1
|
Carrillo-Bermejo EA, Brito-Argáez L, Galaz-Ávalos RM, Barredo-Pool F, Loyola-Vargas VM, Aguilar-Hernández V. Protein profile changes during priming explants to embryogenic response in Coffea canephora: identification of the RPN12 proteasome subunit involved in the protein degradation. PeerJ 2024; 12:e18372. [PMID: 39544425 PMCID: PMC11562780 DOI: 10.7717/peerj.18372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Plant somatic embryogenesis encompasses somatic cells switch into embryogenic cells that can later produce somatic embryos with the ability to produce plantlets. Previously, we defined in vitro culture settings for the somatic embryogenesis process of Coffea canephora that comprise adequate plantlets with auxin plus cytokinin followed by cut-leaf explant cultivation with cytokinin, producing embryos with the ability to regenerate plantlets. Here, we confirmed that cultivating cut-leaf explants with cytokinin is sufficient to promote somatic embryos proliferation and the high yield of somatic embryos in the protocol requires adequate plantlets with auxin plus cytokinin. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels reveal auxin-plus cytokinin-dependent regulated proteins in plantlets with up and down abundance. Chitinase A class III, proteins involved in the metabolism and folding of proteins, photosynthesis, antioxidant activity, and chromatin organization were identified. The RPN12 protein, which is a subunit of the proteasome 26S, has an abundance that is not associated with transcript changes, suggesting post-translational regulation.
Collapse
Affiliation(s)
- Evelyn A. Carrillo-Bermejo
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Rosa M. Galaz-Ávalos
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Felipe Barredo-Pool
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Victor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Du K, Zhao W, Mao Y, Lv Z, Khattak WA, Ali S, Zhou Z, Wang Y. Maize ear growth is stimulated at the fourth day after pollination by cell wall remodeling and changes in lipid and hormone signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5429-5439. [PMID: 35338493 DOI: 10.1002/jsfa.11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Stimulating maize ear development is an effective way of improving yield. However, limited information is available regarding the regulation of sink strength change from weak to strong at the same position of maize plants. Here, a novel method for stimulating development combined with physiological assays and proteomics was applied to explore the regulation of ear strengthened development. RESULTS By blocking pollination of the upper ear of maize hybrid Suyu 41, the adjacent lower ear was dramatically stimulated at 4 days after pollination (DAP). Tandem mass tag (TMT)-based proteomics identified 173 differentially expressed proteins (fold change >1.2 or <0.83, P < 0.05) from 7793 total proteins. Gene ontology annotations indicated that several pathways showed noticeable changes, with a preferential distribution to cell wall remodeling, hormone signals and lipid metabolism in the stimulated kernels. Cell wall remodeling was highly mediated by chitinase, exhydrolase II and xyloglucan enotransglucosylase/hydrolase, and accompanied by increased sucrose and glucose content. A series of lipoxygenase proteins were significantly upregulated, causing a significant alteration in lipid metabolism. Hormone signals were influenced by the expression of the proteins involved in indole-3-acetic acid (IAA) transport, zeatin (ZT) biosynthesis and abscisic acid (ABA) signal response, and increased IAA, ZT and ABA content. CONCLUSION The critical time for understanding the mechanism by which ear growth is stimulated is 4 DAP. Comparative proteomics and physiological analysis revealed that lipid metabolism enhancement, cell wall remodeling and changes in hormone signaling (IAA, ZT and ABA) were all important in stimulating early ear development. Proper regulation of these pathways may improve ear development, resulting in increased maize yield. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Du
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC- MCP), Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Yu Mao
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Zhiwei Lv
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Wajid Ali Khattak
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Saif Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC- MCP), Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Youhua Wang
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, P. R. China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC- MCP), Nanjing Agricultural University, 210095, Nanjing, P. R. China
| |
Collapse
|
3
|
Elhiti M, Stasolla C. Transduction of Signals during Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:178. [PMID: 35050066 PMCID: PMC8779037 DOI: 10.3390/plants11020178] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the explants respond to inductive signals (mostly plant growth regulators, PRGs), and de-differentiate into embryogenic cells. Such cells, "canalized" into the embryogenic developmental pathway, are able to generate embryos comparable in structure and physiology to their in vivo counterparts. Genomic and transcriptomic studies have identified several pathways governing the initial stages of the embryogenic process. In this review, the authors emphasize the importance of the developmental signals required for the progression of embryo development, starting with the de-differentiation of somatic cells and culminating with tissue patterning during the formation of the embryo body. The action and interaction of PGRs are highlighted, along with the participation of master regulators, mostly transcription factors (TFs), and proteins involved in stress responses and the signal transduction required for the initiation of the embryogenic process.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
4
|
Meira FS, Luis ZG, Cardoso IMAS, Scherwinski-Pereira JE. Somatic embryogenesis from leaf tissues of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.]. AN ACAD BRAS CIENC 2020; 92:e20180709. [PMID: 33206795 DOI: 10.1590/0001-3765202020180709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
A somatic embryogenesis protocol was developed from the immature leaves of adult plants of the macaw palm. Leaf explants from different regions of the palm heart were used for callus initiation in a modified Y3 medium, supplemented with 2,4-D or Picloram at 450 μM. Calli were separated from the leaf explants at 6-, 9- and 12-month periods and transferred to a fresh culture medium of the same composition. They were multiplied for up to 120 days. Reduced concentrations of 2,4-D and Picloram were used to differentiate somatic embryos. They were then germinated in a medium without plant growth regulators. Morphological and anatomical analyses were conducted at different stages of the embryogenic process. The best results for callus induction were achieved by Picloram, when explants were maintained for up to 9 months on culture medium (64.9%). The farthest portions of the apical meristem were those that provided the biggest calli formation. The formation of the somatic embryos was observed from the calli multiplication phase. Reduction in concentrations of growth regulators failed to promote the formation of complete plants. Picloram at 450 μM promotes high callogenesis in leaf tissues of macaw palm, with a potential for somatic embryo formation.
