1
|
Olthof A, Schwoerer C, Girardini K, Weber A, Doggett K, Mieruszynski S, Heath J, Moore T, Biran J, Kanadia R. Taxonomy of introns and the evolution of minor introns. Nucleic Acids Res 2024; 52:9247-9266. [PMID: 38943346 PMCID: PMC11347168 DOI: 10.1093/nar/gkae550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Classification of introns, which is crucial to understanding their evolution and splicing, has historically been binary and has resulted in the naming of major and minor introns that are spliced by their namesake spliceosome. However, a broad range of intron consensus sequences exist, leading us to here reclassify introns as minor, minor-like, hybrid, major-like, major and non-canonical introns in 263 species across six eukaryotic supergroups. Through intron orthology analysis, we discovered that minor-like introns are a transitory node for intron conversion across evolution. Despite close resemblance of their consensus sequences to minor introns, these introns possess an AG dinucleotide at the -1 and -2 position of the 5' splice site, a salient feature of major introns. Through combined analysis of CoLa-seq, CLIP-seq for major and minor spliceosome components, and RNAseq from samples in which the minor spliceosome is inhibited we found that minor-like introns are also an intermediate class from a splicing mechanism perspective. Importantly, this analysis has provided insight into the sequence elements that have evolved to make minor-like introns amenable to recognition by both minor and major spliceosome components. We hope that this revised intron classification provides a new framework to study intron evolution and splicing.
Collapse
Affiliation(s)
- Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Charles F Schwoerer
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Kaitlin N Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Audrey L Weber
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
| | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Stephen Mieruszynski
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Timothy E Moore
- Statistical Consulting Services, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, USA
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon, Israel
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Powell-Rodgers G, Pirzada MUR, Richee J, Jungers CF, Colijn S, Stratman AN, Djuranovic S. Role of U11/U12 minor spliceosome gene ZCRB1 in Ciliogenesis and WNT Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607392. [PMID: 39149385 PMCID: PMC11326282 DOI: 10.1101/2024.08.09.607392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite the fact that 0.5% of human introns are processed by the U11/U12 minor spliceosome, the latter influences gene expression across multiple cellular processes. The ZCRB1 protein is a recently described core component of the U12 mono-snRNP minor spliceosome, but its functional significance to minor splicing, gene regulation, and biological signaling cascades is poorly understood. Using CRISPR-Cas9 and siRNA targeted knockout and knockdown strategies, we show that human cell lines with a partial reduction in ZCRB1 expression exhibit significant dysregulation of the splicing and expression of U12-type genes, primarily due to dysregulation of U12 mono-snRNA. RNA-Seq and targeted analyses of minor intron-containing genes indicate a downregulation in the expression of genes involved in ciliogenesis, and consequentially an upregulation in WNT signaling. Additionally, zcrb1 CRISPR-Cas12a knockdown in zebrafish embryos led to gross developmental and body axis abnormalities, disrupted ciliogenesis, and upregulated WNT signaling, complementing our human cell studies. This work highlights a conserved and essential biological role of the minor spliceosome in general, and the ZCRB1 protein specifically in cellular and developmental processes across species, shedding light on the multifaceted relationship between splicing regulation, ciliogenesis, and WNT signaling.
Collapse
Affiliation(s)
- Geralle Powell-Rodgers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Mujeeb Ur Rehman Pirzada
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Jahmiera Richee
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Courtney F. Jungers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sarah Colijn
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Amber N. Stratman
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sergej Djuranovic
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| |
Collapse
|
3
|
Li C, Liang S, Huang Q, Zhou Z, Ding Z, Long N, Wi K, Li L, Jiang X, Fan Y, Xu Y. Minor Spliceosomal 65K/RNPC3 Interacts with ANKRD11 and Mediates HDAC3-Regulated Histone Deacetylation and Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307804. [PMID: 38837887 PMCID: PMC11304329 DOI: 10.1002/advs.202307804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Indexed: 06/07/2024]
Abstract
RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.
