1
|
Mohr I, Eutebach M, Knopf MC, Schommen N, Gratz R, Angrand K, Genders L, Brumbarova T, Bauer P, Ivanov R. The small ARF-like 2 GTPase TITAN5 is linked with the dynamic regulation of IRON-REGULATED TRANSPORTER 1. J Cell Sci 2024; 137:jcs263645. [PMID: 39544154 DOI: 10.1242/jcs.263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Iron acquisition is crucial for plants. The abundance of IRON-REGULATED TRANSPORTER 1 (IRT1) is controlled through endomembrane trafficking, a process that requires small ARF-like GTPases. Only few components that are involved in the vesicular trafficking of specific cargo are known. Here, we report that the ARF-like GTPase TITAN5 (TTN5) interacts with the large cytoplasmic variable region and protein-regulatory platform of IRT1. Heterozygous ttn5-1 plants can display reduced root iron reductase activity. This activity is needed for iron uptake via IRT1. Fluorescent fusion proteins of TTN5 and IRT1 colocalize at locations where IRT1 sorting and cycling between the plasma membrane and the vacuole are coordinated. TTN5 can also interact with peripheral membrane proteins that are components of the IRT1 regulation machinery, like the trafficking factor SNX1, the C2 domain protein EHB1 and the SEC14-GOLD protein PATL2. Hence, the link between iron acquisition and vesicular trafficking involving a small GTPase of the ARF family opens up the possibility to study the involvement of TTN5 in nutritional cell biology and the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marie C Knopf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Naima Schommen
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kalina Angrand
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lara Genders
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. J Cell Sci 2024; 137:jcs262315. [PMID: 39056156 PMCID: PMC11361645 DOI: 10.1242/jcs.262315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sibaji K. Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Plant Genome Engineering, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538563. [PMID: 37162876 PMCID: PMC10168340 DOI: 10.1101/2023.04.27.538563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Small GTPases function by conformational switching ability between GDP- and GTP-bound states in rapid cell signaling events. The ADP-ribosylation factor (ARF) family is involved in vesicle trafficking. Though evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. Here, we characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5/HALLIMASCH/ARL2/ARLC1 (hereafter termed TTN5) from Arabidopsis thaliana. Two TTN5 variants were included in the study with point mutations at conserved residues, suspected to be functional for nucleotide exchange and GTP hydrolysis, TTN5T30N and TTN5Q70L. We found that TTN5 had a very rapid intrinsic nucleotide exchange capacity with a conserved nucleotide switching mechanism. TTN5 acted as a non-classical small GTPase with a remarkably low GTP hydrolysis activity, suggesting it is likely present in GTP-loaded active form in the cell. We analyzed signals from yellow fluorescent protein (YFP)-tagged TTN5 and from in situ immunolocalization of hemagglutine-tagged HA3-TTN5 in Arabidopsis seedlings and in a transient expression system. Together with colocalization using endomembrane markers and pharmacological treatments the microscopic analysis suggests that TTN5 can be present at the plasma membrane and dynamically associated with membranes of vesicles, Golgi stacks and multivesicular bodies. While the TTN5Q70L variant showed similar GTPase activities and localization behavior as wild-type TTN5, the TTN5T30N mutant differed in some aspects. Hence, the unusual capacity of rapid nucleotide exchange activity of TTN5 is linked with cell membrane dynamics, likely associated with vesicle transport pathways in the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sibaji K Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Gao J, Zhang L, Du H, Dong Y, Zhen S, Wang C, Wang Q, Yang J, Zhang P, Zheng X, Li Y. An ARF24-ZmArf2 module influences kernel size in different maize haplotypes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36866706 DOI: 10.1111/jipb.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Members of the ADP-ribosylation factor family, which are GTP-binding proteins, are involved in metabolite transport, cell division, and expansion. Although there has been a significant amount of research on small GTP-binding proteins, their roles and functions in regulating maize kernel size remain elusive. Here, we identified ZmArf2 as a maize ADP-ribosylation factor-like family member that is highly conserved during evolution. Maize zmarf2 mutants showed a characteristic smaller kernel size. Conversely, ZmArf2 overexpression increased maize kernel size. Furthermore, heterologous expression of ZmArf2 dramatically elevated Arabidopsis and yeast growth by promoting cell division. Using expression quantitative trait loci (eQTL) analysis, we determined that ZmArf2 expression levels in various lines were mainly associated with variation at the gene locus. The promoters of ZmArf2 genes could be divided into two types, pS and pL, that were significantly associated with both ZmArf2 expression levels and kernel size. In yeast-one-hybrid screening, maize Auxin Response Factor 24 (ARF24) is directly bound to the ZmArf2 promoter region and negatively regulated ZmArf2 expression. Notably, the pS and pL promoter types each contained an ARF24 binding element: an auxin response element (AuxRE) in pS and an auxin response region (AuxRR) in pL, respectively. ARF24 binding affinity to AuxRR was much higher compared with AuxRE. Overall, our results establish that the small G-protein ZmArf2 positively regulates maize kernel size and reveals the mechanism of its expression regulation.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Long Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haonan Du
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongbin Dong
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qilei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jingyu Yang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Paifeng Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuling Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Maize Engineering Technology Joint Center, College of Agronomy, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
5
|
Gerstner CD, Reed M, Dahl TM, Ying G, Frederick JM, Baehr W. Arf-like Protein 2 (ARL2) Controls Microtubule Neogenesis during Early Postnatal Photoreceptor Development. Cells 2022; 12:147. [PMID: 36611941 PMCID: PMC9818799 DOI: 10.3390/cells12010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Arf-like protein 2 (ARL2) is a ubiquitously expressed small GTPase with multiple functions. In a cell culture, ARL2 participates with tubulin cofactor D (TBCD) in the neogenesis of tubulin αβ-heterodimers, the building blocks of microtubules. To evaluate this function in the retina, we conditionally deleted ARL2 in mouse retina at two distinct stages, either during the embryonic development (retArl2-/-) or after ciliogenesis specifically in rods (rodArl2-/-). retArl2-/- retina sections displayed distorted nuclear layers and a disrupted microtubule cytoskeleton (MTC) as early as postnatal day 6 (P6). Rod and cone outer segments (OS) did not form. By contrast, the rod ARL2 knockouts were stable at postnatal day 35 and revealed normal ERG responses. Cytoplasmic dynein is reduced in retArl2-/- inner segments (IS), suggesting that dynein may be unstable in the absence of a normal MTC. We investigated the microtubular stability in the absence of either ARL2 (retARL2-/-) or DYNC1H1 (retDync1h1-/-), the dynein heavy chain, and found that both the retArl2-/- and retDync1h1-/- retinas exhibited reduced microtubules and nuclear layer distortion. The results suggest that ARL2 and dynein depend on each other to generate a functional MTC during the early photoreceptor development.