Collapse
Affiliation(s)
- Filipe S Meira
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília/UNB, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Rede Pró-Centro-Oeste, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Zanderluce G Luis
- Universidade Federal do Sul e Sudeste do Pará/UNIFESSPA, Instituto de Estudo em Saúde e Biológicas/IESB, Residencial Total Ville, Nova Marabá, 68507-590 Marabá, PA, Brazil
| | - InaÊ MariÊ A S Cardoso
- Pós-Doutoranda, Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte final, PqEB, Asa Norte, 70770-917 Brasília, DF, Brazil
| | - Jonny E Scherwinski-Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte (final), PqEB, Asa Norte, 70770-917 Brasília, DF, Brazil
| |
Collapse
|
5
|
Zheng T, Zhang K, Sadeghnezhad E, Jiu S, Zhu X, Dong T, Liu Z, Guan L, Jia H, Fang J. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea. Mol Biol Rep 2020; 47:7349-7363. [PMID: 32914265 DOI: 10.1007/s11033-020-05791-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
Chitinases (Chi), an important resistance-related protein, act against fungal pathogens by catalyzing the fungal cell wall, whereas are involved in different biological pathways in grape. In this study, we found 42 Chi family genes in Vitis vinifera L. (VvChis) and evaluated their expression levels after Botrytis infection, stress hormones like ethylene (ETH) and methyl-jasmonate (MeJA), and abiotic stresses like salinity and temperature changes in ripened fruits. VvChis were categorized into five groups including A, B, C, D, and E belonged to glycoside hydrolase family 18 and 19 (GH18 and GH19) according to genes structure, which expression analysis showed distinct temporal and spatial expression patterns changed in different tissues and various development stages. Different responsive elements to biotic and abiotic stresses were determined in the promoter regions of VvChis, specially elicitor-responsive element that was conserved among all VvChis genes. The expression levels of VvChis in groups A, B, and E increased after Botrytis cinerea infection in leaves and berries. Meanwhile, VvChis in glycoside hydrolase family 18 (GH18) were up-regulated under MeJA and ETH treatment, although the induction of VvChis by low temperature was more significant than high temperature. The expression of VvChis was also positively correlated with the concentration of NaCl treatment. Furthermore, differential gene-overexpression of VvChi5, VvChi17, VvChi22, VvChi26, and VvChi31 in strawberry and tomato fruits demonstrated the involvement of various isoforms in resistance to Botrytis infection through antioxidant system and lignin accumulation, which led to a reduction of damage. Among different isoforms of VvChis, we confirmed the interaction of Chi17 with Metallothionein (MTL) as oxidative stress protection, which suggests VvChis can modulate oxidative stress during postharvest storage in ripened fruits.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, Shanghai City, 200030, Shanghai, People's Republic of China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey JL, Pujade-Villar J, Huguet E, Drezen JM, Shorthouse JD, Stone GN. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 2019; 15:e1008398. [PMID: 31682601 PMCID: PMC6855507 DOI: 10.1371/journal.pgen.1008398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction. Plant galls are induced by organisms that manipulate host plant development to produce novel structures. The organisms involved range from mutualistic (such as nitrogen fixing bacteria) to parasitic. In the case of parasites, the gall benefits only the gall-inducing partner. A wide range of organisms can induce galls, but the processes involved are understood only for some bacterial and fungal galls. Cynipid gall wasps induce diverse and structurally complex galls, particularly on oaks (Quercus). We used transcriptome and genome sequencing for one gall wasp and its host oak to identify genes active in gall development. On the plant side, when compared to normally developing bud tissues, young gall tissues showed elevated expression of loci similar to those found in nitrogen-fixing root nodules of leguminous plants. On the wasp side, we found no evidence for involvement of viruses or microorganisms carried by the insects in gall induction or delivery of inducing stimuli. We found that gall wasps express many genes whose products may be secreted to the host, including enzymes that degrade plant cell walls. Genome comparisons between galling and non-galling relatives showed cell wall-degrading enzymes are restricted to gall inducers, and hence potentially key components of a gall inducing lifestyle.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | | | - José-Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | | | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| |
Collapse
|
7
|
Zheng L, Ma J, Mao J, Fan S, Zhang D, Zhao C, An N, Han M. Genome-wide identification of SERK genes in apple and analyses of their role in stress responses and growth. BMC Genomics 2018; 19:962. [PMID: 30587123 PMCID: PMC6307271 DOI: 10.1186/s12864-018-5342-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Somatic embryogenesis receptor-like kinases (SERKs) are leucine-rich repeat receptor-like kinases associated with various signaling pathways. These kinases have a relationship with stress signals, and they are also believed to be important for regulating plant growth. However, information about this protein family in apple is limited. RESULTS Twelve apple SERK genes distributed across eight chromosomes were identified. These genes clustered into three distinct groups in a phylogenetic analysis. All of the encoded proteins contained typical SERK domains. The chromosomal locations, gene/protein structures, synteny, promoter sequences, protein-protein interactions, and physicochemical characteristics of MdSERK genes were analyzed. Bioinformatics analyses demonstrated that gene duplications have likely contributed to the expansion and evolution of SERK genes in the apple genome. Six homologs of SERK genes were identified between apple and Arabidopsis. Quantitative real-time PCR analyses revealed that the MdSERK genes showed different expression patterns in various tissues. Eight MdSERK genes were responsive to stress signals, such as methyl jasmonate, salicylic acid, abscisic acid, and salt (NaCl). The application of exogenous brassinosteroid and auxin increased the growth and endogenous hormone contents of Malus hupehensis seedlings. The expression levels of seven MdSERK genes were significantly upregulated by brassinosteroid and auxin. In addition, several MdSERK genes showed higher expression levels in standard trees of 'Nagafu 2' (CF)/CF than in dwarf trees of CF/'Malling 9' (M.9), and in CF than in the spur-type bud mutation "Yanfu 6" (YF). CONCLUSION This study represents the first comprehensive investigation of the apple SERK gene family. These data indicate that apple SERKs may function in adaptation to adverse environmental conditions and may also play roles in controlling apple tree growth.
Collapse
Affiliation(s)
- Liwei Zheng
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Jiangping Mao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Sheng Fan
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China. .,College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Malolepszy A, Kelly S, Sørensen KK, James EK, Kalisch C, Bozsoki Z, Panting M, Andersen SU, Sato S, Tao K, Jensen DB, Vinther M, Jong ND, Madsen LH, Umehara Y, Gysel K, Berentsen MU, Blaise M, Jensen KJ, Thygesen MB, Sandal N, Andersen KR, Radutoiu S. A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. eLife 2018; 7:38874. [PMID: 30284535 PMCID: PMC6192697 DOI: 10.7554/elife.38874] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023] Open
Abstract
Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.
Collapse
Affiliation(s)
- Anna Malolepszy
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Christina Kalisch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michael Panting
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Ke Tao
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dorthe Bødker Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene Heegaard Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mette U Berentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mickael Blaise
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Knud Jørgen Jensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Kuba Y, Takashima T, Uechi K, Taira T. Purification, cDNA cloning, and characterization of plant chitinase with a novel domain combination from lycophyte Selaginella doederleinii. Biosci Biotechnol Biochem 2018; 82:1742-1752. [PMID: 29966504 DOI: 10.1080/09168451.2018.1491285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Chitinase-A from a lycophyte Selaginella doederleinii (SdChiA), having molecular mass of 53 kDa, was purified to homogeneity by column chromatography. The cDNA encoding SdChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1477 nucleotides and its open reading frame encoded a polypeptide of 467 amino acid residues. The deduced amino acid sequence indicated that SdChiA consisted of two N-terminal chitin-binding domains and a C-terminal plant class V chitinase catalytic domain, belonging to the carbohydrate-binding module family 18 (CBM18) and glycoside hydrolase family 18 (GH18), respectively. SdChiA had chitin-binding ability. The time-dependent cleavage pattern of (GlcNAc)4 by SdChiA showed that SdChiA specifically recognizes the β-anomer in the + 2 subsite of the substrate (GlcNAc)4 and cleaves the glycoside bond at the center of the substrate. This is the first report of the occurrence of a family 18 chitinase containing CBM18 chitin-binding domains. ABBREVIATIONS AtChiC: Arabidopsis thaliana class V chitinase; CBB: Coomassie brilliant blue R250; CBM: carbohydrate binding module family; CrChi-A: Cycas revolute chitinase-A; EaChiA: Equisetum arvense chitinase-A; GH: glycoside hydrolase family, GlxChi-B: gazyumaru latex chitinase-B; GlcNAc: N-acetylglucosamine; HPLC: high performance liquid chromatography; LysM; lysin motif; MtNFH1: Medicago truncatula ecotypes R108-1 chitinase; NCBI: national center for biotechnology information; NF: nodulation factor; NtChiV: Nicotiana tabacum class V chitinase; PCR: polymerase chain reaction; PrChi-A: Pteris ryukyuensis chitinase-A; RACE: rapid amplification of cDNA ends; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SdChiA: Selaginella doederleinii chitinase-A.
Collapse
Affiliation(s)
- Yumani Kuba
- a Graduate School of Agricultural Science , Kagoshima University , Kagoshima , Japan.,b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Tomoya Takashima
- a Graduate School of Agricultural Science , Kagoshima University , Kagoshima , Japan.,b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Keiko Uechi
- b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| | - Toki Taira
- a Graduate School of Agricultural Science , Kagoshima University , Kagoshima , Japan.,b Department of Bioscience and Biotechnology , University of the Ryukyus , Okinawa , Japan
| |
Collapse
|
10
|
Wu J, Wang Y, Kim SG, Jung KH, Gupta R, Kim J, Park Y, Kang KY, Kim ST. A secreted chitinase-like protein (OsCLP) supports root growth through calcium signaling in Oryza sativa. PHYSIOLOGIA PLANTARUM 2017; 161:273-284. [PMID: 28401568 DOI: 10.1111/ppl.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 05/27/2023]
Abstract
Chitinases belong to a conserved protein family and play multiple roles in defense, development and growth regulation in plants. Here, we identified a secreted chitinase-like protein, OsCLP, which functions in rice growth. A T-DNA insertion mutant of OsCLP (osclp) showed significant retardation of root and shoot growth. A comparative proteomic analysis was carried out using root tissue of wild-type and the osclp mutant to understand the OsCLP-mediated rice growth retardation. Results obtained revealed that proteins related to glycolysis (phosphoglycerate kinase), stress adaption (chaperonin) and calcium signaling (calreticulin and CDPK1) were differentially regulated in osclp roots. Fura-2 molecular probe staining, which is an intracellular calcium indicator, and inductively coupled plasma-mass spectrometry (ICP-MS) analysis suggested that the intracellular calcium content was significantly lower in roots of osclp as compared with the wild-type. Exogenous application of Ca2+ resulted in successful recovery of both primary and lateral root growth in osclp. Moreover, overexpression of OsCLP resulted in improved growth with modified seed shape and starch structure; however, the overall yield remained unaffected. Taken together, our results highlight the involvement of OsCLP in rice growth by regulating the intracellular calcium concentrations.
