1
|
Fan R, Wang B, Yu H, Wang Y, Kui Y, Chen M, Wang Y, Jia X. De novo assembly of Idesia polycarpa transcriptome and unsaturated fatty acid biosynthesis candidate genes Mining and functional Identification. Heliyon 2024; 10:e38015. [PMID: 39381103 PMCID: PMC11456844 DOI: 10.1016/j.heliyon.2024.e38015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Unsaturated fatty acids (UFA) in lipids are the key to nutraceutical oil applications, with various potential applications in nutraceutical functional foods and pharmaceutical industries. In Idesia polycarpa (Salicaceae), more than 80 % of UFA have been found in the fruits; yet, the underlying genetic mechanism remains poorly understood. Due to the lack of theoretical research on the genes related to lipid biosynthesis and the complete genetic transformation system of I. polycarpa fruit, the selection and breeding of I. polycarpa, an excellent oil tree, has been severely restricted. In-depth understanding of the molecular mechanism and gene function of lipid biosynthesis of I. polycarpa fruit is therefore of great significance for the development of I. polycarpa resources. This is not only conducive to the genetic improvement of I. polycarpa by molecular breeding technologies but can also provide a reference for the study of the gene functions of other oil plants. In this study, the FA accumulation patterns of I. polycarpa fruits during 8 growth periods were analysed. Fruit from two developmental periods with different UFA levels were analysed for RNA sequencing by an Illumina NovaSeq 6000 HiSeq platform. De novo transcriptome assembly presented 115,350 unigenes and 4382 differentially expressed genes (DEGs). Functional annotation in the KEGG pathway and combined with DEG data revealed candidate genes potentially involved in UFA biosynthesis. Expression analysis of q-PCR of IpDGAT2, IpGPAT, IpKASII, IpSAD, IpFAD2, IpFAD3 and IpFAD8 suggested that these genes are highly involved in UFA biosynthesis. Full-length candidate genes were cloned and analysed by bioinformatic tools, and function analysis of IpSAD and IpFAD3 showed that these genes regulated the products of linoleic acid metabolism. This study provides a foundation for UFA biosynthesis in Idesia polycarpa, facilitating its genetic breeding in the future.
Collapse
Affiliation(s)
- Ruishen Fan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan, China
| | - Boheng Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- East China Survey and Planning Institute of National Forest and Grassland Administration, Hangzhou, Zhejiang, China
| | - Hang Yu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiran Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanpeng Kui
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Minmin Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan, China
| | - Yibin Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoming Jia
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Negin B, Shachar L, Meir S, Ramirez CC, Rami Horowitz A, Jander G, Aharoni A. Fatty alcohols, a minor component of the tree tobacco surface wax, are associated with defence against caterpillar herbivory. PLANT, CELL & ENVIRONMENT 2024; 47:664-681. [PMID: 37927215 DOI: 10.1111/pce.14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Despite decades of research resulting in a comprehensive understanding of epicuticular wax metabolism, the function of these almost ubiquitous metabolites in plant-herbivore interactions remains unresolved. In this study, we examined the effects of CRISPR-induced knockout mutations in four Nicotiana glauca (tree tobacco) wax metabolism genes. These mutations cause a wide range of changes in epicuticular wax composition, leading to altered interactions with insects and snails. Three interaction classes were examined: chewing herbivory by seven caterpillars and one snail species, phloem feeding by Myzus persicae (green peach aphid) and oviposition by Bemisia tabaci (whitefly). Although total wax load and alkane abundance did not affect caterpillar growth, a correlation across species, showed that fatty alcohols, a minor component of N. glauca surface waxes, negatively affected the growth of both a generalist caterpillar (Spodoptera littoralis) and a tobacco-feeding specialist (Manduca sexta). This negative correlation was overshadowed by the stronger effect of anabasine, a nicotine isomer, and was apparent when fatty alcohols were added to an artificial lepidopteran diet. By contrast, snails fed more on waxy leaves. Aphid reproduction and feeding activity were unaffected by wax composition but were potentially affected by altered cutin composition. Wax crystal morphology could explain the preference of B. tabaci to lay eggs on waxy wild-type plants relative to both alkane and fatty alcohol-deficient mutants. Together, our results suggest that the varied responses among herbivore classes and species are likely to be a consequence of the co-evolution that shaped the specific effects of different surface wax components in plant-herbivore interactions.
