1
|
Metz R, Kumar N, Schenkeveld WDC, Obst M, Voegelin A, Mangold S, Kraemer SM. Effect of Oxidation on Vivianite Dissolution Rates and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39151023 PMCID: PMC11360369 DOI: 10.1021/acs.est.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024]
Abstract
The interest in the mineral vivianite (Fe3(PO4)2·8H2O) as a more sustainable P resource has grown significantly in recent years owing to its efficient recovery from wastewater and its potential use as a P fertilizer. Vivianite is metastable in oxic environments and readily oxidizes. As dissolution and oxidation occur concurrently, the impact of oxidation on the dissolution rate and mechanism is not fully understood. In this study, we disentangled the oxidation and dissolution of vivianite to develop a quantitative and mechanistic understanding of dissolution rates and mechanisms under oxic conditions. Controlled batch and flow-through experiments with pristine and preoxidized vivianite were conducted to systematically investigate the effect of oxidation on vivianite dissolution at various pH-values and temperatures. Using X-ray absorption spectroscopy and scanning transmission X-ray microscopy techniques, we demonstrated that oxidation of vivianite generated a core-shell structure with a passivating oxidized amorphous Fe(III)-PO4 surface layer and a pristine vivianite core, leading to diffusion-controlled oxidation kinetics. Initial (<1 h) dissolution rates and concomitant P and Fe release (∼48 h) decreased strongly with increasing degree of oxidation (0-≤ 100%). Both increasing temperature (5-75 °C) and pH (5-9) accelerated oxidation, and, consequently, slowed down dissolution kinetics.
Collapse
Affiliation(s)
- Rouven Metz
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Walter D. C. Schenkeveld
- Soil
Chemistry, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Martin Obst
- Experimental
Biogeochemistry, BayCEER, University of
Bayreuth, Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
| | - Andreas Voegelin
- Swiss
Federal Institute of Aquatic Science and Technology, Department of
Water Resources and Drinking Water, Eawag, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Stefan Mangold
- Karlsruhe
Institute of Technology, Institute for Photon
Science and Synchrotron Radiation, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stephan M. Kraemer
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Huangfu X, Zhang Y, Wang Y, Ma C. The determination of thallium in the environment: A review of conventional and advanced techniques and applications. CHEMOSPHERE 2024; 358:142201. [PMID: 38692367 DOI: 10.1016/j.chemosphere.2024.142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Thallium (Tl) is a potential toxicity element that poses significant ecological and environmental risks. Recently, a substantial amount of Tl has been released into the environment through natural and human activities, which attracts increasing attention. The determination of this hazardous and trace element is crucial for controlling its pollution. This article summarizes the advancement and progress in optimizing Tl detection techniques, including atomic absorption spectroscopy (AAS), voltammetry, inductively coupled plasma (ICP)-based methods, spectrophotometry, and X-ray-based methods. Additionally, it introduces sampling and pretreatment methods such as diffusive gradients in thin films (DGT), liquid-liquid extraction, solid phase extraction, and cloud point extraction. Among these techniques, ICP-mass spectrometry (MS) is the preferred choice for Tl detection due to its high precision in determining Tl as well as its species and isotopic composition. Meanwhile, some new materials and agents are employed in detection. The application of novel work electrode materials and chromogenic agents is discussed. Emphasis is placed on reducing solvent consumption and utilizing pretreatment techniques such as ultrasound-assisted processes and functionalized magnetic particles. Most detection is performed in aqueous matrices, while X-ray-based methods applied to solid phases are summarized which provide non-destructive analysis. This work improves the understanding of Tl determination technology while serving as a valuable resource for researchers seeking appropriate analytical techniques.
Collapse
Affiliation(s)
- Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yifan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Yunzhu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Valentin-Alvarado LE, Fakra SC, Probst AJ, Giska JR, Jaffe AL, Oltrogge LM, West-Roberts J, Rowland J, Manga M, Savage DF, Greening C, Baker BJ, Banfield JF. Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. MICROBIOME 2024; 12:15. [PMID: 38273328 PMCID: PMC10811913 DOI: 10.1186/s40168-023-01704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/18/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander J Probst
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry,, University of Duisburg-Essen, Essen, Essen, Germany
| | - Jonathan R Giska
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Cleaner Air Oregon Program, Oregon Department of Environmental Quality, Portland, USA
| | - Alexander L Jaffe
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Joel Rowland
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Earth and Env. Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael Manga
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Brett J Baker
- Department of Integrative Biology, University of Texas, Austin, USA
- Department of Marine Science, University of Texas, Austin, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Marine Science, University of Texas, Austin, USA.