Collapse
Affiliation(s)
- Jingni Wu
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Sang Gon Kim
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Joonyup Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
- Department of Horticultural Bioscience, Pusan National University, Miryang, 627-706, South Korea
| | - Kyu Young Kang
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
| |
Collapse
|
11
|
Purification and characterization of a novel chitinase from Trichosanthes dioica seed with antifungal activity. Int J Biol Macromol 2015; 84:62-8. [PMID: 26666429 DOI: 10.1016/j.ijbiomac.2015.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/28/2015] [Accepted: 12/02/2015] [Indexed: 12/26/2022]
Abstract
Chitinases are a group of enzymes that show differences in their molecular structure, substrate specificity, and catalytic mechanism and widely found in organisms like bacteria, yeasts, fungi, arthropods actinomycetes, plants and humans. A novel chitinase enzyme (designated as TDSC) was purified from Trichosanthes dioica seed with a molecular mass of 39±1 kDa in the presence and absence of β-mercaptoethanol. The enzyme was a glycoprotein in nature containing 8% neutral sugar. The N-terminal sequence was determined to be EINGGGA which did not match with other proteins. Amino acid analysis performed by LC-MS revealed that the protein was rich in leucine. The enzyme was stable at a wide range of pH (5.0-11.0) and temperature (30-90 °C). Chitinase activity was little bit inhibited in the presence of chelating agent EDTA (ethylenediaminetetraaceticacid), urea and Ca(2+). A strong fluorescence quenching effect was found when dithiothreitol and sodium dodecyl sulfate were added to the enzyme. TDSC showed antifungal activity against Aspergillus niger and Trichoderma sp. as tested by MTT assay and disc diffusion method.
Collapse
|
12
|
Lippmann R, Friedel S, Mock HP, Kumlehn J. The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:498. [PMID: 26217352 PMCID: PMC4493395 DOI: 10.3389/fpls.2015.00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 05/05/2023]
Abstract
Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.
Collapse
Affiliation(s)
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
13
|
Proteomic Analysis of Immature Fraxinus mandshurica Cotyledon Tissues during Somatic Embryogenesis: Effects of Explant Browning on Somatic Embryogenesis. Int J Mol Sci 2015; 16:13692-713. [PMID: 26084048 PMCID: PMC4490518 DOI: 10.3390/ijms160613692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
Manchurian ash (Fraxinus mandshurica Rupr.) is a valuable hardwood species in Northeast China. In cultures of F. mandshurica, somatic embryos were produced mainly on browned explants. Therefore, we studied the mechanism of explant browning and its relationship with somatic embryogenesis (SE). We used explants derived from F. mandshurica immature zygotic embryo cotyledons as materials. Proteins were extracted from browned embryogenic explants, browned non-embryogenic explants, and non-brown explants, and then separated by 2-dimensional electrophoresis. Differentially and specifically expressed proteins were analyzed by mass spectrometry to identify proteins involved in the browning of explants and SE. Some stress response and defense proteins such as chitinases, peroxidases, aspartic proteinases, and an osmotin-like protein played important roles during SE of F. mandshurica. Our results indicated that explant browning might not be caused by the accumulation and oxidation of polyphenols only, but also by some stress-related processes, which were involved in programmed cell death (PCD), and then induced SE.
Collapse
|
14
|
Nic-Can GI, Galaz-Ávalos RM, De-la-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM. Somatic Embryogenesis: Identified Factors that Lead to Embryogenic Repression. A Case of Species of the Same Genus. PLoS One 2015; 10:e0126414. [PMID: 26038822 PMCID: PMC4454440 DOI: 10.1371/journal.pone.0126414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022] Open
Abstract
Somatic embryogenesis is a powerful biotechnological tool for the mass production of economically important cultivars. Due to the cellular totipotency of plants, somatic cells under appropriate conditions are able to develop a complete functional embryo. During the induction of somatic embryogenesis, there are different factors involved in the success or failure of the somatic embryogenesis response. Among these factors, the origin of the explant, the culture medium and the in vitro environmental conditions have been the most studied. However, the secretion of molecules into the media has not been fully addressed. We found that the somatic embryogenesis of Coffea canephora, a highly direct embryogenic species, is disrupted by the metabolites secreted from C. arabica, a poorly direct embryogenic species. These metabolites also affect DNA methylation. Our results show that the abundance of two major phenolic compounds, caffeine and chlorogenic acid, are responsible for inhibiting somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Geovanny I. Nic-Can
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Armando Alcazar-Magaña
- Department of Chemistry, University of Guanajuato, L. de Retana 5, CP 36000 Guanajuato, Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, L. de Retana 5, CP 36000 Guanajuato, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
- * E-mail:
| |
Collapse
|
15
|
Li Q, Zhang S, Wang J. Transcriptomic and proteomic analyses of embryogenic tissues in Picea balfouriana treated with 6-benzylaminopurine. PHYSIOLOGIA PLANTARUM 2015; 154:95-113. [PMID: 25200684 DOI: 10.1111/ppl.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 05/22/2023]
Abstract
The cytokinin 6-benzylaminopurine (6-BAP) influences the embryogenic capacity of the tissues of Picea balfouriana during long subculture (after 3 months). Tissues that proliferate in 3.6 and 5 µM 6-BAP exhibit the highest and lowest embryogenic capacity, respectively, generating 113 ± 6 and 23 ± 3 mature embryos per 100 mg of tissue. In this study, a comparative transcriptomic and proteomic approach was applied to characterize the genes and proteins that are differentially expressed among tissues under the influence of different levels of 6-BAP. A total of 51 375 unigenes and 2617 proteins were obtained after quality filtering. There were 2770 transcripts for proteins found among these unigenes. Gene ontology (GO) analysis of the differentially expressed unigenes and proteins showed that they were involved in cell and binding activity and were enriched in ribosome and glutathione metabolism pathways. Ribosomal proteins, glutathione S-transferase proteins, germin-like proteins and calmodulin-independent protein kinases were up-regulated in the embryogenic tissues with the highest embryogenic ability (treated with 3.6 µM 6-BAP), which was validated via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and these proteins might serve as molecular markers of embryogenic ability. Data are available via Sequence Read Archive (SRA) and ProteomeXchange with identifier SRP042246 and PXD001022, respectively.
Collapse
Affiliation(s)
- Qingfen Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | | |
Collapse
|
16
|
Okubara PA, Dickman MB, Blechl AE. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:61-70. [PMID: 25438786 DOI: 10.1016/j.plantsci.2014.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 05/20/2023]
Abstract
The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions.
Collapse
Affiliation(s)
- Patricia A Okubara
- USDA-ARS, Root Disease and Biological Control Research Unit, Pullman, WA, 99164-6430, USA.
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2123, USA
| | - Ann E Blechl
- USDA-ARS, Crop Improvement and Utilization Research Unit, 800 Buchanan Street, Albany, CA, 94710-1105, USA
| |
Collapse
|
17
|
Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 2014; 9:e111407. [PMID: 25356773 PMCID: PMC4214754 DOI: 10.1371/journal.pone.0111407] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq) to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.
Collapse
Affiliation(s)
- Stella A. G. D. Salvo
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Li J, Wu Z, Cui L, Zhang T, Guo Q, Xu J, Jia L, Lou Q, Huang S, Li Z, Chen J. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.). PLANT & CELL PHYSIOLOGY 2014; 55:1325-42. [PMID: 24733865 DOI: 10.1093/pcp/pcu051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Parthenocarpy is an important trait determining yield and quality of fruit crops. However, the understanding of the mechanisms underlying parthenocarpy induction is limited. Cucumber (Cucumis sativus L.) is abundant in parthenocarpic germplasm resources and is an excellent model organism for parthenocarpy studies. In this study, the transcriptome of cucumber fruits was studied using RNA sequencing (RNA-Seq). Differentially expressed genes (DEGs) of set fruits were compared against aborted fruits. Distinctive features of parthenocarpic and pollinated fruits were revealed by combining the analysis of the transcriptome together with cytomorphological and physiological analysis. Cell division and the transcription of cell division genes were found to be more active in parthenocarpic fruit. The study also indicated that parthenocarpic fruit set is a high sugar-consuming process which is achieved via enhanced carbohydrate degradation through transcription of genes that lead to the breakdown of carbohydrates. Furthermore, the evidence provided by this work supports a hypothesis that parthenocarpic fruit set is induced by mimicking the processes of pollination/fertilization at the transcriptional level, i.e. by performing the same transcriptional patterns of genes inducing pollination and gametophyte development as in pollinated fruit. Based on the RNA-Seq and ovary transient expression results, 14 genes were predicted as putative parthenocarpic genes. The transcription analysis of these candidate genes revealed auxin, cytokinin and gibberellin cross-talk at the transcriptional level during parthenocarpic fruit set.
