-Golgi secretory system. Nucleotide sugar transporters (NSTs) are responsible for transporting cytosolic-derived nucleotide sugars to the ER lumen for processing, but their roles in plant-pathogenic fungi remain to be revealed. Here, we identified two important NSTs, NST1 and NST2, in the rice blast fungus Magnaporthe oryzae. Both NSTs were localized in the ER, which was consistent with a function in transporting nucleotide sugar for processing in the ER. Sugar transport property analysis suggested that NST1 is involved in transportation of mannose and glucose, while NST2 is only responsible for mannose transportation. Accordingly, deletion of NSTs resulted in a significant decrease in corresponding soluble saccharides abundance and defect in sugar utilization. Moreover, both NSTs played important roles in cell wall integrity, were involved in asexual development, and were required for full virulence. The NST mutants exhibited decreasing external glycoproteins and exposure of inner chitin, which resulted in activation of the host defence response. Altogether, our results revealed that two sugar transporters are required for fungal cell wall polysaccharides accumulation and full virulence of M. oryzae.
Collapse
Affiliation(s)
- Deng Chen
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Muhammad Kamran
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant ProtectionPlant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhouChina
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Zhiguang Qu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Zhiyong Ren
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Xuan Cai
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jingbo Xu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| |
Collapse
|
9
|
Curry TM, Peña MJ, Urbanowicz BR. An update on xylan structure, biosynthesis, and potential commercial applications. Cell Surf 2023; 9:100101. [PMID: 36748082 PMCID: PMC9898438 DOI: 10.1016/j.tcsw.2023.100101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
•Xylan is an abundant carbohydrate component of plant cell walls that is vital for proper cell wall structure and vascular tissue development.•Xylan structure is known to vary between different tissues and species.•The role of xylan in the plant cell wall is to interact with cellulose, lignin, and hemicelluloses.•Xylan synthesis is directed by several types of Golgi-localized enzymes.•Xylan is being explored as an eco-friendly resource for diverse commercial applications.
Collapse
Key Words
- AGX, arabinoglucuronoxylan
- Araf, L-α-arabinofuranose, TBL, Trichome Birefringence Like
- GAX, glucuronoarabinoxylan
- GX, glucuronoxylan
- GXMT/GXM, glucuronoxylan methyltransferase
- GlcpA, glucuronic acid
- Glycosyltransferase
- Hemicellulose
- IRX10, Irregular Xylem 10
- IRX14, Irregular Xylem 14
- IRX9, Irregular Xylem 9
- MeGlcpA, 4-O-methylglucuronic acid
- NMR, Nuclear magnetic resonance
- Plant cell wall
- UDP-sugar, uridine diphosphate-linked sugar
- XOATs, xylan O-acetyltransferases
- XSC, xylan synthase complex
- Xylan
- Xylan biosynthesis
- glucuronoarabinoxylan (GAX)
- glucuronoxylan (GX)
- or arabinoglucuronoxylan (AGX)
Collapse
Affiliation(s)
- Thomas M. Curry
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Corresponding author at: Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Anders N, Wilson LFL, Sorieul M, Nikolovski N, Dupree P. β-1,4-Xylan backbone synthesis in higher plants: How complex can it be? FRONTIERS IN PLANT SCIENCE 2023; 13:1076298. [PMID: 36714768 PMCID: PMC9874913 DOI: 10.3389/fpls.2022.1076298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Xylan is a hemicellulose present in the cell walls of all land plants. Glycosyltransferases of the GT43 (IRX9/IRX9L and IRX14/IRX14L) and GT47 (IRX10/IRX10L) families are involved in the biosynthesis of its β-1,4-linked xylose backbone, which can be further modified by acetylation and sugar side chains. However, it remains unclear how the different enzymes work together to synthesize the xylan backbone. A xylan synthesis complex (XSC) has been described in the monocots wheat and asparagus, and co-expression of asparagus AoIRX9, AoIRX10 and AoIRX14A is required to form a catalytically active complex for secondary cell wall xylan biosynthesis. Here, we argue that an equivalent XSC exists for the synthesis of the primary cell wall of the eudicot Arabidopsis thaliana, consisting of IRX9L, IRX10L and IRX14. This would suggest the existence of distinct XSCs for primary and secondary cell wall xylan synthesis, reminiscent of the distinct cellulose synthesis complexes (CSCs) of the primary and secondary cell wall. In contrast to the CSC, in which each CESA protein has catalytic activity, the XSC seems to contain proteins with non-catalytic function with each component bearing potentially unique but crucial roles. Moreover, the core XSC formed by a combination of IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L might not be stable in its composition during transit from the endoplasmic reticulum to the Golgi apparatus. Instead, potential dynamic changes of the XSC might be a means of regulating xylan biosynthesis to facilitate coordinated deposition of tailored polysaccharides in the plant cell wall.
Collapse
|
11
|
Ruan N, Dang Z, Wang M, Cao L, Wang Y, Liu S, Tang Y, Huang Y, Zhang Q, Xu Q, Chen W, Li F. FRAGILE CULM 18 encodes a UDP-glucuronic acid decarboxylase required for xylan biosynthesis and plant growth in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2320-2335. [PMID: 35104839 DOI: 10.1093/jxb/erac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Although UDP-glucuronic acid decarboxylases (UXSs) have been well studied with regard to catalysing the conversion of UDP-glucuronic acid into UDP-xylose, their biological roles in grasses remain largely unknown. The rice (Oryza sativa) genome contains six UXSs, but none of them has been genetically characterized. Here, we reported on the characterization of a novel rice fragile culm mutant, fc18, which exhibited brittleness with altered cell wall and pleiotropic defects in growth. Map-based cloning and transgenic analyses revealed that the FC18 gene encodes a cytosol-localized OsUXS3 and is widely expressed with higher expression in xylan-rich tissues. Monosaccharide analysis showed that the xylose level was decreased in fc18, and cell wall fraction determinations confirmed that the xylan content in fc18 was lower, suggesting that UDP-xylose from FC18 participates in xylan biosynthesis. Moreover, the fc18 mutant displayed defective cellulose properties, which led to an enhancement in biomass saccharification. Furthermore, expression of genes involved in sugar metabolism and phytohormone signal transduction was largely altered in fc18. Consistent with this, the fc18 mutant exhibited significantly reduced free auxin (indole-3-acetic acid) content and lower expression levels of PIN family genes compared with wild type. Our work reveals the physiological roles of FC18/UXS3 in xylan biosynthesis, cellulose deposition, and plant growth in rice.