Collapse
Affiliation(s)
- Boaz Negin
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
- Boyce Thompson Institute, Ithaca, New York, USA
| | - Lior Shachar
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Meir
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| | - Claudio C Ramirez
- Centre for Molecular and Functional Ecology in Agroecosystems, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - A Rami Horowitz
- Department of Entomology, Agricultural Research Organization (ARO), Gilat Research Center for Arid and Semi-Arid Agricultural Research, Rishon Lezion, Israel
- Katif Research Center, Sedot Negev, Israel
- Ministry of Science and Technology, Netivot, Israel
| | | | - Asaph Aharoni
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
4
|
Negin B, Hen-Avivi S, Almekias-Siegl E, Shachar L, Jander G, Aharoni A. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. THE NEW PHYTOLOGIST 2023; 237:1574-1589. [PMID: 36369885 DOI: 10.1111/nph.18615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/05/2022] [Indexed: 05/20/2023]
Abstract
Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome-edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.
Collapse
Affiliation(s)
- Boaz Negin
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Shelly Hen-Avivi
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Efrat Almekias-Siegl
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lior Shachar
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Asaph Aharoni
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
5
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
6
|
Tatsumi K, Ichino T, Isaka N, Sugiyama A, Moriyoshi E, Okazaki Y, Higashi Y, Kajikawa M, Tsuji Y, Fukuzawa H, Toyooka K, Sato M, Ichi I, Shimomura K, Ohta H, Saito K, Yazaki K. Excretion of triacylglycerol as a matrix lipid facilitating apoplastic accumulation of a lipophilic metabolite shikonin. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:104-117. [PMID: 36223279 DOI: 10.1093/jxb/erac405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a large variety of lipophilic metabolites, many of which are secreted by cells and accumulated in apoplasts. These compounds often play a role to protect plants from environmental stresses. However, little is known about how these lipophilic compounds are secreted into apoplastic spaces. In this study, we used shikonin-producing cultured cells of Lithospermum erythrorhizon as an experimental model system to analyze the secretion of lipophilic metabolites, taking advantage of its high production rate and the clear inducibility in culture. Shikonin derivatives are lipophilic red naphthoquinone compounds that accumulate exclusively in apoplastic spaces of these cells and also in the root epidermis of intact plants. Microscopic analysis showed that shikonin is accumulated in the form of numerous particles on the cell wall. Lipidomic analysis showed that L. erythrorhizon cultured cells secrete an appreciable portion of triacylglycerol (24-38% of total triacylglycerol), composed predominantly of saturated fatty acids. Moreover, in vitro reconstitution assay showed that triacylglycerol encapsulates shikonin derivatives with phospholipids to form lipid droplet-like structures. These findings suggest a novel role for triacylglycerol as a matrix lipid, a molecular component involved in the secretion of specialized lipophilic metabolites.
Collapse
Affiliation(s)
- Kanade Tatsumi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Natsumi Isaka
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Eiko Moriyoshi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yasuhiro Higashi
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshinori Tsuji
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Ikuyo Ichi
- Institute for Human Life Innovation, Ochanomizu University, Tokyo 112-8610, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, Gunma, 374-0193, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Molecular Science Center, Chiba University, Chiba, 260-8675, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
7
|
Huang H, Wang L, Qiu D, Lu Y. Chemical Composition of Cuticle and Barrier Properties to Transpiration in the Fruit of Clausena lansium (Lour.) Skeels. FRONTIERS IN PLANT SCIENCE 2022; 13:840061. [PMID: 35651771 PMCID: PMC9150773 DOI: 10.3389/fpls.2022.840061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
The plant cuticle, as a lipid membrane covering aerial plant surfaces, functions primarily against uncontrolled water loss. Herein, the cuticle chemical composition and the transpiration of wampee fruit (Clausena lansium (Lour.) Skeels) at the green, turning, and yellow stages in cultivars of "Jixin" and "Tianhuangpi" were comprehensively studied. The coverage of wax and cutin monomers per unit of fruit surface area at the green stage was lower in "Jixin" than in "Tianhuangpi" and increased gradually during development. Cutin monomers accumulated ranging from 22.5 μg cm-2 (green) to 52.5 μg cm-2 (turning) in "Jixin" and from 36.5 μg cm-2 (green) to 81.7 μg cm-2 (yellow) in "Tianhuangpi." The total composition of waxes ranged between 6.0 μg cm-2 (green) and 11.1 μg cm-2 (turning) in "Jixin," while they increased from 7.4 μg cm-2 (green) to 16.7 μg cm-2 (yellow) in "Tianhuangpi." Cutin monomers were dominated by ω-, mid-dihydroxy fatty acids (over 40%), followed by multiple monomers of α,ω-dicarboxylic acids with or without added groups, α-monocarboxylic acids with or without ω- or mid-chain hydroxy or mid-epoxy groups, primary alcohols, and phenolics. The very-long-chain (VLC) aliphatic pattern of cuticular waxes was prominently composed of n-alkanes (ranging from 21.4% to 39.3% of total wax content), fatty acids, primary alcohols, and aldehydes. The cyclic waxes were dominated by triterpenoids (between 23.9 and 51.2%), sterols, and phenolics. Water loss in wampee fruit exhibited linear changes over time, indicating an overall monofunctional barrier to transpiration. Permeance for water in wampee fruit was higher at the green stage than at the yellow stage in both "Jixin" and "Tianhuangpi," which showed a negative correlation with the changes of VLC n-alkanes. The results showed the cuticular chemicals, including cutin monomers and waxes, in wampee fruit and further indicated the potential contributions of the cuticular chemical composition to the physiological functions in fruits.