Collapse
Affiliation(s)
- Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, ChinaThese authors contributed equally to this work
| | - Zhe Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, ChinaCollege of Horticulture, Shanxi Agricultural University, Shanxi 030801, ChinaThese authors contributed equally to this work
| | - Li Cui
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, ChinaThese authors contributed equally to this work
| | - Tinglin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinwei Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Sanwen Huang
- Key Laboratory of Horticultural Crops Genetic Improvement of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengguo Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Tchorbadjieva M, Pantchev I, Harizanova N. Two-Dimensional Protein Pattern Analysis of Extracellular Proteins Secreted by Embryogenic and Non-Embryogenic Suspension Cultures ofDactylis GlomerataL. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2004.10817082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Silva RDC, Carmo LST, Luis ZG, Silva LP, Scherwinski-Pereira JE, Mehta A. Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 2014; 104:112-27. [PMID: 24675181 DOI: 10.1016/j.jprot.2014.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/24/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
UNLABELLED In the present study we have identified and characterized the proteins expressed during different developmental stages of Elaeis guineensis calli obtained from zygotic embryos. We were interested in the possible proteomic changes that would occur during the acquisition of somatic embryogenesis and therefore samples were collected from zygotic embryos (E1), swollen explants 14days (E2) in induction medium, primary callus (E3), and pro-embryogenic callus (E4). The samples were grinded in liquid nitrogen, followed by total protein extraction using phenol and extraction buffer. Proteins were analyzed by two-dimensional electrophoresis (2-DE) and the differentially expressed protein spots were analyzed by MALDI-TOF mass spectrometry (MS and MS/MS). Interestingly, we have identified proteins, which can be used as potential candidates for future studies aiming at the development of biomarkers for embryogenesis acquisition and for the different stages leading to pro-embryogenic callus formation such as type IIIa membrane protein cp-wap13, fructokinase and PR proteins. The results obtained shed some light on the biochemical events involved in the process of somatic embryogenesis of E. guineensis obtained from zygotic embryos. The use of stage-specific protein markers can help monitor cell differentiation and contribute to improve the protocols for successfully cloning the species. BIOLOGICAL SIGNIFICANCE Understanding the fate and dynamics of cells and tissues during callus formation is essential to understand totipotency and the mechanisms involved during acquisition of somatic embryogenesis (SE). In this study we have investigated the early stages of somatic embryogenesis induction in oil palm and have identified potential markers as well as proteins potentially involved in embryogenic competence acquisition. The use of these proteins can help improve tissue culture protocols in order to increase regeneration rates. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Rafael de Carvalho Silva
- PPGBIOTEC, Departamento de Biologia, Universidade Federal do Amazonas, CEP 69077-000, Manaus, AM, Brazil
| | | | - Zanderluce Gomes Luis
- PPGBOT, Departamento de Botanica, Instituto de Biologia, Universidade de Brasilia, CEP 70910-900, Brasília, DF, Brazil
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil
| | - Jonny Everson Scherwinski-Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil; PPGBOT, Departamento de Botanica, Instituto de Biologia, Universidade de Brasilia, CEP 70910-900, Brasília, DF, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil.
| |
Collapse
|
21
|
Zheng Q, Perry SE. Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18. PLANT PHYSIOLOGY 2014; 164:1365-77. [PMID: 24481137 PMCID: PMC3938626 DOI: 10.1104/pp.113.234062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/29/2014] [Indexed: 05/08/2023]
Abstract
Somatic embryogenesis (SE) is a poorly understood process during which competent cells respond to inducing conditions, allowing the development of somatic embryos. It is important for the regeneration of transgenic plants, including for soybean (Glycine max). We report here that constitutive expression of soybean orthologs of the Arabidopsis (Arabidopsis thaliana) MADS box genes Agamous-like15 (GmAGL15) and GmAGL18 increased embryogenic competence of explants from these transgenic soybean plants. To understand how GmAGL15 promotes SE, expression studies were performed. Particular genes of interest involved in embryogenesis (abscisic acid-insensitive3 and FUSCA3) were found to be directly up-regulated by GmAGL15 by using a combination of quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation. To look more broadly at changes in gene expression in response to GmAGL15, we assessed the transcriptome using the Affymetrix Soybean Genome Array. Interestingly, the gene expression profile of 35Spro:GmAGL15 explants (0 d in culture) was found to resemble nontransgenic tissue that had been induced for SE by being placed on induction medium for 3 d, possibly explaining the more rapid SE development observed on 35Spro:GmAGL15 tissue. In particular, transcripts from genes related to the stress response showed increased transcript accumulation in explants from 35Spro:GmAGL15 tissue. These same genes also showed increased transcript accumulation in response to culturing nontransgenic soybean explants on the medium used to induce SE. Overexpression of GmAGL15 may enhance SE by making the tissue more competent to respond to 2,4-dichlorophenoxyacetic acid induction by differential regulation of genes such as those involved in the stress response, resulting in more rapid and prolific SE.
Collapse
Affiliation(s)
- Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546–0312
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546–0312
| |
Collapse
|
22
|
Smertenko A, Bozhkov PV. Somatic embryogenesis: life and death processes during apical-basal patterning. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1343-60. [PMID: 24622953 DOI: 10.1093/jxb/eru005] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Somatic embryogenesis (SE) is a process of differentiation of cells into a plant bypassing the fusion of gametes. As such, it represents a very powerful tool in biotechnology for propagation of species with a long reproductive cycle or low seed set and production of genetically modified plants with improved traits. SE is also a versatile model to study cellular and molecular mechanisms of plant embryo patterning. The morphology and molecular regulation of SE resemble those of zygotic embryogenesis and begin with establishment of apical-basal asymmetry. The apical domain, the embryo proper, proliferates and eventually gives rise to the plantlet, while the basal part, the embryo suspensor, is terminally differentiated and gradually removed via vacuolar programmed cell death (PCD). This PCD is essential for normal development of the apical domain. Emerging evidence demonstrates that signalling events in the apical and basal domains share homologous components. Here we provide an overview of the main pathways controlling the life and death events during SE.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
23
|
Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:374-83. [DOI: 10.1016/j.bbapap.2013.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022]
|
24
|
The Life and Death Signalling Underlying Cell Fate Determination During Somatic Embryogenesis. PLANT CELL MONOGRAPHS 2014. [DOI: 10.1007/978-3-642-41787-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Mao B, Liu X, Hu D, Li D. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination. World J Microbiol Biotechnol 2013; 30:1229-38. [PMID: 24197785 DOI: 10.1007/s11274-013-1546-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
Abstract
Rice sheath blight and blast caused by Rhizoctonia solani Kühn and Magnorpathe oryzae respectively, are the two most destructive fungal diseases in rice. With no genetic natural traits conferring resistance to sheath blight, transgenic manipulation provides an obvious approach. In this study, the rice basic chitinase gene (RCH10) and the alfalfa β-1,3-glucanase gene (AGLU1) were tandemly inserted into transformation vector pBI101 under the control of 35S promoter with its enhancer sequence to generate a double-defense gene expression cassette pZ100. The pZ100 cassette was transformed into rice (cv. Taipei 309) by Agrobacterium-mediated transformation. More than 160 independent transformants were obtained and confirmed by PCR. Northern analysis of inheritable progenies revealed similar levels of both RCH10 and AGLU1 transcripts in the same individuals. Disease resistance to both sheath blight and blast was challenged in open field inoculation. Immunogold detection revealed that RCH10 and AGLU1 proteins were initially located mainly in the chloroplasts and were delivered to the vacuole and cell wall upon infection, suggesting that these subcellular compartments act as the gathering and execution site for these anti-fungal proteins. We also observed that transgenic seeds display lower germination rate and seedling vigor, indicating that defense enhancement might be achieved at the expense of development.