Collapse
Affiliation(s)
- Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Sitong Liu
- Jinzhou Academy of Science and Technology, Jinzhou, China
| | - Yijun Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yuwei Huang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Qun Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
The Xyloglucan Endotransglucosylase/Hydrolase Gene XTH22/TCH4 Regulates Plant Growth by Disrupting the Cell Wall Homeostasis in Arabidopsis under Boron Deficiency. Int J Mol Sci 2022; 23:ijms23031250. [PMID: 35163179 PMCID: PMC8836128 DOI: 10.3390/ijms23031250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
TCH4 is a xyloglucan endotransglucosylase/hydrolase (XTH) family member. Extensive studies have shown that XTHs are very important in cell wall homeostasis for plant growth and development. Boron (B), as an essential micronutrient for plants, plays an essential role in the cross-linking of cell wall pectin. However, the effect of B on cell wall organization is unclear. This study aimed to explore the mechanism of plant adaption to B stress by investigating the role of TCH4 in cell wall homeostasis. We conducted both plate and hydroponic cultures of wild-type Col-0 and overexpression and gene knockout lines of XTH22/TCH4 to analyze the phenotype, components, and characteristics of the cell wall using immunofluorescence, atomic force microscopy (AFM), and transmission electron microscopy (TEM). B deficiency induces the expression of TCH4. The overexpression lines of TCH4 presented more sensitivity to B deficiency than the wild-type Col-0, while the knockout lines of TCH4 were more resistant to low B stress. Up-regulation of TCH4 influenced the ratio of chelator-soluble pectin to alkali-soluble pectin and decreased the degree of methylesterification of pectin under B-deficient conditions. Moreover, we found that B deficiency disturbed the arrangement of cellulose, enlarged the gap between cellulose microfibrils, and decreased the mechanical strength of the cell wall, leading to the formation of a thickened and deformed triangular region of the cell wall. These symptoms were more profound in the TCH4 overexpression lines. Consistently, compared with Col-0, the O2- and MDA contents in the TCH4 overexpression lines increased under B-deficient conditions. This study identified the B-deficiency-induced TCH4 gene, which regulates cell wall homeostasis to influence plant growth under B-deficient conditions.
Collapse
|
13
|
Ehrlich JJ, Weerts RM, Shome S, Culbertson AT, Honzatko RB, Jernigan RL, Zabotina OA. Xyloglucan Xylosyltransferase 1 Displays Promiscuity Toward Donor Substrates During in Vitro Reactions. PLANT & CELL PHYSIOLOGY 2021; 62:1890-1901. [PMID: 34265062 DOI: 10.1093/pcp/pcab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Glycosyltransferases (GTs) are a large family of enzymes that add sugars to a broad range of acceptor substrates, including polysaccharides, proteins and lipids, by utilizing a wide variety of donor substrates in the form of activated sugars. Individual GTs have generally been considered to exhibit a high level of substrate specificity, but this has not been thoroughly investigated across the extremely large set of GTs. Here we investigate xyloglucan xylosyltransferase 1 (XXT1), a GT involved in the synthesis of the plant cell wall polysaccharide, xyloglucan. Xyloglucan has a glucan backbone, with initial side chain substitutions exclusively composed of xylose from uridine diphosphate (UDP)-xylose. While this conserved substitution pattern suggests a high substrate specificity for XXT1, our in vitro kinetic studies elucidate a more complex set of behavior. Kinetic studies demonstrate comparable kcat values for reactions with UDP-xylose and UDP-glucose, while reactions with UDP-arabinose and UDP-galactose are over 10-fold slower. Using kcat/KM as a measure of efficiency, UDP-xylose is 8-fold more efficient as a substrate than the next best alternative, UDP-glucose. To the best of our knowledge, we are the first to demonstrate that not all plant XXTs are highly substrate specific and some do show significant promiscuity in their in vitro reactions. Kinetic parameters alone likely do not explain the high substrate selectivity in planta, suggesting that there are additional control mechanisms operating during polysaccharide biosynthesis. Improved understanding of substrate specificity of the GTs will aid in protein engineering, development of diagnostic tools, and understanding of biological systems.
Collapse
Affiliation(s)
- Jacqueline J Ehrlich
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
- Department of Molecular Biology & Genetics, 107 Biotechnology Building, 526 Campus Road, Cornell University, Ithaca, NY 14853-2703, USA
| | - Richard M Weerts
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Sayane Shome
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Alan T Culbertson
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Richard B Honzatko
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Robert L Jernigan
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| |
Collapse
|
14
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
15
|
Transcriptomics Reveals Host-Dependent Differences of Polysaccharides Biosynthesis in Cynomorium songaricum. Molecules 2021; 27:molecules27010044. [PMID: 35011276 PMCID: PMC8746405 DOI: 10.3390/molecules27010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cynomorium songaricum is a root holoparasitic herb that is mainly hosted in the roots of Nitraria roborowskii and Nitraria sibirica distributed in the arid desert and saline-alkaline regions. The stem of C. songaricum is widely used as a traditional Chinese medicine and applied in anti-viral, anti-obesity and anti-diabetes, which largely rely on the bioactive components including: polysaccharides, flavonoids and triterpenes. Although the differences in growth characteristics of C. songaricum between N. roborowskii and N. sibirica have been reported, the difference of the two hosts on growth and polysaccharides biosynthesis in C. songaricum as well as regulation mechanism are not limited. Here, the physiological characteristics and transcriptome of C. songaricum host in N. roborowskii (CR) and N. sibirica (CS) were conducted. The results showed that the fresh weight, soluble sugar content and antioxidant capacity on a per stem basis exhibited a 3.3-, 3.0- and 2.1-fold increase in CR compared to CS. A total of 16,921 differentially expressed genes (DEGs) were observed in CR versus CS, with 2573 characterized genes, 1725 up-regulated and 848 down-regulated. Based on biological functions, 50 DEGs were associated with polysaccharides and starch metabolism as well as their transport. The expression levels of the selected 37 genes were validated by qRT-PCR and almost consistent with their Reads Per kb per Million values. These findings would provide useful references for improving the yield and quality of C. songaricum.
Collapse
|
16
|
The promiscuous binding pocket of SLC35A1 ensures redundant transport of CDP-ribitol to the Golgi. J Biol Chem 2021; 296:100789. [PMID: 34015330 PMCID: PMC8192872 DOI: 10.1016/j.jbc.2021.100789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
The glycoprotein α-dystroglycan helps to link the intracellular cytoskeleton to the extracellular matrix. A unique glycan structure attached to this protein is required for its interaction with extracellular matrix proteins such as laminin. Up to now, this is the only mammalian glycan known to contain ribitol phosphate groups. Enzymes in the Golgi apparatus use CDP-ribitol to incorporate ribitol phosphate into the glycan chain of α-dystroglycan. Since CDP-ribitol is synthesized in the cytoplasm, we hypothesized that an unknown transporter must be required for its import into the Golgi apparatus. We discovered that CDP-ribitol transport relies on the CMP-sialic acid transporter SLC35A1 and the transporter SLC35A4 in a redundant manner. These two transporters are closely related, but bulky residues in the predicted binding pocket of SLC35A4 limit its size. We hypothesized that the large binding pocket SLC35A1 might accommodate the bulky CMP-sialic acid and the smaller CDP-ribitol, whereas SLC35A4 might only accept CDP-ribitol. To test this, we expressed SLC35A1 with mutations in its binding pocket in SLC35A1 KO cell lines. When we restricted the binding site of SLC35A1 by introducing the bulky residues present in SLC35A4, the mutant transporter was unable to support sialylation of proteins in cells but still supported ribitol phosphorylation. This demonstrates that the size of the binding pocket determines the substrate specificity of SLC35A1, allowing a variety of cytosine nucleotide conjugates to be transported. The redundancy with SLC35A4 also explains why patients with SLC35A1 mutations do not show symptoms of α-dystroglycan deficiency.