Collapse
Affiliation(s)
- Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Diyang Qiu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Yusheng Lu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| |
Collapse
|
8
|
Ichino T, Yazaki K. Modes of secretion of plant lipophilic metabolites via ABCG transporter-dependent transport and vesicle-mediated trafficking. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102184. [PMID: 35217474 DOI: 10.1016/j.pbi.2022.102184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Many lipophilic metabolites produced by terrestrial plants are deposited on plant surfaces to protect them from abiotic and biotic stresses. Plant-derived lipophilic metabolites include apoplastic biopolymers, such as wax, cutin, sporopollenin, suberin, and lignin, as well as low-molecular-weight secondary metabolites. These secreted molecules confer adaptive toughness and robustness on plants. The mechanisms responsible for the secretion of these lipophilic metabolites remain unclear, although two pathways, mediated by transporters and vesicles, have been proposed. Recent genetic and biochemical studies have shown that G-type ATP-binding cassette (ABCG) transporters and membrane trafficking factors are involved in the apoplastic accumulation of lipophilic metabolites in plants. These two distinctive modes of secretion may be either exclusive or collaborative. This review describes these transporter-dependent and vesicle-mediated mechanisms underlying the secretion of lipophilic metabolites.
Collapse
Affiliation(s)
- Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan.
| |
Collapse
|
9
|
Pollard M, Shachar-Hill Y. Kinetic complexities of triacylglycerol accumulation in developing embryos from Camelina sativa provide evidence for multiple biosynthetic systems. J Biol Chem 2022; 298:101396. [PMID: 34774796 PMCID: PMC8715117 DOI: 10.1016/j.jbc.2021.101396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
Quantitative flux maps describing glycerolipid synthesis can be important tools for rational engineering of lipid content and composition in oilseeds. Lipid accumulation in cultured embryos of Camelina sativa is known to mimic that of seeds in terms of rate of lipid synthesis and composition. To assess the kinetic complexity of the glycerolipid flux network, cultured embryos were incubated with [14C/13C]glycerol, and initial and steady state rates of [14C/13Cglyceryl] lipid accumulation were measured. At steady state, the linear accumulations of labeled lipid classes matched those expected from mass compositions. The system showed an apparently simple kinetic precursor-product relationship between the intermediate pool, dominated by diacylglycerol (DAG) and phosphatidylcholine (PC), and the triacylglycerol (TAG) product. We also conducted isotopomer analyses on hydrogenated lipid class species. [13C3glyceryl] labeling of DAG and PC, together with estimates of endogenous [12C3glyceryl] dilution, showed that each biosynthetically active lipid pool is ∼30% of the total by moles. This validates the concept that lipid sub-pools can describe lipid biosynthetic networks. By tracking the kinetics of [13C3glyceryl] and [13C2acyl] labeling, we observed two distinct TAG synthesis components. The major TAG synthesis flux (∼75%) was associated with >95% of the DAG/PC intermediate pool, with little glycerol being metabolized to fatty acids, and with little dilution from endogenous glycerol; a smaller flux exhibited converse characteristics. This kinetic heterogeneity was further explored using postlabeling embryo dissection and differential lipid extractions. The minor flux was tentatively localized to surface cells across the whole embryo. Such heterogeneity must be recognized in order to construct accurate gene expression patterns and metabolic networks describing lipid biosynthesis in developing embryos.