Collapse
Affiliation(s)
- Bizeng Mao
- State Key Laboratory of Rice Biology and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | |
Collapse
|
26
|
Tian Y, Liu W, Cai J, Zhang LY, Wong KB, Feddermann N, Boller T, Xie ZP, Staehelin C. The nodulation factor hydrolase of Medicago truncatula: characterization of an enzyme specifically cleaving rhizobial nodulation signals. PLANT PHYSIOLOGY 2013; 163:1179-90. [PMID: 24082029 PMCID: PMC3813642 DOI: 10.1104/pp.113.223966] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/28/2013] [Indexed: 05/03/2023]
Abstract
Nodule formation induced by nitrogen-fixing rhizobia depends on bacterial nodulation factors (NFs), modified chitin oligosaccharides with a fatty acid moiety. Certain NFs can be cleaved and inactivated by plant chitinases. However, the most abundant NF of Sinorhizobium meliloti, an O-acetylated and sulfated tetramer, is resistant to hydrolysis by all plant chitinases tested so far. Nevertheless, this NF is rapidly degraded in the host rhizosphere. Here, we identify and characterize MtNFH1 (for Medicago truncatula Nod factor hydrolase 1), a legume enzyme structurally related to defense-related class V chitinases (glycoside hydrolase family 18). MtNFH1 lacks chitinase activity but efficiently hydrolyzes all tested NFs of S. meliloti. The enzyme shows a high cleavage preference, releasing exclusively lipodisaccharides from NFs. Substrate specificity and kinetic properties of MtNFH1 were compared with those of class V chitinases from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), which cannot hydrolyze tetrameric NFs of S. meliloti. The Michaelis-Menten constants of MtNFH1 for NFs are in the micromolar concentration range, whereas nonmodified chitin oligosaccharides represent neither substrates nor inhibitors for MtNFH1. The three-dimensional structure of MtNFH1 was modeled on the basis of the known structure of class V chitinases. Docking simulation of NFs to MtNFH1 predicted a distinct binding cleft for the fatty acid moiety, which is absent in the class V chitinases. Point mutation analysis confirmed the modeled NF-MtNFH1 interaction. Silencing of MtNFH1 by RNA interference resulted in reduced NF degradation in the rhizosphere of M. truncatula. In conclusion, we have found a novel legume hydrolase that specifically inactivates NFs.
Collapse
MESH Headings
- Amino Acid Sequence
- Carbohydrate Sequence
- Chitin/chemistry
- Chitin/metabolism
- Cloning, Molecular
- Host-Pathogen Interactions
- Hydrolases/classification
- Hydrolases/genetics
- Hydrolases/metabolism
- Immunoblotting
- Kinetics
- Medicago truncatula/enzymology
- Medicago truncatula/genetics
- Medicago truncatula/microbiology
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Root Nodulation
- Protein Structure, Tertiary
- Root Nodules, Plant/enzymology
- Root Nodules, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction
- Sinorhizobium meliloti/metabolism
- Sinorhizobium meliloti/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Symbiosis
Collapse
Affiliation(s)
| | | | - Jie Cai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | - Lan-Yue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | - Kam-Bo Wong
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | | | - Thomas Boller
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | | | | |
Collapse
|
27
|
Naumann TA, Price NPJ. Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases. MOLECULAR PLANT PATHOLOGY 2012; 13:1135-1139. [PMID: 22512872 PMCID: PMC6638631 DOI: 10.1111/j.1364-3703.2012.00805.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plant class IV chitinases have a small amino-terminal chitin-binding domain and a larger chitinase domain, and are involved in plant defence against fungal infection. Our previous work on the chitinases ChitA and ChitB from the model monocotyledon Zea mays showed that the chitin-binding domain is removed by secreted fungal proteases called fungalysins. In this article, we extend this work to dicotyledons. The effects of fungalysin-like proteases on four class IV chitinases from the model dicotyledon Arabidopsis thaliana were analysed. Four Arabidopsis chitinases were heterologously expressed in Pichia pastoris, purified and shown to have chitinase activity against a chitohexaose (dp6) substrate. The incubation of these four chitinases with Fv-cmp, a fungalysin protease secreted by Fusarium verticillioides, resulted in the truncation of AtchitIV3 and AtchitIV5. Moreover, incubation with secreted proteins from Alternaria brassicae, a pathogen of A. thaliana and brassica crops, also led to a similar truncation of AtchitIV3 and AtchitIV4. Our finding that class IV chitinases from both dicotyledons (A. thaliana) and monocotyledons (Z. mays) are truncated by proteases secreted by specialized pathogens of each plant suggests that this may be a general mechanism of plant-fungal pathogenicity.
Collapse
Affiliation(s)
- Todd A Naumann
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL 61604, USA.
| | | |
Collapse
|
28
|
Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z. Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. PLANT PHYSIOLOGY 2012; 159:1440-1452. [PMID: 22665444 DOI: 10.1016/j.biombioe.2016.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant, bc15, and the map-based cloning of the BC15/OsCTL1 (for chitinase-like1) gene affected in the mutant. The gene encodes the rice chitinase-like protein BC15/OsCTL1. Mutation of BC15/OsCTL1 causes reduced cellulose content and mechanical strength without obvious alterations in plant growth. Bioinformatic analyses indicated that BC15/OsCTL1 is a class II chitinase-like protein that is devoid of both an amino-terminal cysteine-rich domain and the chitinase activity motif H-E-T-T but possesses an amino-terminal transmembrane domain. Biochemical assays demonstrated that BC15/OsCTL1 is a Golgi-localized type II membrane protein that lacks classical chitinase activity. Quantitative real-time polymerase chain reaction and β-glucuronidase activity analyses indicated that BC15/OsCTL1 is ubiquitously expressed. Investigation of the global expression profile of wild-type and bc15 plants, using Illumina RNA sequencing, further suggested a possible mechanism by which BC15/OsCTL1 mediates cellulose biosynthesis and cell wall remodeling. Our findings provide genetic evidence of a role for plant chitinases in cellulose biosynthesis in rice, which appears to differ from their roles as revealed by analysis of Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z. Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. PLANT PHYSIOLOGY 2012; 159:1440-52. [PMID: 22665444 PMCID: PMC3425189 DOI: 10.1104/pp.112.195529] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/02/2012] [Indexed: 05/19/2023]
Abstract
Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant, bc15, and the map-based cloning of the BC15/OsCTL1 (for chitinase-like1) gene affected in the mutant. The gene encodes the rice chitinase-like protein BC15/OsCTL1. Mutation of BC15/OsCTL1 causes reduced cellulose content and mechanical strength without obvious alterations in plant growth. Bioinformatic analyses indicated that BC15/OsCTL1 is a class II chitinase-like protein that is devoid of both an amino-terminal cysteine-rich domain and the chitinase activity motif H-E-T-T but possesses an amino-terminal transmembrane domain. Biochemical assays demonstrated that BC15/OsCTL1 is a Golgi-localized type II membrane protein that lacks classical chitinase activity. Quantitative real-time polymerase chain reaction and β-glucuronidase activity analyses indicated that BC15/OsCTL1 is ubiquitously expressed. Investigation of the global expression profile of wild-type and bc15 plants, using Illumina RNA sequencing, further suggested a possible mechanism by which BC15/OsCTL1 mediates cellulose biosynthesis and cell wall remodeling. Our findings provide genetic evidence of a role for plant chitinases in cellulose biosynthesis in rice, which appears to differ from their roles as revealed by analysis of Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
| | | | | | - Lei Zhang
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Keke Shang-Guan
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonggang Peng
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
30
|
Ohnuma T, Taira T, Fukamizo T. Antifungal Activity of Recombinant Class V Chitinases from Nicotiana tabacum and Arabidopsis thaliana. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2011_019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
31
|
Dobrowolska I, Majchrzak O, Baldwin TC, Kurczynska EU. Differences in protodermal cell wall structure in zygotic and somatic embryos of Daucus carota (L.) cultured on solid and in liquid media. PROTOPLASMA 2012; 249:117-29. [PMID: 21424614 PMCID: PMC3249540 DOI: 10.1007/s00709-011-0268-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/28/2011] [Indexed: 05/18/2023]
Abstract
The ultrastructure, cuticle, and distribution of pectic epitopes in outer periclinal walls of protodermal cells of Daucus carota zygotic and somatic embryos from solid and suspension culture were investigated. Lipid substances were present as a continuous layer in zygotic and somatic embryos cultured on solid medium. Somatic embryos from suspension cultures were devoid of cuticle. The ultrastructure of the outer walls of protodermis of embryos was similar in zygotic and somatic embryos from solid culture. Fibrillar material was observed on the surface of somatic embryos. In zygotic embryos, in cotyledons and root pectic epitopes recognised by the antibody JIM5 were observed in all cell walls. In hypocotyls of these embryos, these pectic epitopes were not present in the outer periclinal and anticlinal walls of the protodermis. In somatic embryos from solid media, distribution of pectic epitopes recognised by JIM5 was similar to that described for their zygotic counterparts. In somatic embryos from suspension culture, pectic epitopes recognised by JIM5 were detected in all cell walls. In the cotyledons and hypocotyls, a punctate signal was observed on the outside of the protodermis. Pectic epitopes recognised by JIM7 were present in all cell walls independent of embryo organs. In zygotic embryos, this signal was punctate; in somatic embryos from both cultures, this signal was uniformly distributed. In embryos from suspension cultures, a punctate signal was detected outside the surface of cotyledon and hypocotyl. These data are discussed in light of current models for embryogenesis and the influence of culture conditions on cell wall structure.