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Stewart B, Nicholas S, Bone S, Tappero R, Eger P, Sheik C, Toner BM. A low-input strategy for chromium removal from industrial stormwater using peat sorbent. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1054-1065. [PMID: 35900088 DOI: 10.1002/jeq2.20397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Low-cost and low-input water treatment systems are important for industrial stormwater remediation. Here we examine a flow-through reactor treatment installation where water exceeds the allowable maximum concentration for drinking water in multiple metals (e.g., chromium [Cr], cadmium [Cd], zinc [Zn]) prior to treatment. Specifically, we seek to understand why Cr attenuated in the reactors is not leachable by identifying the specific chemical form of Cr and dominant mechanisms promoting sequestration in the reactors. Total solid-phase Cr concentration in the peat media ranged from 50 to 150 mg/kg after 1 yr of exposure to stormwater to 300 to 900 mg/kg after 3.5 yr. X-ray fluorescence mapping images show Cr, iron (Fe), and Zn spatially correlated over a scale of 10 μm to 5 mm. Chromium rinds form on the edges of peat particles as Cr accumulates. Chromium and Fe K-edge X-ray absorption near edge structure spectroscopy reveal chromium predominately in the 3+ oxidation state with lesser amounts of elemental Cr. We propose the primary means of chromium attenuation in the reactors is precipitation as Cr-Fe hydroxides combined with trivalent Cr adsorption onto peat surfaces.
Collapse
Affiliation(s)
- Brandy Stewart
- Dep. of Soil, Water, and Climate, Univ. of Minnesota - Twin Cities, St. Paul, MN, 55108, USA
| | - Sarah Nicholas
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Sharon Bone
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Ryan Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Paul Eger
- Global Minerals Engineering, Hibbing, MN, USA
| | - Cody Sheik
- Biology Dep. and Large Lakes Observatory, Univ. of Minnesota, Duluth, MN, USA
| | - Brandy M Toner
- Dep. of Soil, Water, and Climate, Univ. of Minnesota - Twin Cities, St. Paul, MN, 55108, USA
| |
Collapse
|
5
|
Wang J, Man Y, Yin R, Feng X. Isotopic and Spectroscopic Investigation of Mercury Accumulation in Houttuynia cordata Colonizing Historically Contaminated Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7997-8007. [PMID: 35618674 DOI: 10.1021/acs.est.2c00909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Houttuynia cordata Thunb (H. cordata) is a native vegetable colonizing mercury (Hg) mining sites in the southwest of China; it can accumulate high Hg concentrations in the rhizomes and roots (edible sections), and thus consumption of H. cordata represents an important Hg exposure source to human. Here, we studied the spatial distribution, chemical speciation, and stable isotope compositions of Hg in the soil-H. cordata system at the Wuchuan Hg mining region in China, aiming to provide essential knowledge for assessing Hg risks and managing the transfer of Hg from soils to plants and agricultural systems. Mercury was mainly compartmentalized in the outlayer (periderm) of the underground tissues, with little Hg being translocated to the vascular bundle of the stem. Mercury presented as Hg-thiolates (94% ± 8%), with minor fractional amount of nanoparticulate β-HgS (β-HgSNP, 15% ± 4%), in the roots and rhizomes. Analysis of Hg stable isotope ratios showed that cysteine-extractable soil Hg pool (δ202Hgcys), root and rhizome Hg (δ202Hgroot, δ202Hgrhizome) were isotopically lighter than Hg in the bulk soils. A significant positive correlation between δ202Hgcys and δ202Hgroot was observed, suggesting that cysteine-extractable soil Hg pool was an important Hg source to H. cordata. The slightly positive Δ199Hg value in the plant (Δ199Hgroot = 0.07 ± 0.07‰, 2SD, n = 21; Δ199Hgrhizome = 0.06 ± 0.06‰, 2SD, n = 22) indicated that minor Hg was sourced from the surface water. Our results are important to assess the risks of Hg in H. cordata, and to develop sustainable methods to manage the transfer of Hg from soils to agricultural systems.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| |
Collapse
|
6
|
