1
|
Wang X, Yang C, Zhu W, Weng Z, Li F, Teng Y, Zhou K, Qian M, Deng Q. Transcriptomic Analysis Reveals the Mechanism of Color Formation in the Peel of an Evergreen Pomegranate Cultivar 'Danruo No.1' During Fruit Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2903. [PMID: 39458853 PMCID: PMC11511302 DOI: 10.3390/plants13202903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pomegranate (Punica granatum L.) is an ancient fruit crop that has been cultivated worldwide and is known for its attractive appearance and functional metabolites. Fruit color is an important index of fruit quality, but the color formation pattern in the peel of evergreen pomegranate and the relevant molecular mechanism is still unknown. In this study, the contents of pigments including anthocyanins, carotenoids, and chlorophyll in the peel of 'Danruo No. 1' pomegranate fruit during three developmental stages were measured, and RNA-seq was conducted to screen key genes regulating fruit color formation. The results show that pomegranate fruit turned from green to red during development, with a dramatic increase in a* value, indicating redness and anthocyanins concentration, and a decrease of chlorophyll content. Moreover, carotenoids exhibited a decrease-increase accumulation pattern. Through RNA-seq, totals of 30, 18, and 17 structural genes related to anthocyanin biosynthesis, carotenoid biosynthesis and chlorophyll metabolism were identified from differentially expressed genes (DEGs), respectively. Transcription factors (TFs) such as MYB, bHLH, WRKY and AP2/ERF were identified as key candidates regulating pigment metabolism by K-means analysis and weighted gene co-expression network analysis (WGCNA). The results provide an insight into the theory of peel color formation in evergreen pomegranate fruit.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chengkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wencan Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhongrui Weng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Feili Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuanwen Teng
- Hainan Institute of Zhejiang University, Sanya 572000, China;
| | - Kaibing Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Minjie Qian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qin Deng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Yu X, Xie Y, Wang L, Li L, Jiang S, Zhu Y, Xie H, Cui L, Wei Y, Xiao Y, Cai Q, Zheng Y, Chen L, Xie H, Zhang J. Transcription factor NAC78 cooperates with NAC78 interacting protein 6 to confer drought tolerance in rice. PLANT PHYSIOLOGY 2024; 196:1642-1658. [PMID: 39082752 DOI: 10.1093/plphys/kiae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/19/2024] [Indexed: 10/03/2024]
Abstract
NAC (NAM, ATAF1/2, and CUC2) family transcription factors are involved in several cellular processes, including responses to drought, salinity, cold, and submergence. However, whether or how certain NAC proteins regulate drought tolerance in rice (Oryza sativa) remain unclear. In this study, we show that overexpression of OsNAC78 enhanced rice resistance to drought treatment, whereas Osnac78 mutant plants were susceptible to drought stress. We further characterized the OsNAC78 interacting protein, named NAC78 interacting protein 6 (OsNACIP6), and found that it conferred rice drought tolerance. Our results demonstrate that OsNACIP6 enhanced the transcription of OsNAC78 and promoted the expression of its downstream target OsGSTU37, encoding a glutathione reductase. The ABRE4 cis-element in the promoter region of OsNACIP675-1-127 conferred significant upregulation of OsNACIP6 expression and initiated the OsNACIP6/OsNAC78-OsGSTU37 module that facilitates rice growth under drought conditions. Together, our results uncover a transcriptional module composed of OsNACIP6, OsNAC78, and OsGSTU37 and provide insights into the molecular mechanisms underlying the drought stress response in rice.
Collapse
Affiliation(s)
- Xiangzhen Yu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yunjie Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Lanning Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Lele Li
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Shengfei Jiang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Liping Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| |
Collapse
|
3
|
Fan K, Wu Y, Mao Z, Yin K, He Y, Pan X, Zhu X, Liao C, Cui L, Jia Q, Li Z. A novel NAC transcription factor ZmNAC55 negatively regulates drought stress in Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108938. [PMID: 39067103 DOI: 10.1016/j.plaphy.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Drought stress is a major limit on the maize growth and productivity, and understanding the drought response mechanism is one of the important ways to improve drought resistance in maize. However, more drought-related genes and their regulated mechanisms are still to be reported. Here, we identified a novel NAC transcription factor ZmNAC55 in Zea mays and comprehensively investigated the functions of ZmNAC55 under drought stress. ZmNAC55 belonged to the NAP subfamily. ZmNAC55 had a conserved NAC domain in the N-terminal region and a divergent TAR region in the C-terminal region. ZmNAC55 was a nuclear protein, and ZmNAC55 and its TAR region had the transcriptional activation activity. Furthermore, the expression level of ZmNAC55 in leaves could be highly induced by drought stress. ZmNAC55 overexpression in Arabidopsis conferred the drought-sensitive phenotype with higher water loss, lower survival rate, higher membrane ion leakage, and higher expression levels of some drought-related genes. Meanwhile, ZmNAC55 underexpression in maize enhanced drought tolerance with lower water loss, higher survival rate, lower membrane ion leakage and lower expression levels of some drought-related genes. In addition, ZmNAC55 appeared to be very key in regulating ROS production under drought stress. Moreover, ZmNAC55 could activate ZmHOP3 expression by binding to its promoter. A novel working model of ZmNAC55 under drought stress could be found in maize. Taken together, the NAC transcription factor ZmNAC55 could negatively regulate drought stress via increasing ZmHOP3 expression in maize. ZmNAC55 is a promising candidate for improving drought resistance in maize.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuchen Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijun Mao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kan Yin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi He
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinfeng Pan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaxiao Zhu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changjian Liao
- Crop Research Institute, Fujian Academy of Agricultural Sciences/Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Fuzhou, 350013, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
| | - Qi Jia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhaowei Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Xu P, Ma W, Feng H, Cai W. The NAC056 transcription factor confers freezing tolerance by positively regulating expression of CBFs and NIA1 in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100923. [PMID: 38637986 PMCID: PMC11287163 DOI: 10.1016/j.xplc.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Freezing stress can seriously affect plant growth and development, but the mechanisms of these effects and plant responses to freezing stress require further exploration. Here, we identified a NAM, ATAF1/2, and CUC2 (NAC)-family transcription factor (TF), NAC056, that can promote freezing tolerance in Arabidopsis. NAC056 mRNA levels are strongly induced by freezing stress in roots, and the nac056 mutant exhibits compromised freezing tolerance. NAC056 acts positively in response to freezing by directly promoting key C-repeat-binding factor (CBF) pathway genes. Interestingly, we found that CBF1 regulates nitrate assimilation by regulating the nitrate reductase gene NIA1 in plants; therefore, NAC056-CBF1-NIA1 form a regulatory module for the assimilation of nitrate and the growth of roots under freezing stress. In addition, 35S::NAC056 transgenic plants show enhanced freezing tolerance, which is partially reversed in the cbfs triple mutant. Thus, NAC056 confers freezing tolerance through the CBF pathway, mediating plant responses to balance growth and freezing stress tolerance.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China.
| | - Wei Ma
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Huafeng Feng
- Department of Food Science, College of Hospitality Management, Shanghai Business School, Shanghai 200235, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
5
|
Yu S, Wu M, Wang X, Li M, Gao X, Xu X, Zhang Y, Liu X, Yu L, Zhang Y. Common Bean ( Phaseolus vulgaris L.) NAC Transcriptional Factor PvNAC52 Enhances Transgenic Arabidopsis Resistance to Salt, Alkali, Osmotic, and ABA Stress by Upregulating Stress-Responsive Genes. Int J Mol Sci 2024; 25:5818. [PMID: 38892008 PMCID: PMC11172058 DOI: 10.3390/ijms25115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The NAC family of transcription factors includes no apical meristem (NAM), Arabidopsis thaliana transcription activator 1/2 (ATAF1/2), and cup-shaped cotyledon (CUC2) proteins, which are unique to plants, contributing significantly to their adaptation to environmental challenges. In the present study, we observed that the PvNAC52 protein is predominantly expressed in the cell membrane, cytoplasm, and nucleus. Overexpression of PvNAC52 in Arabidopsis strengthened plant resilience to salt, alkali, osmotic, and ABA stresses. PvNAC52 significantly (p < 0.05) reduced the degree of oxidative damage to cell membranes, proline content, and plant water loss by increasing the expression of MSD1, FSD1, CSD1, POD, PRX69, CAT, and P5CS2. Moreover, the expression of genes associated with abiotic stress responses, such as SOS1, P5S1, RD29A, NCED3, ABIs, LEAs, and DREBs, was enhanced by PvNAC52 overexpression. A yeast one-hybrid assay showed that PvNAC52 specifically binds to the cis-acting elements ABRE (abscisic acid-responsive elements, ACGTG) within the promoter. This further suggests that PvNAC52 is responsible for the transcriptional modulation of abiotic stress response genes by identifying the core sequence, ACGTG. These findings provide a theoretical foundation for the further analysis of the targeted cis-acting elements and genes downstream of PvNAC52 in the common bean.