Collapse
Affiliation(s)
- Cecilia D. Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Tiffanie M. Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Jeanne M. Frederick
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Zhou Y, Amom P, Reeder SH, Lee BH, Helton A, Dobritsa AA. Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface. eLife 2021; 10:71061. [PMID: 34591014 PMCID: PMC8483735 DOI: 10.7554/elife.71061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/01/2021] [Indexed: 01/30/2023] Open
Abstract
Pollen apertures, the characteristic gaps in pollen wall exine, have emerged as a model for studying the formation of distinct plasma membrane domains. In each species, aperture number, position, and morphology are typically fixed; across species they vary widely. During pollen development, certain plasma membrane domains attract specific proteins and lipids and become protected from exine deposition, developing into apertures. However, how these aperture domains are selected is unknown. Here, we demonstrate that patterns of aperture domains in Arabidopsis are controlled by the members of the ancient ELMOD protein family, which, although important in animals, has not been studied in plants. We show that two members of this family, MACARON (MCR) and ELMOD_A, act upstream of the previously discovered aperture proteins and that their expression levels influence the number of aperture domains that form on the surface of developing pollen grains. We also show that a third ELMOD family member, ELMOD_E, can interfere with MCR and ELMOD_A activities, changing aperture morphology and producing new aperture patterns. Our findings reveal key players controlling early steps in aperture domain formation, identify residues important for their function, and open new avenues for investigating how diversity of aperture patterns in nature is achieved. Zooming in on cells reveals patterns on their outer surfaces. These patterns are actually a collection of distinct areas of the cell surface, each containing specific combinations of molecules. The outer layers of pollen grains consist of a cell wall, and a softer cell membrane that sits underneath. As a pollen grain develops, it recruits certain fats and proteins to specific areas of the cell membrane, known as ‘aperture domains’. The composition of these domains blocks the cell wall from forming over them, leading to gaps in the wall called ‘pollen apertures’. Pollen apertures can open and close, aiding reproduction and protecting pollen grains from dehydration. The number, location, and shape of pollen apertures vary between different plant species, but are consistent within the same species. In the plant species Arabidopsis thaliana, pollen normally develops three long and narrow, equally spaced apertures, but it remains unclear how pollen grains control the number and location of aperture domains. Zhou et al. found that mutations in two closely related A. thaliana proteins – ELMOD_A and MCR – alter the number and positions of pollen apertures. When A. thaliana plants were genetically modified so that they would produce different levels of ELMOD_A and MCR, Zhou et al. observed that when more of these proteins were present in a pollen grain, more apertures were generated on the pollen surface. This finding suggests that the levels of these proteins must be tightly regulated to control pollen aperture numbers. Further tests revealed that another related protein, called ELMOD_E, also has a role in domain formation. When artificially produced in developing pollen grains, it interfered with the activity of ELMOD_A and MCR, changing pollen aperture shape, number, and location. Zhou et al. identified a group of proteins that help control the formation of domains in the cell membranes of A. thaliana pollen grains. Further research will be required to determine what exactly these proteins do to promote formation of aperture domains and whether similar proteins control domain development in other organisms.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United States
| | - Prativa Amom
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United States
| | - Sarah H Reeder
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United States
| | - Byung Ha Lee
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United States
| | - Adam Helton
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United States
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, United States
| |
Collapse
|
7
|
Wei C, Zhao W, Fan R, Meng Y, Yang Y, Wang X, Foroud NA, Liu D, Yu X. Genome-wide survey of the F-box/Kelch (FBK) members and molecular identification of a novel FBK gene TaAFR in wheat. PLoS One 2021; 16:e0250479. [PMID: 34293801 PMCID: PMC8298115 DOI: 10.1371/journal.pone.0250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
F-box proteins play critical roles in plant responses to biotic/abiotic stresses. In the present study, a total of 68 wheat F-box/Kelch (TaFBK) genes, unevenly distributed across 21 chromosomes and encoding 74 proteins, were identified in EnsemblPlants. Protein sequences were compared with those of Arabidopsis and three cereal species by phylogenetic and domain analyses, where the wheat sequences were resolved into 6 clades. In silico analysis of a digital PCR dataset revealed that TaFBKs were expressed at multiple developmental stages and tissues, and in response to drought and/or heat stresses. The TaFBK19 gene, a homolog of the Attenuated Far-Red Response (AFR) genes in other plant species, and hence named TaAFR, was selected for further analysis. Reverse-transcription quantitative real-time PCR (RT-qPCR) was carried out to determine tissue-specific, hormone and stress (abiotic/biotic) responsive expression patterns. Of interest, TaAFR was expressed most abundantly in the leaves, and its expression in response to leaf rust variants suggests a potential role in compatible vs incompatible rust responses. The protein was predicted to localize in cytosol, but it was shown experimentally to localize in both the cytosol and the nucleus of tobacco. A series of protein interaction studies, starting with a yeast-2-hybrid (Y2H) library screen (wheat leaf infected with incompatible leaf rust pathogens), led to the identification of three TaAFR interacting proteins. Skp1/ASK1-like protein (Skp1) was found to interact with the F-box domain of TaAFR, while ADP-ribosylation factor 2-like isoform X1 (ARL2) and phenylalanine ammonia-lyase (PAL) were shown to interact with its Kelch domain. The data presented herein provides a solid foundation from which the function and metabolic network of TaAFR and other wheat FBKs can be further explored.
Collapse
Affiliation(s)
- Chunru Wei
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Weiquan Zhao
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Runqiao Fan
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuyu Meng
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yiming Yang
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Daqun Liu
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail:
| |
Collapse
|
8
|
Molecular evolution and expression analysis of ADP-ribosylation factors (ARFs) from longan embryogenic callus. Gene 2021; 777:145461. [PMID: 33515723 DOI: 10.1016/j.gene.2021.145461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
ADP-ribosylation modification considered as a model to study histone post-translational modification in chromatin modification. Despite it was reported in many plants, the study of ARFs gene family in longan was still unclear. In this study, 14 longan ARFs genes were identified using the longan genome (the third-generation genome) and further divided into two major groups, including the DlARF in the I-II group and the ARF-like (DlARL) in the III-V group, according to their structure and evolutionary characteristics. Whole-genome duplication (WGD) and segmental duplication events played a major role in the expansion of the DlARFs gene family, the synteny and phylogenetic analyses provided a deeper insight into the evolutionary characteristics of the DlARFs. Protein-protein interactions suggested that some DlARFs proteins may interact to participate in biological processes. Promoter analysis showed more stress response elements in DlARF5, DlGB1, DlARL1, DlARL2, and DlARL8a, suggesting that they may participate in abiotic stress. Expression profiles of DlARFs by quantitative real-time PCR (qRT-PCR) showed that they were abundant accumulation during early somatic embryogenesis (SE). Expression pattern analysis of RNA-seq and qRT-PCR revealed that some ARFs members regulated early SE, and respond to exogenous hormones and abiotic stress such as abscisic acid (ABA), gibberellin A3 (GA3), salicylic acid (SA), methyl jasmonate (MeJA), cold, and heat. Our study provides new insights for further research on the potential function of DlARFs, which may be useful for the improvement of longan.
Collapse
|
9
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
10
|
Schiavon CR, Turn RE, Newman LE, Kahn RA. ELMOD2 regulates mitochondrial fusion in a mitofusin-dependent manner, downstream of ARL2. Mol Biol Cell 2019; 30:1198-1213. [PMID: 30865555 PMCID: PMC6724520 DOI: 10.1091/mbc.e18-12-0804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are essential and dynamic organelles undergoing constant fission and fusion. The primary players in mitochondrial morphology (MFN1/2, OPA1, DRP1) have been identified, but their mechanism(s) of regulation are still being elucidated. ARL2 is a regulatory GTPase that has previously been shown to play a role in the regulation of mitochondrial morphology. Here we demonstrate that ELMOD2, an ARL2 GTPase-activating protein (GAP), is necessary for ARL2 to promote mitochondrial elongation. We show that loss of ELMOD2 causes mitochondrial fragmentation and a lower rate of mitochondrial fusion, while ELMOD2 overexpression promotes mitochondrial tubulation and increases the rate of fusion in a mitofusin-dependent manner. We also show that a mutant of ELMOD2 lacking GAP activity is capable of promoting fusion, suggesting that ELMOD2 does not need GAP activity to influence mitochondrial morphology. Finally, we show that ELMOD2, ARL2, Mitofusins 1 and 2, Miros 1 and 2, and mitochondrial phospholipase D (mitoPLD) all localize to discrete, regularly spaced puncta along mitochondria. These results suggest that ELMOD2 is functioning as an effector downstream of ARL2 and upstream of the mitofusins to promote mitochondrial fusion. Our data provide insights into the pathway by which mitochondrial fusion is regulated in the cell.
Collapse
Affiliation(s)
- Cara R Schiavon
- Cancer Biology and bBiochemistry, Cell, and Developmental Biology Graduate Programs, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322
| | - Rachel E Turn
- Cancer Biology and bBiochemistry, Cell, and Developmental Biology Graduate Programs, Graduate Division of Biomedical and Biological Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322
| | - Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
11
|
Francis JW, Goswami D, Novick SJ, Pascal BD, Weikum ER, Ortlund EA, Griffin PR, Kahn RA. Nucleotide Binding to ARL2 in the TBCD∙ARL2∙β-Tubulin Complex Drives Conformational Changes in β-Tubulin. J Mol Biol 2017; 429:3696-3716. [PMID: 28970104 DOI: 10.1016/j.jmb.2017.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
Microtubules are highly dynamic tubulin polymers that are required for a variety of cellular functions. Despite the importance of a cellular population of tubulin dimers, we have incomplete information about the mechanisms involved in the biogenesis of αβ-tubulin heterodimers. In addition to prefoldin and the TCP-1 Ring Complex, five tubulin-specific chaperones, termed cofactors A-E (TBCA-E), and GTP are required for the folding of α- and β-tubulin subunits and assembly into heterodimers. We recently described the purification of a novel trimer, TBCD•ARL2•β-tubulin. Here, we employed hydrogen/deuterium exchange coupled with mass spectrometry to explore the dynamics of each of the proteins in the trimer. Addition of guanine nucleotides resulted in changes in the solvent accessibility of regions of each protein that led to predictions about each's role in tubulin folding. Initial testing of that model confirmed that it is ARL2, and not β-tubulin, that exchanges GTP in the trimer. Comparisons of the dynamics of ARL2 monomer to ARL2 in the trimer suggested that its protein interactions were comparable to those of a canonical GTPase with an effector. This was supported by the use of nucleotide-binding assays that revealed an increase in the affinity for GTP by ARL2 in the trimer. We conclude that the TBCD•ARL2•β-tubulin complex represents a functional intermediate in the β-tubulin folding pathway whose activity is regulated by the cycling of nucleotides on ARL2. The co-purification of guanine nucleotide on the β-tubulin in the trimer is also shown, with implications to modeling the pathway.