Matzen SL, Lobo GP, Fakra SC, Kakouridis A, Nico PS, Pallud CE. Arsenic hyperaccumulator Pteris vittata shows reduced biomass in soils with high arsenic and low nutrient availability, leading to increased arsenic leaching from soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151803. [PMID: 34808151 DOI: 10.1016/j.scitotenv.2021.151803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Plant-soil interactions affect arsenic and nutrient availability in arsenic-contaminated soils, with implications for arsenic uptake and tolerance in plants, and leaching from soil. In 22-week column experiments, we grew the arsenic hyperaccumulating fern Pteris vittata in a coarse- and a medium-textured soil to determine the effects of phosphorus fertilization and mycorrhizal fungi inoculation on P. vittata arsenic uptake and arsenic leaching. We investigated soil arsenic speciation using synchrotron-based spectromicroscopy. Greater soil arsenic availability and lower nutrient content in the coarse-textured soil were associated with greater fern arsenic uptake, lower biomass (apparently a metabolic cost of tolerance), and arsenic leaching from soil, due to lower transpiration. P. vittata hyperaccumulated arsenic from coarse- but not medium-textured soil. Mass of plant-accumulated arsenic was 1.2 to 2.4 times greater, but aboveground biomass was 74% smaller, in ferns growing in coarse-textured soil. In the presence of ferns, mean arsenic loss by leaching was 195% greater from coarse- compared to the medium-textured soil, and lower across both soils compared to the absence of ferns. In the medium-textured soil arsenic concentrations in leachate were higher in the presence of ferns. Fern arsenic uptake was always greater than loss by leaching. Most arsenic (>66%) accumulated in P. vittata appeared of rhizosphere origin. In the medium-textured soil with more clay and higher nutrient content, successful iron scavenging increased arsenic release from soil for leaching, but transpiration curtailed leaching.
Collapse
Affiliation(s)
- S L Matzen
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - G P Lobo
- Civil and Environmental Engineering, University of California-Berkeley, 410 O'Brien Hall, Berkeley, CA 94720, USA
| | - S C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A Kakouridis
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - P S Nico
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C E Pallud
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Cecchetti AR, Stiegler AN, Gonthier EA, Bandaru SRS, Fakra SC, Alvarez-Cohen L, Sedlak DL. Fate of Dissolved Nitrogen in a Horizontal Levee: Seasonal Fluctuations in Nitrate Removal Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2770-2782. [PMID: 35077168 DOI: 10.1021/acs.est.1c07512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Horizontal levees are a nature-based approach for removing nitrogen from municipal wastewater effluent while simultaneously providing additional benefits, such as flood control. To assess nitrogen removal mechanisms and the efficacy of a horizontal levee, we monitored an experimental system receiving nitrified municipal wastewater effluent for 2 years. Based on mass balances and microbial gene abundance data, we determined that much of the applied nitrogen was most likely removed by heterotrophic denitrifiers that consumed labile organic carbon from decaying plants and added wood chips. Fe(III) and sulfate reduction driven by decay of labile organic carbon also produced Fe(II) sulfide minerals. During winter months, when heterotrophic activity was lower, strong correlations between sulfate release and nitrogen removal suggested that autotrophic denitrifiers oxidized Fe(II) sulfides using nitrate as an electron acceptor. These trends were seasonal, with Fe(II) sulfide minerals formed during summer fueling denitrification during the subsequent winter. Overall, around 30% of gaseous nitrogen losses in the winter were attributable to autotrophic denitrifiers. To predict long-term nitrogen removal, we developed an electron-transfer model that accounted for the production and consumption of electron donors. The model indicated that the labile organic carbon released from wood chips may be capable of supporting nitrogen removal from wastewater effluent for several decades with sulfide minerals, decaying vegetation, and root exudates likely sustaining nitrogen removal over a longer timescale.