Collapse
Affiliation(s)
- Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Mingxu Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xiaoqin Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Mukai Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xinhan Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xiangru Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Yutao Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xinran Liu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
| |
Collapse
|
6
|
Shu L, Li L, Jiang YQ, Yan J. Advances in membrane-tethered NAC transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112034. [PMID: 38365003 DOI: 10.1016/j.plantsci.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Transcription factors are central components in cell signal transduction networks and are critical regulators for gene expression. It is estimated that approximately 10% of all transcription factors are membrane-tethered. MTFs (membrane-bound transcription factors) are latent transcription factors that are inherently anchored in the cellular membrane in a dormant form. When plants encounter environmental stimuli, they will be released from the membrane by intramembrane proteases or by the ubiquitin proteasome pathway and then were translocated to the nucleus. The capacity to instantly activate dormant transcription factors is a critical strategy for modulating diverse cellular functions in response to external or internal signals, which provides an important transcriptional regulatory network in response to sudden stimulus and improves plant survival. NTLs (NTM1-like) are a small subset of NAC (NAM, ATAF1/2, CUC2) transcription factors, which contain a conserved NAC domain at the N-terminus and a transmembrane domain at the C-terminus. In the past two decades, several NTLs have been identified from several species, and most of them are involved in both development and stress response. In this review, we review the reports and findings on NTLs in plants and highlight the mechanism of their nuclear import as well as their functions in regulating plant growth and stress response.
Collapse
Affiliation(s)
- Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi province 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China.
| |
Collapse
|
7
|
Gapper NE. NACs strike again: NOR-like1 is responsible for cuticle development in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1791-1795. [PMID: 38534188 DOI: 10.1093/jxb/erae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This article comments on:
Liu G-S, Huang H, Grierson D, Gao Y, Ji X, Peng Z-Z, Li H-L, Niu X-L, Jia W, He J-L, Xiang L-T, Gao H-Y, Qu G-Q, Zhu H-L, Zhu B-Z, Luo Y-B, Fu D-Q. 2024. NAC transcription factor SlNOR-like1 plays a dual regulatory role in tomato fruit cuticle formation. Journal of Experimental Botany 75, 1903–1918.
Collapse
Affiliation(s)
- Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, New Zealand
| |
Collapse
|
8
|
Huang Y, Du B, Yu M, Cao Y, Liang K, Zhang L. Picea wilsonii NAC31 and DREB2A Cooperatively Activate ERD1 to Modulate Drought Resistance in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:2037. [PMID: 38396714 PMCID: PMC10888420 DOI: 10.3390/ijms25042037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The NAC family of transcription factors (TFs) regulate plant development and abiotic stress. However, the specific function and response mechanism of NAC TFs that increase drought resistance in Picea wilsonii remain largely unknown. In this study, we functionally characterized a member of the PwNAC family known as PwNAC31. PwNAC31 is a nuclear-localized protein with transcriptional activation activity and contains an NAC domain that shows extensive homology with ANAC072 in Arabidopsis. The expression level of PwNAC31 is significantly upregulated under drought and ABA treatments. The heterologous expression of PwNAC31 in atnac072 Arabidopsis mutants enhances the seed vigor and germination rates and restores the hypersensitive phenotype of atnac072 under drought stress, accompanied by the up-regulated expression of drought-responsive genes such as DREB2A (DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A) and ERD1 (EARLY RESPONSIVE TO DEHYDRATION STRESS 1). Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that PwNAC31 interacts with DREB2A and ABF3 (ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3). Yeast one-hybrid and dual-luciferase assays showed that PwNAC31, together with its interaction protein DREB2A, directly regulated the expression of ERD1 by binding to the DRE element of the ERD1 promoter. Collectively, our study provides evidence that PwNAC31 activates ERD1 by interacting with DREB2A to enhance drought tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Yiming Huang
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bingshuai Du
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mingxin Yu
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Kehao Liang
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Ye D, Zhang S, Gao X, Li X, Jin X, Shi M, Kai G, Zhou W. Mining of disease-resistance genes in Crocus sativus based on transcriptome sequencing. Front Genet 2024; 15:1349626. [PMID: 38370513 PMCID: PMC10869511 DOI: 10.3389/fgene.2024.1349626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction: Crocus sativus L. has an important medicinal and economic value in traditional perennial Chinese medicine. However, due to its unique growth characteristics, during cultivation it is highly susceptible to disease. The absence of effective resistance genes restricts us to breed new resistant varieties of C. sativus. Methods: In present study, comprehensive transcriptome sequencing was introduced to explore the disease resistance of the candidate gene in healthy and corm rot-infected C. sativus. Results and discussion: Totally, 43.72 Gb of clean data was obtained from the assembly to generate 65,337 unigenes. By comparing the gene expression levels, 7,575 differentially expressed genes (DEGs) were primarily screened. A majority of the DEGs were completely in charge of defense and metabolism, and 152 of them were annotated as pathogen recognition genes (PRGs) based on the PGRdb dataset. The expression of some transcription factors including NAC, MYB, and WRKY members, changed significantly based on the dataset of transcriptome sequencing. Therefore, this study provides us some valuable information for exploring candidate genes involved in the disease resistance in C. sativus.
Collapse
Affiliation(s)
- Dongdong Ye
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Zhang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiankui Gao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Min Shi
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Zhou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Yu J, Yin K, Liu Y, Li Y, Zhang J, Han X, Tong Z. Co-expression network analysis reveals PbTGA4 and PbAPRR2 as core transcription factors of drought response in an important timber species Phoebe bournei. FRONTIERS IN PLANT SCIENCE 2024; 14:1297235. [PMID: 38259934 PMCID: PMC10800493 DOI: 10.3389/fpls.2023.1297235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Phoebe bournei is one of the main afforestation tree species in subtropical regions of China and is famous for its timber. Its distribution and growth are significantly impaired by water conditions. Thus, it is essential to understand the mechanism of the stress response in P. bournei. Here, we analyzed the phenotypic changes and transcriptomic rearrangement in the leaves and roots of P. bournei seedlings grown for 0 h, 1 h, 24 h, and 72 h under simulated drought conditions (10% PEG 6000). The results showed that drought stress inhibited plant photosynthesis and increased oxidoreductase activity and abscisic acid (ABA) accumulation. Spatio-temporal transcriptomic analysis identified 2836 and 3704 differentially expressed genes (DEGs) in leaves and roots, respectively. The responsive genes in different organs presented various expression profiles at different times. Gene co-expression network analysis identified two core transcription factors, TGA4 and APRR2, from two modules that showed a strong positive correlation with ABA accumulation. Our study investigated the different responses of aboveground and belowground organs of P. bournei to drought stress and provides critical information for improving the drought resistance of this timber species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
11
|
Han K, Zhao Y, Sun Y, Li Y. NACs, generalist in plant life. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2433-2457. [PMID: 37623750 PMCID: PMC10651149 DOI: 10.1111/pbi.14161] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Collapse
Affiliation(s)
- Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
12
|
Jin SK, Xu LN, Leng YJ, Zhang MQ, Yang QQ, Wang SL, Jia SW, Song T, Wang RA, Tao T, Liu QQ, Cai XL, Gao JP. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2224-2240. [PMID: 37432878 PMCID: PMC10579716 DOI: 10.1111/pbi.14124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Starch accounts for up to 90% of the dry weight of rice endosperm and is a key determinant of grain quality. Although starch biosynthesis enzymes have been comprehensively studied, transcriptional regulation of starch-synthesis enzyme-coding genes (SECGs) is largely unknown. In this study, we explored the role of a NAC transcription factor, OsNAC24, in regulating starch biosynthesis in rice. OsNAC24 is highly expressed in developing endosperm. The endosperm of osnac24 mutants is normal in appearance as is starch granule morphology, while total starch content, amylose content, chain length distribution of amylopectin and the physicochemical properties of the starch are changed. In addition, the expression of several SECGs was altered in osnac24 mutant plants. OsNAC24 is a transcriptional activator that targets the promoters of six SECGs; OsGBSSI, OsSBEI, OsAGPS2, OsSSI, OsSSIIIa and OsSSIVb. Since both the mRNA and protein abundances of OsGBSSI and OsSBEI were decreased in the mutants, OsNAC24 functions to regulate starch synthesis mainly through OsGBSSI and OsSBEI. Furthermore, OsNAC24 binds to the newly identified motifs TTGACAA, AGAAGA and ACAAGA as well as the core NAC-binding motif CACG. Another NAC family member, OsNAP, interacts with OsNAC24 and coactivates target gene expression. Loss-of-function of OsNAP led to altered expression in all tested SECGs and reduced the starch content. These results demonstrate that the OsNAC24-OsNAP complex plays key roles in fine-tuning starch synthesis in rice endosperm and further suggest that manipulating the OsNAC24-OsNAP complex regulatory network could be a potential strategy for breeding rice cultivars with improved cooking and eating quality.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Buelbuel S, Sakuraba Y, Sedaghatmehr M, Watanabe M, Hoefgen R, Balazadeh S, Mueller-Roeber B. Arabidopsis BBX14 negatively regulates nitrogen starvation- and dark-induced leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:251-268. [PMID: 37382898 DOI: 10.1111/tpj.16374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Senescence is a highly regulated process driven by developmental age and environmental factors. Although leaf senescence is accelerated by nitrogen (N) deficiency, the underlying physiological and molecular mechanisms are largely unknown. Here, we reveal that BBX14, a previously uncharacterized BBX-type transcription factor in Arabidopsis, is crucial for N starvation-induced leaf senescence. We find that inhibiting BBX14 by artificial miRNA (amiRNA) accelerates senescence during N starvation and in darkness, while BBX14 overexpression (BBX14-OX) delays it, identifying BBX14 as a negative regulator of N starvation- and dark-induced senescence. During N starvation, nitrate and amino acids like glutamic acid, glutamine, aspartic acid, and asparagine were highly retained in BBX14-OX leaves compared to the wild type. Transcriptome analysis showed a large number of senescence-associated genes (SAGs) to be differentially expressed between BBX14-OX and wild-type plants, including ETHYLENE INSENSITIVE3 (EIN3) which regulates N signaling and leaf senescence. Chromatin immunoprecipitation (ChIP) showed that BBX14 directly regulates EIN3 transcription. Furthermore, we revealed the upstream transcriptional cascade of BBX14. By yeast one-hybrid screen and ChIP, we found that MYB44, a stress-responsive MYB transcription factor, directly binds to the promoter of BBX14 and activates its expression. In addition, Phytochrome Interacting Factor 4 (PIF4) binds to the promoter of BBX14 to repress BBX14 transcription. Thus, BBX14 functions as a negative regulator of N starvation-induced senescence through EIN3 and is directly regulated by PIF4 and MYB44.