Collapse
Affiliation(s)
- Chen‐Hui Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Shao‐Bo Liang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Qi‐Wei Huang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhen‐Zhen Zhou
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhan Ding
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
- Key Laboratory of Insect Developmental and Evolutionary BiologyCenter for Excellence in Molecular Plant SciencesChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200032China
| | - Ni Long
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Kwang‐Chon Wi
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Liang Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Xi‐Ping Jiang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yu‐Jie Fan
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yong‐Zhen Xu
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| |
Collapse
|
4
|
Norppa AJ, Chowdhury I, van Rooijen LE, Ravantti JJ, Snel B, Varjosalo M, Frilander MJ. Distinct functions for the paralogous RBM41 and U11/U12-65K proteins in the minor spliceosome. Nucleic Acids Res 2024; 52:4037-4052. [PMID: 38499487 DOI: 10.1093/nar/gkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janne J Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Larue GE, Roy SW. Where the minor things are: a pan-eukaryotic survey suggests neutral processes may explain much of minor intron evolution. Nucleic Acids Res 2023; 51:10884-10908. [PMID: 37819006 PMCID: PMC10639083 DOI: 10.1093/nar/gkad797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Spliceosomal introns are gene segments removed from RNA transcripts by ribonucleoprotein machineries called spliceosomes. In some eukaryotes a second 'minor' spliceosome is responsible for processing a tiny minority of introns. Despite its seemingly modest role, minor splicing has persisted for roughly 1.5 billion years of eukaryotic evolution. Identifying minor introns in over 3000 eukaryotic genomes, we report diverse evolutionary histories including surprisingly high numbers in some fungi and green algae, repeated loss, as well as general biases in their positional and genic distributions. We estimate that ancestral minor intron densities were comparable to those of vertebrates, suggesting a trend of long-term stasis. Finally, three findings suggest a major role for neutral processes in minor intron evolution. First, highly similar patterns of minor and major intron evolution contrast with both functionalist and deleterious model predictions. Second, observed functional biases among minor intron-containing genes are largely explained by these genes' greater ages. Third, no association of intron splicing with cell proliferation in a minor intron-rich fungus suggests that regulatory roles are lineage-specific and thus cannot offer a general explanation for minor splicing's persistence. These data constitute the most comprehensive view of minor introns and their evolutionary history to date, and provide a foundation for future studies of these remarkable genetic elements.
Collapse
Affiliation(s)
- Graham E Larue
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
6
|
Wang C, Li H, Long Y, Dong Z, Wang J, Liu C, Wei X, Wan X. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize. Int J Mol Sci 2023; 24:1025. [PMID: 36674545 PMCID: PMC9865405 DOI: 10.3390/ijms24021025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Grain yield is the most critical and complex quantitative trait in maize. Kernel length (KL), kernel width (KW), kernel thickness (KT) and hundred-kernel weight (HKW) associated with kernel size are essential components of yield-related traits in maize. With the extensive use of quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) analyses, thousands of QTLs and quantitative trait nucleotides (QTNs) have been discovered for controlling these traits. However, only some of them have been cloned and successfully utilized in breeding programs. In this study, we exhaustively collected reported genes, QTLs and QTNs associated with the four traits, performed cluster identification of QTLs and QTNs, then combined QTL and QTN clusters to detect consensus hotspot regions. In total, 31 hotspots were identified for kernel size-related traits. Their candidate genes were predicted to be related to well-known pathways regulating the kernel developmental process. The identified hotspots can be further explored for fine mapping and candidate gene validation. Finally, we provided a strategy for high yield and quality maize. This study will not only facilitate causal genes cloning, but also guide the breeding practice for maize.