Collapse
Affiliation(s)
- Aidan R Cecchetti
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - Angela N Stiegler
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - Emily A Gonthier
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - Siva R S Bandaru
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - David L Sedlak
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, Zhao B, Park SJ, Landry MP. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. NATURE NANOTECHNOLOGY 2022. [PMID: 34811553 DOI: 10.1101/2021.03.17.435888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Bin Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, Zhao B, Park SJ, Landry MP. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. NATURE NANOTECHNOLOGY 2022; 17:197-205. [PMID: 34811553 PMCID: PMC10519342 DOI: 10.1038/s41565-021-01018-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eduardo González-Grandío
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Bin Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
10
|
Satish R, Wichmann L, Crafton MJ, Giovine R, Li L, Ahn J, Yue Y, Tong W, Chen G, Wang C, Clement RJ, Kostecki R. Exposure History and its Effect Towards Stabilizing Li Exchange Across Disordered Rock Salt Interfaces. ChemElectroChem 2021. [DOI: 10.1002/celc.202100891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohit Satish
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley USA CA, 94720
| | - Lennart Wichmann
- MEET Battery Research Center University of Münster Corrensstraße 46 D-48149 Münster Germany
| | - Matthew J. Crafton
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley USA CA, 94720
- Department of Chemical and Biomolecular Engineering University of California Berkeley CA 94720 USA
| | - Raynald Giovine
- Materials Department University of California Santa Barbara Santa Barbara USA CA, 93106
| | - Linze Li
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory 902 Battelle Boulevard Richland Washington 99354 United States
| | - Juhyeon Ahn
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley USA CA, 94720
| | - Yuan Yue
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley USA CA, 94720
| | - Wei Tong
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley USA CA, 94720
| | - Guoying Chen
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley USA CA, 94720
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory 902 Battelle Boulevard Richland Washington 99354 United States
| | - Raphäele J. Clement
- Materials Department University of California Santa Barbara Santa Barbara USA CA, 93106
| | - Robert Kostecki
- Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley USA CA, 94720
| |
Collapse
|
11
|
Marini C, Roqué-Rosell J, Campeny M, Toutounchiavval S, Simonelli L. MAP2XANES: a Jupyter interactive notebook for elemental mapping and XANES speciation. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1245-1252. [PMID: 34212890 DOI: 10.1107/s1600577521003593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/02/2021] [Indexed: 06/13/2023]
Abstract
MAP2XANES is an intuitive Jupyter notebook that automatizes the analysis of synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy for the characterization of complex and heterogeneous samples. The notebook uses basic modules and functions from Numpy, Scipy, Pandas, iPywidgets and Matplotlib libraries for a powerful data reduction process that, in just a few clicks, guides the user through the visualization of elemental maps, space-resolved absorption spectra and their automatized analysis. In particular, by means of linear combination fit of the XANES spectra, the notebook determines the chemical species distribution in the sample under investigation. The direct output of the analysis process is the correlation between the different elemental distributions and the spatial localization of the chemical species detected. An application to mineralogy is thus presented, analyzing the Mn2+, Mn3+ and Mn4+ distribution in a mineral sample of hausmannite (Mn2+Mn23+O4), courtesy of the Museum of Natural Science of Barcelona.
Collapse
Affiliation(s)
- Carlo Marini
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Josep Roqué-Rosell
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona 08028, Spain
| | - Marc Campeny
- Museu de Ciències Naturals de Barcelona, Passeig Picasso s/n, Barcelona 08003, Spain
| | - Shiva Toutounchiavval
- Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya (UPC) BARCELONATECH, Barcelona 08034, Spain
| | - Laura Simonelli
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| |
Collapse
|
12
|
Kersell H, Chen P, Martins H, Lu Q, Brausse F, Liu BH, Blum M, Roy S, Rude B, Kilcoyne A, Bluhm H, Nemšák S. Simultaneous ambient pressure x-ray photoelectron spectroscopy and grazing incidence x-ray scattering in gas environments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:044102. [PMID: 34243438 DOI: 10.1063/5.0044162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
We have developed an experimental system to simultaneously measure surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring x-ray photoelectron spectroscopy (XPS) and grazing incidence x-ray scattering in gas pressures as high as the multi-Torr regime while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano-scale to the meso-scale, and the grazing incidence geometry provides tunable depth sensitivity of structural measurements. Scattered x rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and under ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O2 atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between the structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent x-ray scattering experiments can greatly benefit from the concepts we present here.