Collapse
Affiliation(s)
- Selin Buelbuel
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| | - Yasuhito Sakuraba
- Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Mastoureh Sedaghatmehr
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| | - Mutsumi Watanabe
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rainer Hoefgen
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Salma Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| | - Bernd Mueller-Roeber
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
| |
Collapse
|
14
|
Kitavi M, Gemenet DC, Wood JC, Hamilton JP, Wu S, Fei Z, Khan A, Buell CR. Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis. PLANT DIRECT 2023; 7:e532. [PMID: 37794882 PMCID: PMC10546384 DOI: 10.1002/pld3.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar "Beauregard" was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with "cell population proliferation" suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated 'Beauregard' leaves yielding 18 co-expression modules. One module was enriched for "response to water deprivation," "response to abscisic acid," and "nitrate transport" indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato.
Collapse
Affiliation(s)
- Mercy Kitavi
- Research Technology Support Facility (RTSF)Michigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Dorcus C. Gemenet
- International Potato CenterLimaPeru
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF HouseNairobiKenya
| | - Joshua C. Wood
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Awais Khan
- International Potato CenterLimaPeru
- Present address:
Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant ScienceCornell UniversityGenevaNew YorkUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics, & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
15
|
Hiruma K, Aoki S, Takino J, Higa T, Utami YD, Shiina A, Okamoto M, Nakamura M, Kawamura N, Ohmori Y, Sugita R, Tanoi K, Sato T, Oikawa H, Minami A, Iwasaki W, Saijo Y. A fungal sesquiterpene biosynthesis gene cluster critical for mutualist-pathogen transition in Colletotrichum tofieldiae. Nat Commun 2023; 14:5288. [PMID: 37673872 PMCID: PMC10482981 DOI: 10.1038/s41467-023-40867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Plant-associated fungi show diverse lifestyles from pathogenic to mutualistic to the host; however, the principles and mechanisms through which they shift the lifestyles require elucidation. The root fungus Colletotrichum tofieldiae (Ct) promotes Arabidopsis thaliana growth under phosphate limiting conditions. Here we describe a Ct strain, designated Ct3, that severely inhibits plant growth. Ct3 pathogenesis occurs through activation of host abscisic acid pathways via a fungal secondary metabolism gene cluster related to the biosynthesis of sesquiterpene metabolites, including botrydial. Cluster activation during root infection suppresses host nutrient uptake-related genes and changes mineral contents, suggesting a role in manipulating host nutrition state. Conversely, disruption or environmental suppression of the cluster renders Ct3 beneficial for plant growth, in a manner dependent on host phosphate starvation response regulators. Our findings indicate that a fungal metabolism cluster provides a means by which infectious fungi modulate lifestyles along the parasitic-mutualistic continuum in fluctuating environments.
Collapse
Affiliation(s)
- Kei Hiruma
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Department of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Seishiro Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-0882, Japan
| | - Junya Takino
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Takeshi Higa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuniar Devi Utami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Akito Shiina
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-cho, Utsunomiya, Tochigi, 321-8505, Japan
| | - Masami Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Nanami Kawamura
- Department of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Yoshihiro Ohmori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryohei Sugita
- Radioisotope Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toyozo Sato
- Genetic Resources Center, National Agriculture and Food Research Organization, Ibaraki, 305-8602, Japan
| | - Hideaki Oikawa
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-0882, Japan
| | - Yusuke Saijo
- Department of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| |
Collapse
|
16
|
Li S, Jing X, Tan Q, Wen B, Fu X, Li D, Chen X, Xiao W, Li L. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple. FRONTIERS IN PLANT SCIENCE 2023; 14:1173107. [PMID: 37484477 PMCID: PMC10359905 DOI: 10.3389/fpls.2023.1173107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 07/25/2023]
Abstract
Drought stress is an adverse stimulus that affects agricultural production worldwide. NAC transcription factors are involved in plant development and growth but also play different roles in the abiotic stress response. Here, we isolated the apple MdNAC29 gene and investigated its role in regulating drought tolerance. Subcellular localization experiments showed that MdNAC29 was localized to the nucleus and transcription was induced by the PEG treatment. Over-expression of MdNAC29 reduced drought tolerance in apple plants, calli, and tobacco, and exhibited higher relative conductivity, malondialdehyde (MDA) content, and lower chlorophyll content under drought stress. The transcriptomic analyses revealed that MdNAC29 reduced drought resistance by modulating the expression of photosynthesis and leaf senescence-related genes. The qRT-PCR results showed that overexpression of MdNAC29 repressed the expression of drought-resistance genes. Yeast one-hybrid and dual-luciferase assays demonstrated that MdNAC29 directly repressed MdDREB2A expression. Moreover, the yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that MdNAC29 interacted with the MdPP2-B10 (F-box protein), which responded to drought stress, and MdPP2-B10 enhanced the repressive effect of MdNAC29 on the transcriptional activity of the MdDREB2A. Taken together, our results indicate that MdNAC29 is a negative regulator of drought resistance, and provide a theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiuli Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
17
|
Li AM, Liao F, Wang M, Chen ZL, Qin CX, Huang RQ, Verma KK, Li YR, Que YX, Pan YQ, Huang DL. Transcriptomic and Proteomic Landscape of Sugarcane Response to Biotic and Abiotic Stressors. Int J Mol Sci 2023; 24:ijms24108913. [PMID: 37240257 DOI: 10.3390/ijms24108913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ruo-Qi Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Xiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
18
|
Wang H, Li N, Li H, Zhang S, Zhang X, Yan X, Wang Z, Yang Y, Zhang S. Overexpression of NtGCN2 improves drought tolerance in tobacco by regulating proline accumulation, ROS scavenging ability, and stomatal closure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107665. [PMID: 37018865 DOI: 10.1016/j.plaphy.2023.107665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023]
Abstract
Drought stress is a severe threat to plants. Genes that respond to drought stress are essential for plant growth and development. General control nonderepressible 2 (GCN2) encodes a protein kinase that responds to various biotic and abiotic stresses. However, the mechanism of GCN2 in plant drought tolerance remains unclear. In the present study, the promoters of NtGCN2 from Nicotiana tabacum K326, which contained a drought-responsive Cis-acting element MYB that can be activated by drought stress, were cloned. Furthermore, the drought tolerance function of NtGCN2 was investigated using NtGCN2-overexpressed transgenic tobacco plants. NtGCN2-overexpressed transgenic plants were more tolerant to drought stress than wild-type (WT) plants. The transgenic tobacco plants exhibited higher proline and abscisic acid (ABA) contents, antioxidant enzyme activities, leaf relative water content, and expression levels of genes encoding key antioxidant enzymes and proline synthase, but lower levels of malondialdehyde and reactive oxygen species, and reduced stomatal apertures, stomatal densities, and stomatal opening rates compared to WT plants under drought stress. These results indicated that overexpression of NtGCN2 conferred drought tolerance in transgenic tobacco plants. RNA-seq analysis showed that overexpression of NtGCN2 responded to drought stress by regulating the expression of genes related to proline synthesis and catabolism, abscisic acid synthesis and catabolism, antioxidant enzymes, and ion channels in guard cells. These results showed that NtGCN2 might regulate drought tolerance by regulating proline accumulation, reactive oxygen species (ROS) scavenging, and stomatal closure in tobacco and may have the potential for application in the genetic modification of crop drought tolerance.