Collapse
Affiliation(s)
- Izabela Dobrowolska
- Laboratory of Cell Biology, Faculty of Biology and Environment Protection, Silesian University, Katowice, Poland.
| | | | | | | |
Collapse
|
32
|
Rakleova G, Keightley A, Pantchev I, Tsacheva I, Tchorbadjieva M. Identification, Molecular Cloning, and Recombinant Gene Expression of an Extracellular A-Amylase from Dactylis GlomerataL. Embryogenic Suspension Cultures. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/bbeq.2012.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Naumann TA, Wicklow DT, Price NPJ. Identification of a chitinase-modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease. J Biol Chem 2011; 286:35358-35366. [PMID: 21878653 PMCID: PMC3195611 DOI: 10.1074/jbc.m111.279646] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/23/2011] [Indexed: 11/06/2022] Open
Abstract
Chitinase-modifying proteins (cmps) are proteases secreted by fungal pathogens that truncate the plant class IV chitinases ChitA and ChitB during maize ear rot. cmp activity has been characterized for Bipolaris zeicola and Stenocarpella maydis, but the identities of the proteases are not known. Here, we report that cmps are secreted by multiple species from the genus Fusarium, that cmp from Fusarium verticillioides (Fv-cmp) is a fungalysin metalloprotease, and that it cleaves within a sequence that is conserved in class IV chitinases. Protein extracts from Fusarium cultures were found to truncate ChitA and ChitB in vitro. Based on this activity, Fv-cmp was purified from F. verticillioides. N-terminal sequencing of truncated ChitA and MALDI-TOF-MS analysis of reaction products showed that Fv-cmp is an endoprotease that cleaves a peptide bond on the C-terminal side of the lectin domain. The N-terminal sequence of purified Fv-cmp was determined and compared with a set of predicted proteins, resulting in its identification as a zinc metalloprotease of the fungalysin family. Recombinant Fv-cmp also truncated ChitA, confirming its identity, but had reduced activity, suggesting that the recombinant protease did not mature efficiently from its propeptide-containing precursor. This is the first report of a fungalysin that targets a nonstructural host protein and the first to implicate this class of virulence-related proteases in plant disease.
Collapse
Affiliation(s)
- Todd A Naumann
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Peoria, Illinois 61604.
| | - Donald T Wicklow
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Peoria, Illinois 61604
| | - Neil P J Price
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Peoria, Illinois 61604
| |
Collapse
|
34
|
Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH, Skriver K, Fukamizo T. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. PLANTA 2011; 234:123-37. [PMID: 21390509 DOI: 10.1007/s00425-011-1390-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/21/2011] [Indexed: 05/24/2023]
Abstract
Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA) and by the stress resulting from the elicitor flagellin, NaCl, and osmosis. The recombinant AtChiC protein was produced in E. coli, purified, and characterized with respect to the structure and function. The recombinant AtChiC hydrolyzed N-acetylglucosamine oligomers producing dimers from the non-reducing end of the substrates. The crystal structure of AtChiC was determined by the molecular replacement method at 2.0 Å resolution. AtChiC was found to adopt an (β/α)(8) fold with a small insertion domain composed of an α-helix and a five-stranded β-sheet. From docking simulation of AtChiC with pentameric substrate, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common to class V chitinases from higher plants.
Collapse
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wrobel J, Barlow PW, Gorka K, Nabialkowska D, Kurczynska EU. Histology and symplasmic tracer distribution during development of barley androgenic embryos. PLANTA 2011; 233:873-81. [PMID: 21225281 PMCID: PMC3074072 DOI: 10.1007/s00425-010-1345-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/23/2010] [Indexed: 05/05/2023]
Abstract
The present study concerns three aspects of barley androgenesis: (1) the morphology and histology of the embryos during their development, (2) the time course of fluorescent symplasmic tracers' distribution, and (3) the correlation between symplasmic communication and cell differentiation. The results indicate that barley embryos, which are developing via an androgenic pathway, resemble their zygotic counterparts with respect to their developmental stages, morphology and histology. Analysis of the distribution of the symplasmic tracers, HPTS, and uncaged fluorescein indicates the symplasmic isolation of (1) the protodermis from the underlying cells of the late globular stage onwards, and (2) the embryonic organs at the mature stage of development.
Collapse
Affiliation(s)
- Justyna Wrobel
- Laboratory of Cell Biology, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
| | - Peter W. Barlow
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG UK
| | - Karolina Gorka
- Laboratory of Cell Biology, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
| | - Danuta Nabialkowska
- Department of Genetics, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
| | - Ewa U. Kurczynska
- Laboratory of Cell Biology, University of Silesia, ul. Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
36
|
Naumann TA. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins. MOLECULAR PLANT PATHOLOGY 2011; 12:365-72. [PMID: 21453431 PMCID: PMC6640348 DOI: 10.1111/j.1364-3703.2010.00677.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a chitinase-modifying protein (cmp) secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) is also modified by Stm-cmp, a protein secreted by the fungal pathogen Stenocarpella maydis, whereas the other (ChitA-LH82) is resistant. The two ChitA alloforms possess six differences or polymorphisms (P1-P6). To determine whether the P2 polymorphism in the chitin-binding domain is responsible for resistance or susceptibility to modification by Stm-cmp, and to determine whether Stm-cmp and Bz-cmp are proteases, heterologous expression strains of the yeast Pichia pastoris that produce recombinant maize ChitA (rChitA) alloforms and mutant rChitAs were created. rChitA alloforms and mutant rChitAs were purified from yeast cultures and used as substrates in assays with Stm-cmp and Bz-cmp. As with native protein, Bz-cmp modified both rChitA-LH82 and rChitA-B73, whereas Stm-cmp modified rChitA-B73 only. Mutant rChitAs, in which the P2 amino acids were changed to those of the other alloform, resulted in a significant exchange in Stm-cmp susceptibility. Amino-terminal sequencing of unmodified and modified rChitA-B73 demonstrated that Stm-cmp cleaves the peptide bond on the amino-terminal side of the P2 alanine, whereas Bz-cmp cleaves in the poly-glycine hinge region, the site of P3. The results demonstrate that Stm-cmp and Bz-cmp are proteases that truncate ChitA chitinase at the amino terminus, but at different sites. Both sites correspond to polymorphisms in the two alloforms, suggesting that the sequence diversity at P2 and P3 is the result of selective pressure to prevent truncation by fungal proteases.
Collapse
Affiliation(s)
- Todd A Naumann
- Bacterial Food-borne Pathogens and Mycology Research Unit, National Center for Agriculture Utilization Research, Peoria, IL 61604, USA.
| |
Collapse
|
37
|
Abstract
Plant propagation in vitro via somatic embryogenesis or organogenesis is a complicated process requiring the proper execution of several steps, which are affected by culture conditions and environment. A key element for a successful outcome is the choice of the explants. Several studies have shown that factors such as age, ontogenic and physiological conditions, and degree of differentiation affect the response of the explants to culture conditions. As a general rule, younger tissues, such as zygotic embryos, are the preferred choice for tissue culturists as they have better potential and competence to produce embryos and organs compared to more differentiated and mature tissues. This chapter focuses on how competence and commitment to regenerate embryos and organs in cultures are acquired by somatic cells and why zygotic embryos are so often utilized for propagation practices.