Collapse
Affiliation(s)
- Mike Pollard
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
10
|
Cahoon EB, Li-Beisson Y. Plant unusual fatty acids: learning from the less common. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:66-73. [PMID: 32304939 DOI: 10.1016/j.pbi.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The plant kingdom contains an abundance of structurally diverse fatty acids referred to as unusual fatty acids. Unusual fatty acids on plant surfaces can form polyesters that contribute to the function of cutin as a barrier for water loss and pathogen protection. Unusual fatty acids are also found as abundant components of seed oils of selected species and often confer desirable properties for industrial and nutritional applications. Here, we review recent findings on the biosynthesis and metabolism of unusual fatty acids in cutin and seed oils and use of this information for enzyme structure-function studies and seed oil metabolic engineering. We also highlight the recent discovery of unusual fatty acids that are formed from a previously undescribed variation of fatty acid elongation.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
11
|
Lee SB, Yang SU, Pandey G, Kim MS, Hyoung S, Choi D, Shin JS, Suh MC. Occurrence of land-plant-specific glycerol-3-phosphate acyltransferases is essential for cuticle formation and gametophore development in Physcomitrella patens. THE NEW PHYTOLOGIST 2020; 225:2468-2483. [PMID: 31691980 DOI: 10.1111/nph.16311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/26/2019] [Indexed: 05/22/2023]
Abstract
During the evolution of land plants from aquatic to terrestrial environments, their aerial surfaces were surrounded by cuticle composed of cutin and cuticular waxes to protect them from environmental stresses. Glycerol-3-phosphate acyltransferase (GPAT) harboring bifunctional sn-2 acyltransferase/phosphatase activity produces 2-monoacylglycerol, a precursor for cutin synthesis. Here, we report that bifunctional sn-2 GPATs play roles in cuticle biosynthesis and gametophore development of Physcomitrella patens. Land plant-type cuticle was observed in gametophores but not in protonema. The expression of endoplasmic reticulum-localized PpGPATs was significantly upregulated in gametophores compared with protonema. Floral organ fusion and permeable cuticle phenotypes of Arabidopsis gpat6-2 petals were rescued to the wild type (WT) by the expression of PpGPAT2 or PpGPAT4. Disruption of PpGPAT2 and PpGPAT4 caused a significant reduction of total cutin loads, and a prominent decrease in the levels of palmitic and 10,16-dihydroxydecanoic acids, which are major cutin monomers in gametophores. Δppgpat2 mutants displayed growth retardation, delayed gametophore development, increased cuticular permeability, and reduced tolerance to drought, osmotic and salt stresses compared to the WT. Genome-wide analysis of genes encoding acyltransferase or phosphatase domains suggested that the occurrence of sn-2 GPATs with both domains may be a key event in cuticle biogenesis of land plants.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Sun Ui Yang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Garima Pandey
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Myung-Shin Kim
- Department of Plant Science, Seoul National University, Seoul, 08826, Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, 08826, Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
12
|
Abstract
Human milk fat substitute (HMFS) is a class of structured lipid that is widely used as an ingredient in infant formulas. Like human milk fat, HMFS is characterized by enrichment of palmitoyl (C16:0) groups specifically at the middle (sn-2 or β) position on the glycerol backbone, and there is evidence that triacylglycerol (TAG) with this unusual stereoisomeric structure provides nutritional benefits. HMFS is currently made by in vitro enzyme-based catalysis because there is no appropriate biological alternative to human milk fat. Most of the fat currently used in infant formulas is obtained from plants, which exclude C16:0 from the middle position. In this study, we have modified the metabolic pathway for TAG biosynthesis in the model oilseed Arabidopsis thaliana to increase the percentage of C16:0 at the middle (vs. outer) positions by more than 20-fold (i.e., from ∼3% in wild type to >70% in our final iteration). This level of C16:0 enrichment is comparable to human milk fat. We achieved this by relocating the C16:0-specific chloroplast isoform of the enzyme lysophosphatidic acid acyltransferase (LPAT) to the endoplasmic reticulum so that it functions within the cytosolic glycerolipid biosynthetic pathway to esterify C16:0 to the middle position. We then suppressed endogenous LPAT activity to relieve competition and knocked out phosphatidylcholine:diacylglycerol cholinephosphotransferase activity to promote the flux of newly made diacylglycerol directly into TAG. Applying this technology to oilseed crops might provide a source of HMFS for infant formula.