Collapse
Affiliation(s)
- Cheng Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yan Long
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Jianhui Wang
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Center of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
7
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Siebert AE, Corll J, Paige Gronevelt J, Levine L, Hobbs LM, Kenney C, Powell CLE, Battistuzzi FU, Davenport R, Mark Settles A, Brad Barbazuk W, Westrick RJ, Madlambayan GJ, Lal S. Genetic analysis of human RNA binding motif protein 48 (RBM48) reveals an essential role in U12-type intron splicing. Genetics 2022; 222:iyac129. [PMID: 36040194 PMCID: PMC9526058 DOI: 10.1093/genetics/iyac129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5' end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Jacob Corll
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - J Paige Gronevelt
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Laurel Levine
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Linzi M Hobbs
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Catalina Kenney
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Christopher L E Powell
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Ruth Davenport
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - A Mark Settles
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - W Brad Barbazuk
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Gerard J Madlambayan
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| | - Shailesh Lal
- Department of Biological Sciences, Oakland University, Rochester Hills, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester Hills, MI 48309, USA
| |
Collapse
|
9
|
Dai D, Mudunkothge JS, Galli M, Char SN, Davenport R, Zhou X, Gustin JL, Spielbauer G, Zhang J, Barbazuk WB, Yang B, Gallavotti A, Settles AM. Paternal imprinting of dosage-effect defective1 contributes to seed weight xenia in maize. Nat Commun 2022; 13:5366. [PMID: 36100609 PMCID: PMC9470594 DOI: 10.1038/s41467-022-33055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Historically, xenia effects were hypothesized to be unique genetic contributions of pollen to seed phenotype, but most examples represent standard complementation of Mendelian traits. We identified the imprinted dosage-effect defective1 (ded1) locus in maize (Zea mays) as a paternal regulator of seed size and development. Hypomorphic alleles show a 5–10% seed weight reduction when ded1 is transmitted through the male, while homozygous mutants are defective with a 70–90% seed weight reduction. Ded1 encodes an R2R3-MYB transcription factor expressed specifically during early endosperm development with paternal allele bias. DED1 directly activates early endosperm genes and endosperm adjacent to scutellum cell layer genes, while directly repressing late grain-fill genes. These results demonstrate xenia as originally defined: Imprinting of Ded1 causes the paternal allele to set the pace of endosperm development thereby influencing grain set and size. Xenia effects describe the genetic contribution of pollen to seed phenotypes. Here the authors show that paternal imprinting of Ded1 contributes to the xenia effect in maize by setting the pace of endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Janaki S Mudunkothge
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Mary Galli
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ruth Davenport
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Xiaojin Zhou
- Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jeffery L Gustin
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.,United States Department of Agriculture, Urbana, IL, 61801, USA
| | - Gertraud Spielbauer
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Junya Zhang
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Andrea Gallavotti
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA. .,Bioengineering Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| |
Collapse
|
10
|
Lan W, Qiu Y, Xu Y, Liu Y, Miao Y. Ubiquitination and Ubiquitin-Like Modifications as Mediators of Alternative Pre-mRNA Splicing in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:869870. [PMID: 35646014 PMCID: PMC9134077 DOI: 10.3389/fpls.2022.869870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing (AS) is a common post-transcriptional regulatory process in eukaryotes. AS has an irreplaceable role during plant development and in response to environmental stress as it evokes differential expression of downstream genes or splicing factors (e.g., serine/arginine-rich proteins). Numerous studies have reported that loss of AS capacity leads to defects in plant growth and development, and induction of stress-sensitive phenotypes. A role for post-translational modification (PTM) of AS components has emerged in recent years. These modifications are capable of regulating the activity, stability, localization, interaction, and folding of spliceosomal proteins in human cells and yeast, indicating that PTMs represent another layer of AS regulation. In this review, we summarize the recent reports concerning ubiquitin and ubiquitin-like modification of spliceosome components and analyze the relationship between spliceosome and the ubiquitin/26S proteasome pathway in plants. Based on the totality of the evidence presented, we further speculate on the roles of protein ubiquitination mediated AS in plant development and environmental response.
Collapse
|
11
|
Gómez-Redondo I, Pericuesta E, Navarrete-Lopez P, Ramos-Ibeas P, Planells B, Fonseca-Balvís N, Vaquero-Rey A, Fernández-González R, Laguna-Barraza R, Horiuchi K, Gutiérrez-Adán A. Zrsr2 and functional U12-dependent spliceosome are necessary for follicular development. iScience 2022; 25:103860. [PMID: 35198906 PMCID: PMC8850803 DOI: 10.1016/j.isci.2022.103860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
ZRSR2 is a splicing factor involved in recognition of 3'-intron splice sites that is frequently mutated in myeloid malignancies and several tumors; however, the role of mutations of Zrsr2 in other tissues has not been analyzed. To explore the biological role of ZRSR2, we generated three Zrsr2 mutant mouse lines. All Zrsr2 mutant lines exhibited blood cell anomalies, and in two lines, oogenesis was blocked at the secondary follicle stage. RNA-seq of Zrsr2 mu secondary follicles showed aberrations in gene expression and showed altered alternative splicing (AS) events involving enrichment of U12-type intron retention (IR), supporting the functional Zrsr2 action in minor spliceosomes. IR events were preferentially associated with centriole replication, protein phosphorylation, and DNA damage checkpoint. Notably, we found alterations in AS events of 50 meiotic genes. These results indicate that ZRSR2 mutations alter splicing mainly in U12-type introns, which may affect peripheral blood cells, and impede oogenesis and female fertility.