Collapse
Affiliation(s)
- Joshua W Francis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Devrishi Goswami
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
12
|
Newman LE, Schiavon CR, Turn RE, Kahn RA. The ARL2 GTPase regulates mitochondrial fusion from the intermembrane space. CELLULAR LOGISTICS 2017; 7:e1340104. [PMID: 28944094 PMCID: PMC5602422 DOI: 10.1080/21592799.2017.1340104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023]
Abstract
Mitochondria are essential, dynamic organelles that regularly undergo both fusion and fission in response to cellular conditions, though mechanisms of the regulation of their dynamics are incompletely understood. We provide evidence that increased activity of the small GTPase ARL2 is strongly correlated with an increase in fusion, while loss of ARL2 activity results in a decreased rate of mitochondrial fusion. Strikingly, expression of activated ARL2 can partially restore the loss of fusion resulting from deletion of either mitofusin 1 (MFN1) or mitofusin 2 (MFN2), but not deletion of both. We only observe the full effects of ARL2 on mitochondrial fusion when it is present in the intermembrane space (IMS), as constructs driven to the matrix or prevented from entering mitochondria are essentially inactive in promoting fusion. Thus, ARL2 is the first regulatory (small) GTPase shown to act inside mitochondria or in the fusion pathway. Finally, using high-resolution, structured illumination microscopy (SIM), we find that ARL2 and mitofusin immunoreactivities present as punctate staining along mitochondria that share a spatial convergence in fluorescence signals. Thus, we propose that ARL2 plays a regulatory role in mitochondrial fusion, acting from the IMS and requiring at least one of the mitofusins in their canonical role in fusion of the outer membranes.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Cara R. Schiavon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Newman LE, Schiavon CR, Zhou C, Kahn RA. The abundance of the ARL2 GTPase and its GAP, ELMOD2, at mitochondria are modulated by the fusogenic activity of mitofusins and stressors. PLoS One 2017; 12:e0175164. [PMID: 28380071 PMCID: PMC5381910 DOI: 10.1371/journal.pone.0175164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/21/2017] [Indexed: 12/05/2022] Open
Abstract
Mitochondria are essential, dynamic organelles that respond to a number of stressors with changes in morphology that are linked to several mitochondrial functions, though the mechanisms involved are poorly understood. We show that the levels of the regulatory GTPase ARL2 and its GAP, ELMOD2, are specifically increased at mitochondria in immortalized mouse embryo fibroblasts deleted for Mitofusin 2 (MFN2), but not MFN1. Elevated ARL2 and ELMOD2 in MEFs deleted for MFN2 could be reversed by re-introduction of MFN2, but only when the mitochondrial fragmentation in these MEFs was also reversed, demonstrating that reversal of elevated ARL2 and ELMOD2 requires the fusogenic activity of MFN2. Other stressors with links to mitochondrial morphology were investigated and several, including glucose or serum deprivation, also caused increases in ARL2 and ELMOD2. In contrast, a number of pharmacological inhibitors of energy metabolism caused increases in ARL2 without affecting ELMOD2 levels. Together we interpret these data as evidence of two ARL2-sensitive pathways in mitochondria, one affecting ATP levels that is independent of ELMOD2 and the other leading to mitochondrial fusion involving MFN2 that does involve ELMOD2.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cara R. Schiavon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chengjing Zhou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Francis JW, Turn RE, Newman LE, Schiavon C, Kahn RA. Higher order signaling: ARL2 as regulator of both mitochondrial fusion and microtubule dynamics allows integration of 2 essential cell functions. Small GTPases 2016; 7:188-196. [PMID: 27400436 PMCID: PMC5129891 DOI: 10.1080/21541248.2016.1211069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
ARL2 is among the most highly conserved proteins, predicted to be present in the last eukaryotic common ancestor, and ubiquitously expressed. Genetic screens in multiple model organisms identified ARL2, and its cytosolic binding partner cofactor D (TBCD), as important in tubulin folding and microtubule dynamics. Both ARL2 and TBCD also localize to centrosomes, making it difficult to dissect these effects. A growing body of evidence also has found roles for ARL2 inside mitochondria, as a regulator of mitochondrial fusion. Other studies have revealed roles for ARL2, in concert with its closest paralog ARL3, in the traffic of farnesylated cargos between membranes and specifically to cilia and photoreceptor cells. Details of each of these signaling processes continue to emerge. We summarize those data here and speculate about the potential for cross-talk or coordination of cell regulation, termed higher order signaling, based upon the use of a common GTPase in disparate cell functions.
Collapse
Affiliation(s)
- Joshua W. Francis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Cara Schiavon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Chen K, Koe CT, Xing ZB, Tian X, Rossi F, Wang C, Tang Q, Zong W, Hong WJ, Taneja R, Yu F, Gonzalez C, Wu C, Endow S, Wang H. Arl2- and Msps-dependent microtubule growth governs asymmetric division. J Cell Biol 2016; 212:661-76. [PMID: 26953351 PMCID: PMC4792071 DOI: 10.1083/jcb.201503047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
Drosophila Arl2 governs neuroblast asymmetric cell division through regulation of microtubule growth and localization of Msps to centrosomes. Asymmetric division of neural stem cells is a fundamental strategy to balance their self-renewal and differentiation. It is long thought that microtubules are not essential for cell polarity in asymmetrically dividing Drosophila melanogaster neuroblasts (NBs; neural stem cells). Here, we show that Drosophila ADP ribosylation factor like-2 (Arl2) and Msps, a known microtubule-binding protein, control cell polarity and spindle orientation of NBs. Upon arl2 RNA intereference, Arl2-GDP expression, or arl2 deletions, microtubule abnormalities and asymmetric division defects were observed. Conversely, overactivation of Arl2 leads to microtubule overgrowth and depletion of NBs. Arl2 regulates microtubule growth and asymmetric division through localizing Msps to the centrosomes in NBs. Moreover, Arl2 regulates dynein function and in turn centrosomal localization of D-TACC and Msps. Arl2 physically associates with tubulin cofactors C, D, and E. Arl2 functions together with tubulin-binding cofactor D to control microtubule growth, Msps localization, and NB self-renewal. Therefore, Arl2- and Msps-dependent microtubule growth is a new paradigm regulating asymmetric division of neural stem cells.
Collapse
Affiliation(s)
- Keng Chen
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857 National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Chwee Tat Koe
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857 National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Zhanyuan Benny Xing
- Department of Cell Biology, Duke University, Duke University Medical Center, Durham, NC 27710
| | - Xiaolin Tian
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Fabrizio Rossi
- Institute for Research in Biomedicine Barcelona, 08028 Barcelona, Spain
| | - Cheng Wang
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117604
| | - Wenhui Zong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117604
| | - Wan Jin Hong
- Institute of Molecular and Cell Biology, Singapore 138673
| | - Reshma Taneja
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Fengwei Yu
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857 National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117604
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine Barcelona, 08028 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Sharyn Endow
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857 Department of Cell Biology, Duke University, Duke University Medical Center, Durham, NC 27710
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857 National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
16
|
Gillmor CS, Roeder AHK, Sieber P, Somerville C, Lukowitz W. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis. PLoS One 2016; 11:e0146492. [PMID: 26745275 PMCID: PMC4712874 DOI: 10.1371/journal.pone.0146492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.
Collapse
Affiliation(s)
- C. Stewart Gillmor
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Adrienne H. K. Roeder
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Patrick Sieber
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
| | - Chris Somerville
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Wolfgang Lukowitz
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wang Q, Xue X, Li Y, Dong Y, Zhang L, Zhou Q, Deng F, Ma Z, Qiao D, Hu C, Ren Y. A maize ADP-ribosylation factor ZmArf2 increases organ and seed size by promoting cell expansion in Arabidopsis. PHYSIOLOGIA PLANTARUM 2016; 156:97-107. [PMID: 26096810 DOI: 10.1111/ppl.12359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
ADP-ribosylation factors (ARFs) are small GTP-binding proteins that regulate a wide variety of cell functions. Previously, we isolated a new ARF, ZmArf2, from maize (Zea mays). Sequence and expression characteristics indicated that ZmArf2 might play a critical role in the early stages of endosperm development. In this study, we investigated ZmArf2 function by analysis of its GTP-binding activity and subcellular localization. We also over-expressed ZmArf2 in Arabidopsis and measured organ and cell size and counted cell numbers. The expression levels of five organ size-associated genes were also determined in 35S::ZmArf2 transgenic and wild-type plants. Results showed that the recombinant ZmArf2 protein purified from Escherichia coli exhibited GTP-binding activity. Subcellular localization revealed that ZmArf2 was localized in the cytoplasm and plasma membrane. ZmArf2 over-expression in Arabidopsis showed that 35S::ZmArf2 transgenic plants were taller and had larger leaves and seeds compared to wild-type plants, which resulted from cell expansions, not an increase in cell numbers. In addition, three cell expansion-related genes, AtEXP3, AtEXP5 and AtEXP10, were upregulated in 35S::ZmArf2 transgenic lines, while the expression levels of AtGIF1 and AtGRF5, were unchanged. Collectively, our studies suggest that ZmArf2 has an active GTP-binding function, and plays a crucial role in growth and development in Arabidopsis through cell expansion mediated by cell expansion genes.