Collapse
|
17
|
Saez-Aguayo S, Parra-Rojas JP, Sepúlveda-Orellana P, Celiz-Balboa J, Arenas-Morales V, Sallé C, Salinas-Grenet H, Largo-Gosens A, North HM, Ralet MC, Orellana A. Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. PLANT PHYSIOLOGY 2021; 185:914-933. [PMID: 33793913 PMCID: PMC8133686 DOI: 10.1093/plphys/kiaa070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 05/10/2023]
Abstract
Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | | | | | | | | | - Christine Sallé
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Helen M North
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Author for communication:
| |
Collapse
|
18
|
Jing B, Ishikawa T, Soltis N, Inada N, Liang Y, Murawska G, Fang L, Andeberhan F, Pidatala R, Yu X, Baidoo E, Kawai‐Yamada M, Loque D, Kliebenstein DJ, Dupree P, Mortimer JC. The Arabidopsis thaliana nucleotide sugar transporter GONST2 is a functional homolog of GONST1. PLANT DIRECT 2021; 5:e00309. [PMID: 33763627 PMCID: PMC7980081 DOI: 10.1002/pld3.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 05/15/2023]
Abstract
Glycosylinositolphosphorylceramides (GIPCs) are the predominant lipid in the outer leaflet of the plasma membrane. Characterized GIPC glycosylation mutants have severe or lethal plant phenotypes. However, the function of the glycosylation is unclear. Previously, we characterized Arabidopsis thaliana GONST1 and showed that it was a nucleotide sugar transporter which provides GDP-mannose for GIPC glycosylation. gonst1 has a severe growth phenotype, as well as a constitutive defense response. Here, we characterize a mutant in GONST1's closest homolog, GONST2. The gonst2-1 allele has a minor change to GIPC headgroup glycosylation. Like other reported GIPC glycosylation mutants, gonst1-1gonst2-1 has reduced cellulose, a cell wall polymer that is synthesized at the plasma membrane. The gonst2-1 allele has increased resistance to a biotrophic pathogen Golovinomyces orontii but not the necrotrophic pathogen Botrytis cinerea. Expression of GONST2 under the GONST1 promoter can rescue the gonst1 phenotype, indicating that GONST2 has a similar function to GONST1 in providing GDP-D-Man for GIPC mannosylation.
Collapse
Affiliation(s)
- Beibei Jing
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversityJapan
| | | | - Noriko Inada
- Graduate School of Biological SciencesNAISTNaraJapan
- Present address:
Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsakaJapan
| | - Yan Liang
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Gosia Murawska
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Present address:
Chemistry DepartmentBaselSwitzerland
| | - Lin Fang
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Present address:
Guangdong Provincial Key Laboratory of Applied BotanySouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Fekadu Andeberhan
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Ramana Pidatala
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Xiaolan Yu
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Edward Baidoo
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | | | - Dominique Loque
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | | | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Jenny C. Mortimer
- Joint BioEnergy InstituteEmeryvilleCAUSA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
19
|
Zhang W, Qin W, Li H, Wu AM. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. FRONTIERS IN PLANT SCIENCE 2021; 12:723128. [PMID: 34868108 PMCID: PMC8636097 DOI: 10.3389/fpls.2021.723128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in hemicellulose research have recently been made, and a large number of genes and their functions have been identified and verified. However, due to the diversity and complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This review will contribute to a better understanding of substrate-level regulation of hemicellulose synthesis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
| | - Ai-min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ai-min Wu,
| |
Collapse
|
20
|
Zabotina OA, Zhang N, Weerts R. Polysaccharide Biosynthesis: Glycosyltransferases and Their Complexes. FRONTIERS IN PLANT SCIENCE 2021; 12:625307. [PMID: 33679837 PMCID: PMC7933479 DOI: 10.3389/fpls.2021.625307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.
Collapse
|
21
|
Zhao X, Ebert B, Zhang B, Liu H, Zhang Y, Zeng W, Rautengarten C, Li H, Chen X, Bacic A, Wang G, Men S, Zhou Y, Heazlewood JL, Wu AM. UDP-Api/UDP-Xyl synthases affect plant development by controlling the content of UDP-Api to regulate the RG-II-borate complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:252-267. [PMID: 32662159 DOI: 10.1111/tpj.14921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 05/14/2023]
Abstract
Rhamnogalacturonan-II (RG-II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG-II molecules can form an RG-II-borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross-linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG-II dimer is still unclear. In this study we investigated the two homologous UDP-D-apiose/UDP-D-xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP-D-apiose (UDP-Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP-Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG-II-borate complex than wild-type Col-0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP-Api and RG-II-borate complex formation in plant growth and development.
Collapse
Affiliation(s)
- Xianhai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabin Liu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yutao Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
| | - Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China
- Department of Animal, La Trobe Institute for Agriculture & Food, Plant & Soil Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
22
|
Li M, Hameed I, Cao D, He D, Yang P. Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus. Int J Mol Sci 2020; 21:ijms21145087. [PMID: 32708483 PMCID: PMC7404260 DOI: 10.3390/ijms21145087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is a relic aquatic plant with two types of leaves, which have distinct rigidity of petioles. Here we assess the difference from anatomic structure to the expression of genes and proteins in two petioles types, and identify key pathways involved in petiole rigidity formation in sacred lotus. Anatomically, great variation between the petioles of floating and vertical leaves were observed. The number of collenchyma cells and thickness of xylem vessel cell wall was higher in the initial vertical leaves’ petiole (IVP) compared to the initial floating leaves’ petiole (IFP). Among quantified transcripts and proteins, 1021 and 401 transcripts presented 2-fold expression increment (named DEGs, genes differentially expressed between IFP and IVP) in IFP and IVP, 421 and 483 proteins exhibited 1.5-fold expression increment (named DEPs, proteins differentially expressed between IFP and IVP) in IFP and IVP, respectively. Gene function and pathway enrichment analysis displayed that DEGs and DEPs were significantly enriched in cell wall biosynthesis and lignin biosynthesis. In consistent with genes and proteins expressions in lignin biosynthesis, the contents of lignin monomers precursors were significantly different in IFP and IVP. These results enable us to understand lotus petioles rigidity formation better and provide valuable candidate genes information on further investigation.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
| | - Ishfaq Hameed
- Departments of Botany, University of Chitral, Chitral 17200, Khyber Pukhtunkhwa, Pakistan;
| | - Dingding Cao
- Institue of Oceanography, Minjiang University, Fuzhou 350108, China;
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (M.L.); (D.H.)