Collapse
|
38
|
Hossain MA, Noh HN, Kim KI, Koh EJ, Wi SG, Bae HJ, Lee H, Hong SW. Mutation of the chitinase-like protein-encoding AtCTL2 gene enhances lignin accumulation in dark-grown Arabidopsis seedlings. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:650-8. [PMID: 20056293 DOI: 10.1016/j.jplph.2009.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 05/03/2023]
Abstract
Several genes that encode a chitinase-like protein (called the CTL group) have been identified in Arabidopsis, rice, pea, and cotton. Members of the CTL group have attracted much attention because of their possible role in the biosynthesis of the cell wall in plants. The hot2 mutation in the CTL1 (AtCTL1) gene of Arabidopsis thaliana causes multiple defects in growth and development. The Arabidopsis genome possesses the AtCTL2 gene, which exhibits 70% similarity to AtCTL1 at the amino acid level. We showed that the AtCTL2 gene was predominantly expressed in stems, which was in contrast to the presence of AtCTL1 transcripts in most organs of Arabidopsis. In addition, beta-glucuronidase (GUS) staining was detectable in all tissues of the stem in transgenic plants expressing the AtCTL1::GUS construct, while GUS activity under control of the AtCTL2 promoter was significantly restricted to the xylem and to interfascicular fibers in stems. The phenotypes of atctl2 single mutant and of hot2, atctl2 double mutant plants were significantly similar to those of wild-type and of hot2 single mutant plants, respectively. The expression levels of CESA1 and CESA4 transcripts were not affected in the two single mutants or corresponding double mutant plants, compared with the levels in wild-type plants. The accumulation of lignin in etiolated hypocotyls, however, was increased by mutation of AtCTL2. These findings suggest that AtCTL2 is required for proper cell wall biosynthesis in etiolated seedlings of Arabidopsis.
Collapse
Affiliation(s)
- Md Aktar Hossain
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Hoenemann C, Richardt S, Krüger K, Zimmer AD, Hohe A, Rensing SA. Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro. BMC PLANT BIOLOGY 2010; 10:77. [PMID: 20426818 PMCID: PMC3095351 DOI: 10.1186/1471-2229-10-77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/28/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Clonal propagation is highly desired especially for valuable horticultural crops. The method with the potentially highest multiplication rate is regeneration via somatic embryogenesis. However, this mode of propagation is often hampered by the occurrence of developmental aberrations and non-embryogenic callus. Therefore, the developmental process of somatic embryogenesis was analysed in the ornamental crop Cyclamen persicum by expression profiling, comparing different developmental stages of embryogenic cell cultures, zygotic vs. somatic embryos and embryogenic vs. non-embryogenic cell cultures. RESULTS The analysis was based on a cDNA microarray representing 1,216 transcripts and was exemplarily validated by realtime PCR. For this purpose relative transcript abundances of homologues of a putative receptor kinase, two different glutathione S-transferases (GST), a xyloglucan endotransglycosylase (XET) and a peroxidase (POX) were quantitatively measured by realtime PCR for three different comparisons. In total, 417 genes were found to be differentially expressed. Gene Ontology annotation revealed that transcripts coding for enzymes that are active in the extracellular compartment (apoplast) were significantly overrepresented in several comparisons. The expression profiling results are underpinned by thorough histological analyses of somatic and zygotic embryos. CONCLUSIONS The putative underlying physiological processes are discussed and hypotheses on improvement of the protocol for in vitro somatic embryogenesis in Cyclamen persicum are deduced. A set of physiological markers is proposed for efficient molecular control of the process of somatic embryogenesis in C. persicum. The general suitability of expression profiling for the development and improvement of micropropagation methods is discussed.
Collapse
Affiliation(s)
- Claudia Hoenemann
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Sandra Richardt
- University of Freiburg, Faculty of Biology, Hauptstrasse 1, 79104 Freiburg, Germany
- QIAGEN GmbH, Qiagenstrasse 1, D-40724 Hilden, Germany
| | - Katja Krüger
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Andreas D Zimmer
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Annette Hohe
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Stefan A Rensing
- University of Freiburg, Faculty of Biology, Hauptstrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
41
|
|
42
|
Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 2009; 37:2493-507. [PMID: 19705297 DOI: 10.1007/s11033-009-9764-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamadan, Iran.
| | | |
Collapse
|
43
|
Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B. Differential regulation of SERK, LEC1-like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:743-752. [PMID: 19406655 DOI: 10.1016/j.plaphy.2009.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 05/27/2023]
Abstract
A culture model was developed in Vitis vinifera L., cultivar 'Chardonnay' for studying SE (Somatic Embryogenesis). The auxin 2,4-D (2,4-Dichlorophenoxyacetic acid) was used to induce indirect secondary embryogenesis at a high rate, starting from embryos derived from embryogenic cultures previously obtained. Cotyledonary embryos were shown to be more responsive to SE induction than embryos at the torpedo-stage and were used for molecular analyses. The expression of SERK (Somatic Embryogenesis Receptor Kinase), L1L (Leafy Cotyledon1 Like) and a set of PR (Pathogenesis-Related) genes was monitored during the whole SE process. VvSERK1, VvSERK2 and VvL1L were down-regulated by the 2,4-D treatment but expressed in embryonic tissues. On the contrary, VvPR1, VvPR8, VvPR10.1 and VvPR10.3 were strongly up-regulated by the 2,4-D treatment, and their transcripts were not or only weakly detected in clusters of secondary embryos. VvSERK3, VvPR3 and VvPR10.2 were more stably expressed in all tissues examined. The discussion deals with the putative role of the different genes in grapevine SE.
Collapse
Affiliation(s)
- Pascale Maillot
- Université de Haute Alsace, Laboratoire Vigne Biotechnologies & Environnement, 33 rue de Herrlisheim, BP 50568, 68 008 Colmar Cedex, France.
| | | | | | | | | |
Collapse
|
44
|
Kumar V, Parkhi V, Kenerley CM, Rathore KS. Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. PLANTA 2009; 230:277-91. [PMID: 19444464 DOI: 10.1007/s00425-009-0937-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 04/19/2009] [Indexed: 05/24/2023]
Abstract
There are many reports on obtaining disease-resistance trait in plants by overexpressing genes from diverse organisms that encode chitinolytic enzymes. Current study represents an attempt to dissect the mechanism underlying the resistance to Rhizoctonia solani in cotton plants expressing an endochitinase gene from Trichoderma virens. Several assays were developed that provided a powerful demonstration of the disease protection obtained in the transgenic cotton plants. Transgene-dependent endochitinase activity was confirmed in various tissues and in the medium surrounding the roots of transformants. Biochemical and molecular analyses conducted on the transgenic plants showed rapid/greater induction of ROS, expression of several defense-related genes, and activation of some PR enzymes and the terpenoid pathway. Interestingly, even in the absence of a challenge from the pathogen, the basal activities of some of the defense-related genes and enzymes were higher in the endochitinase-expressing cotton plants. This elevated defensive state of the transformants may act synergistically with the potent, transgene-encoded endochitinase activity to confer a strong resistance to R. solani infection.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | |
Collapse
|
45
|
Rodakowska E, Derba-Maceluch M, Kasprowicz A, Zawadzki P, Szuba A, Kierzkowski D, Wojtaszek P. Signaling and Cell Walls. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Kuo CJ, Liao YC, Yang JH, Huang LC, Chang CT, Sung HY. Cloning and characterization of an antifungal class III chitinase from suspension-cultured bamboo ( Bambusa oldhamii ) cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11507-11514. [PMID: 18998701 DOI: 10.1021/jf8017589] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A class III chitinase cDNA (BoChi3-1) was cloned using a cDNA library from suspension-cultured bamboo ( Bambusa oldhamii ) cells and then transformed into yeast ( Pichia pastoris X-33) for expression. Two recombinant chitinases with molecular masses of 28.3 and 35.7 kDa, respectively, were purified from the yeast's culture broth to electrophoretic homogeneity using sequential ammonium sulfate fractionation, Phenyl-Sepharose hydrophobic interaction chromatography, and Con A-Sepharose chromatography steps. N-Terminal sequencing and immunoblotting revealed that both recombinant chitinases were encoded by BoChi3-1, whereas SDS-PAGE and glycoprotein staining showed that the 35.7 kDa isoform (35.7 kDa BoCHI3-1) was glycosylated and the 28.3 kDa isoform (28.3 kDa BoCHI3-1) was not. For hydrolysis of ethylene glycol chitin (EGC), the optimal pH values were 3 and 4 for 35.7 and 28.3 kDa BoCHI3-1, respectively; the optimal temperatures were 80 and 70 degrees C, and the K(m) values were 1.35 and 0.65 mg/mL. The purified 35.7 kDa BoCHI3-1 hydrolyzed EGC more efficiently than the 28.3 kDa isoform, as compared with their specific activity and activation energy. Both recombinant BoCHI3-1 isoforms showed antifungal activity against Scolecobasidium longiphorum and displayed remarkable thermal (up to 70 degrees C) and storage (up to a year at 4 degrees C) stabilities.