Collapse
Affiliation(s)
- Qilei Wang
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Xiaojing Xue
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yuling Li
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yongbin Dong
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Long Zhang
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Qiang Zhou
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Fei Deng
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhiyan Ma
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Dahe Qiao
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Chunhui Hu
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yangliu Ren
- College of Agriculture, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
18
|
Abstract
Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
- Address correspondence to
| |
Collapse
|
19
|
Newman LE, Zhou CJ, Mudigonda S, Mattheyses AL, Paradies E, Marobbio CMT, Kahn RA. The ARL2 GTPase is required for mitochondrial morphology, motility, and maintenance of ATP levels. PLoS One 2014; 9:e99270. [PMID: 24911211 PMCID: PMC4050054 DOI: 10.1371/journal.pone.0099270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023] Open
Abstract
ARF-like 2 (ARL2) is a member of the ARF family and RAS superfamily of regulatory GTPases, predicted to be present in the last eukaryotic common ancestor, and essential in a number of model genetic systems. Though best studied as a regulator of tubulin folding, we previously demonstrated that ARL2 partially localizes to mitochondria. Here, we show that ARL2 is essential to a number of mitochondrial functions, including mitochondrial morphology, motility, and maintenance of ATP levels. We compare phenotypes resulting from ARL2 depletion and expression of dominant negative mutants and use these to demonstrate that the mitochondrial roles of ARL2 are distinct from its roles in tubulin folding. Testing of current models for ARL2 actions at mitochondria failed to support them. Rather, we found that knockdown of the ARL2 GTPase activating protein (GAP) ELMOD2 phenocopies two of three phenotypes of ARL2 siRNA, making it a likely effector for these actions. These results add new layers of complexity to ARL2 signaling, highlighting the need to deconvolve these different cell functions. We hypothesize that ARL2 plays essential roles inside mitochondria along with other cellular functions, at least in part to provide coupling of regulation between these essential cell processes.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cheng-jing Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samatha Mudigonda
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alexa L. Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eleonora Paradies
- Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, Bari, Italy
| | | | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
20
|
Karan R, Subudhi PK. Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2014; 33:373-84. [PMID: 24247851 DOI: 10.1007/s00299-013-1537-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/21/2013] [Accepted: 11/02/2013] [Indexed: 05/11/2023]
Abstract
Adenosine diphosphate-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that play an important role in intracellular protein trafficking necessary for undertaking multiple physiological functions in plant growth and developmental processes. However, little is known about the mechanism of ARF functioning at the molecular level, as well as its involvement in abiotic stress tolerance. In this study, we demonstrated the direct involvement of an ARF gene SaARF from a grass halophyte Spartina alterniflora in abiotic stress adaptation for the first time. SaARF, which encodes a protein with predicted molecular mass of 21 kDa, revealed highest identity with ARF of Oryza sativa. The SaARF gene is transcriptionally regulated by salt, drought, cold, and ABA in the leaves and roots of S. alterniflora. Arabidopsis plants overexpressing SaARF showed improved seed germination and survival of seedlings under salinity stress. Similarly, SaARF transgenic Arabidopsis plants were more tolerant to drought stress, compared to wild-type plants, by maintaining chlorophyll synthesis, increasing osmolyte synthesis, and stabilizing membrane integrity. Oxidative damage due to moisture stress in transgenic Arabidopsis was also reduced possibly by activating antioxidant genes, AtSOD1 and AtCAT. Our results suggest that enhanced drought and salinity tolerance conferred by the SaARF gene may be due to its role in mediating multiple abiotic stress tolerance mechanisms.
Collapse
Affiliation(s)
- Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
21
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
22
|
Wang TZ, Xia XZ, Zhao MG, Tian QY, Zhang WH. Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:227-235. [PMID: 23298681 DOI: 10.1016/j.plaphy.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
To understand the role of small GTPases in response to abiotic stress, we isolated a gene encoding a small GTPase, designated MfARL1, from a subtracted cDNA library in Medicago falcata, a native legume species in semi-arid grassland in northern China. The function of MfARL1 in response to salt stress was studied by expressing MfARL1 in Arabidopsis. Wild-type (WT) and transgenic plants constitutively expressing MfARL1 showed comparable phenotype when grown under control conditions. Germination of seeds expressing MfARL1 was less suppressed by salt stress than that of WT seeds. Transgenic seedlings had higher survival rate than WT seedlings under salt stress, suggesting that expression of MfARL1 confers tolerance to salt stress. The physiological and molecular mechanisms underlying these phenomena were elucidated. Salt stress led to a significant decrease in chlorophyll contents in WT plants, but not in transgenic plants. Transgenic plants accumulated less amounts of H(2)O(2) and malondialdehyde than their WT counterparts under salt stress, which can be accounted for by the higher catalase activities, lower activities of superoxide dismutase, and peroxidase in transgenic plants than in WT plants. Transgenic plants displayed lower Na(+)/K(+) ratio due to less accumulation of Na(+) than wild-type under salt stress conditions. The lower Na(+)/K(+) ratio may result from less accumulation of Na(+) due to reduced expression of AtHKT1 that encodes Na(+) transporter in transgenic plants under salt stress. These findings demonstrate that MfARL1 encodes a novel stress-responsive small GTPase that is involved in tolerance to salt stress.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China.
| | | | | | | | | |
Collapse
|
23
|
Cornejo P, Camadro E, Masuelli R. Molecular bases of the postzygotic barriers in interspecific crosses between the wild potato species Solanum acaule and Solanum commersonii. Genome 2012; 55:605-14. [DOI: 10.1139/g2012-047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the molecular bases of postzygotic hybridization barriers in tuber-bearing Solanums, the wild species Solanum commersonii Dunal ex Poir. (cmm, 2n = 2x = 24, 1EBN) and Solanum acaule Bitter (acl, 2n = 4x = 48, 2EBN) were crossed in intra- and interspecific genotypic combinations, and the transcriptome of immature seeds was analyzed by using the cDNA-AFLP technique. From a total of 423 analyzed cDNA fragments, 107 (25.3%) were differentially regulated in the compatible (acl × acl and cmm × cmm) versus incompatible (acl × cmm) crosses. DNA sequence data were obtained from 21 fragments and RT–PCR analyses were carried out with five fragments to validate the cDNA-AFLP differential pattern. Sequence analysis suggested a possible role for the differentially expressed sequences in cytokinesis, cell cycle, secondary and hormonal metabolism, biodegradation, and transport. In situ hybridization experiments with fragments encoding an ubiquitin-fold modifier 1 precursor and a possible vesicle transport protein revealed expression of these genes in the embryo and endosperm. The results suggest that the collapse of the embryo and endosperm in incompatible crosses may be related to alterations in cell cycle and cytokinesis.
Collapse
Affiliation(s)
- P. Cornejo
- EEA La Consulta INTA, Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo and CONICET, Alte. Brown 500 (M5528AHB), Mendoza, Argentina
| | - E.L. Camadro
- EEA Balcarce, INTA-FCA, UNMdP and CONICET, C.C. 276 (7620) Balcarce, Bs. As, Argentina
| | - R.W. Masuelli
- EEA La Consulta INTA, Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo and CONICET, Alte. Brown 500 (M5528AHB), Mendoza, Argentina
| |
Collapse
|
24
|
Wang K, Li P, Dong Y, Cai X, Hou D, Guo J, Yin Y, Zhang Y, Li J, Liang H, Yu B, Chen J, Zen K, Zhang J, Zhang CY, Chen X. A microarray-based approach identifies ADP ribosylation factor-like protein 2 as a target of microRNA-16. J Biol Chem 2011; 286:9468-76. [PMID: 21199864 DOI: 10.1074/jbc.m110.178335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
microRNAs (miRNAs) are generally thought to negatively regulate the expression of their target genes by mRNA degradation or by translation repression. Here we show an efficient way to identify miRNA target genes by screening alterations in global mRNA levels following changes in miRNA levels. In this study, we used mRNA microarrays to measure global mRNA expression in three cell lines with increased or decreased levels of miR-16 and performed bioinformatics analysis based on multiple target prediction algorithms. For further investigation among the predicted miR-16 target genes, we selected genes that show an expression pattern opposite to that of miR-16. One of the candidate target genes that may interact with miR-16, ADP-ribosylation factor-like protein 2 (ARL2), was further investigated. First, ARL2 was deduced to be an ideal miR-16 target by computational predictions. Second, ARL2 mRNA and protein levels were significantly abolished by treatment with miR-16 precursors, whereas a miR-16 inhibitor increased ARL2 mRNA and protein levels. Third, a luciferase reporter assay confirmed that miR-16 directly recognizes the 3'-untranslated region (3'-UTR) of ARL2. Finally, we showed that miR-16 could regulate proliferation and induce a significant G0/G1 cell cycle arrest, which was due at least in part, to the down-regulation of ARL2. In summary, the present study suggests that integrating global mRNA profiling and bioinformatics tools may provide the basis for further investigation of the potential targets of a given miRNA. These results also illustrate a novel function of miR-16 targeting ARL2 in modulating proliferation and cell cycle progression.