- Correspondence:
| |
Collapse
|
23
|
Rautengarten C, Quarrell OW, Stals K, Caswell RC, De Franco E, Baple E, Burgess N, Jokhi R, Heazlewood JL, Offiah AC, Ebert B, Ellard S. A hypomorphic allele of SLC35D1 results in Schneckenbecken-like dysplasia. Hum Mol Genet 2020; 28:3543-3551. [PMID: 31423530 PMCID: PMC6927460 DOI: 10.1093/hmg/ddz200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a ‘Schneckenbecken-like dysplasia.’ The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Oliver W Quarrell
- Department of Clinical Genetics, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Richard C Caswell
- University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| | - Elisa De Franco
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma Baple
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| | - Nadia Burgess
- Department of Histology, Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield UK. S10 2TH, UK
| | - Roobin Jokhi
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals, Jessop Wing Tree Root Walk, Sheffield S10 2SF, UK
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Amaka C Offiah
- University of Sheffield, Academic Unit of Child Health, Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield S10 2TH, UK
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| |
Collapse
|
24
|
Celiz-Balboa J, Largo-Gosens A, Parra-Rojas JP, Arenas-Morales V, Sepulveda-Orellana P, Salinas-Grenet H, Saez-Aguayo S, Orellana A. Functional Interchangeability of Nucleotide Sugar Transporters URGT1 and URGT2 Reveals That urgt1 and urgt2 Cell Wall Chemotypes Depend on Their Spatio-Temporal Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:594544. [PMID: 33363558 PMCID: PMC7752924 DOI: 10.3389/fpls.2020.594544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
Nucleotide sugar transporters (NSTs) are Golgi-localized proteins that play a role in polysaccharide biosynthesis by transporting substrates (nucleotide sugars) from the cytosol into the Golgi apparatus. In Arabidopsis, there is an NST subfamily of six members, called URGTs, which transport UDP-rhamnose and UDP-galactose in vitro. URGTs are very similar in protein sequences, and among them, URGT1 and URGT2 are highly conserved in protein sequence and also showed very similar kinetic parameters toward UDP-rhamnose and UDP-galactose in vitro. Despite the similarity in sequence and in vitro function, mutants in urgt1 led to a specific reduction in galactose in rosette leaves. In contrast, mutants in urgt2 showed a decrease in rhamnose content in soluble mucilage from seeds. Given these specific and quite different chemotypes, we wonder whether the differences in gene expression could explain the observed differences between the mutants. Toward that end, we analyzed whether URGT2 could rescue the urgt1 phenotype and vice versa by performing a promoter swapping experiment. We analyzed whether the expression of the URGT2 coding sequence, controlled by the URGT1 promoter, could rescue the urgt1 rosette phenotype. A similar strategy was used to determine whether URGT1 could rescue the urgt2 mucilage phenotype. Expression analysis of the swapped genes, using qRT-PCR, was similar to the native URGT1 and URGT2 genes in wild-type plants. To monitor the protein expression of the swapped genes, both URGTs were tagged with green fluorescent protein (GFP). Confocal microscopy analyses of the swapped lines containing URGT2-GFP showed fluorescence in motile dot-like structures in rosette leaves. Swapped lines containing URGT1-GFP showed fluorescence in dot-like structures in the seed coat. Finally, the expression of URGT2 in urgt1 mutants rescued galactose reduction in rosette leaves. In the same manner, the expression of URGT1 in urgt2 mutants recovered the content of rhamnose in soluble mucilage. Hence, our results showed that their expression in different organs modulates the role in vivo of URGT1 and URGT2. Likely, this is due to their presence in different cellular contexts, where other proteins, acting in partnership, may drive their functions toward different pathways.
Collapse
Affiliation(s)
| | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- *Correspondence: Susana Saez-Aguayo,
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Ariel Orellana,
| |
Collapse
|
25
|
Parra-Rojas JP, Largo-Gosens A, Carrasco T, Celiz-Balboa J, Arenas-Morales V, Sepúlveda-Orellana P, Temple H, Sanhueza D, Reyes FC, Meneses C, Saez-Aguayo S, Orellana A. New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5071-5088. [PMID: 31145803 PMCID: PMC6793455 DOI: 10.1093/jxb/erz262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/05/2019] [Indexed: 05/04/2023]
Abstract
Upon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification. Here, we characterize the mucilage phenotype of a mutant in the UDP-rhamnose/galactose transporter 2 (URGT2), which exhibits a reduction in RG-I and also shows pleiotropic changes, suggesting the existence of compensation mechanisms triggered by the lack of URGT2. To gain an insight into the possible compensation mechanisms activated in the mutant, we performed a transcriptome analysis of developing seeds using RNA sequencing (RNA-seq). The results showed a significant misregulation of 3149 genes, 37 of them (out of the 75 genes described to date) encoding genes proposed to be involved in mucilage biosynthesis and/or its modification. The changes observed in urgt2 included the up-regulation of UAFT2, a UDP-arabinofuranose transporter, and UUAT3, a paralog of the UDP-uronic acid transporter UUAT1, suggesting that they play a role in mucilage biosynthesis. Mutants in both genes showed changes in mucilage composition and structure, confirming their participation in mucilage biosynthesis. Our results suggest that plants lacking a UDP-rhamnose/galactose transporter undergo important changes in gene expression, probably to compensate modifications in the plant cell wall due to the lack of a gene involved in its biosynthesis.
Collapse
Affiliation(s)
- Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Tomás Carrasco
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jonathan Celiz-Balboa
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Verónica Arenas-Morales
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
26
|
Meents MJ, Motani S, Mansfield SD, Samuels AL. Organization of Xylan Production in the Golgi During Secondary Cell Wall Biosynthesis. PLANT PHYSIOLOGY 2019; 181:527-546. [PMID: 31431513 PMCID: PMC6776863 DOI: 10.1104/pp.19.00715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/02/2019] [Indexed: 05/16/2023]
Abstract
Secondary cell wall (SCW) production during xylem development requires massive up-regulation of hemicellulose (e.g. glucuronoxylan) biosynthesis in the Golgi. Although mutant studies have revealed much of the xylan biosynthetic machinery, the precise arrangement of these proteins and their products in the Golgi apparatus is largely unknown. We used a fluorescently tagged xylan backbone biosynthetic protein (IRREGULAR XYLEM9; IRX9) as a marker of xylan production in the Golgi of developing protoxylem tracheary elements in Arabidopsis (Arabidopsis thaliana). Both live-cell confocal and transmission electron microscopy (TEM) revealed SCW deposition is accompanied by a significant proliferation of Golgi stacks. Furthermore, although Golgi stacks were randomly distributed, the organization of the cytoplasm ensured their close proximity to developing SCWs. Quantitative immuno-TEM revealed IRX9 is present in a specific subdomain of the Golgi stack and was most abundant in the ring of the inner margins of medial cisternae where fenestrations are abundant. Conversely, the xylan product accumulated in swollen trans cisternal margins and the Trans-Golgi network (TGN). The irx9 mutant lacked this expansion for both the cisternal margins and the TGN, whereas Golgi stack proliferation was unaffected. Golgi in irx9 also displayed dramatic changes in their structure, with increases in cisternal fenestration and tubulation. Our data support a new model where xylan biosynthesis and packaging into secretory vesicles are localized in distinct structural and functional domains of the Golgi. Rather than polysaccharide biosynthesis occurring in the center of the cisternae, IRX9 and the xylan product are arranged in successive concentric rings in Golgi cisternae.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Sanya Motani
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| |
Collapse
|
27
|
Wierzbicki MP, Christie N, Pinard D, Mansfield SD, Mizrachi E, Myburg AA. A systems genetics analysis in Eucalyptus reveals coordination of metabolic pathways associated with xylan modification in wood-forming tissues. THE NEW PHYTOLOGIST 2019; 223:1952-1972. [PMID: 31144333 DOI: 10.1111/nph.15972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Acetyl- and methylglucuronic acid decorations of xylan, the dominant hemicellulose in secondary cell walls (SCWs) of woody dicots, affect its interaction with cellulose and lignin to determine SCW structure and extractability. Genes and pathways involved in these modifications may be targets for genetic engineering; however, little is known about the regulation of xylan modifications in woody plants. To address this, we assessed genetic and gene expression variation associated with xylan modification in developing xylem of Eucalyptus grandis × Eucalyptus urophylla interspecific hybrids. Expression quantitative trait locus (eQTL) mapping identified potential regulatory polymorphisms affecting gene expression modules associated with xylan modification. We identified 14 putative xylan modification genes that are members of five expression modules sharing seven trans-eQTL hotspots. The xylan modification genes are prevalent in two expression modules. The first comprises nucleotide sugar interconversion pathways supplying the essential precursors for cellulose and xylan biosynthesis. The second contains genes responsible for phenylalanine biosynthesis and S-adenosylmethionine biosynthesis required for glucuronic acid and monolignol methylation. Co-expression and co-regulation analyses also identified four metabolic sources of acetyl coenxyme A that appear to be transcriptionally coordinated with xylan modification. Our systems genetics analysis may provide new avenues for metabolic engineering to alter wood SCW biology for enhanced biomass processability.