Collapse
Affiliation(s)
- Isabel Gómez-Redondo
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Paula Navarrete-Lopez
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Noelia Fonseca-Balvís
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Aida Vaquero-Rey
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Keiko Horiuchi
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA-CSIC, Avda. Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| |
Collapse
|
12
|
Suzuki T, Shinagawa T, Niwa T, Akeda H, Hashimoto S, Tanaka H, Hiroaki Y, Yamasaki F, Mishima H, Kawai T, Higashiyama T, Nakamura K. The DROL1 subunit of U5 snRNP in the spliceosome is specifically required to splice AT-AC-type introns in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:633-648. [PMID: 34780096 DOI: 10.1111/tpj.15582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
An Arabidopsis mutant named defective repression of OLE3::LUC 1 (drol1) was originally isolated as a mutant with defects in the repression of OLEOSIN3 (OLE3) after seed germination. In this study, we show that DROL1 is an Arabidopsis homolog of yeast DIB1, a subunit of the U5 small nuclear ribonucleoprotein particle (snRNP) in the spliceosome. It is also part of a new subfamily that is specific to a certain class of eukaryotes. Comprehensive analysis of the intron splicing using RNA sequencing analysis of the drol1 mutants revealed that most of the minor introns with AT-AC dinucleotide termini had reduced levels of splicing. Only two nucleotide substitutions from AT-AC to GT-AG enabled AT-AC-type introns to be spliced in drol1 mutants. Forty-eight genes, including those having important roles in abiotic stress responses and cell proliferation, exhibited reduced splicing of AT-AC-type introns in the drol1 mutants. Additionally, drol1 mutant seedlings showed retarded growth, similar to that caused by the activation of abscisic acid signaling, possibly as a result of reduced AT-AC-type intron splicing in the endosomal Na+ /H+ antiporters and plant-specific histone deacetylases. These results indicate that DROL1 is specifically involved in the splicing of minor introns with AT-AC termini and that this plays an important role in plant growth and development.
Collapse
Affiliation(s)
- Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tomomi Shinagawa
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tomoko Niwa
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hibiki Akeda
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Satoki Hashimoto
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hideki Tanaka
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Yoko Hiroaki
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Fumiya Yamasaki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hiroyuki Mishima
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tsutae Kawai
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033, Japan
| | - Kenzo Nakamura
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
13
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
14
|
Yang H, Li P, Jin G, Gui D, Liu L, Zhang C. Temporal regulation of alternative splicing events in rice memory under drought stress. PLANT DIVERSITY 2022; 44:116-125. [PMID: 35281128 PMCID: PMC8897166 DOI: 10.1016/j.pld.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
Plant adaptation to drought stress is essential for plant survival and crop yield. Recently, harnessing drought memory, which is induced by repeated stress and recovery cycles, was suggested as a means to improve drought resistance at the transcriptional level. However, the genetic mechanism underlying drought memory is unclear. Here, we carried out a quantitative analysis of alternative splicing (AS) events in rice memory under drought stress, generating 12 transcriptome datasets. Notably, we identified exon skipping (ES) as the predominant AS type (>80%) in differential alternative splicing (DAS) in response to drought stress. Applying our analysis pipeline to investigate DAS events following drought stress in six other plant species revealed variable ES frequencies ranging from 9.94% to 60.70% depending on the species, suggesting that the relative frequency of DAS types in plants is likely to be species-specific. The dinucleotide sequence at AS splice sites in rice following drought stress was preferentially GC-AG and AT-AC. Since U12-type splicing uses the AT-AC site, this suggests that drought stress may increase U12-type splicing, and thus increase ES frequency. We hypothesize that multiple isoforms derived from exon skipping may be induced by drought stress in rice. We also identified 20 transcription factors and three highly connected hub genes with potential roles in drought memory that may be good targets for plant breeding.