Collapse
Affiliation(s)
- Heath Kersell
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Pengyuan Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Henrique Martins
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Qiyang Lu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Felix Brausse
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bo-Hong Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Monika Blum
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bruce Rude
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Arthur Kilcoyne
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hendrik Bluhm
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Pteris vittata Arsenic Accumulation Only Partially Explains Soil Arsenic Depletion during Field-Scale Phytoextraction. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soil arsenic heterogeneity complicates our understanding of phytoextraction rates during arsenic phytoextraction with Pteris vittata, including in response to rate stimulation with nutrient treatments. In a 58-week arsenic phytoextraction field study, we determined the effects of soil arsenic concentrations, fertilizer application, and mycorrhizal fungi inoculation on P. vittata arsenic uptake rates, soil arsenic depletion, and arsenic soil–plant mass balances. Initial soil arsenic concentrations were positively correlated with arsenic uptake rates. Soil inoculation with mycorrhizal fungus Funneliformis mosseae led to 1.5–2 times higher fern aboveground biomass. Across all treatments, ferns accumulated a mean of 3.6% of the initial soil arsenic, and mean soil arsenic concentrations decreased by up to 44%. At depths of 0–10 cm, arsenic accumulation in P. vittata matched soil arsenic depletion. However, at depths of 0–20 cm, fern arsenic accumulation could not account for 61.5% of the soil arsenic depletion, suggesting that the missing arsenic could have been lost to leaching. A higher fraction of arsenic (III) (12.8–71.5%) in the rhizosphere compared to bulk soils suggests that the rhizosphere is a distinct geochemical environment featuring processes that could solubilize arsenic. To our knowledge, this is the first mass balance relating arsenic accumulation in P. vittata to significant decreases in soil arsenic concentrations under field conditions.
Collapse
|
14
|
Varga T, Hixson KK, Ahkami AH, Sher AW, Barnes ME, Chu RK, Battu AK, Nicora CD, Winkler TE, Reno LR, Fakra SC, Antipova O, Parkinson DY, Hall JR, Doty SL. Endophyte-Promoted Phosphorus Solubilization in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:567918. [PMID: 33193494 PMCID: PMC7609660 DOI: 10.3389/fpls.2020.567918] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/25/2020] [Indexed: 05/24/2023]
Abstract
Phosphorus is one of the essential nutrients for plant growth, but it may be relatively unavailable to plants because of its chemistry. In soil, the majority of phosphorus is present in the form of a phosphate, usually as metal complexes making it bound to minerals or organic matter. Therefore, inorganic phosphate solubilization is an important process of plant growth promotion by plant associated bacteria and fungi. Non-nodulating plant species have been shown to thrive in low-nutrient environments, in some instances by relying on plant associated microorganisms called endophytes. These microorganisms live within the plant and help supply nutrients for the plant. Despite their potential enormous environmental importance, there are a limited number of studies looking at the direct molecular impact of phosphate solubilizing endophytic bacteria on the host plant. In this work, we studied the impact of two endophyte strains of wild poplar (Populus trichocarpa) that solubilize phosphate. Using a combination of x-ray imaging, spectroscopy methods, and proteomics, we report direct evidence of endophyte-promoted phosphorus uptake in poplar. We found that the solubilized phosphate may react and become insoluble once inside plant tissue, suggesting that endophytes may aid in the re-release of phosphate. Using synchrotron x-ray fluorescence spectromicroscopy, we visualized the nutrient phosphorus inside poplar roots inoculated by the selected endophytes and found the phosphorus in both forms of organic and inorganic phosphates inside the root. Tomography-based root imaging revealed a markedly different root biomass and root architecture for poplar samples inoculated with the phosphate solubilizing bacteria strains. Proteomics characterization on poplar roots coupled with protein network analysis revealed novel proteins and metabolic pathways with possible involvement in endophyte enriched phosphorus uptake. These findings suggest an important role of endophytes for phosphorus acquisition and provide a deeper understanding of the critical symbiotic associations between poplar and the endophytic bacteria.