Collapse
Affiliation(s)
- Martin P Wierzbicki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Desré Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
28
|
Wu X, Zhang Q, Wu Z, Tai F, Wang W. Subcellular locations of potential cell wall proteins in plants: predictors, databases and cross-referencing. Brief Bioinform 2019; 19:1130-1140. [PMID: 30481282 DOI: 10.1093/bib/bbx050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 01/21/2023] Open
Abstract
The cell wall is the most striking feature that distinguishes plant cells from animal cells. It plays an essential role in cell shape, stability, growth and protection. Despite being present in small amounts, cell wall proteins (CWPs) are crucial components of the cell wall. The cell wall proteome generally consists of sensu stricto CWPs, apoplast proteins and extracellular secreted proteins. Currently, there is a need for the bioinformatics analysis of a tremendous number of protein sequences that have been generated from genomic, transcriptomic and proteomics research. Compared with intracellular proteins, the location prediction of CWPs is challenging because many aspects of these proteins have not been experimentally characterized, and there are no CWP-trained, specific predictors available. By introducing the biological relevance (particularly molecular aspects) of the cell wall and CWPs, we critically evaluated the accuracy of 16 state-of-the-art predictors and classical predictors for the prediction of CWPs using an independent database of Arabidopsis and rice proteins. All experimentally verified CWPs and non-CWPs were retrieved from the UniProt Knowledgebase. Based on the evaluation, we currently recommend the predictors mGOASVM, HybridGO-Loc and FUEL-mLoc for CWPs. Furthermore, we outlined the public databases that can be used to cross-reference the subcellular location of CWPs. We illustrate a flowchart of the subcellular location prediction and a cross-reference of possible CWPs. Finally, we discuss challenges and perspectives in the bioinformatics analysis of CWPs. It is hoped that this article will provide practical guidance regarding CWPs for nonspecialists and provide insight for bioinformatics experts to develop computational tools for CWPs.
Collapse
Affiliation(s)
- Xiaolin Wu
- College of Life Sciences, Henan Agricultural University (HAU), China
| | | | | | | | | |
Collapse
|
29
|
Rautengarten C, Heazlewood JL, Ebert B. Profiling Cell Wall Monosaccharides and Nucleotide-Sugars from Plants. ACTA ACUST UNITED AC 2019; 4:e20092. [PMID: 31187943 DOI: 10.1002/cppb.20092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cell wall is an intricate mesh largely composed of polysaccharides that vary in structure and abundance. Apart from cellulose biosynthesis, the assembly of matrix polysaccharides such as pectin and hemicellulose occur in the Golgi apparatus before being transported via vesicles to the cell wall. Matrix polysaccharides are biosynthesized from activated precursors or nucleotide sugars. The composition and assembly of the cell wall is an important aspect in plant development and plant biomass utilization. The application of anion-exchange chromatography to determine the monosaccharide composition of the insoluble matrix polysaccharides enables a complete profile of all major sugars in the cell wall from a single run. While porous carbon graphite chromatography and tandem mass spectrometry delivers a sensitive and robust nucleotide sugar profile from plant extracts. Here we describe detailed methodology to quantify nucleotide sugars within the cell and profile the non-cellulosic monosaccharide composition of the cell wall. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Toscanini MA, Favarolo MB, Gonzalez Flecha FL, Ebert B, Rautengarten C, Bredeston LM. Conserved Glu-47 and Lys-50 residues are critical for UDP- N-acetylglucosamine/UMP antiport activity of the mouse Golgi-associated transporter Slc35a3. J Biol Chem 2019; 294:10042-10054. [PMID: 31118275 DOI: 10.1074/jbc.ra119.008827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Nucleotide sugar transporters (NSTs) regulate the flux of activated sugars from the cytosol into the lumen of the Golgi apparatus where glycosyltransferases use them for the modification of proteins, lipids, and proteoglycans. It has been well-established that NSTs are antiporters that exchange nucleotide sugars with the respective nucleoside monophosphate. Nevertheless, information about the molecular basis of ligand recognition and transport is scarce. Here, using topology predictors, cysteine-scanning mutagenesis, expression of GFP-tagged protein variants, and phenotypic complementation of the yeast strain Kl3, we identified residues involved in the activity of a mouse UDP-GlcNAc transporter, murine solute carrier family 35 member A3 (mSlc35a3). We specifically focused on the putative transmembrane helix 2 (TMH2) and observed that cells expressing E47C or K50C mSlc35a3 variants had lower levels of GlcNAc-containing glycoconjugates than WT cells, indicating impaired UDP-GlcNAc transport activity of these two variants. A conservative substitution analysis revealed that single or double substitutions of Glu-47 and Lys-50 do not restore GlcNAc glycoconjugates. Analysis of mSlc35a3 and its genetic variants reconstituted into proteoliposomes disclosed the following: (i) all variants act as UDP-GlcNAc/UMP antiporters; (ii) conservative substitutions (E47D, E47Q, K50R, or K50H) impair UDP-GlcNAc uptake; and (iii) substitutions of Glu-47 and Lys-50 dramatically alter kinetic parameters, consistent with a critical role of these two residues in mSlc35a3 function. A bioinformatics analysis revealed that an EXXK motif in TMH2 is highly conserved across SLC35 A subfamily members, and a 3D-homology model predicted that Glu-47 and Lys-50 are facing the central cavity of the protein.
Collapse
Affiliation(s)
- M Agustina Toscanini
- From the Departamento de Química Biológica-IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Ciudad Autónoma de Buenos Aires, Junín 956 (1113), Argentina and
| | - M Belén Favarolo
- From the Departamento de Química Biológica-IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Ciudad Autónoma de Buenos Aires, Junín 956 (1113), Argentina and
| | - F Luis Gonzalez Flecha
- From the Departamento de Química Biológica-IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Ciudad Autónoma de Buenos Aires, Junín 956 (1113), Argentina and
| | - Berit Ebert
- the School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Carsten Rautengarten
- the School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Luis M Bredeston
- From the Departamento de Química Biológica-IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Ciudad Autónoma de Buenos Aires, Junín 956 (1113), Argentina and
| |
Collapse
|
31
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
32
|
Yu Z, He C, Teixeira da Silva JA, Luo J, Yang Z, Duan J. The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:43-54. [PMID: 30466600 DOI: 10.1016/j.plantsci.2018.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 05/10/2023]
Abstract
Dendrobium officinale is a precious traditional Chinese medicinal herb because it is abundant in mannose-containing polysaccharides (MCPs). GDP-mannose transporter (GMT), which translocates GDP-mannose into the Golgi lumen, is indispensable for the biosynthesis of MCPs. In this study, we found that the dominant polysaccharides in D. officinale were MCPs in a range of varieties and different physiological phases. After a positive correlation between the accumulation of mannose and the transcript levels of candidate GMT genes was found, three GMT genes (DoGMT1-3) were identified in D. officinale. DoGMT1, DoGMT2 and DoGMT3 exhibited the highest transcript level in stem that an organ for MCPs storage. All three DoGMT proteins were targeted to Golgi apparatus, and had a GDP binding domain (GXL/VNK) that was homologous to a specially characterized GMT protein GONST1 in Arabidopsis thaliana. Moreover, DoGMT1, DoGMT2 and DoGMT3 complemented a GDP-mannose transport-defective yeast mutant (vrg4-2), meanwhile they also demonstrated a higher GDP-mannose uptake activity. Therefore, we conclude that DoGMT1, DoGMT2 and DoGMT3 are able to transport GDP-mannose while the expression patterns of these genes correspond to the accumulation of MCPs in D. officinale. These findings support the importance of GMT genes from D. officinale in the biosynthesis of MCPs.