Collapse
Affiliation(s)
- Kehui Wang
- Jiangsu Diabetes Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The Arf-like (Arl) small GTPases have a diverse range of functions in the eukaryotic cell. Metazoan Arl2 acts as a regulator of microtubule biogenesis, binding to the tubulin-specific chaperone cofactor D. Arl2 also has a mitochondrial function through its interactions with BART and ANT-1, the only member of the Ras superfamily to be found in this organelle to date. In the present study, we describe characterization of the Arl2 orthologue in the protozoan parasite Trypanosoma brucei. Modulation of TbARL2 expression in bloodstream form parasites by RNA interference (RNAi) causes inhibition of cleavage furrow formation, resulting in a severe defect in cytokinesis and the accumulation of multinucleated cells. RNAi of TbARL2 also results in loss of acetylated alpha-tubulin but not of total -tubulin from cellular microtubules. While overexpression of TbARL2(myc) also leads to a defect in cytokinesis, an excess of untagged protein has no effect on cell division, demonstrating the importance of the extreme C-terminus in correct function. TbARL2 overexpressing cells (either myc-tagged or untagged) have an increase in acetylated -tubulin. Our data indicate that Arl2 has a fundamentally conserved role in trypanosome microtubule biogenesis that correlates with -tubulin acetylation.
Collapse
|
26
|
Thellmann M, Rybak K, Thiele K, Wanner G, Assaad FF. Tethering factors required for cytokinesis in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:720-32. [PMID: 20713617 PMCID: PMC2948999 DOI: 10.1104/pp.110.154286] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
At the end of the cell cycle, the nascent cross wall is laid down within a transient membrane compartment referred to as the cell plate. Tethering factors, which act by capturing vesicles and holding them in the vicinity of their target membranes, are likely to play an important role in the first stages of cell plate assembly. Factors required for cell plate biogenesis, however, remain to be identified. In this study, we used a reverse genetic screen to isolate tethering factors required for cytokinesis in Arabidopsis (Arabidopsis thaliana). We focused on the TRAPPI and TRAPPII (for transport protein particle) tethering complexes, which are thought to be required for the flow of traffic through the Golgi and for trans-Golgi network function, as well as on the GARP complex, thought to be required for the tethering of endocytotic vesicles to the trans-Golgi network. We found weak cytokinesis defects in some TRAPPI mutants and strong cytokinesis defects in all the TRAPPII lines we surveyed. Indeed, four insertion lines at the TRAPPII locus AtTRS120 had canonical cytokinesis-defective seedling-lethal phenotypes, including cell wall stubs and incomplete cross walls. Confocal and electron microscopy showed that in trs120 mutants, vesicles accumulated at the equator of dividing cells yet failed to assemble into a cell plate. This shows that AtTRS120 is required for cell plate biogenesis. In contrast to the TRAPP complexes, we found no conclusive evidence for cytokinesis defects in seven GARP insertion lines. We discuss the implications of these findings for the origin and identity of cell plate membranes.
Collapse
|
27
|
Jiang K, Zhu T, Diao Z, Huang H, Feldman LJ. The maize root stem cell niche: a partnership between two sister cell populations. PLANTA 2010; 231:411-24. [PMID: 20041334 PMCID: PMC2799627 DOI: 10.1007/s00425-009-1059-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/05/2009] [Indexed: 05/19/2023]
Abstract
Using transcript profile analysis, we explored the nature of the stem cell niche in roots of maize (Zea mays). Toward assessing a role for specific genes in the establishment and maintenance of the niche, we perturbed the niche and simultaneously monitored the spatial expression patterns of genes hypothesized as essential. Our results allow us to quantify and localize gene activities to specific portions of the niche: to the quiescent center (QC) or the proximal meristem (PM), or to both. The data point to molecular, biochemical and physiological processes associated with the specification and maintenance of the niche, and include reduced expression of metabolism-, redox- and certain cell cycle-associated transcripts in the QC, enrichment of auxin-associated transcripts within the entire niche, controls for the state of differentiation of QC cells, a role for cytokinins specifically in the PM portion of the niche, processes (repair machinery) for maintaining DNA integrity and a role for gene silencing in niche stabilization. To provide additional support for the hypothesized roles of the above-mentioned and other transcripts in niche specification, we overexpressed, in Arabidopsis, homologs of representative genes (eight) identified as highly enriched or reduced in the maize root QC. We conclude that the coordinated changes in expression of auxin-, redox-, cell cycle- and metabolism-associated genes suggest the linkage of gene networks at the level of transcription, thereby providing additional insights into events likely associated with root stem cell niche establishment and maintenance.
Collapse
Affiliation(s)
- Keni Jiang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Tong Zhu
- Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 USA
| | - Zhaoyan Diao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Haiyan Huang
- Department of Statistics, University of California, Berkeley, CA 94720 USA
| | - Lewis J. Feldman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
28
|
Nielsen E, Cheung AY, Ueda T. The regulatory RAB and ARF GTPases for vesicular trafficking. PLANT PHYSIOLOGY 2008; 147:1516-26. [PMID: 18678743 PMCID: PMC2492611 DOI: 10.1104/pp.108.121798] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/23/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
29
|
Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, Suzuki K, Ishikawa A, Koshi T, Matsui R, Muto S, Matsui M. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. PLANT PHYSIOLOGY 2008; 147:1924-35. [PMID: 18567831 PMCID: PMC2492639 DOI: 10.1104/pp.108.118364] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/02/2008] [Indexed: 05/18/2023]
Abstract
We have isolated two dominant mutants from screening approximately 50,000 RIKEN activation-tagging lines that have short inflorescence internodes. The activation T-DNAs were inserted near a putative basic helix-loop-helix (bHLH) gene and expression of this gene was increased in the mutant lines. Overexpression of this bHLH gene produced the original mutant phenotype, indicating it was responsible for the mutants. Specific expression was observed during seed development. The loss-of-function mutation of the RETARDED GROWTH OF EMBRYO1 (RGE1) gene caused small and shriveled seeds. The embryo of the loss-of-function mutant showed retarded growth after the heart stage although abnormal morphogenesis and pattern formation of the embryo and endosperm was not observed. We named this bHLH gene RGE1. RGE1 expression was determined in endosperm cells using the beta-glucuronidase reporter gene and reverse transcription-polymerase chain reaction. Microarray and real-time reverse transcription-polymerase chain reaction analysis showed specific down-regulation of putative GDSL motif lipase genes in the rge1-1 mutant, indicating possible involvement of these genes in seed morphology. These data suggest that RGE1 expression in the endosperm at the heart stage of embryo development plays an important role in controlling embryo growth.
Collapse
Affiliation(s)
- Youichi Kondou
- Plant Functional Genomics Research Group, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao CJ, Wang AR, Shi YJ, Wang LQ, Liu WD, Wang ZH, Lu GD. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:501-16. [PMID: 18075727 DOI: 10.1007/s00122-007-0686-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 11/23/2007] [Indexed: 05/04/2023]
Abstract
Rice sheath blight, caused by Rhizoctonia solani is one of the major diseases of rice. The pathogen infects rice plants directly through stomata or using lobate appressoria and hyphal masses called infection cushions. The infection structures were normally found at 36 h post-inoculation. During infection, the pathogenesis-related genes, PR1b and PBZ1 were induced in rice plants. To identify rice genes induced early in the defense response, suppression subtractive hybridization (SSH) was used to generate a cDNA library enriched for transcripts differentially expressed during infection by R. solani. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced. Fifty unique cDNA clones were found and assigned to five different functional categories. Most of the genes were not previously identified as being induced in response to pathogens. We examined expression of 100 rice genes induced by infection with Magnaporthe grisea, Xanthomonas oryzae pv. oryze (Xoo) and X. oryzae pv. oryzicola (Xooc). Twenty-five of them were found to be differentially expressed after the sheath blight infection, suggesting overlap of defense responses to different fungal and bacterial pathogens infection.
Collapse
Affiliation(s)
- Chang-Jiang Zhao
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Lycett G. The role of Rab GTPases in cell wall metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4061-74. [PMID: 18945942 DOI: 10.1093/jxb/ern255] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The synthesis and modification of the cell wall must involve the production of new cell wall polymers and enzymes. Their targeted secretion to the apoplast is one of many potential control points. Since Rab GTPases have been strongly implicated in the regulation of vesicle trafficking, a review of their involvement in cell wall metabolism should throw light on this possibility. Cell wall polymer biosynthesis occurs mainly in the Golgi apparatus, except for cellulose and callose, which are made at the plasma membrane by an enzyme complex that cycles through the endomembrane system and which may be regulated by this cycling. Several systems, including the growth of root hairs and pollen tubes, cell wall softening in fruit, and the development of root nodules, are now being dissected. In these systems, secretion of wall polymers and modifying enzymes has been documented, and Rab GTPases are highly expressed. Reverse genetic experiments have been used to interfere with these GTPases and this is revealing their importance in regulation of trafficking to the wall. The role of the RabA (or Rab11) GTPases is particularly exciting in this respect.