Collapse
Affiliation(s)
- Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daping Gui
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Haiyan Engineering & Technology Center, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
15
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|
16
|
Reynolds KA, Rosa-Molinar E, Ward RE, Zhang H, Urbanowicz BR, Settles AM. Accelerating biological insight for understudied genes. Integr Comp Biol 2021; 61:2233-2243. [PMID: 33970251 DOI: 10.1093/icb/icab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rapid expansion of genome sequence data is increasing the discovery of protein-coding genes across all domains of life. Annotating these genes with reliable functional information is necessary to understand evolution, to define the full biochemical space accessed by nature, and to identify target genes for biotechnology improvements. The vast majority of proteins are annotated based on sequence conservation with no specific biological, biochemical, genetic, or cellular function identified. Recent technical advances throughout the biological sciences enable experimental research on these understudied protein-coding genes in a broader collection of species. However, scientists have incentives and biases to continue focusing on well documented genes within their preferred model organism. This perspective suggests a research model that seeks to break historic silos of research bias by enabling interdisciplinary teams to accelerate biological functional annotation. We propose an initiative to develop coordinated projects of collaborating evolutionary biologists, cell biologists, geneticists, and biochemists that will focus on subsets of target genes in multiple model organisms. Concurrent analysis in multiple organisms takes advantage of evolutionary divergence and selection, which causes individual species to be better suited as experimental models for specific genes. Most importantly, multisystem approaches would encourage transdisciplinary critical thinking and hypothesis testing that is inherently slow in current biological research.
Collapse
Affiliation(s)
- Kimberly A Reynolds
- The Green Center for Systems Biology and the Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eduardo Rosa-Molinar
- Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS 66047, USA
| | - Robert E Ward
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hongbin Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Breeanna R Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - A Mark Settles
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, CA USA
| |
Collapse
|
17
|
Bai R, Wan R, Wang L, Xu K, Zhang Q, Lei J, Shi Y. Structure of the activated human minor spliceosome. Science 2021; 371:science.abg0879. [PMID: 33509932 DOI: 10.1126/science.abg0879] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
The minor spliceosome mediates splicing of the rare but essential U12-type precursor messenger RNA. Here, we report the atomic features of the activated human minor spliceosome determined by cryo-electron microscopy at 2.9-angstrom resolution. The 5' splice site and branch point sequence of the U12-type intron are recognized by the U6atac and U12 small nuclear RNAs (snRNAs), respectively. Five newly identified proteins stabilize the conformation of the catalytic center: The zinc finger protein SCNM1 functionally mimics the SF3a complex of the major spliceosome, the RBM48-ARMC7 complex binds the γ-monomethyl phosphate cap at the 5' end of U6atac snRNA, the U-box protein PPIL2 coordinates loop I of U5 snRNA and stabilizes U5 small nuclear ribonucleoprotein (snRNP), and CRIPT stabilizes U12 snRNP. Our study provides a framework for the mechanistic understanding of the function of the human minor spliceosome.
Collapse
Affiliation(s)
- Rui Bai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Ruixue Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China
| | - Lin Wang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Zhang
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Xihu District, Hangzhou 310024, Zhejiang Province, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Institute of Biology, Westlake Institute for Advanced Study, Xihu District, Hangzhou 310024, Zhejiang Province, China.,Beijing Advanced Innovation Center for Structural Biology and Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
19
|
Zhao H, Qin Y, Xiao Z, Li Q, Yang N, Pan Z, Gong D, Sun Q, Yang F, Zhang Z, Wu Y, Xu C, Qiu F. Loss of Function of an RNA Polymerase III Subunit Leads to Impaired Maize Kernel Development. PLANT PHYSIOLOGY 2020; 184:359-373. [PMID: 32591429 PMCID: PMC7479876 DOI: 10.1104/pp.20.00502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Kernel size is an important factor determining grain yield. Although a number of genes affecting kernel development in maize (Zea mays) have been identified by analyzing kernel mutants, most of the corresponding mutants cannot be used in maize breeding programs due to low germination or incomplete seed development. Here, we characterized small kernel7, a recessive small-kernel mutant with a mutation in the gene encoding the second-largest subunit of RNA polymerase III (RNAPΙΙΙ; NRPC2). A frame shift in ZmNRPC2 leads to a premature stop codon, resulting in significantly reduced levels of transfer RNAs and 5S ribosomal RNA, which are transcribed by RNAPΙΙΙ. Loss-of-function nrpc2 mutants created by CRISPR/CAS9 showed significantly reduced kernel size due to altered endosperm cell size and number. ZmNRPC2 affects RNAPIII activity and the expression of genes involved in cell proliferation and endoreduplication to control kernel development via physically interacting with RNAPIII subunits RPC53 and AC40, transcription factor class C1 and Floury3. Notably, unlike the semidominant negative mutant floury3, which has defects in starchy endosperm, small kernel7 only affects kernel size but not the composition of kernel storage proteins. Our findings provide novel insights into the molecular network underlying maize kernel size, which could facilitate the genetic improvement of maize in the future.