Collapse
Affiliation(s)
- Chao-Jen Kuo
- Institute of Microbiology and Biochemistry, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
47
|
Imin N, Goffard N, Nizamidin M, Rolfe BG. Genome-wide transcriptional analysis of super-embryogenic Medicago truncatula explant cultures. BMC PLANT BIOLOGY 2008; 8:110. [PMID: 18950541 PMCID: PMC2605756 DOI: 10.1186/1471-2229-8-110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/27/2008] [Indexed: 05/08/2023]
Abstract
BACKGROUND The Medicago truncatula (M. truncatula) line 2HA has a 500-fold greater capacity to regenerate plants in culture by somatic embryogenesis than its wild type progenitor Jemalong. To understand the molecular basis for the regeneration capacity of this super-embryogenic line 2HA, using Affymetrix GeneChip(R), we have compared transcriptomes of explant leaf cultures of these two lines that were grown on media containing the auxin NAA (1-naphthaleneacetic acid) and the cytokinin BAP (6-benzylaminopurine) for two weeks, an early time point for tissue culture proliferation. RESULTS Using Affymetrix GeneChip, GCRMA normalisation and statistical analysis, we have shown that more than 196 and 49 probe sets were significantly (p < 0.05) up- or down-regulated respectively more than 2 fold in expression. We have utilised GeneBins, a database for classifying gene expression data to distinguish differentially displayed pathways among these two cultures which showed changes in number of biochemical pathways including carbon and flavonoid biosynthesis, phytohormone biosynthesis and signalling. The up-regulated genes in the embryogenic 2HA culture included nodulins, transporters, regulatory genes, embryogenesis related arabinogalactans and genes involved in redox homeostasis, the transition from vegetative growth to reproductive growth and cytokinin signalling. Down-regulated genes included protease inhibitors, wound-induced proteins, and genes involved in biosynthesis and signalling of phytohormones auxin, gibberellin and ethylene. These changes indicate essential differences between the super-embryogenic line 2HA and Jemalong not only in many aspects of biochemical pathways but also in their response to auxin and cytokinin. To validate the GeneChip results, we used quantitative real-time RT-PCR to examine the expression of the genes up-regulated in 2HA such as transposase, RNA-directed DNA polymerase, glycoside hydrolase, RESPONSE REGULATOR 10, AGAMOUS-LIKE 20, flower promoting factor 1, nodulin 3, fasciclin and lipoxygenase, and a down-regulated gene ETHYLENE INSENSITIVE 3, all of which positively correlated with the microarray data. CONCLUSION We have described the differences in transcriptomes between the M. truncatula super-embryogenic line 2HA and its non-embryogenic progenitor Jemalong at an early time point. This data will facilitate the mapping of regulatory and metabolic networks involved in the gaining totipotency and regeneration capacity in M. truncatula and provides candidate genes for functional analysis.
Collapse
Affiliation(s)
- Nijat Imin
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra City, ACT 2601, Australia
| | - Nicolas Goffard
- Institut Louis Malardé, GP Box 30, 98713 Papeete Tahiti, French Polynesia
| | - Mahira Nizamidin
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra City, ACT 2601, Australia
| | - Barry G Rolfe
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra City, ACT 2601, Australia
| |
Collapse
|
48
|
Gene cloning, expression, purification and characterization of rice (Oryza sativa L.) class II chitinase CHT11. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
François J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thévenot P, Gomès E. Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:394-402. [PMID: 32688796 DOI: 10.1071/fp07303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 05/02/2008] [Indexed: 06/11/2023]
Abstract
Grapevine (Vitis vinifera L.) embryos have an early developmental pattern which differs from the one observed in model angiosperms such as Arabidopsis, in that the plane of divisions show variations from one individual to another. Furthermore, the protoderm (the first tissue to differentiate) does not form in one step but rather, gradually with time during globule formation. In Arabidopsis, expression pattern of a particular lipid transfer protein (LTP) isoform, AtLTP1, appears to be related to protoderm establishment, and is considered as a molecular marker of its differentiation. To investigate whether a similar role for LTPs in the development of grapevine embryos, we investigated the expression pattern of VvLTP1, a Vitis homologue of AtLTP1, in somatic embryo development. Expression of the GUS reporter gene under the control of the VvLTP1 promoter demonstrated that this LTP isoform is a marker of protoderm formation, and confirmed that this tissue forms sequentially over time. Ectopic expression of VvLTP1 under the control of the 35S promoter led to grossly misshapen embryos, which failed to acquire bilateral symmetry and displayed an abnormal epidermal layer. These results indicate that a correct spatial or temporal expression, or both, of this gene is essential for grapevine embryo development.
Collapse
Affiliation(s)
- Julie François
- Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, UMR CNRS-Université de Poitiers 6161, 40 Avenue du recteur Pineau, 86022 Poitiers, France
| | - Magali Lallemand
- Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, UMR CNRS-Université de Poitiers 6161, 40 Avenue du recteur Pineau, 86022 Poitiers, France
| | - Pierette Fleurat-Lessard
- Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, UMR CNRS-Université de Poitiers 6161, 40 Avenue du recteur Pineau, 86022 Poitiers, France
| | - Laurent Laquitaine
- Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, UMR CNRS-Université de Poitiers 6161, 40 Avenue du recteur Pineau, 86022 Poitiers, France
| | - Serge Delrot
- Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, UMR CNRS-Université de Poitiers 6161, 40 Avenue du recteur Pineau, 86022 Poitiers, France
| | - Pierre Coutos-Thévenot
- Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, UMR CNRS-Université de Poitiers 6161, 40 Avenue du recteur Pineau, 86022 Poitiers, France
| | - Eric Gomès
- Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, UMR CNRS-Université de Poitiers 6161, 40 Avenue du recteur Pineau, 86022 Poitiers, France
| |
Collapse
|
50
|
Nakamura T, Ishikawa M, Nakatani H, Oda A. Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. PLANT PHYSIOLOGY 2008; 147:391-401. [PMID: 18359848 PMCID: PMC2330313 DOI: 10.1104/pp.106.081497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A cold-responsive chitinase gene, BiCHT1, was isolated from bromegrass (Bromus inermis) 'Manchar' suspension cells. BiCHT1 messenger RNA was detected at low levels in nonstressed bromegrass cells, whereas its accumulation was induced by incubation at 10 degrees C and 4 degrees C as detected by northern- and western-blot analyses. BiCHT1 was highly homologous to rye CHT9, known to encode an antifreeze protein. BiCHT1 was overexpressed in Escherichia coli and bromegrass cells using genetic transformation procedures. BiCHT1 products expressed in both systems had chitinase activity, but the expressed proteins did not affect the growth of ice crystals in any conditions tested. Besides cold stress, the expression of the BiCHT1 gene was up-regulated by exposure to 35 degrees C, but not by salt or osmotic stress, abscisic acid, or ethephon. BiCHT1 messenger RNA did not accumulate in response to methyl jasmonate and salicylic acid, but was slightly increased by prolonged culture at 25 degrees C and only transiently by chitin. Antifreeze activity detected in the culture medium was induced at 4 degrees C but only slightly at 10 degrees C. It was also induced by ethephon treatment, but not by abscisic acid, chitin, or prolonged incubation at 25 degrees C. The results of transgenics and expression analyses suggest that the BiCHT1 product is a major protein with chitinase activity secreted in the medium of cold-treated cells and is unlikely to be responsible for the antifreeze activity detected in the culture medium.
Collapse
Affiliation(s)
- Toshihide Nakamura
- Environmental Stress Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | |
Collapse
|