Collapse
Affiliation(s)
- Grantley Lycett
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Near Loughborough, LE12 5RD, UK.
| |
Collapse
|
32
|
Lee MH, Sano H. Attenuation of the hypersensitive response by an ATPase associated with various cellular activities (AAA) protein through suppression of a small GTPase, ADP ribosylation factor, in tobacco plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:127-39. [PMID: 17559512 DOI: 10.1111/j.1365-313x.2007.03124.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
ATPase associated with various cellular activities (AAA) proteins are commonly distributed among eukaryotes, and are involved in a multitude of cellular functions. NtAAA1 is one such example, being involved in pathogen response in tobacco plants. When its activity was suppressed in RNAi transgenic tobacco plants, an elevated resistance to the pathogenic bacterium Pseudomonas syringae was observed in comparison with the wild type. As AAA proteins function through interaction with specific partners, NtAAA1-interacting proteins were screened by the yeast two-hybrid assay, and one particular gene encoding a small GTPase, an ADP ribosylation factor, was identified and designated as NtARF. Its specific binding to NtAAA1 was confirmed by in vitro pull-down assay, and their interaction was predominant between active forms of NtARF and NtAAA1, each bound to GTP and ATP, respectively. Their physical interaction in vivo around the plasma membrane was shown by fluorescence resonance energy transfer assays, suggesting their role in membrane trafficking. Transgenic tobacco plants constitutively expressing NtARF under the control of a cauliflower mosaic virus 35S promoter exhibited spontaneous and wound-induced lesion formation, and enhanced resistance to pathogen attack. Expression of NtAAA1 in leaves of NtARF transgenic plants attenuated lesion and suppressed pathogen resistance. In wild-type tobacco plants, transcripts of NtAAA1 and NtARF could be induced by ethylene and salicylic acid, respectively. These results suggest that NtAAA1 balances plant resistance through suppression of NtARF, and that the molecular basis for the known antagonistic actions of ethylene and salicylic acid in defense response could be partly attributable to these two proteins.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | |
Collapse
|
33
|
Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inzé D, Delledonne M, Van Breusegem F. Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. PLANT PHYSIOLOGY 2006; 141:404-11. [PMID: 16603664 PMCID: PMC1475440 DOI: 10.1104/pp.106.078444] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are regulatory molecules in various developmental processes and stress responses. Tobacco (Nicotiana tabacum) leaves exposed to moderate high light dramatically potentiated NO-mediated cell death in catalase-deficient (CAT1AS) but not in wild-type plants, providing genetic evidence for a partnership between NO and H(2)O(2) during the induction of programmed cell death. With this experimental model system, the specific impact on gene expression was characterized by either NO or H(2)O(2) alone or both molecules combined. By means of genome-wide cDNA-amplified fragment length polymorphism analysis, transcriptional changes were compared in high light-treated CAT1AS and wild-type leaves treated with or without the NO donor sodium nitroprusside. Differential gene expression was detected for 214 of the approximately 8,000 transcript fragments examined. For 108 fragments, sequence analysis revealed homology to genes with a role in signal transduction, defense response, hormone interplay, proteolysis, transport, and metabolism. Surprisingly, only 16 genes were specifically induced by the combined action of NO and H(2)O(2), whereas the majority were regulated by either of them alone. At least seven transcription factors were mutually up-regulated, indicating significant overlap between NO and H(2)O(2) signaling pathways. These results consolidate significant cross-talk between NO and H(2)O(2), provide new insight into the early transcriptional response of plants to increased NO and H(2)O(2) levels, and identify target genes of the combined action of NO and H(2)O(2) during the induction of plant cell death.
Collapse
Affiliation(s)
- Elisa Zago
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ding YH, Liu NY, Tang ZS, Liu J, Yang WC. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. THE PLANT CELL 2006; 18:815-30. [PMID: 16489121 PMCID: PMC1425853 DOI: 10.1105/tpc.105.039495] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 01/03/2006] [Accepted: 01/26/2006] [Indexed: 05/05/2023]
Abstract
Precise control of gene expression is critical for embryo development in both animals and plants. We report that Arabidopsis thaliana GLUTAMINE-RICH PROTEIN23 (GRP23) is a pentatricopeptide repeat (PPR) protein that functions as a potential regulator of gene expression during early embryogenesis in Arabidopsis. Loss-of-function mutations of GRP23 caused the arrest of early embryo development. The vast majority of the mutant embryos arrested before the 16-cell dermatogen stage, and none of the grp23 embryos reached the heart stage. In addition, 19% of the mutant embryos displayed aberrant cell division patterns. GRP23 encodes a polypeptide with a Leu zipper domain, nine PPRs at the N terminus, and a Gln-rich C-terminal domain with an unusual WQQ repeat. GRP23 is a nuclear protein that physically interacts with RNA polymerase II subunit III in both yeast and plant cells. GRP23 is expressed in developing embryos up to the heart stage, as revealed by beta-glucuronidase reporter gene expression and RNA in situ hybridization. Together, our data suggest that GRP23, by interaction with RNA polymerase II, likely functions as a transcriptional regulator essential for early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Yong-He Ding
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | | | | | | | | |
Collapse
|
35
|
Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 2006; 17:2476-87. [PMID: 16525022 PMCID: PMC1446103 DOI: 10.1091/mbc.e05-10-0929] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arl2 and Arl3 are closely related members of the Arf family of regulatory GTPases that arose from a common ancestor early in eukaryotic evolution yet retain extensive structural, biochemical, and functional features. The presence of Arl3 in centrosomes, mitotic spindles, midzones, midbodies, and cilia are all supportive of roles in microtubule-dependent processes. Knockdown of Arl3 by siRNA resulted in changes in cell morphology, increased acetylation of alpha-tubulin, failure of cytokinesis, and increased number of binucleated cells. We conclude that Arl3 binds microtubules in a regulated manner to alter specific aspects of cytokinesis. In contrast, an excess of Arl2 activity, achieved by expression of the [Q70L]Arl2 mutant, caused the loss of microtubules and cell cycle arrest in M phase. Initial characterization of the underlying defects suggests a defect in the ability to polymerize tubulin in the presence of excess Arl2 activity. We also show that Arl2 is present in centrosomes and propose that its action in regulating tubulin polymerization is mediated at centrosomes. Somewhat paradoxically, no phenotypes were observed Arl2 expression was knocked down or Arl3 activity was increased in HeLa cells. We conclude that Arl2 and Arl3 have related but distinct roles at centrosomes and in regulating microtubule-dependent processes.
Collapse
Affiliation(s)
- Chengjing Zhou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050, USA
| | | | | | | | | |
Collapse
|
36
|
Radchuk R, Radchuk V, Weschke W, Borisjuk L, Weber H. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. PLANT PHYSIOLOGY 2006; 140:263-78. [PMID: 16361518 PMCID: PMC1326049 DOI: 10.1104/pp.105.071167] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 11/01/2005] [Accepted: 11/01/2005] [Indexed: 05/05/2023]
Abstract
The classic role of SUCROSE NONFERMENTING-1 (Snf1)-like kinases in eukaryotes is to adapt metabolism to environmental conditions such as nutrition, energy, and stress. During pea (Pisum sativum) seed maturation, developmental programs of growing embryos are adjusted to changing physiological and metabolic conditions. To understand regulation of the switch from cell proliferation to differentiation, SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE (SnRK1) was antisense repressed in pea seeds. Transgenic seeds show maturation defects, reduced conversion of sucrose into storage products, lower globulin content, frequently altered cotyledon surface, shape, and symmetry, as well as occasional precocious germination. Gene expression analysis of embryos using macroarrays of 5,548 seed-specific genes revealed 183 differentially expressed genes in two clusters, either delayed down-regulated or delayed up-regulated during transition. Delayed down-regulated genes are related to mitotic activity, gibberellic acid/brassinosteroid synthesis, stress response, and Ca2+ signal transduction. This specifies a developmentally younger status and conditional stress. Higher gene expression related to respiration/gluconeogenesis/fermentation is consistent with a role of SnRK1 in repressing energy-consuming processes in maturing cotyledons under low oxygen/energy availability. Delayed up-regulated genes are mainly related to storage protein synthesis and stress tolerance. Most of the phenotype resembles abscisic acid (ABA) insensitivity and may be explained by reduced Abi-3 expression. This may cause a reduction in ABA functions and/or a disconnection between metabolic and ABA signals, suggesting that SnRK1 is a mediator of ABA functions during pea seed maturation. SnRK1 repression also impairs gene expression associated with differentiation, independent from ABA functions, like regulation and signaling of developmental events, chromatin reorganization, cell wall synthesis, biosynthetic activity of plastids, and regulated proteolysis.
Collapse
Affiliation(s)
- Ruslana Radchuk
- Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
37
|
Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. PLANT MOLECULAR BIOLOGY 2006; 60:167-83. [PMID: 16429258 DOI: 10.1007/s11103-005-3381-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 09/22/2005] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis (SE) is the developmental reprogramming of somatic cells toward the embryogenesis pathway and is a notable illustration of cell totipotency. To identify genes involved in SE, subtractive polymerase chain reaction (PCR) was performed to generate transcripts highly enriched for SE-related genes, using cDNA prepared from a mixture of embryogenic callus and pre-globular somatic embryos, as the tester, and cDNA from non-embryogenic callus, as the driver. After differential screening and subsequent confirmation by reverse Northern blot analysis, a total of 671 differentially expressed cDNA fragments were identified, and 242 uni-genes significantly up-regulated during cotton SE were recovered, as confirmed by Northern blot and reverse-transcription PCR analysis of representative cases, including most previously published SE-related genes in plants. In total, more than half had not been identified previously as SE-related genes, including dominant crucial genes involved in transcription, post-transcription, and transportation, and about one-third had not been reported previously to GenBank or were expected to be unknown, or newly identified genes. We used cDNA arrays to further investigate the expression patterns of these genes in differentiating gradient culture, ranging from pro-embryogenic masses to somatic embryos at every stage. The cDNA collection is composed of a broad repertoire of SE genes which is an important resource for understanding the genetic interactions underlying SE signaling and regulation. Our results suggested that a complicated and concerted mechanism involving multiple cellular pathways is responsible for cotton SE. This report represents a systematic and comprehensive analysis of genes involved in the process of somatic embryogenesis.