Collapse
Affiliation(s)
- Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Gómez-Redondo I, Ramos-Ibeas P, Pericuesta E, Fernández-González R, Laguna-Barraza R, Gutiérrez-Adán A. Minor Splicing Factors Zrsr1 and Zrsr2 Are Essential for Early Embryo Development and 2-Cell-Like Conversion. Int J Mol Sci 2020; 21:E4115. [PMID: 32527007 PMCID: PMC7312986 DOI: 10.3390/ijms21114115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Minor splicing plays an important role in vertebrate development. Zrsr1 and Zrsr2 paralog genes have essential roles in alternative splicing, mainly participating in the recognition of minor (U12) introns. To further explore their roles during early embryo development, we produced Zrsr1mu and Zrsr2mu mutant mice, containing truncating mutations within the second zinc finger domain. Both homozygous mutant mice were viable with a normal lifespan. When we crossed a homozygous Zrsr2mu/mu female with Zrsr1mu/mu male, the double heterozygotes were non-viable, giving rise to embryos that stopped developing mainly between the 2- and 4-cell stages, just after zygotic gene activation. RNA-seq analysis of Zrsr1/2mu 2-cell embryos showed altered gene and isoform expression of thousands of genes enriched in gene ontology terms and biological pathways related to ribosome, RNA transport, spliceosome, and essential zygotic gene activation steps. Alternative splicing was analyzed, showing a significant increase in intron retention in both U2 and U12 intron-containing genes related to cell cycle and mitotic nuclear division. Remarkably, both Zrsr1 and Zrsr2 were required for the conversion of mouse-induced pluripotent stem cells into 2C-like cells. According to our results, Zrsr1 or Zrsr2 are necessary for ZGA and both are indispensable for the conversion of induced pluripotent stem cells into 2C-like cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Avda. Puerta de Hierro n° 12. Local 10, 28040 Madrid, Spain; (I.G.-R.); (P.R.-I.); (E.P.); (R.F.-G.); (R.L.-B.)
| |
Collapse
|
21
|
Li H, Su Q, Li B, Lan L, Wang C, Li W, Wang G, Chen W, He Y, Zhang C. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J Cell Mol Med 2020; 24:4452-4465. [PMID: 32176425 PMCID: PMC7176877 DOI: 10.1111/jcmm.15104] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in gastric cancer (GC) tumourigenesis, providing novel insights into the molecular pathogenesis of GC. However, the involvement of Wilms' tumour 1-associated protein (WTAP), a key component of m6A methylation, in GC progression is controversial. Here, we investigated the biological role and underlying mechanism of WTAP in GC. METHODS We determined WTAP expression using tissue microarrays and The Cancer Genome Atlas (TCGA) data set, which was used to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). CIBERSORT was used to determine WTAP expression in 22 immune cell types. RESULTS Wilms' tumour 1-associated protein was highly expressed in GC, which indicated a poor prognosis, and WTAP expression served as an independent predictor of GC survival. By WGCNA, GO, KEGG and core gene survival analyses, we found that high WTAP expression correlated with RNA methylation and that low expression correlated with a high T cell-related immune response. CIBERSORT was used to correlate low WTAP expression with T lymphocyte infiltration. CONCLUSION RNA methylation and lymphocyte infiltration are the main causes of high WTAP expression and poor prognosis, respectively.