Collapse
|
13
|
Wan X, Liu Q, Dong B, Vibhakaran Pillai S, Huang FH, Singh SP, Zhou XR. Molecular and biochemical analysis of the castor caruncle reveals a set of unique genes involved in oil accumulation in non-seed tissues. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:158. [PMID: 31249621 PMCID: PMC6589891 DOI: 10.1186/s13068-019-1496-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/11/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND With the increasing demand for vegetative oil and the approach of peak seed oil production, it is important to develop new oil production platforms from non-seed tissues. Castor bean (Ricinus communis) is one of the crops for vegetable oil for industrial applications with yield around 1.4 ton oil per hectare produced in seed. The castor caruncle is a non-seed tissue attached to seed. RESULTS Caruncle accumulates up to 40% oil by weight in the form of triacylglycerol (TAG), with a highly contrasting fatty acid composition when compared to the seed oil. Biochemical analysis indicated that the caruncle synthesizes TAGs independent of the seed. Such non-seed tissue has provided an excellent resource for understanding the mechanism of oil accumulation in tissues other than seeds. Transcriptome analysis revealed the key members of gene families involved in fatty acid synthesis and TAG assembly in the caruncle. A transient expression assay of these selected genes resulted in a 20-fold increased TAG accumulation in leaves. CONCLUSIONS Castor caruncle utilizes an independent system to synthesize TAGs. Results provide the possibility of exploiting caruncle gene set to engineer oil production in non-seed tissues or microbes.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | - Qing Liu
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
| | - Bei Dong
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
| | | | - Feng-Hong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | | | - Xue-Rong Zhou
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
| |
Collapse
|
14
|
Trivedi P, Nguyen N, Hykkerud AL, Häggman H, Martinussen I, Jaakola L, Karppinen K. Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:431. [PMID: 31110509 PMCID: PMC6499192 DOI: 10.3389/fpls.2019.00431] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Laura Jaakola
- Norwegian Institute of Bioeconomy Research, Ås, Norway
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Katja Karppinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
16
|
Lazare S, Bechar D, Fernie AR, Brotman Y, Zaccai M. The proof is in the bulb: glycerol influences key stages of lily development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:321-340. [PMID: 30288818 DOI: 10.1111/tpj.14122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 05/24/2023]
Abstract
A bulb is a whole plant condensed into an underground organ. A geophyte's bulb comprises both food reserves and important developmental history that may affect its whole growth. In Easter lily (Lilium longiflorum), bulb size is associated with the plant's flowering pathway - vernalization or photoperiod - and also affects sprouting, flower quality and abortion rate. The aim of this study was to investigate the reasons for the major physiological differences between large and small bulbs. Lily bulbs start their development from secondary meristems along the stem, with large bulbs being heavier and bear more scales than small ones. Peeling the outer scales of a large bulb converts its physiological responses into those of a small bulb, implying that the physiological discrepancies in plants developing from large or small bulbs are mediated by factors inherent to the bulb. We therefore performed broad analyses of the metabolite composition in the scales of bulbs subjected to temperature regimes affecting further plant development. We found a striking association between the level of glycerol, a primary metabolite mostly synthesized in the outer scales, and a delay in sprouting and flowering time, and reduction in abortion rate. Exogenous glycerol application to the bulbs before planting corroborated these results. Moreover, transcriptome analyses showed that flowering-promoting gene expression was downregulated in the bulb after glycerol treatment, while potential flowering inhibitor as well as a dormancy-related gene expressions were upregulated. Based on these studies, we postulate that glycerol is a major factor influencing both vegetative and reproductive development in lily.
Collapse
Affiliation(s)
- Silit Lazare
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Daniel Bechar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
17
|
Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:881. [PMID: 31354760 PMCID: PMC6635470 DOI: 10.3389/fpls.2019.00881] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 05/05/2023]
Abstract
Plants produce a diverse array of lineage-specific specialized (secondary) metabolites, which are synthesized from primary metabolites. Plant specialized metabolites play crucial roles in plant adaptation as well as in human nutrition and medicine. Unlike well-documented diversification of plant specialized metabolic enzymes, primary metabolism that provides essential compounds for cellular homeostasis is under strong selection pressure and generally assumed to be conserved across the plant kingdom. Yet, some alterations in primary metabolic pathways have been reported in plants. The biosynthetic pathways of certain amino acids and lipids have been altered in specific plant lineages. Also, two alternative pathways exist in plants for synthesizing primary precursors of the two major classes of plant specialized metabolites, terpenoids and phenylpropanoids. Such primary metabolic diversities likely underlie major evolutionary changes in plant metabolism and chemical diversity by acting as enabling or associated traits for the evolution of specialized metabolic pathways.
Collapse
|
18
|
Khan WA, Hou X, Han K, Khan N, Dong H, Saqib M, Zhang Z, Naseri E, Hu C. Lipidomic study reveals the effect of morphological variation and other metabolite interactions on the lipid composition in various cultivars of Bok choy. Biochem Biophys Res Commun 2018; 506:755-764. [PMID: 29673595 DOI: 10.1016/j.bbrc.2018.04.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Bok choy is an important Brassica vegetable which is also known for its wide range of cultivars that differ in their appearance, leaf color, size and shape. For the purpose to investigate the effect of these phenotypic differences on their lipid composition, seven morphotypes of NHCC (Suzhouqing, Aijaohuang, Wutacai, Yellowrose, Ziluolan, Xiangqingcai and Zicaitai) were selected for this study. For this reason, extensive metabolic approach was adopted which was mainly focused on lipidomics. The overall metabolic position of lipids was determined and the isolated lipid compounds were characterized on the basis of their lipid classes. Moreover, discriminative analysis was applied to monitor the distribution pattern of lipid in different cultivars. Aijiaohuang was the leading cultivar which contained highest lipid levels, whereas least proportion was found in Zicaitai. We proposed that leaf color might have an effect on the lipid composition such as purple cultivars were dominated in glycerophopholipids, light green in fatty acids and dark green were rich in glycerolipids. The level of metabolites differed greatly among different genotypes. Lipid-metabolite interactions revealed the positive correlation of lipids with flavonoid and hydroxycinnamoyl derivatives, whereas negative correlation was noticed in case of phenylamines. This is the first comprehensive study based on lipidomics in order to evaluate the substantial impact of various phenotypes on the metabolic composition of NHCC.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ke Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nadeem Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huijie Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Muhammad Saqib
- Department of Horticulture, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Zhishuo Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Emal Naseri
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China; New Rural Research Institute in Lianyungang, Nanjing Agricultural University, PR China.