Collapse
Affiliation(s)
- Hao Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ning Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hang Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songjie Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoquan Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoxiao Yan
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Zhaojun Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
19
|
Kumar N, Mishra BK, Liu J, Mohan B, Thingujam D, Pajerowska-Mukhtar KM, Mukhtar MS. Network Biology Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in Arabidopsis. Int J Mol Sci 2023; 24:ijms24087349. [PMID: 37108512 PMCID: PMC10139068 DOI: 10.3390/ijms24087349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Bharat K Mishra
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Binoop Mohan
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Doni Thingujam
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Karolina M Pajerowska-Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, 464 Campbell Hall, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Department of Surgery, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294, USA
| |
Collapse
|
20
|
Shen QQ, Wang TJ, Wang JG, He LL, Zhao TT, Zhao XT, Xie LY, Qian ZF, Wang XH, Liu LF, Chen SY, Zhang SZ, Li FS. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107706. [PMID: 37119548 DOI: 10.1016/j.plaphy.2023.107706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.
Collapse
Affiliation(s)
- Qing-Qing Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Tian-Ju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, Yunnan, 675000, People's Republic of China
| | - Jun-Gang Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Li-Lian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Xue-Ting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lin-Yan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Zhen-Feng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Xian-Hong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lu-Feng Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Ying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China.
| | - Fu-Sheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China; Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
21
|
Shim JS, Jeong HI, Bang SW, Jung SE, Kim G, Kim YS, Redillas MCFR, Oh SJ, Seo JS, Kim JK. DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE enhances drought tolerance in rice. PLANT PHYSIOLOGY 2023; 191:1435-1447. [PMID: 36493384 PMCID: PMC9922417 DOI: 10.1093/plphys/kiac560] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Plants accumulate several metabolites in response to drought stress, including branched-chain amino acids (BCAAs). However, the roles of BCAAs in plant drought responses and the underlying molecular mechanisms for BCAA accumulation remain elusive. Here, we demonstrate that rice (Oryza sativa) DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (OsDIAT) mediates the accumulation of BCAAs in rice in response to drought stress. An in vitro enzyme activity assay indicated that OsDIAT is a branched-chain amino acid aminotransferase, and subcellular localization analysis revealed that OsDIAT localizes to the cytoplasm. The expression of OsDIAT was induced in plants upon exposure to abiotic stress. OsDIAT-overexpressing (OsDIATOX) plants were more tolerant to drought stress, whereas osdiat plants were more susceptible to drought stress compared with nontransgenic (NT) plants. Amino acid analysis revealed that BCAA levels were higher in OsDIATOX but lower in osdiat compared with in NT plants. Finally, the exogenous application of BCAAs improved plant tolerance to osmotic stress compared with that in control plants. Collectively, these findings suggest that OsDIAT mediates drought tolerance by promoting the accumulation of BCAAs.
Collapse
Affiliation(s)
| | | | - Seung Woon Bang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se Eun Jung
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Goeun Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Mark Christian Felipe R Redillas
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Biology, De La Salle University, Manila 1004, Philippines
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Jun Sung Seo
- Author for correspondence: (J. S. S.); (J.-K. K.)
| | - Ju-Kon Kim
- Author for correspondence: (J. S. S.); (J.-K. K.)
| |
Collapse
|
22
|
Xia L, Sun S, Han B, Yang X. NAC domain transcription factor gene GhNAC3 confers drought tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:114-123. [PMID: 36634506 DOI: 10.1016/j.plaphy.2023.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Abiotic stress seriously affects the growth, yield, and fiber quality of cotton. It is of great importance to cultivate drought-resistant and salt-tolerant cotton. NAC (NAM, ATAF1/2, and CUC2) is a plant-specific transcription factor, which is widely involved in the response to abiotic stress. Here, we discovered the GhNAC3 gene isolated from the expression profile of drought stress in cotton and verified its functions in cotton. First, GhNAC3 was strongly induced expression by drought and salt stresses. Gene structure analysis revealed that GhNAC3 had a conserved NAC domain and was homologous to several stress-related NAC transcription factors gene of Arabidopsis. Subcellular localization and transcriptional activation assays revealed that GhNAC3 was a nuclear protein with a C-terminal transcriptional activation domain. Overexpression of GhNAC3 enhanced Arabidopsis tolerance to drought stress with reduced sensitivity to ABA, characterized by increased germination and cotyledon rates under drought stress, and promoted root elongation. VIGS silencing of GhNAC3 reduced cotton tolerance to drought stress as indicated by the low water content of the leaves under drought treatment, significantly faster water loss and lower ABA content in detached leaves, along with the accumulation of more hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, GhNAC3 plays an important role in the abiotic stress of cotton, which might have great application potential in molecular breeding of cotton varieties with drought resistance.
Collapse
Affiliation(s)
- Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Bei Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
23
|
Abdelrahman M, Mostofa MG, Tran CD, El-Sayed M, Li W, Sulieman S, Tanaka M, Seki M, Tran LSP. The Karrikin Receptor Karrikin Insensitive2 Positively Regulates Heat Stress Tolerance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1914-1926. [PMID: 35880749 DOI: 10.1093/pcp/pcac112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the potential role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seedlings to high-temperature stress. We performed phenotypic, physiological and transcriptome analyses of Arabidopsis kai2 mutants and wild-type (WT) plants under control (kai2_C and WT_C, respectively) and 6- and 24-h heat stress conditions (kai2_H6, kai2_H24, WT_H6 and WT_H24, respectively) to understand the basis for KAI2-regulated heat stress tolerance. We discovered that the kai2 mutants exhibited hypersensitivity to high-temperature stress relative to WT plants, which might be associated with a more highly increased leaf surface temperature and cell membrane damage in kai2 mutant plants. Next, we performed comparative transcriptome analysis of kai2_C, kai2_H6, kai2_H24, WT_C, WT_H6 and WT_H24 to identify transcriptome differences between WT and kai2 mutants in response to heat stress. K-mean clustering of normalized gene expression separated the investigated genotypes into three clusters based on heat-treated and non-treated control conditions. Within each cluster, the kai2 mutants were separated from WT plants, implying that kai2 mutants exhibited distinct transcriptome profiles relative to WT plants. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed a repression in 'misfolded protein binding', 'heat shock protein binding', 'unfolded protein binding' and 'protein processing in endoplasmic reticulum' pathways, which was consistent with the downregulation of several genes encoding heat shock proteins and heat shock transcription factors in the kai2 mutant versus WT plants under control and heat stress conditions. Our findings suggest that chemical or genetic manipulation of KAI2 signaling may provide a novel way to improve heat tolerance in plants.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Faculty of Science, Galala University, Suez, El Sokhna 43511, Egypt
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Mohammad Golam Mostofa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Cuong Duy Tran
- Genetic Engineering Department, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Viet Nam
| | - Magdi El-Sayed
- Faculty of Science, Galala University, Suez, El Sokhna 43511, Egypt
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Khartoum North 13314, Sudan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198 Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198 Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813 Japan
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
24
|
Lau V, Provart NJ. AGENT for Exploring and Analyzing Gene Regulatory Networks from Arabidopsis. Methods Mol Biol 2023; 2698:351-360. [PMID: 37682484 DOI: 10.1007/978-1-0716-3354-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Gene regulatory networks (GRNs) are important for determining how an organism develops and how it responds to external stimuli. In the case of Arabidopsis thaliana, several GRNs have been identified covering many important biological processes. We present AGENT, the Arabidopsis GEne Network Tool, for exploring and analyzing published GRNs. Using tools in AGENT, regulatory motifs such as feed-forward loops can be easily identified. Nodes with high centrality-and hence importance-can likewise be identified. Gene expression data can also be overlaid onto GRNs to help discover subnetworks acting in specific tissues or under certain conditions.
Collapse
Affiliation(s)
- Vincent Lau
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Meng L, Chen S, Li D, Huang M, Zhu S. Genome-Wide Characterization and Evolutionary Expansion of Poplar NAC Transcription Factors and Their Tissue-Specific Expression Profiles under Drought. Int J Mol Sci 2022; 24:ijms24010253. [PMID: 36613699 PMCID: PMC9820422 DOI: 10.3390/ijms24010253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The NAC (NAM, ATAF1/2 and CUC2) is a large gene family of plant-specific transcription factors that play a pivotal role in various physiological processes and abiotic stresses. Due to the lack of genome-wide characterization, intraspecific and interspecific synteny, and drought-responsive expression pattern of NAC genes in poplar, the functional characterization of drought-related NAC genes have been scarcely reported in Populus species. Here, we identified a total of 170 NAC domain-containing genes in the P. trichocarpa genome, 169 of which were unevenly distributed on its nineteen chromosomes. These NAC genes were phylogenetically divided into twenty subgroups, some of which exhibited a similar pattern of exon-intron architecture. The synteny and Ka/Ks analysis indicated that the expansion of NAC genes in poplar was mainly due to gene duplication events occurring before and after the divergence of Populus and Salix. Ten PdNAC (P. deltoids × P. euramericana cv.'Nanlin895') genes were randomly selected and cloned. Their drought-responsive expression profiles showed a tissue-specific pattern. The transcription factor PdNAC013 was verified to be localized in the nucleus. Our research results provide genomic information for the expansion of NAC genes in the poplar genome, and for further characterizing putative poplar NAC genes associated with water-deficit.