Collapse
Affiliation(s)
- Fanchang Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Database mining and phylogenetic analysis of the Arf (ADP-ribosylation factor) superfamily revealed the presence in mammals of at least 22 members, including the six Arfs, two Sars and 14 Arl (Arf-like) proteins. At least six Arf family members were found in very early eukaryotes, including orthologues of Arf, Sar, Arl2, Arl3, Arl6 and Arl8. While roles for Arfs in membrane traffic are well known, those for most of the Arls remain unknown. Depletion in cells of the most closely related human Arf proteins, Arf1-Arf5, reveals specificities among their cellular roles and suggests that they may function in pairs at different steps in endocytic and secretory membrane traffic. In addition, recent results from a number of laboratories suggest that several of the Arl proteins may be involved in different aspects of microtubule-dependent functions. Thus, a second major role for Arf family GTPases, that of regulating microtubules, is emerging. Because membrane traffic is often dependent upon movement of vesicles along microtubules this raises the possibility that these two fundamental functions of Arf family members, regulation of vesicle traffic and microtubule dynamics, diverged from one function of Arfs in the earliest cells that has continued to branch and allow additional levels of regulation.
Collapse
|
39
|
Hanzal-Bayer M, Linari M, Wittinghofer A. Properties of the interaction of Arf-like protein 2 with PDEdelta. J Mol Biol 2005; 350:1074-82. [PMID: 15979089 DOI: 10.1016/j.jmb.2005.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/04/2005] [Accepted: 05/18/2005] [Indexed: 02/06/2023]
Abstract
Arf-like proteins (Arl) share certain characteristic features with the Arf subfamily of Ras superfamily proteins, but their function is unknown. Here, we show by a variety of spectroscopic techniques that Arl2, unlike most other Ras-related proteins, has micromolar rather than picomolar affinity for nucleotides. As a consequence of low affinity, nucleotide dissociation rates are rather fast, arguing that it is not regulated by guanine nucleotide exchange factors. Arl2 is isolated as prey in a yeast double hybrid screen using phosphodiesterase 6delta (PDEdelta) as bait. This interaction is dependent on GTP, and the binding of PDEdelta substantially stabilizes GTP binding, increasing affinity and decreasing dissociation rates by a similar factor. Among all Arl proteins tested, PDEdelta only interacted with the closely related proteins Arl2 and Arl3, strongly suggesting that Arl2/3 are specific regulators of PDEdelta.
Collapse
Affiliation(s)
- Michael Hanzal-Bayer
- Max-Planck-Institute for Molecular Physiology, Department of Structural Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | |
Collapse
|
40
|
Thomann A, Brukhin V, Dieterle M, Gheyeselinck J, Vantard M, Grossniklaus U, Genschik P. Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:437-48. [PMID: 16045478 DOI: 10.1111/j.1365-313x.2005.02467.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cullin (CUL)-dependent ubiquitin ligases form a class of structurally related multisubunit enzymes that control the rapid and selective degradation of important regulatory proteins involved in cell cycle progression and development, among others. The CUL3-BTB ligases belong to this class of enzymes and despite recent findings on their molecular composition, our knowledge on their functions and substrates remains still very limited. In contrast to budding and fission yeast, CUL3 is an essential gene in metazoans. The model plant Arabidopsis thaliana encodes two related CUL3 genes, called CUL3A and CUL3B. We recently reported that cul3a loss-of-function mutants are viable but exhibit a mild flowering and light sensitivity phenotype. We investigated the spatial and temporal expression of the two CUL3 genes in reproductive tissues and found that their expression patterns are largely overlapping suggesting possible functional redundancy. Thus, we investigated the consequences on plant development of combined Arabidopsis cul3a cul3b loss-of-function mutations. Homozygous cul3b mutant plants developed normally and were fully fertile. However, the disruption of both the CUL3A and CUL3B genes reduced gametophytic transmission and caused embryo lethality. The observed embryo abortion was found to be under maternal control. Arrest of embryogenesis occurred at multiple stages of embryo development, but predominantly at the heart stage. At the cytological level, CUL3 loss-of-function mutations affected both embryo pattern formation and endosperm development.
Collapse
Affiliation(s)
- Alexis Thomann
- Institut de Biologie Moléculaire des Plantes du CNRS, 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Li Y, Kelly WG, Logsdon JM, Schurko AM, Harfe BD, Hill-Harfe KL, Kahn RA. Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J 2005; 18:1834-50. [PMID: 15576487 DOI: 10.1096/fj.04-2273com] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ADP-ribosylation factor (Arf) and Arf-like (Arl) proteins are a family of highly conserved 21 kDa GTPases that emerged early in the evolution of eukaryotes. These proteins serve regulatory roles in vesicular traffic, lipid metabolism, microtubule dynamics, development, and likely other cellular processes. We found evidence for the presence of 6 Arf family members in the protist Giardia lamblia and 22 members in mammals. A phylogenetic analysis was performed to delineate the evolutionary relationships among Arf family members and to attempt to organize them by both their evolutionary origins and functions in cells and/or organisms. The approximately 100 protein sequences analyzed from animals, fungi, plants, and protists clustered into 11 groups, including Arfs, nine Arls, and Sar proteins. To begin functional analyses of the family in a metazoan model organism, we examined roles for all three C. elegans Arfs (Arf-1, Arf-3, and Arf-6) and three Arls (Arl-1, Arl-2, and Arl-3) by use of RNA-mediated interference (RNAi). Injection of double-stranded RNA (dsRNA) encoding Arf-1 or Arf-3 into N2 hermaphrodites produced embryonic lethality in their offspring and, later, sterility in the injected animals themselves. Injection of Arl-2 dsRNA resulted in a disorganized germline and sterility in early offspring, with later offspring exhibiting an early embryonic arrest. Thus, of the six Arf family members examined in C. elegans, at least three are required for embryogenesis. These data represent the first analysis of the role(s) of multiple members of this family in the development of a multicellular organism.
Collapse
Affiliation(s)
- Yawei Li
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Many of the patterning mechanisms in plants were discovered while studying postembryonic processes and resemble mechanisms operating during animal development. The emergent role of the plant hormone auxin, however, seems to represent a plant-specific solution to multicellular patterning. This review summarizes our knowledge on how diverse mechanisms that were first dissected at the postembryonic level are now beginning to provide an understanding of plant embryogenesis.
Collapse
Affiliation(s)
- Viola Willemsen
- Department of Molecular Genetics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
43
|
Abstract
ADP-ribosylation factor (Arf) GTP-binding proteins are among the best-characterized members of the Ras superfamily of GTPases, with well-established functions in membrane-trafficking pathways. A recent watershed of genomic and structural information has identified a family of conserved related proteins: the Arf-like (Arl) GTPases. The best-characterized Arl protein, Arl2, regulates the folding of beta tubulin, and recent data suggest that Arl1 and Arf-related protein 1 (ARFRP1) are localized to the trans-Golgi network (TGN), where they function, in part, to regulate the tethering of endosome-derived transport vesicles. Other Arl proteins are localized to the cytosol, nucleus, cytoskeleton and mitochondria, which indicates that Arl proteins have diverse roles that are distinct from the known functions of traditional Arf GTPases.
Collapse
Affiliation(s)
- Christopher G Burd
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| | | | | |
Collapse
|
44
|
Pan R, Lee YRJ, Liu B. Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. PLANTA 2004; 220:156-64. [PMID: 15258761 DOI: 10.1007/s00425-004-1324-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 05/11/2004] [Indexed: 05/11/2023]
Abstract
During plant cytokinesis, kinesin-related motor proteins are believed to play critical roles in microtubule organization and vesicle transport in the phragmoplast. Previously, we reported that the motor AtPAKRP1 was associated with the plus end of phragmoplast microtubules in Arabidopsis thaliana [Lee Y-RJ, Liu B (2000) Curr Biol 10:797-800]. In this paper, we report a full-length cDNA from the same organism, which encodes a polypeptide 74% identical to AtPAKRP1. This AtPAKRP1-like protein--AtPAKRP1L--and AtPAKRP1 share similar domain structures along the polypeptides. Peptide antibodies were raised and purified to distinguish the two polypeptides in vitro and in vivo. When monospecific anti-AtPAKRP1 and anti-AtPAKRP1L antibodies were used in immunofluorescence, they both decorated the plus end of phragmoplast microtubules at all stages of phragmoplast development. Their localization patterns were indistinguishable from each other. By using bacterially expressed fusion proteins of motor-less versions of both polypeptides, it was revealed that AtPAKRP1 and AtPAKRP1L were able to interact with themselves and with each other. Using T-DNA insertional mutants, it was also demonstrated that AtPAKRP1 and AtPAKRP1L were not required for each other's localization. Our results therefore indicate that AtPAKRP1 and AtPAKRP1L are both expressed in the same cells, and likely have identical functions in the phragmoplast by forming either homodimers or heterodimers.