| |
Collapse
|
19
|
Venkateshwari V, Vijayakumar A, Vijayakumar AK, Reddy LPA, Srinivasan M, Rajasekharan R. Leaf lipidome and transcriptome profiling of Portulaca oleracea: characterization of lysophosphatidylcholine acyltransferase. PLANTA 2018; 248:347-367. [PMID: 29736624 DOI: 10.1007/s00425-018-2908-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Portulaca leaves serve as an alternative bioresource for edible PUFAs. Transcriptome data provide information to explore Portulaca as a model system for galactolipids, leaf lipid metabolism, and PUFA-rich designer lipids. Poly-unsaturated fatty acids (PUFAs) are gaining importance due to their innumerable health benefits, and hence, understanding their biosynthesis in plants has attained prominence in recent years. The most common source of PUFAs is of marine origin. Although reports have identified Portulaca oleracea (purslane) as a leaf source of omega-3 fatty acids in the form of alpha-linolenic acid (ALA), the mechanism of ALA accumulation and its distribution into various lipids has not been elucidated. Here, we present the lipid profiles of leaves and seeds of several accessions of P. oleracea. Among the nineteen distinct accessions, the RR04 accession has the highest amount of ALA and is primarily associated with galactolipids. In addition, we report the transcriptome of RR04, and we have mapped the potential genes involved in lipid metabolism. Phosphatidylcholine (PC) is the major site of acyl editing, which is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), an integral membrane protein that plays a major role in supplying oleate to the PC pool for further unsaturation. Our investigations using mass spectrometric analysis of leaf microsomal fractions identified LPCAT as part of a membrane protein complex. Both native and recombinant LPCAT showed strong acyltransferase activity with various acyl-CoA substrates. Altogether, the results suggest that ALA-rich glycerolipid biosynthetic machinery is highly active in nutritionally important Portulaca leaves. Furthermore, lipidome, transcriptome, and mass spectrometric analyses of RR04 provide novel information for exploring Portulaca as a potential resource and a model system for studying leaf lipid metabolism.
Collapse
Affiliation(s)
- Varadarajan Venkateshwari
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anitha Vijayakumar
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Arun Kumar Vijayakumar
- Food Safety and Analytical Quality Control Department, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - L Prasanna Anjaneya Reddy
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Malathi Srinivasan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ram Rajasekharan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
20
|
Zhang QY, Yu R, Xie LH, Rahman MM, Kilaru A, Niu LX, Zhang YL. Fatty Acid and Associated Gene Expression Analyses of Three Tree Peony Species Reveal Key Genes for α-Linolenic Acid Synthesis in Seeds. FRONTIERS IN PLANT SCIENCE 2018; 9:106. [PMID: 29459881 PMCID: PMC5807371 DOI: 10.3389/fpls.2018.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 05/22/2023]
Abstract
The increasing demand for healthy edible oil has generated the need to identify promising oil crops. Tree peony (Paeonia section Moutan DC.) is a woody oil crop with α-linolenic acid (ALA) contributing for 45% of the total fatty acid (FA) content in seeds. Molecular and genetic differences that contribute to varied FA content and composition among the wild peony species are, however, poorly understood. Analyses of FA content and composition during seed development in three tree peony species (Paeonia rockii, P. potaninii, and P. lutea) showed varied FA content among them with highest in P. rockii, followed by P. potaninii, and P. lutea. Total FA content among these species increased with seed development and reached its maximum in its final stage. Seed FA composition analysis of the three species also revealed that ALA (C18:3) was the most abundant, followed by oleic (C18:1) and linoleic (C18:2) acids. Additionally, quantitative real-time RT-PCR analyses of 10 key seed oil synthesis genes in the three tree peony species revealed that FAD3, FAD2, β-PDHC, LPAAT, and Oleosin gene expression levels positively correlate with total FA content and rate of accumulation. Specifically, the abundance of FAD3 transcripts in P. rockii compared with P. potaninii, and P. lutea suggests that FAD3 might play an important role in synthesis of ALA via phosphatidylcholine-derived pathway. Overall, comparative analyses of FA content and composition in three different peony species revealed a correlation between efficient lipid accumulation and lipid gene expression during seed development. Further characterization and metabolic engineering of these key genes from peonies will allow for subsequent improvement of tree peony oil quality and production.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
| | - Rui Yu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
| | - Li-Hang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Li-Xin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- *Correspondence: Yan-Long Zhang, ; Li-Xin Niu,
| | - Yan-Long Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- *Correspondence: Yan-Long Zhang, ; Li-Xin Niu,
| |
Collapse
|
21
|
Storch TT, Finatto T, Bruneau M, Orsel-Baldwin M, Renou JP, Rombaldi CV, Quecini V, Laurens F, Girardi CL. Contrasting Transcriptional Programs Control Postharvest Development of Apples (Malus x domestica Borkh.) Submitted to Cold Storage and Ethylene Blockage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7813-7826. [PMID: 28771353 DOI: 10.1021/acs.jafc.7b01425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.