Collapse
Affiliation(s)
- Lu Meng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Siyuan Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Minren Huang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: or
| |
Collapse
|
26
|
Wang GL, An YH, Zhou CL, Hu ZZ, Ren XQ, Xiong AS. Transcriptome-wide identification of NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors potentially involved in salt stress response in garlic. PeerJ 2022; 10:e14602. [PMID: 36570011 PMCID: PMC9774012 DOI: 10.7717/peerj.14602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.
Collapse
Affiliation(s)
- Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ya-Hong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Cheng-Ling Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhen-Zhu Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xu-Qin Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. Int J Mol Sci 2022; 23:ijms232012378. [PMID: 36293235 PMCID: PMC9604218 DOI: 10.3390/ijms232012378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety “Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the content of proline were increased, the malondialdehyde content was decreased, and the expressions of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of GmNAC3. This study provided strong scientific evidence to support further investigation of the regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating the plant response to environmental stresses.
Collapse
|
28
|
Wang M, Wang M, Zhao M, Wang M, Liu S, Tian Y, Moon B, Liang C, Li C, Shi W, Bai MY, Liu S, Zhang W, Hwang I, Xia G. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance. THE NEW PHYTOLOGIST 2022; 236:495-511. [PMID: 35751377 DOI: 10.1111/nph.18340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Initially discovered in yeast, mitochondrial retrograde signalling has long been recognised as an essential in the perception of stress by eukaryotes. However, how to maintain the optimal amplitude and duration of its activation under natural stress conditions remains elusive in plants. Here, we show that TaSRO1, a major contributor to the agronomic performance of bread wheat plants exposed to salinity stress, interacted with a transmembrane domain-containing NAC transcription factor TaSIP1, which could translocate from the endoplasmic reticulum (ER) into the nucleus and activate some mitochondrial dysfunction stimulon (MDS) genes. Overexpression of TaSIP1 and TaSIP1-∆C (a form lacking the transmembrane domain) in wheat both compromised the plants' tolerance of salinity stress, highlighting the importance of precise regulation of this signal cascade during salinity stress. The interaction of TaSRO1/TaSIP1, in the cytoplasm, arrested more TaSIP1 on the membrane of ER, and in the nucleus, attenuated the trans-activation activity of TaSIP1, therefore reducing the TaSIP1-mediated activation of MDS genes. Moreover, the overexpression of TaSRO1 rescued the inferior phenotype induced by TaSIP1 overexpression. Our study provides an orchestrating mechanism executed by the TaSRO1-TaSIP1 module that balances the growth and stress response via fine tuning the level of mitochondria retrograde signalling.
Collapse
Affiliation(s)
- Mei Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Min Zhao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shupeng Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Byeongho Moon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Chaochao Liang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chunlong Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
29
|
Liu H, Wang Q, Wang J, Liu Y, Renzeng W, Zhao G, Niu K. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. BMC PLANT BIOLOGY 2022; 22:445. [PMID: 36114467 PMCID: PMC9482295 DOI: 10.1186/s12870-022-03830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drought is a significant condition that restricts vegetation growth on the Tibetan Plateau. Artemisia wellbyi is a unique semi-shrub-like herb in the family Compositae, which distributed in northern and northwest of Tibetan Plateau. It is a dominant species in the community that can well adapt to virous environment stress, such as drought and low temperature. Therefore, A. wellbyi. has a potential ecological value for soil and water conservation of drought areas. Understanding the molecular mechanisms of A. wellbyi. that defense drought stress can acquire the key genes for drought resistance breeding of A. wellbyi. and provide a theoretical basis for vegetation restoration of desertification area. However, they remain unclear. Thus, our study compared the transcriptomic characteristics of drought-tolerant "11" and drought-sensitive "6" material of A. wellbyi under drought stress. RESULTS A total of 4875 upregulated and 4381 downregulated differentially expressed genes (DEGs) were induced by drought in the tolerant material; however, only 1931 upregulated and 4174 downregulated DEGs were induced by drought in the sensitive material. The photosynthesis and transcriptional regulation differed significantly with respect to the DEGs number and expression level. We found that CDPKs (calmodulin-like domain protein kinases), SOS3 (salt overly sensitive3), MAPKs (mitogen-activated protein kinase cascades), RLKs (receptor like kinase), and LRR-RLKs (repeat leucine-rich receptor kinase) were firstly involved in response to drought stress in drought tolerant A. wellbyi. Positive regulation of genes associated with the metabolism of ABA (abscisic acid), ET (ethylene), and IAA (indole acetic acid) could play a crucial role in the interaction with other transcriptional regulatory factors, such as MYBs (v-myb avian myeloblastosis viral oncogene homolog), AP2/EREBPs (APETALA2/ethylene-responsive element binding protein family), WRKYs, and bHLHs (basic helix-loop-helix family members) and receptor kinases, and regulate downstream genes for defense against drought stress. In addition, HSP70 (heat shock protein70) and MYB73 were considered as the hub genes because of their strong association with other DEGs. CONCLUSIONS Positive transcriptional regulation and negative regulation of photosynthesis could be associated with better growth performance under drought stress in the drought-tolerant material. In addition, the degradation of sucrose and starch in the tolerant A. wellbyi to alleviate osmotic stress and balance excess ROS. These results highlight the candidate genes that are involved in enhancing the performance of drought-tolerant A. wellbyi and provide a theoretical basis for improving the performance of drought-resistant A. wellbyi.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Qiyu Wang
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinglong Wang
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Yunfei Liu
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Wangdui Renzeng
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Guiqin Zhao
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Kuiju Niu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
30
|
You X, Nasrullah, Wang D, Mei Y, Bi J, Liu S, Xu W, Wang NN. N 7 -SSPP fusion gene improves salt stress tolerance in transgenic Arabidopsis and soybean through ROS scavenging. PLANT, CELL & ENVIRONMENT 2022; 45:2794-2809. [PMID: 35815549 DOI: 10.1111/pce.14392] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Considerable signal crosstalk exists in the regulatory network of senescence and stress response. Numerous senescence-associated genes are also involved in plant stress tolerance. However, the underlying mechanisms and application potential of these genes in stress-tolerant crop breeding remain poorly explored. We found that overexpression of SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), a negative regulator of leaf senescence, significantly improved plant salt tolerance by increasing reactive oxygen species (ROS) scavenging in both Arabidopsis and soybean. However, overexpression of SSPP severely suppressed normal plant growth, limiting its direct use in agriculture. We previously revealed that the N-terminal 1-14 residues of ACS7 (termed 'N7 ') negatively regulated its protein stability through the ubiquitin/proteasome pathway, and the N7 -mediated protein degradation was suppressed by environmental and senescence signals. To avoid the adverse effects of SSPP, the N7 element was fused to the N-terminus of SSPP. We demonstrated that N7 -SSPP fusion gene effectively rescued SSPP-induced growth suppression but maintained enhanced salt tolerance in Arabidopsis and soybean. Particularly, N7 -SSPP enhanced tolerance to long-term salt stress and increased seed yield in soybean. These results suggest that N7 -SSPP overcomes the disadvantages of SSPP on plant growth inhibition and effectively improves salt tolerance through enhanced ROS scavenging, providing an effective strategy of using posttranslational regulatory element for salt-tolerant crop breeding.
Collapse
Affiliation(s)
- Xiang You
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Nasrullah
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Mei
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Juanjuan Bi
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Sheng Liu
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Wei Xu
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| | - Ning Ning Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Wen L, Liu T, Deng Z, Zhang Z, Wang Q, Wang W, Li W, Guo Y. Characterization of NAC transcription factor NtNAC028 as a regulator of leaf senescence and stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:941026. [PMID: 36046590 PMCID: PMC9421438 DOI: 10.3389/fpls.2022.941026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
NAC proteins constitute one of the largest transcription factor families and are involved in regulation of plant development and stress responses. Our previous transcriptome analyses of tobacco revealed a significant increase in the expression of NtNAC028 during leaf yellowing. In this study, we found that NtNAC028 was rapidly upregulated in response to high salinity, dehydration, and abscisic acid (ABA) stresses, suggesting a vital role of this gene in abiotic stress response. NtNAC028 loss-of-function tobacco plants generated via CRISPR-Cas9 showed delayed leaf senescence and increased tolerance to drought and salt stresses. Meanwhile NtNAC028 overexpression led to precocious leaf senescence and hypersensitivity to abiotic stresses in Arabidopsis, indicating that NtNAC028 functions as a positive regulator of natural leaf senescence and a negative regulator of stress tolerance. Furthermore, NtNAC028-overexpressing Arabidopsis plants showed lower antioxidant enzyme activities, higher reactive oxygen species (ROS), and H2O2 accumulation under high salinity, resulted in more severe oxidative damage after salt stress treatments. On the other hand, NtNAC028 mutation in tobacco resulted in upregulated expression of ROS-scavenging and abiotic stress-related genes, higher antioxidant enzyme activities, and enhanced tolerance against abiotic stresses, suggesting that NtNAC028 might act as a vital regulator for plant stress response likely by mediating ROS scavenging ability. Collectively, our results indicated that the NtNAC028 plays a key regulatory role in leaf senescence and response to multiple abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
32
|
Sasi JM, Gupta S, Singh A, Kujur A, Agarwal M, Katiyar-Agarwal S. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1515-1534. [PMID: 36389097 PMCID: PMC9530073 DOI: 10.1007/s12298-022-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.