Collapse
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Jianping Luo
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
33
|
Ebert B, Birdseye D, Liwanag AJM, Laursen T, Rennie EA, Guo X, Catena M, Rautengarten C, Stonebloom SH, Gluza P, Pidatala VR, Andersen MCF, Cheetamun R, Mortimer JC, Heazlewood JL, Bacic A, Clausen MH, Willats WGT, Scheller HV. The Three Members of the Arabidopsis Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases. PLANT & CELL PHYSIOLOGY 2018; 59:2624-2636. [PMID: 30184190 DOI: 10.1093/pcp/pcy180] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 05/18/2023]
Abstract
Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched β-1, 4-galactan. Plants in which all three genes were inactivated had no detectable β-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.
Collapse
Affiliation(s)
- Berit Ebert
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Devon Birdseye
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - April J M Liwanag
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tomas Laursen
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emilie A Rennie
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Michela Catena
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carsten Rautengarten
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Solomon H Stonebloom
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pawel Gluza
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Venkataramana R Pidatala
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mathias C F Andersen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Roshan Cheetamun
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Jenny C Mortimer
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik V Scheller
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
34
|
Ebert B, Rautengarten C, McFarlane HE, Rupasinghe T, Zeng W, Ford K, Scheller HV, Bacic A, Roessner U, Persson S, Heazlewood JL. A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. NATURE PLANTS 2018; 4:792-801. [PMID: 30224661 DOI: 10.1038/s41477-018-0235-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 07/26/2018] [Indexed: 05/20/2023]
Abstract
Glycosylation requires activated glycosyl donors in the form of nucleotide sugars to drive processes such as post-translational protein modifications and glycolipid and polysaccharide biosynthesis. Most of these reactions occur in the Golgi, requiring cytosolic-derived nucleotide sugars, which need to be actively transferred into the Golgi lumen by nucleotide sugar transporters. We identified a Golgi-localized nucleotide sugar transporter from Arabidopsis thaliana with affinity for UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) and assigned it UDP-GlcNAc transporter 1 (UGNT1). Profiles of N-glycopeptides revealed that plants carrying the ugnt1 loss-of-function allele are virtually devoid of complex and hybrid N-glycans. Instead, the N-glycopeptide population from these alleles exhibited high-mannose structures, representing structures prior to the addition of the first GlcNAc in the Golgi. Concomitantly, sphingolipid profiling revealed that the biosynthesis of GlcNAc-containing glycosyl inositol phosphorylceramides (GIPCs) is also reliant on this transporter. By contrast, plants carrying the loss-of-function alleles affecting ROCK1, which has been reported to transport UDP-GlcNAc and UDP-N-acetylgalactosamine, exhibit no changes in N-glycan or GIPC profiles. Our findings reveal that plants contain a single UDP-GlcNAc transporter that delivers an essential substrate for the maturation of N-glycans and the GIPC class of sphingolipids.
Collapse
Affiliation(s)
- Berit Ebert
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Wei Zeng
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina Ford
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik V Scheller
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Antony Bacic
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ute Roessner
- Metabolomics Australia, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua L Heazlewood
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
35
|
Mahboubi A, Niittylä T. Sucrose transport and carbon fluxes during wood formation. PHYSIOLOGIA PLANTARUM 2018; 164:67-81. [PMID: 29572842 DOI: 10.1111/ppl.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Wood biosynthesis defines the chemical and structural properties of wood. The metabolic pathways that produce the precursors of wood cell wall polymers have a central role in defining wood properties. To make rational design of wood properties feasible, we need not only to understand the cell wall biosynthetic machinery, but also how sucrose transport and metabolism in developing wood connect to cell wall biosynthesis and how they respond to genetic and environmental cues. Here, we review the current understanding of the sucrose transport and primary metabolism pathways leading to the precursors of cell wall biosynthesis in woody plant tissues. We present both old, persistent questions and new emerging themes with a focus on wood formation in trees and draw upon evidence from the xylem tissues of herbaceous plants when it is relevant.
Collapse
Affiliation(s)
- Amir Mahboubi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
36
|
He JB, Zhao XH, Du PZ, Zeng W, Beahan CT, Wang YQ, Li HL, Bacic A, Wu AM. KNAT7 positively regulates xylan biosynthesis by directly activating IRX9 expression in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:514-528. [PMID: 29393579 DOI: 10.1111/jipb.12638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/28/2018] [Indexed: 06/07/2023]
Abstract
Xylan is the major plant hemicellulosic polysaccharide in the secondary cell wall. The transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (KNAT7) regulates secondary cell wall biosynthesis, but its exact role in regulating xylan biosynthesis remains unclear. Using transactivation analyses, we demonstrate that KNAT7 activates the promoters of the xylan biosynthetic genes, IRREGULAR XYLEM 9 (IRX9), IRX10, IRREGULAR XYLEM 14-LIKE (IRX14L), and FRAGILE FIBER 8 (FRA8). The knat7 T-DNA insertion mutants have thinner vessel element walls and xylary fibers, and thicker interfascicular fiber walls in inflorescence stems, relative to wild-type (WT). KNAT7 overexpression plants exhibited opposite effects. Glycosyl linkage and sugar composition analyses revealed lower xylan levels in knat7 inflorescence stems, relative to WT; a finding supported by labeling of inflorescence walls with xylan-specific antibodies. The knat7 loss-of-function mutants had lower transcript levels of the xylan biosynthetic genes IRX9, IRX10, and FRA8, whereas KNAT7 overexpression plants had higher mRNA levels for IRX9, IRX10, IRX14L, and FRA8. Electrophoretic mobility shift assays indicated that KNAT7 binds to the IRX9 promoter. These results support the hypothesis that KNAT7 positively regulates xylan biosynthesis.
Collapse
Affiliation(s)
- Jun-Bo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xian-Hai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ping-Zhou Du
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Cherie T Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Yu-Qi Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Hui-Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
37
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
38
|
Seifert GJ. Mad moves of the building blocks - nucleotide sugars find unexpected paths into cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:905-907. [PMID: 29796610 PMCID: PMC6019018 DOI: 10.1093/jxb/ery026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article comments on: Zhao X, Liu N, Shang N, et al. 2018. Three UDP-xylose transporters (UXTs) participate in xylan biosynthesis by conveying cytosolic UDP-xylose into the Golgi lumen in Arabidopsis. Journal of Experimental Botany 69, 1125–1134..