Collapse
Affiliation(s)
- Tatiane Timm Storch
- Embrapa Uva e Vinho , Bento Gonçalves, RS 95701-008, Brazil
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas , Pelotas, RS 96050-500, Brazil
| | | | - Maryline Bruneau
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | - Mathilde Orsel-Baldwin
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | - Jean-Pierre Renou
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | - Cesar Valmor Rombaldi
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas , Pelotas, RS 96050-500, Brazil
| | - Vera Quecini
- Embrapa Uva e Vinho , Bento Gonçalves, RS 95701-008, Brazil
| | - François Laurens
- Bâtiment B, Institut de Recherche en Horticulture et Semences IRHS, Institut National de la Recherche Agronomique INRA , 49071 Beaucouzé, France
| | | |
Collapse
|
22
|
The potential of nuclear magnetic resonance to track lipids in planta. Biochimie 2016; 130:97-108. [DOI: 10.1016/j.biochi.2016.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
|
23
|
Kondo S, Hori K, Sasaki-Sekimoto Y, Kobayashi A, Kato T, Yuno-Ohta N, Nobusawa T, Ohtaka K, Shimojima M, Ohta H. Primitive Extracellular Lipid Components on the Surface of the Charophytic Alga Klebsormidium flaccidum and Their Possible Biosynthetic Pathways as Deduced from the Genome Sequence. FRONTIERS IN PLANT SCIENCE 2016; 7:952. [PMID: 27446179 PMCID: PMC4927632 DOI: 10.3389/fpls.2016.00952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/15/2016] [Indexed: 05/20/2023]
Abstract
Klebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments. Wax and cuticle polymers that contribute to the cuticle layer of plants are important for the survival of land plants, as they protect against those harsh environmental conditions and were probably critical for the transition from aquatic microorganism to land plants. Bryophytes, non-vascular land plants, have similar, but simpler, extracellular waxes and polyester backbones than those of vascular plants. The presence of waxes in terrestrial algae, especially in charophytes, which are the closest algae to land plants, could provide clues in elucidating the mechanism of land colonization by plants. Here, we compared genes involved in the lipid biosynthetic pathways of Arabidopsis thaliana to the K. flaccidum and the Chlamydomonas reinhardtii genomes, and identified wax-related genes in both algae. A simple and easy extraction method was developed for the recovery of the surface lipids from K. flaccidum and C. reinhardtii. Although these algae have wax components, their surface lipids were largely different from those of land plants. We also investigated aliphatic substances in the cell wall fraction of K. flaccidum and C. reinhardtii. Many of the fatty acids were determined to be lipophilic monomers in K. flaccidum, and a Fourier transform infrared spectroscopic analysis revealed that their possible binding mode was distinct from that of A. thaliana. Thus, we propose that K. flaccidum has a cuticle-like hydrophobic layer composed of lipids and glycoproteins, with a different composition from the cutin polymer typically found in land plant cuticles.