Collapse
Affiliation(s)
- Jyothish Madambikattil Sasi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Apurva Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Alice Kujur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Centre of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
33
|
Gao Z, Li J, Li L, Yang Y, Li J, Fu C, Zhu D, He H, Cai H, Li L. Structural and Functional Analyses of Hub MicroRNAs in An Integrated Gene Regulatory Network of Arabidopsis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:747-764. [PMID: 33662619 PMCID: PMC9880815 DOI: 10.1016/j.gpb.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/04/2019] [Accepted: 06/14/2020] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) are trans-acting small regulatory RNAs that work coordinately with transcription factors (TFs) to shape the repertoire of cellular mRNAs available for translation. Despite our growing knowledge of individual plant miRNAs, their global roles in gene regulatory networks remain mostly unassessed. Based on interactions obtained from public databases and curated from the literature, we reconstructed an integrated miRNA network in Arabidopsis that includes 66 core TFs, 318 miRNAs, and 1712 downstream genes. We found that miRNAs occupy distinct niches and enrich miRNA-containing feed-forward loops (FFLs), particularly those with miRNAs as intermediate nodes. Further analyses revealed that miRNA-containing FFLs coordinate TFs located in different hierarchical layers and that intertwined miRNA-containing FFLs are associated with party and date miRNA hubs. Using the date hub MIR858A as an example, we performed detailed molecular and genetic analyses of three interconnected miRNA-containing FFLs. These analyses revealed individual functions of the selected miRNA-containing FFLs and elucidated how the date hub miRNA fulfills multiple regulatory roles. Collectively, our findings highlight the prevalence and importance of miRNA-containing FFLs, and provide new insights into the design principles and control logics of miRNA regulatory networks governing gene expression programs in plants.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jun Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Corresponding author.
| |
Collapse
|
34
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
35
|
Verma K, Song XP, Yadav G, Degu HD, Parvaiz A, Singh M, Huang HR, Mustafa G, Xu L, Li YR. Impact of Agroclimatic Variables on Proteogenomics in Sugar Cane ( Saccharum spp.) Plant Productivity. ACS OMEGA 2022; 7:22997-23008. [PMID: 35847309 PMCID: PMC9280927 DOI: 10.1021/acsomega.2c01395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sugar cane (Saccharum spp. hybrids) is a major crop for sugar and renewable bioenergy worldwide, grown in arid and semiarid regions. China, the world's fourth-largest sugar producer after Brazil, India, and the European Union, all share ∼80% of the global production, and the remaining ∼20% of sugar comes from sugar beets, mostly grown in the temperate regions of the Northern Hemisphere, also used as a raw material in production of bioethanol for renewable energy. In view of carboxylation strategies, sugar cane qualifies as one of the best C4 crop. It has dual CO2 concentrating mechanisms located in its unique Krantz anatomy, having dimorphic chloroplasts located in mesophylls and bundle sheath cells for integrated operation of C4 and C3 carbon fixation cycles, regulated by enzymes to upgrade/sustain an ability for improved carbon assimilation to acquire an optimum carbon economy by producing enhanced plant biomass along with sugar yield under elevated temperature and strong irradiance with improved water-use efficiency. These superior intrinsic physiological carbon metabolisms encouraged us to reveal and recollect the facts for moving ahead with the molecular approaches to reveal the expression of proteogenomics linked with plant productivity under abiotic stress during its cultivation in specific agrizones globally.
Collapse
Affiliation(s)
- Krishan
K. Verma
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Xiu-Peng Song
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Garima Yadav
- Department
of Botany, University of Lucknow, Lucknow 226 007, India
| | - Hewan Demissie Degu
- College
of Agriculture, School of Plant and Horticulture Science Plant Biotechnology, Hawassa University, Sidama, Hawassa 05, Ethiopia
| | - Aqsa Parvaiz
- Centre
of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture FaisalabadFaisalabad 38000, Pakistan
| | - Munna Singh
- Department
of Botany, University of Lucknow, Lucknow 226 007, India
| | - Hai-Rong Huang
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Ghulam Mustafa
- Centre
of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture FaisalabadFaisalabad 38000, Pakistan
| | - Lin Xu
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Yang-Rui Li
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| |
Collapse
|
36
|
Ma J, Zhang M, Lv W, Tang X, Zhao D, Wang L, Li C, Jiang L. Overexpression of TaSNAC4-3D in Common Wheat ( Triticum aestivum L.) Negatively Regulates Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:945272. [PMID: 35860542 PMCID: PMC9289557 DOI: 10.3389/fpls.2022.945272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The development and production of bread wheat (Triticum aestivum L.) are widely affected by drought stress worldwide. Many NAC transcription factors (TFs) of stress-associated group (SNAC) are functionally proven to regulate drought tolerance. In this study, we identified 41 TaSNACs that were classified into 14 groups, and the expression of TaSNAC4-3D was induced in the leaf tissue via osmotic or abscisic acid (ABA) treatment. TaSNAC4-3D was localized to the nucleus through the transient expression assay, and the C-terminal region exhibited transcriptional activity via transactivation assays. TaSNAC4-3D was overexpressed in common wheat. The wheat plants with TaSNAC4-3D overexpression was more sensitive to drought stress compared with wild-type (WT) plants. The water loss rate showed no difference between transgenic lines and WT plants. However, drought stress increased H2O2 and O2- accumulation and promoted programmed cell death (PCD) in the leaf tissue of TaSNAC4-3D overexpression lines compared with WT plants. RNA-seq analysis was performed under well-watered and drought conditions, and four strong potential target genes, encoding senescence regulators, were identified by analyzing their promoters containing the NAC recognition sequence (NACRS). Based on these results, our findings revealed that TaSNAC4-3D negatively regulates drought tolerance by inducing oxidative damage in bread wheat.
Collapse
|
37
|
Su M, Wang S, Liu W, Yang M, Zhang Z, Wang N, Chen X. Interaction between MdWRKY55 and MdNAC17-L enhances salt tolerance in apple by activating MdNHX1 expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111282. [PMID: 35643619 DOI: 10.1016/j.plantsci.2022.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Salt stress greatly hinders plant growth and development, as well as crop production. To expand the planting area and choose salt-resistant varieties of apple (Malus×domestica), it is necessary to elucidate the salt-resistance mechanisms. Here, we identified a salt-responsive WRKY transcription factor, MdWRKY55. The overexpression of MdWRKY55 in apple calli significantly improved salt tolerance. MdWRKY55 bound to the MdNHX1 promoter, thereby enhancing its transcription. MdNAC17-L significantly promoted the effect of MdWRKY55 on the expression of downstream MdNHX1 by forming a protein complex. The functional analysis of MdWRKY55 provided valuable insights into the apple salt-tolerance regulatory network and established a theoretical basis for the molecular breeding of salt-tolerant apple.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Ming Yang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, China.
| |
Collapse
|
38
|
Song H, Liu Y, Dong G, Zhang M, Wang Y, Xin J, Su Y, Sun H, Yang M. Genome-Wide Characterization and Comprehensive Analysis of NAC Transcription Factor Family in Nelumbo nucifera. Front Genet 2022; 13:901838. [PMID: 35754820 PMCID: PMC9214227 DOI: 10.3389/fgene.2022.901838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
NAC (NAM, ATAF, and CUC) is a ubiquitously expressed plant-specific transcription factor (TF) family which is involved in the regulation of various biological processes. However, a systematic characterization of NAC gene family is yet to be reported in lotus. Here, 82 NnNAC genes which included five predicted membrane-bound NAC proteins were identified in the lotus genome. Phylogenetic analysis revealed seven-subfamily clusters (I–VII) of NnNAC proteins, with homologous gene pairs displaying similar conserved motifs and gene structure characteristics. Transactivation assay of NnNAC proteins revealed an extensive transcriptional activation capacity which is mediated by the highly divergent C-terminal activation domain (AD). Expression analysis of NnNAC genes in lotus tissues showed high transcript levels in root, stamen, petal and seed coat. In addition, 30 and 29 differentially expressed NnNAC candidate genes putatively involved in lotus seed development and response to complete submergence stress, respectively, were identified. Overall, our study provides potentially useful candidate gene resources for future molecular breeding of lotus varieties with novel agronomic traits.