Collapse
Affiliation(s)
- Georg J Seifert
- University of Natural Resources and Life Science, BOKU Vienna, Department of Applied Genetics and Cell Biology, Vienna, Austria
| |
Collapse
|
39
|
Zhao X, Liu N, Shang N, Zeng W, Ebert B, Rautengarten C, Zeng QY, Li H, Chen X, Beahan C, Bacic A, Heazlewood JL, Wu AM. Three UDP-xylose transporters participate in xylan biosynthesis by conveying cytosolic UDP-xylose into the Golgi lumen in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1125-1134. [PMID: 29300997 PMCID: PMC6018967 DOI: 10.1093/jxb/erx448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/26/2017] [Indexed: 05/20/2023]
Abstract
UDP-xylose (UDP-Xyl) is synthesized by UDP-glucuronic acid decarboxylases, also termed UDP-Xyl synthases (UXSs). The Arabidopsis genome encodes six UXSs, which fall into two groups based upon their subcellular location: the Golgi lumen and the cytosol. The latter group appears to play an important role in xylan biosynthesis. Cytosolic UDP-Xyl is transported into the Golgi lumen by three UDP-Xyl transporters (UXT1, 2, and 3). However, while single mutants affected in the UDP-Xyl transporter 1 (UXT1) showed a substantial reduction in cell wall xylose content, a double mutant affected in UXT2 and UXT3 had no obvious effect on cell wall xylose deposition. This prompted us to further investigate redundancy among the members of the UXT family. Multiple uxt mutants were generated, including a triple mutant, which exhibited collapsed vessels and reduced cell wall thickness in interfascicular fiber cells. Monosaccharide composition, molecular weight, nuclear magnetic resonance, and immunolabeling studies demonstrated that both xylan biosynthesis (content) and fine structure were significantly affected in the uxt triple mutant, leading to phenotypes resembling those of the irx mutants. Pollination was also impaired in the uxt triple mutant, likely due to reduced filament growth and anther dehiscence caused by alterations in the composition of the cell walls. Moreover, analysis of the nucleotide sugar composition of the uxt mutants indicated that nucleotide sugar interconversion is influenced by the cytosolic UDP-Xyl pool within the cell. Taken together, our results underpin the physiological roles of the UXT family in xylan biosynthesis and provide novel insights into the nucleotide sugar metabolism and trafficking in plants.
Collapse
Affiliation(s)
- Xianhai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Nian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Na Shang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cherie Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Correspondence: ;
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Correspondence: ;
| |
Collapse
|
40
|
Zhao D, Ding X, Hou Y, Hou W, Liu L, Xu T, Yang D. Structural characterization, immune regulation and antioxidant activity of a new heteropolysaccharide from Cantharellus cibarius Fr. Int J Mol Med 2018; 41:2744-2754. [PMID: 29393398 PMCID: PMC5846660 DOI: 10.3892/ijmm.2018.3450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/26/2018] [Indexed: 11/07/2022] Open
Abstract
A new heteropolysaccharide was extracted and purified from the fruiting bodies of Cantharellus cibarius Fr. The Cantharellus cibarius Fr. polysaccharide (CC-1) had a molecular weight of 61,056 kDa and was mainly formed of the glucose and xylose at ratio of 5:1. Structure identification of CC-1 was analysed by a combined application of total hydrolysis, high performance liquid chromatography (HPLC), methylation analysis, gas chromatography-mass spectrometry (GC-MS), infrared (IR) spectra and nuclear magnetic resonance (NMR) spectroscopy. The experimental results showed that CC-1 had a backbone of 1,4-linked-β-D-glucose which branched at O-6 and the branches were mainly composed of 6→1)-α-D-xylopyranose residue. CC-1 exhibited significant in vitro antioxidant effect and proliferation effect of immune cells. The activity study showed CC-1 has ability to clear the ABTS+ free radical and DPPH− free radical in a certain range of concentration. The proliferation activity of the immune cells showed that the proliferation effect on B cells was very significant (P<0.001) in the concentration of 0.625–80 mg/ml; and the effect of T cell proliferation was also very significant (P<0.001) in the concentration of 5–20 mg/ml. The result of this study introduced Cantharellus cibarius Fr. as a possible valuable source in exhibiting unique immunoregulatory and antioxidant properties.
Collapse
Affiliation(s)
- Daqun Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Wanru Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Lu Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Ting Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| | - Danni Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
41
|
Li LX, Rautengarten C, Heazlewood JL, Doering TL. Xylose donor transport is critical for fungal virulence. PLoS Pathog 2018; 14:e1006765. [PMID: 29346417 PMCID: PMC5773217 DOI: 10.1371/journal.ppat.1006765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
Cryptococcus neoformans, an AIDS-defining opportunistic pathogen, is the leading cause of fungal meningitis worldwide and is responsible for hundreds of thousands of deaths annually. Cryptococcal glycans are required for fungal survival in the host and for pathogenesis. Most glycans are made in the secretory pathway, although the activated precursors for their synthesis, nucleotide sugars, are made primarily in the cytosol. Nucleotide sugar transporters are membrane proteins that solve this topological problem, by exchanging nucleotide sugars for the corresponding nucleoside phosphates. The major virulence factor of C. neoformans is an anti-phagocytic polysaccharide capsule that is displayed on the cell surface; capsule polysaccharides are also shed from the cell and impede the host immune response. Xylose, a neutral monosaccharide that is absent from model yeast, is a significant capsule component. Here we show that Uxt1 and Uxt2 are both transporters specific for the xylose donor, UDP-xylose, although they exhibit distinct subcellular localization, expression patterns, and kinetic parameters. Both proteins also transport the galactofuranose donor, UDP-galactofuranose. We further show that Uxt1 and Uxt2 are required for xylose incorporation into capsule and protein; they are also necessary for C. neoformans to cause disease in mice, although surprisingly not for fungal viability in the context of infection. These findings provide a starting point for deciphering the substrate specificity of an important class of transporters, elucidate a synthetic pathway that may be productively targeted for therapy, and contribute to our understanding of fundamental glycobiology.
Collapse
Affiliation(s)
- Lucy X. Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Rautengarten C, Ebert B, Heazlewood JL. Absolute Quantitation of In Vitro Expressed Plant Membrane Proteins by Targeted Proteomics (MRM) for the Determination of Kinetic Parameters. Methods Mol Biol 2018; 1696:217-234. [PMID: 29086407 DOI: 10.1007/978-1-4939-7411-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The purification of a functional soluble protein from biological or in vitro expression systems can be problematic and the enrichment of a functional membrane protein for biochemical analyses can be a serious technical challenge. Recently we have been characterizing plant endomembrane nucleotide sugar transporters using a yeast expression system. However, rather than enriching these in vitro expressed proteins to homogeneity, we have been conducting biochemical characterization of these transport proteins in yeast microsomal fractions. While this approach has enabled us to estimate a variety of kinetic parameters, the accurate determination of the turnover number of an enzyme-substrate complex (k cat) requires that the catalytic site concentration (amount of protein) in the total reaction volume is known. As a result, we have been employing targeted proteomics (multiple reaction monitoring) with peptide standards and a triple quadrupole mass spectrometer to estimate the absolute amount of protein in a mixed protein microsomal fraction. The following method details the steps required to define the absolute quantitation of an in vitro expressed membrane protein to define complete kinetic parameters.