Collapse
Affiliation(s)
- Satoshi Kondo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Atsuko Kobayashi
- The Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
| | - Tsubasa Kato
- Advanced Course of Food and Nutrition, Nihon University Junior CollegeShizuoka, Japan
| | - Naoko Yuno-Ohta
- Advanced Course of Food and Nutrition, Nihon University Junior CollegeShizuoka, Japan
| | - Takashi Nobusawa
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Kinuka Ohtaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
| | - Mie Shimojima
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
| | - Hiroyuki Ohta
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
- The Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
| |
Collapse
|
24
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Allen DK. Assessing compartmentalized flux in lipid metabolism with isotopes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1226-1242. [PMID: 27003250 DOI: 10.1016/j.bbalip.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/28/2022]
Abstract
Metabolism in plants takes place across multiple cell types and within distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally assess metabolism frequently involve homogenizing tissues and mixing metabolites from different locations. Most current isotope investigations of metabolism therefore lack the ability to resolve spatially distinct events. Recognition of this limitation has resulted in inspired efforts to advance metabolic flux analysis and isotopic labeling techniques. Though a number of these efforts have been applied to studies in central metabolism; recent advances in instrumentation and techniques present an untapped opportunity to make similar progress in lipid metabolism where the use of stable isotopes has been more limited. These efforts will benefit from sophisticated radiolabeling reports that continue to enrich our knowledge on lipid biosynthetic pathways and provide some direction for stable isotope experimental design and extension of MFA. Evidence for this assertion is presented through the review of several elegant stable isotope studies and by taking stock of what has been learned from radioisotope investigations when spatial aspects of metabolism were considered. The studies emphasize that glycerolipid production occurs across several locations with assembly of lipids in the ER or plastid, fatty acid biosynthesis occurring in the plastid, and the generation of acetyl-CoA and glycerol-3-phosphate taking place at multiple sites. Considering metabolism in this context underscores the cellular and subcellular organization that is important to enhanced production of glycerolipids in plants. An attempt is made to unify salient features from a number of reports into a diagrammatic model of lipid metabolism and propose where stable isotope labeling experiments and further flux analysis may help address questions in the field. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| |
Collapse
|
26
|
Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1269-1281. [PMID: 26883557 DOI: 10.1016/j.bbalip.2016.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 01/01/2023]
Abstract
Photosynthetic microalgae have promise as biofuel feedstock. Under certain conditions, they produce substantial amounts of neutral lipids, mainly in the form of triacylglycerols (TAGs), which can be converted to fuels. Much of our current knowledge on the genetic and molecular basis of algal neutral lipid metabolism derives mainly from studies of plants, i.e. seed tissues, and to a lesser extent from direct studies of algal lipid metabolism. Thus, the knowledge of TAG synthesis and the cellular trafficking of TAG precursors in algal cells is to a large extent based on genome predictions, and most aspects of TAG metabolism have yet to be experimentally verified. The biofuel prospects of microalgae have raised the interest in mechanistic studies of algal TAG biosynthesis in recent years and resulted in an increasing number of publications on lipid metabolism in microalgae. In this review we summarize the current findings on genetic, molecular and physiological studies of TAG accumulation in microalgae. Special emphasis is on the functional analysis of key genes involved in TAG synthesis, molecular mechanisms of regulation of TAG biosynthesis, as well as on possible mechanisms of lipid droplet formation in microalgal cells. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
|
27
|
Simpson JP, Thrower N, Ohlrogge JB. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1243-1252. [PMID: 26869450 DOI: 10.1016/j.bbalip.2016.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Jeffrey P Simpson
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| | - Nicholas Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| | - John B Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Mach J. Identification of a Distinct, Cutin-Related Pathway for Biosynthesis of Triacylglycerol Lipids in Bayberry. THE PLANT CELL 2016; 28:5. [PMID: 26744213 PMCID: PMC4746696 DOI: 10.1105/tpc.16.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
29
|
Li RJ, Gao X, Li LM, Liu XL, Wang ZY, Lü SY. De novo Assembly and Characterization of the Fruit Transcriptome of Idesia polycarpa Reveals Candidate Genes for Lipid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:801. [PMID: 27375655 PMCID: PMC4896211 DOI: 10.3389/fpls.2016.00801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/22/2016] [Indexed: 05/12/2023]
Abstract
Idesia polycarpa, is a valuable oilseed-producing tree of the Flacourtiaceae family that has the potential to fulfill edible oil production and is also a possible biofuel feedstock. The fruit is unique in that it contains both saturated and unsaturated lipids present in pericarp and seed, respectively. However, triglyceride synthesis and storage in tissues outside of the seeds has been poorly studied in previous researches. To gain insight into the unique properties of I. polycarpa fruit lipid synthesis, biochemical, and transcriptomic approaches were used to compare the lipid accumulation between pericarp and seed of the fruit. Lipid accumulation rates, final lipid content and composition were significantly different between two tissues. Furthermore, we described the annotated transcriptome assembly and differential gene expression analysis generated from the pericarp and seed tissues. The data allowed the identification of distinct candidate genes and reconstruction of lipid pathways, which may explain the differences of oil synthesis between the two tissues. The results may be useful for engineering alternative pathways for lipid production in non-seed or vegetative tissues.
Collapse
Affiliation(s)
- Rong-Jun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of SciencesWuhan, China
| | - Xiang Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lin-Mao Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiu-Lin Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhou-Ya Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Shi-you Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of SciencesWuhan, China
- *Correspondence: Shi-you Lü
| |
Collapse
|