Collapse
Affiliation(s)
- Huafu Li
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bo Li
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Linxiang Lan
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Chunming Wang
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gangqiang Wang
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Wei Chen
- Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yulong He
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Changhua Zhang
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.,Department of Gastrointestinopancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
23
|
Tsai HW, Franklin M, Armoskus C, Taniguchi S, Moder C, Trang K, Santacruz M, Milla A. Androgenic regulation of sexually dimorphic expression of RNA binding motif protein 48 in the developing mouse cortex and hippocampus. Int J Dev Neurosci 2019; 78:33-44. [PMID: 31400491 PMCID: PMC6897302 DOI: 10.1016/j.ijdevneu.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022] Open
Abstract
To further reveal the molecular mechanism underlying sexual differentiation of the mouse cerebral cortex and hippocampus, we reanalyzed our previous microarray study with Gene Ontology (GO) term enrichment and found that the GO term "RNA binding" was over-represented among the 89 sexually dimorphic candidate genes. Thus, we selected 16 autosomal genes annotated to the term RNA binding and profiled their mRNA expression in the developing male and female mouse cortex/hippocampus. During the first three weeks after birth, sex differences in mRNA levels of Khdrbs2, Nanos2, Rbm48, and Tdrd3 were observed in the mouse cortex/hippocampus. Of these genes, only the female-biased expression of Rbm48 in neonates was abolished by prenatal exposure to testosterone propionate (TP), while postnatal treatment of TP three weeks after birth increased Rbm48 and Tdrd3 mRNA levels in both sexes. Regardless of sex, the postnatal cortex/hippocampus also showed a marked increase in the content of androgen receptor (Ar) and estrogen receptor β (Esr2), but a decrease in estrogen receptor α (Esr1) and aromatase (Cyp19a1), which might confer the different responses of Rbm48 to prenatal and postnatal TP. Our results suggest that androgen-regulated, sexually dimorphic Rbm48 expression might present a novel molecular mechanism by which perinatal androgens control development of sexual dimorphism in cortical and hippocampal structure and function.
Collapse
Affiliation(s)
- Houng-Wei Tsai
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Michael Franklin
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Chris Armoskus
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Saori Taniguchi
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Courtney Moder
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Kathy Trang
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Marilisa Santacruz
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Allyson Milla
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
24
|
Zheng X, Li Q, Li C, An D, Xiao Q, Wang W, Wu Y. Intra-Kernel Reallocation of Proteins in Maize Depends on VP1-Mediated Scutellum Development and Nutrient Assimilation. THE PLANT CELL 2019; 31:2613-2635. [PMID: 31530735 PMCID: PMC6881121 DOI: 10.1105/tpc.19.00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 05/05/2023]
Abstract
During maize (Zea mays) seed development, the endosperm functions as the major organ for storage of photoassimilate, serving to nourish the embryo. α-Zeins and globulins (GLBs) predominantly accumulate in the maize endosperm and embryo, respectively. Here, we show that suppression of α-zeins by RNA interference (αRNAi) in the endosperm results in more GLB1 being synthesized in the embryo, thereby markedly increasing the size and number of protein storage vacuoles. Glb genes are strongly expressed in the middle-to-upper section of the scutellum, cells of which are significantly enlarged by αRNAi induction. Elimination of GLBs caused an apparent reduction in embryo protein level, regardless of whether α-zeins were expressed or suppressed in the endosperm, indicating that GLBs represent the dominant capacity for storage of amino acids allocated from the endosperm. It appears that protein reallocation is mostly regulated at the transcriptional level. Genes differentially expressed between wild-type and αRNAi kernels are mainly involved in sulfur assimilation and nutrient metabolism, and many are transactivated by VIVIPAROUS1 (VP1). In vp1 embryos, misshapen scutellum cells contain notably less cellular content and are unable to respond to αRNAi induction. Our results demonstrate that VP1 is essential for scutellum development and protein reallocation from the endosperm to embryo.
Collapse
Affiliation(s)
- Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
25
|
Yan J, Tan BC. Maize biology: From functional genomics to breeding application. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:654-657. [PMID: 31099156 DOI: 10.1111/jipb.12819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
| | - Bao-Cai Tan
- School of Life Sciences, Shandong University, Jinan, 266237, China
| |
Collapse
|