Collapse
Affiliation(s)
- Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA.
| |
Collapse
|
43
|
Mathieu-Rivet E, Lerouge P, Bardor M. Chlamydomonas reinhardtii: Protein Glycosylation and Production of Biopharmaceuticals. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66360-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Rao X, Shen H, Pattathil S, Hahn MG, Gelineo-Albersheim I, Mohnen D, Pu Y, Ragauskas AJ, Chen X, Chen F, Dixon RA. Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:266. [PMID: 29213317 PMCID: PMC5707915 DOI: 10.1186/s13068-017-0954-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant cell walls contribute the majority of plant biomass that can be used to produce transportation fuels. However, the complexity and variability in composition and structure of cell walls, particularly the presence of lignin, negatively impacts their deconstruction for bioenergy. Metabolic and genetic changes associated with secondary wall development in the biofuel crop switchgrass (Panicum virgatum) have yet to be reported. RESULTS Our previous studies have established a cell suspension system for switchgrass, in which cell wall lignification can be induced by application of brassinolide (BL). We have now collected cell wall composition and microarray-based transcriptome profiles for BL-induced and non-induced suspension cultures to provide an overview of the dynamic changes in transcriptional reprogramming during BL-induced cell wall modification. From this analysis, we have identified changes in candidate genes involved in cell wall precursor synthesis, cellulose, hemicellulose, and pectin formation and ester-linkage generation. We have also identified a large number of transcription factors with expression correlated with lignin biosynthesis genes, among which are candidates for control of syringyl (S) lignin accumulation. CONCLUSION Together, this work provides an overview of the dynamic compositional changes during brassinosteroid-induced cell wall remodeling, and identifies candidate genes for future plant genetic engineering to overcome cell wall recalcitrance.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Hui Shen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- Present Address: Marker-assisted Breeding and Traits, Chromatin Inc, Lubbock, TX 79404 USA
| | - Sivakumar Pattathil
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
- Present Address: Mascoma LLC (Lallemand Company), 67 Etna Road, Lebanon, NH 03766 USA
| | - Michael G. Hahn
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Ivana Gelineo-Albersheim
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Debra Mohnen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Yunqiao Pu
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
| | - Xin Chen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Present Address: Center for Applied Mathematics, Tianjin University, Tianjin, 300072 China
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
45
|
Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3405-3417. [PMID: 28633298 PMCID: PMC5853651 DOI: 10.1093/jxb/erx186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.
Collapse
Affiliation(s)
- Joakim Bygdell
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Ogonna Obudulu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Manoj K Srivastava
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, UP, India
| | - Robert Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
46
|
The elaborate route for UDP-arabinose delivery into the Golgi of plants. Proc Natl Acad Sci U S A 2017; 114:4261-4266. [PMID: 28373556 DOI: 10.1073/pnas.1701894114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.
Collapse
|
47
|
Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, Sandoval-Ibañez O, Doñas D, Parra-Rojas JP, Ebert B, Lehner A, Mollet JC, Dupree P, Scheller HV, Heazlewood JL, Reyes FC, Orellana A. UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. THE PLANT CELL 2017; 29:129-143. [PMID: 28062750 PMCID: PMC5304346 DOI: 10.1105/tpc.16.00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/14/2016] [Accepted: 12/31/2016] [Indexed: 05/17/2023]
Abstract
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Carsten Rautengarten
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Troy Ejsmentewicz
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Omar Sandoval-Ibañez
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Daniela Doñas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Berit Ebert
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Arnaud Lehner
- Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France
| | - Jean-Claude Mollet
- Normandy University, UniRouen, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, France
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Henrik V Scheller
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Joshua L Heazlewood
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
48
|
Smith PJ, Wang HT, York WS, Peña MJ, Urbanowicz BR. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:286. [PMID: 29213325 PMCID: PMC5708106 DOI: 10.1186/s13068-017-0973-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 05/02/2023]
Abstract
Xylans are the most abundant noncellulosic polysaccharides in lignified secondary cell walls of woody dicots and in both primary and secondary cell walls of grasses. These polysaccharides, which comprise 20-35% of terrestrial biomass, present major challenges for the efficient microbial bioconversion of lignocellulosic feedstocks to fuels and other value-added products. Xylans play a significant role in the recalcitrance of biomass to degradation, and their bioconversion requires metabolic pathways that are distinct from those used to metabolize cellulose. In this review, we discuss the key differences in the structural features of xylans across diverse plant species, how these features affect their interactions with cellulose and lignin, and recent developments in understanding their biosynthesis. In particular, we focus on how the combined structural and biosynthetic knowledge can be used as a basis for biomass engineering aimed at developing crops that are better suited as feedstocks for the bioconversion industry.
Collapse
Affiliation(s)
- Peter J. Smith
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Hsin-Tzu Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| |
Collapse
|
49
|
Zhong R, Teng Q, Haghighat M, Yuan Y, Furey ST, Dasher RL, Ye ZH. Cytosol-Localized UDP-Xylose Synthases Provide the Major Source of UDP-Xylose for the Biosynthesis of Xylan and Xyloglucan. PLANT & CELL PHYSIOLOGY 2017; 58:156-174. [PMID: 28011867 DOI: 10.1093/pcp/pcw179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/18/2016] [Indexed: 05/27/2023]
Abstract
Xylan and xyloglucan are the two major cell wall hemicelluloses in plants, and their biosynthesis requires a steady supply of the sugar donor, UDP-xylose. UDP-xylose is synthesized through conversion of UDP-glucuronic acid (UDP-GlcA) by the activities of UDP-xylose synthase (UXS). There exist six UXS genes in the Arabidopsis thaliana genome; three of them (UXS1, UXS2 and UXS4) encode Golgi-localized enzymes and the other three (UXS3, UXS5 and UXS6) encode cytosol-localized enzymes. In this report, we investigated the contributions of these UXS genes in supplying UDP-xylose for the biosynthesis of xylan and xyloglucan. Expression analyses revealed that the six UXS genes exhibited distinct and overlapping expression patterns in different cell types of stems, root-hypocotyls and young seedlings, and that the relative enzymatic activity of UXS in the cytosol was 17 times higher than that in the Golgi. Among the six UXS genes, UXS3, UXS5 and UXS6 showed the highest expression in stems and were expressed predominantly in xylem cells and interfascicular fibers. Their predominant expression in secondary wall-forming cells was consistent with the finding that the expression of UXS3, UXS5 and UXS6 was directly activated by the secondary wall NAC master switches. Although simultaneous mutations of UXS1, UXS2 and UXS4 did not cause any apparent effects on plant growth and xylan biosynthesis, simultaneous down-regulation/mutations of UXS3, UXS5 and UXS6 led to a drastic reduction in secondary wall thickening, a severe deformation of xylem vessels, a significant decrease in xylan content without an apparent reduction in its chain length and an absence of GlcA side chains in xylan, which are reminiscent of the phenotypes of some known xylan-deficient mutants. Moreover, Immunolocalization with two xyloglucan monoclonal antibodies, LM15 and LM25, revealed a significant reduction in the amount of xylogulcan in the primary walls. These results demonstrate that the cytosol-localized UXS3, UXS5 and UXS6 play a predominant role in the supply of UDP-xylose for the biosynthesis of xylan and xyloglucan.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Quincy Teng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA , USA
| | | | - Youxi Yuan
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Samuel T Furey
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Robert L Dasher
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
50
|
McKinley B, Rooney W, Wilkerson C, Mullet J. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:662-680. [PMID: 27411301 DOI: 10.1111/tpj.13269] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 05/20/2023]
Abstract
Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for approximately 100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until approximately 7 days before anthesis and then down-regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to approximately 50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and approximately 10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bio-products.
Collapse
Affiliation(s)
- Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77845, USA
| | - William Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - Curtis Wilkerson
- MSU-DOE laboratory, Michigan State University, East Lansing, MI, 48823, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|