Collapse
Affiliation(s)
- Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Liu WC, Song RF, Zheng SQ, Li TT, Zhang BL, Gao X, Lu YT. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:973-990. [PMID: 35488429 DOI: 10.1016/j.molp.2022.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/12/2021] [Accepted: 04/25/2022] [Indexed: 05/12/2023]
Abstract
To adapt to changing environments, plants have evolved elaborate regulatory mechanisms balancing their growth with stress responses. It is currently unclear whether and how the tryptophan (Trp), the growth-related hormone auxin, and the stress hormone abscisic acid (ABA) are coordinated in this trade-off. Here, we show that tryptophan synthase β subunit 1 (TSB1) is involved in the coordination of Trp and ABA, thereby affecting plant growth and abiotic stress responses. Plants experiencing high salinity or drought display reduced TSB1 expression, resulting in decreased Trp and auxin accumulation and thus reduced growth. In comparison with the wild type, amiR-TSB1 lines and TSB1 mutants exhibited repressed growth under non-stress conditions but had enhanced ABA accumulation and stress tolerance when subjected to salt or drought stress. Furthermore, we found that TSB1 interacts with and inhibits β-glucosidase 1 (BG1), which hydrolyses glucose-conjugated ABA into active ABA. Mutation of BG1 in the amiR-TSB1 lines compromised their increased ABA accumulation and enhanced stress tolerance. Moreover, stress-induced H2O2 disrupted the interaction between TSB1 and BG1 by sulfenylating cysteine-308 of TSB1, relieving the TSB1-mediated inhibition of BG1 activity. Taken together, we revealed that TSB1 serves as a key coordinator of plant growth and stress responses by balancing Trp and ABA homeostasis.
Collapse
Affiliation(s)
- Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Si-Qiu Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Bing-Lei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
40
|
Park SJ, Park S, Kim Y, Hyeon DY, Park H, Jeong J, Jeong U, Yoon YS, You D, Kwak J, Timilsina R, Hwang D, Kim J, Woo HR. Ethylene responsive factor34 mediates stress-induced leaf senescence by regulating salt stress-responsive genes. PLANT, CELL & ENVIRONMENT 2022; 45:1719-1733. [PMID: 35312081 DOI: 10.1111/pce.14317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence proceeds with age but is modulated by various environmental stresses and hormones. Salt stress is one of the most well-known environmental stresses that accelerate leaf senescence. However, the molecular mechanisms that integrate salt stress signalling with leaf senescence programmes remain elusive. In this study, we characterised the role of ETHYLENE RESPONSIVE FACTOR34 (ERF34), an Arabidopsis APETALA2 (AP2)/ERF family transcription factor, in leaf senescence. ERF34 was differentially expressed under various leaf senescence-inducing conditions, and negatively regulated leaf senescence induced by age, dark, and salt stress. ERF34 also promoted salt stress tolerance at different stages of the plant life cycle such as seed germination and vegetative growth. Transcriptome analysis revealed that the overexpression of ERF34 increased the transcript levels of salt stress-responsive genes including COLD-REGULATED15A (COR15A), EARLY RESPONSIVE TO DEHYDRATION10 (ERD10), and RESPONSIVE TO DESICCATION29A (RD29A). Moreover, ERF34 directly bound to ERD10 and RD29A promoters and activated their expression. Our findings indicate that ERF34 plays a key role in the convergence of the salt stress response with the leaf senescence programmes, and is a potential candidate for crop improvement, particularly by enhancing salt stress tolerance.
Collapse
Affiliation(s)
- Sung-Jin Park
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Korea
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Yongmin Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Do Young Hyeon
- School of Biological Science, Seoul National University, Seoul, Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Junyong Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Ukcheol Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Yeong Seon Yoon
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Daesang You
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Junmin Kwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Rupak Timilsina
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Daehee Hwang
- School of Biological Science, Seoul National University, Seoul, Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| |
Collapse
|
41
|
Seok HY, Tran HT, Lee SY, Moon YH. AtERF71/ HRE2, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Both Positive and Negative Cis-Regulatory Elements in Its Promoter Region Involved in Hypoxia and Salt Stress Responses. Int J Mol Sci 2022; 23:ijms23105310. [PMID: 35628120 PMCID: PMC9140466 DOI: 10.3390/ijms23105310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
In the signal transduction network, from the perception of stress signals to stress-responsive gene expression, various transcription factors and cis-regulatory elements in stress-responsive promoters coordinate plant adaptation to abiotic stresses. Among the AP2/ERF transcription factor family, group VII ERF (ERF-VII) genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/HRE2, are known to be involved in the response to hypoxia in Arabidopsis. Notably, HRE2 has been reported to be involved in responses to hypoxia and osmotic stress. In this study, we dissected HRE2 promoter to identify hypoxia- and salt stress-responsive region(s). The analysis of the promoter deletion series of HRE2 using firefly luciferase and GUS as reporter genes indicated that the −116 to −2 region is responsible for both hypoxia and salt stress responses. Using yeast one-hybrid screening, we isolated HAT22/ABIG1, a member of the HD-Zip II subfamily, which binds to the −116 to −2 region of HRE2 promoter. Interestingly, HAT22/ABIG1 repressed the transcription of HRE2 via the EAR motif located in the N-terminal region of HAT22/ABIG1. HAT22/ABIG1 bound to the 5′-AATGATA-3′ sequence, HD-Zip II-binding-like cis-regulatory element, in the −116 to −2 region of HRE2 promoter. Our findings demonstrate that the −116 to −2 region of HRE2 promoter contains both positive and negative cis-regulatory elements, which may regulate the expression of HRE2 in responses to hypoxia and salt stress and that HAT22/ABIG1 negatively regulates HRE2 transcription by binding to the HD-Zip II-binding-like element in the promoter region.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (S.-Y.L.)
| | - Huong Thi Tran
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
| | - Sun-Young Lee
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (S.-Y.L.)
| | - Yong-Hwan Moon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2592
| |
Collapse
|
42
|
Mahmood K, Torres-Jerez I, Krom N, Liu W, Udvardi MK. Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula. Cells 2022; 11:cells11091570. [PMID: 35563875 PMCID: PMC9103780 DOI: 10.3390/cells11091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation–reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Ivone Torres-Jerez
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Nick Krom
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
| | - Wei Liu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA
| | - Michael K. Udvardi
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
- Centre for Crop Science, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
43
|
Wei YQ, Yuan JJ, Xiao CC, Li GX, Yan JY, Zheng SJ, Ding ZJ. RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:979-994. [PMID: 35274464 DOI: 10.1111/jipb.13247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Plant hormone abscisic acid (ABA) plays an indispensable role in the control of leaf senescence, during which ABA signaling depends on its biosynthesis. Nevertheless, the role of ABA transport in leaf senescence remains unknown. Here, we identified two novel RING-box protein-encoding genes UBIQUITIN LIGASE of SENESCENCE 1 and 2 (ULS1 and ULS2) involved in leaf senescence. Lack of ULS1 and ULS2 accelerates leaf senescence, which is specifically promoted by ABA treatment. Furthermore, the expression of senescence-related genes is significantly affected in mature leaves of uls1/uls2 double mutant (versus wild type (WT)) in an ABA-dependent manner, and the ABA content is substantially increased. ULS1 and ULS2 are mainly expressed in the guard cells and aging leaves, and the expression is induced by ABA. Further RNA-seq and quantitative proteomics of ubiquitination reveal that ABA transporter ABCG40 is highly expressed in uls1/uls2 mutant versus WT, though it is not the direct target of ULS1/2. Finally, we show that the acceleration of leaf senescence, the increase of leaf ABA content, and the promotion of stomatal closure in uls1/usl2 mutant are suppressed by abcg40 loss-of-function mutation. These results indicate that ULS1 and ULS2 function in feedback inhibition of ABCG40-dependent ABA transport during ABA-induced leaf senescence and stomatal closure.
Collapse
Affiliation(s)
- Yun Qi Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
44
|
Genome-Wide Identification of the NAC Gene Family in Zanthoxylum bungeanum and Their Transcriptional Responses to Drought Stress. Int J Mol Sci 2022; 23:ijms23094769. [PMID: 35563160 PMCID: PMC9103986 DOI: 10.3390/ijms23094769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.
Collapse
|
45
|
Wei J, Liu D, Liu Y, Wei S. Physiological Analysis and Transcriptome Sequencing Reveal the Effects of Salt Stress on Banana ( Musa acuminata cv. BD) Leaf. FRONTIERS IN PLANT SCIENCE 2022; 13:822838. [PMID: 35498665 PMCID: PMC9039761 DOI: 10.3389/fpls.2022.822838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The salinization of soil is a widespread environmental problem. Banana (Musa acuminata L.) is a salt-sensitive plant whose growth, development, and production are constrained by salt stresses. However, the tolerance mechanism of this salt-sensitive banana to salt stress is still unclear. This study aimed to investigate the influence of NaCl treatment on phenotypic, physiological, and transcriptome changes in bananas. We found that the content of root activity, MDA, Pro, soluble sugar, soluble protein, and antioxidant enzymes activity in salt-stress treatment were significantly higher than the control in bananas. Transcriptome sequencing result identified an overall of 3,378 differentially expressed genes (DEGs) in banana leaves, and the Kyoto Encyclopedia of Genes and Genomes analysis indicated that these DEGs were involved in phenylpropanoid biosynthesis process, ribosome process, starch and sucrose metabolism, amino sugar process, and plant hormone signal transduction process that had simultaneously changed their expression under salt stress, which indicated these DEGs may play a role in promoting BD banana growth under salt treatments. The genes which were enriched in the phenylpropanoid biosynthesis process, starch and sucrose metabolism process, amino sugar process, and plant hormone signal transduction process were specifically regulated to respond to the salt stress treatments. Here, totally 48 differentially expressed transcription factors (TFs), including WRKY, MYB, NAC, and bHLH, were annotated in BD banana under salt stress. In the phenylpropane biosynthesis pathway, all transcripts encoding key enzymes were found to be significantly up-regulated, indicating that the genes in these pathways may play a significant function in the response of BD banana to salt stress. In conclusion, this study provides new insights into the mechanism of banana tolerance to salt stress, which provides a potential application for the genetic improvement of banana with salt tolerance.