Collapse
Affiliation(s)
- Ruiqin Pan
- Section of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
45
|
Memon AR. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:9-30. [PMID: 15238254 DOI: 10.1016/j.bbamem.2004.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 03/22/2004] [Accepted: 04/19/2004] [Indexed: 12/27/2022]
Abstract
Ras-like small GTP binding proteins regulate a wide variety of intracellular signalling and vesicular trafficking pathways in eukaryotic cells including plant cells. They share a common structure that operates as a molecular switch by cycling between active GTP-bound and inactive GDP-bound conformational states. The active GTP-bound state is regulated by guanine nucleotide exchange factors (GEF), which promote the exchange of GDP for GTP. The inactive GDP-bound state is promoted by GTPase-activating proteins (GAPs) which accelerate GTP hydrolysis by orders of magnitude. Two types of small GTP-binding proteins, ADP-ribosylation factor (Arf) and secretion-associated and Ras-related (Sar), are major regulators of vesicle biogenesis in intracellular traffic and are founding members of a growing family that also includes Arf-related proteins (Arp) and Arf-like (Arl) proteins. The most widely involved small GTPase in vesicular trafficking is probably Arf1, which not only controls assembly of COPI- and AP1, AP3, and AP4/clathrin-coated vesicles but also recruits other proteins to membranes, including some that may be components of further coats. Recent molecular, structural and biochemical studies have provided a wealth of detail of the interactions between Arf and the proteins that regulate its activity as well as providing clues for the types of effector molecules which are controlled by Arf. Sar1 functions as a molecular switch to control the assembly of protein coats (COPII) that direct vesicle budding from ER. The crystallographic analysis of Sar1 reveals a number of structurally unique features that dictate its function in COPII vesicle formation. In this review, I will summarize the current knowledge of Arf and Sar regulation in vesicular trafficking in mammalian and yeast cells and will highlight recent advances in identifying the elements involved in vesicle formation in plant cells. Additionally, I will briefly discuss the similarities and dissimilarities of vesicle traffic in plant, mammalian and yeast cells.
Collapse
Affiliation(s)
- Abdul R Memon
- TUBITAK, Research Institute for Genetic Engineering and Biotechnology, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey.
| |
Collapse
|
46
|
Lu G, Jantasuriyarat C, Zhou B, Wang GL. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:525-34. [PMID: 14605807 DOI: 10.1007/s00122-003-1451-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 08/20/2003] [Indexed: 05/11/2023]
Abstract
To identify early-induced defense genes involved in broad-spectrum resistance to rice blast, suppression subtractive hybridization was used to generate two cDNA libraries enriched for transcripts differentially expressed in Pi9(t)-resistant and -susceptible plants. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced and analyzed. Forty-seven unique cDNA clones were found and assigned to eight different groups according to the putative function of their homologous genes in the database. These genes may be involved in pathogen or stress response, signal transduction, transcription, cell transport, metabolism, energy or protein destination. Northern blot analysis showed that most of these genes were induced or suppressed after blast infection, and that half of them showed differential expression patterns between compatible and incompatible interactions. Interestingly, all but one of the identified genes are reported here for the first time to be involved in defense response to rice blast. In addition, hybridization of these clones with cDNAs synthesized from RNA samples from bacterial blight-infected leaves showed that few of them are induced or repressed in Xa21- or Xa7-resistant plants, suggesting a minimum overlap of defense responses mediated by different resistance genes to fungal and bacterial pathogens at an early stage of infection. Further characterization and functional analysis of these genes will enhance our understanding of the molecular mechanism of broad-spectrum resistance in rice.
Collapse
Affiliation(s)
- G Lu
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
47
|
Olsen OA. Nuclear endosperm development in cereals and Arabidopsis thaliana. THE PLANT CELL 2004; 16 Suppl:S214-27. [PMID: 15010513 PMCID: PMC2643391 DOI: 10.1105/tpc.017111] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Odd-Arne Olsen
- Pioneer Hi-Bred International, A DuPont Company, Johnston, Iowa 50131, USA.
| |
Collapse
|
48
|
Boisson B, Giglione C, Meinnel T. Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote. J Biol Chem 2003; 278:43418-29. [PMID: 12912986 DOI: 10.1074/jbc.m307321200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Myristoylation is an irreversible modification that affects the membrane binding properties of crucial cytoplasmic proteins from signal transduction cascades. We characterized the two putative N-myristoyltransferases of Arabidopsis thaliana as a means of investigating the entire N-myristoylation proteome (N-myristoylome) in a higher eukaryote. AtNMT1 compensated for the nmt1 defect in yeast, whereas AtNMT2 and chimeras of the two genes did not. Only AtNMT1 modified known N-myristoylated proteins in vitro. AtNMT1 is therefore responsible for the A. thaliana N-myristoylome, whereas AtNMT2 does not seem to have usual myristoylation activity. We began with the whole set of N-myristoylated G proteins in the A. thaliana proteome. We then used a reiterative approach, based on the in vitro N-myristoylation of more than 60 different polypeptides, to determine the substrate specificity of AtNMT1. We found that the positive charge on residue 7 of the substrate was particularly important in substrate recognition. The A. thaliana N-myristoylome consists of 437 proteins, accounting for 1.7% of the complete proteome. We demonstrated the N-myristoylation of several unexpected protein families, including innate immunity proteins, thioredoxins, components of the protein degradation pathway, transcription factors, and a crucial regulatory enzyme of glycolysis. The role of N-myristoylation is discussed in each case; in particular, this process may underlie the "guard" hypothesis of innate immunity.
Collapse
Affiliation(s)
- Bertrand Boisson
- Protein Maturation Group, Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex, France
| | | | | |
Collapse
|
49
|
Wang H, Hill K, Perry SE. An Arabidopsis RNA lariat debranching enzyme is essential for embryogenesis. J Biol Chem 2003; 279:1468-73. [PMID: 14570879 DOI: 10.1074/jbc.m309106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An embryo-defective mutant of Arabidopsis thaliana was isolated that arrests development at a variety of stages, from as early as the globular stage of embryogenesis to as late as formation of an abnormal bent cotyledon stage embryo. Defects in the suspensor, a normally transient structure derived from the fertilized egg, were often associated with the arrested embryo. The lesion was within a gene encoding a protein with domains characteristic of lariat debranching enzymes, which has been named AtDBR1 (for Arabidopsis thaliana Debranching enzyme 1). Cleavage of the 2'-5'-phosphodiester bond found in excised intron lariats ("debranching") is essential for turnover of intronic sequences as well as generation of some small nucleolar RNAs. The mutation within AtDBR1 was confirmed by complementation as being responsible for the embryo-lethal phenotype, and the activity of the encoded protein in cleavage of 2'-5'-phosphodiester bonds was verified using an in vitro debranching assay.
Collapse
Affiliation(s)
- Huai Wang
- Department of Agronomy, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | |
Collapse
|
50
|
Suh MC, Kim MJ, Hur CG, Bae JM, Park YI, Chung CH, Kang CW, Ohlrogge JB. Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. PLANT MOLECULAR BIOLOGY 2003; 52:1107-23. [PMID: 14682612 DOI: 10.1023/b:plan.0000004304.22770.e9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sesame (Sesamum indicum) is an important oilseed crop which produces seeds with 50% oil that have a distinct flavor and contains antioxidant lignans. Because sesame lignans are known to have antioxidant and health-protecting properties, metabolic pathways for lignans have been of interest in developing sesame seeds. As an initial approach to identify genes involved in accumulation of storage products and in the biosynthesis of antioxidant lignans, 3328 expressed sequence tags (ESTs) were obtained from a cDNA library of immature seeds 5-25 days old. ESTs were clustered and analyzed by the BLASTX or FASTAX program against the GenBank NR and Arabidopsis proteome databases. To compare gene expression profiles during development of green and non-green seeds, a comparative analysis was carried out between developing sesame and Arabidopsis seed ESTs. Analyses of these two seed EST sets have helped to identify similar and different gene expression profiles during seed development, and to identify a large number of sesame seed-specific genes. In particular, we have identified EST candidates for genes possibly involved in biosynthesis of sesame lignans, sesamin and sesamolin, and also suggest a possible metabolic pathway for the generation of cofactors required for synthesis of storage lipid in non-green oilseeds. Seed-specific expression of several candidate genes has been confirmed by northern blot analysis.
Collapse
Affiliation(s)
- Mi Chung Suh
- Graduate School of Biotechnology, Korea University, 1,5-Ka, Anam-dong, Sungbuk-ku, Seoul 136-701, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|