Collapse
Affiliation(s)
- Junya Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Debing Liu
- Applied Science and Technology College, Hainan University, Haikou, China
| | - Yuewei Liu
- Applied Science and Technology College, Hainan University, Haikou, China
| | - Shouxing Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
46
|
Yan H, Liu B, Cui Y, Wang Y, Sun S, Wang J, Tan M, Wang Y, Zhang Y. LpNAC6 reversely regulates the alkali tolerance and drought tolerance of Lilium pumilum. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153635. [PMID: 35124291 DOI: 10.1016/j.jplph.2022.153635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
NAC transcription factors have multiple biological functions in plants. In this study, a new NAC transcription factor, LpNAC6, was cloned from Lilium pumilum, and its salt and drought resistance functions were identified. We treated LpNAC6 transgenic tobacco plants with different intensities of alkali and drought stress. Results showed that LpNAC6 transgenic tobacco had enhanced alkali tolerance, but decreased drought tolerance. Antioxidant enzyme (SOD, POD, CAT) activity, chlorophyll content, proline content, and photosynthetic capacity of transgenic tobacco were significantly higher than those of wild-type tobacco, while the contents of MDA, H2O2, and O2- were significantly lower than those of wild-type tobacco. The expression level of stress-related genes in transgenic tobacco increased significantly, and the alkali tolerance was enhanced, but the opposite was true under drought stress. Our findings suggest that LpNAC6 has a reverse regulatory effect on alkaline and drought tolerance in plants, which is of great significance for plant screening and stress tolerance regulation of transgenic plants in arid saline-alkali land.
Collapse
Affiliation(s)
- Hao Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Bin Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ying Cui
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ying Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Shaoying Sun
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Jingwen Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Mengmeng Tan
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yiping Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
47
|
Shu G, Tang Y, Yuan M, Wei N, Zhang F, Yang C, Lan X, Chen M, Tang K, Xiang L, Liao Z. Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharm Sin B 2022; 12:1500-1513. [PMID: 35530156 PMCID: PMC9069397 DOI: 10.1016/j.apsb.2021.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
Artemisia annua is the main natural source of artemisinin production. In A. annua, extended drought stress severely reduces its biomass and artemisinin production while short-term water-withholding or abscisic acid (ABA) treatment can increase artemisinin biosynthesis. ABA-responsive transcription factor AabZIP1 and JA signaling AaMYC2 have been shown in separate studies to promote artemisinin production by targeting several artemisinin biosynthesis genes. Here, we found AabZIP1 promote the expression of multiple artemisinin biosynthesis genes including AaDBR2 and AaALDH1, which AabZIP1 does not directly activate. Subsequently, it was found that AabZIP1 up-regulates AaMYC2 expression through direct binding to its promoter, and that AaMYC2 binds to the promoter of AaALDH1 to activate its transcription. In addition, AabZIP1 directly transactivates wax biosynthesis genes AaCER1 and AaCYP86A1. The biosynthesis of artemisinin and cuticular wax and the tolerance of drought stress were significantly increased by AabZIP1 overexpression, whereas they were significantly decreased in RNAi-AabZIP1 plants. Collectively, we have uncovered the AabZIP1-AaMYC2 transcriptional module as a point of cross-talk between ABA and JA signaling in artemisinin biosynthesis, which may have general implications. We have also identified AabZIP1 as a promising candidate gene for the development of A. annua plants with high artemisinin content and drought tolerance in metabolic engineering breeding.
Collapse
|
48
|
Drought-Responsive NAC Transcription Factor RcNAC72 Is Recognized by RcABF4, Interacts with RcDREB2A to Enhance Drought Tolerance in Arabidopsis. Int J Mol Sci 2022; 23:ijms23031755. [PMID: 35163676 PMCID: PMC8915184 DOI: 10.3390/ijms23031755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
RcNAC72, a key transcription factor that may respond to drought stress in Rosa chinensis 'Old Blush', was selected in our previous study. In the present study, we found that RcNAC72 is localized in the nucleus and is a transcriptional activator. RcNAC72 expression could be significantly induced by drought, low temperature, salt as well as abscisic acid (ABA) treatment. Analysis of the promoter revealed that multiple abiotic stress and hormone response elements were located in the promoter region. The promoter could respond to drought, low temperature, salt and ABA treatments to activate GUS gene expression. Overexpressing RcNAC72 in Arabidopsis thaliana enhanced sensitivity to ABA and tolerance to drought stress. Silencing of RcNAC72 by virus-induced gene silencing (VIGS) in rose leaves significantly reduced leaf water loss tolerance and leaf extension capacity. Physical interaction of RcNAC72 with RcDREB2A was shown by means of the yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. RcABF4 was demonstrated to be able to bind to the promoter of RcNAC72 by means of the yeast one-hybrid (Y1H) assay. These results provide new insights into the regulatory network of RcNAC72 response to drought stress in roses.
Collapse
|
49
|
Song C, Wu M, Zhou Y, Gong Z, Yu W, Zhang Y, Yang Z. NAC-mediated membrane lipid remodeling negatively regulates fruit cold tolerance. HORTICULTURE RESEARCH 2022; 9:uhac039. [PMID: 35531317 PMCID: PMC9071380 DOI: 10.1093/hr/uhac039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/06/2022] [Indexed: 05/11/2023]
Abstract
Low temperatures are known to destroy cell membranes' structural integrity by affecting the remodeling of their phospholipids. Fruits stored at low temperature are prone to chilling injury, characterized by discoloration, absence of ripening, surface pitting, growth inhibition, flavor loss, decay, and wilting. Phosphatidic acid, a vital second-messenger lipid in plants, is known to accumulate in response to different kinds of stress stimuli. However, the regulatory mechanism of its production from the degradation of phospholipids remains poorly understood. We identified two cold-responsive NAC (NAM/ATAF1/CUC2) transcription factors from bananas, namely, MaNAC25 and MaNAC28, which negatively regulated cold tolerance in banana fruits by upregulating the expression of phospholipid degradation genes in banana fruits. Furthermore, MaNAC25 and MaNAC28 formed a positive feedback loop to induce phospholipid degradation and produce phosphatidic acid. In contrast, ethylene directly inhibited the degradation of phospholipids in banana and transgenic tomato fruits. In addition, ethylene reduced the activity of MaNAC25 and MaNAC28, thereby inhibiting phospholipid degradation. To conclude, NAC-mediated membrane lipid remodeling negatively regulates the cold tolerance of banana and transgenic tomato fruits.
Collapse
Affiliation(s)
- Chunbo Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | |
Collapse
|
50
|
Li D, Yang J, Pak S, Zeng M, Sun J, Yu S, He Y, Li C. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis. THE NEW PHYTOLOGIST 2022; 233:390-408. [PMID: 34643281 DOI: 10.1111/nph.17799] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Since the roots are the very organ where plants first sense and respond drought stress, it is of great importance to better understand root responses to drought. Yet the underlying molecular mechanisms governing root responses to drought stress have been poorly understood. Here, we identified and functionally characterized a CCCH type transcription factor, PuC3H35, and its targets, anthocyanin reductase (PuANR) and early Arabidopsis aluminum induced1 (PuEARLI1), which are involved in mediating proanthocyanidin (PA) and lignin biosynthesis in response to drought stress in Populus ussuriensis root. PuC3H35 was root-specifically induced upon drought stress. Overexpressing PuC3H35 promoted PA and lignin biosynthesis and vascular tissue development, resulting in enhanced tolerance to drought stress by the means of anti-oxidation and mechanical supporting. We further demonstrated that PuC3H35 directly bound to the promoters of PuANR and PuEARLI1 and overexpressing PuANR or PuEARLI1 increased root PA or lignin levels, respectively, under drought stress. Taken together, these results revealed a novel regulatory pathway for drought tolerance, in which PuC3H35 mediated PA and lignin biosynthesis by collaboratively regulating 'PuC3H35-PuANR-PA' and 'PuC3H35-PuEARLI1-PuCCRs-lignin' modules in poplar roots.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Key Lab Forest Tree Genetics and Breeding of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Minzhen Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiali Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Sen Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yuting He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|