Collapse
Affiliation(s)
- Tamas Varga
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Andrew W. Sher
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Morgan E. Barnes
- Environmental Systems Graduate Group, University of California, Merced, Merced, CA, United States
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Anil K. Battu
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carrie D. Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tanya E. Winkler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Loren R. Reno
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sirine C. Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Dilworth Y. Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jackson R. Hall
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Mattox TM, Bolek G, Pham AL, Kunz M, Liu YS, Fakra SC, Gordon MP, Doran A, Guo J, Urban JJ. Calcium chloride substitution in sodium borohydride. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Wang B, Kim K, Srirangapatanam S, Ustriyana P, Wheelis SE, Fakra S, Kang M, Rodrigues DC, Ho SP. Mechanoadaptive strain and functional osseointegration of dental implants in rats. Bone 2020; 137:115375. [PMID: 32335376 PMCID: PMC7822628 DOI: 10.1016/j.bone.2020.115375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
Abstract
Spatiotemporal implant-bone biomechanics and mechanoadaptive strains in peri-implant tissue are poorly understood. Physical and chemical characteristics of an implant-bone complex (IBC) were correlated in three-dimensional space (along the length and around a dental implant) to gather insights into time related integration of the implant with the cortical portion of a jaw bone in a rat. Rats (N = 9) were divided into three experimental groups with three rats per time point; 3-, 11-, and 24-day. All rats were fed crumbled hard pellets mixed with water (soft-food diet) for the first 3 days followed by a hard-food diet with intact hard-food pellets (groups of 11- and 24-day only). Biomechanics of the IBCs harvested from rats at each time point was evaluated by performing mechanical testing in situ in tandem with X-ray imaging. The effect of physical association (contact area) of a loaded implant with adapting peri-implant tissue, and resulting strain within was mapped by using digital volume correlation (DVC) technique. The IBC stiffness at respective time points was correlated with mechanical strain in peri-implant tissue. Results illustrated that IBC stiffness at 11-day was lower than that observed at 3-day. However, at 24-day, IBC stiffness recovered to that which was observed at 3-day. Correlative microscopy and spectroscopy illustrated that the lower IBC stiffness was constituted by softer and less mineralized peri-implant tissue that contained varying expressions of osteoconductive elements. Lower IBC stiffness observed at 11-day was constituted by less mineralized peri-implant tissue with osteoconductive elements that included phosphorus (P) which was co-localized with higher expression of zinc (Zn), and lower expression of calcium (Ca). Higher IBC stiffness at 24-day was constituted by mineralized peri-implant tissue with higher expressions of osteoconductive elements including Ca and P, and lower expressions of Zn. These spatiotemporal correlative maps of peri-implant tissue architecture, heterogeneous distribution of mineral density, and elemental colocalization underscore mechanoadaptive physicochemical properties of peri-implant tissue that facilitate functional osseointegration of an implant. These results provided insights into 1) plausible "prescription" of mechanical loads as an osteoinductive "therapeutic dose" to encourage osteoconductive elements in the peri-implant tissue that would facilitate functional osseointegration of the implant; 2) a "critical temporal window" between 3 and 11 days, and perhaps it is this acute phase during which key candidate regenerative molecules can be harnessed to accelerate osseointegration of an implant under load.
Collapse
Affiliation(s)
- B Wang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, United States of America
| | - K Kim
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, United States of America
| | - S Srirangapatanam
- Department of Urology, School of Medicine, UCSF, San Francisco, CA 94143, United States of America
| | - P Ustriyana
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, United States of America
| | - S E Wheelis
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX 75080, United States of America
| | - S Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - M Kang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, United States of America
| | - D C Rodrigues
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX 75080, United States of America
| | - S P Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, United States of America; Department of Urology, School of Medicine, UCSF, San Francisco, CA 94143, United States of America.
| |
Collapse
|
17
|
Dejoie C, Yu Y, Bernardi F, Tamura N, Kunz M, Marcus MA, Huang YL, Zhang C, Eichhorn BW, Liu Z. Potential Control of Oxygen Non-Stoichiometry in Cerium Oxide and Phase Transition Away from Equilibrium. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31514-31521. [PMID: 32559058 DOI: 10.1021/acsami.0c08284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerium oxide (ceria, CeO2) is a technologically important material for energy conversion applications. Its activities strongly depend on redox states and oxygen vacancy concentration. Understanding the functionality of chemical active species and behavior of oxygen vacancy during operation, especially in high-temperature solid-state electrochemical cells, is the key to advance future material design. Herein, the structure evolution of ceria is spatially resolved using bulk-sensitive operando X-ray diffraction and spectroscopy techniques. During water electrolysis, ceria undergoes reduction, and its oxygen non-stoichiometry shows a dependence on the electrochemical current. Cerium local bonding environments vary concurrently to accommodate oxygen vacancy formation, resulting in changes in Ce-O coordination number and Ce3+/Ce4+ redox couple. When reduced enough, a crystallographic phase transition occurs from α to an α' phase with more oxygen vacancies. Nevertheless, the transition behavior is intriguingly different from the one predicted in the standard phase diagram of ceria. This paper demonstrates a feasible means to control oxygen non-stoichiometry in ceria via electrochemical potential. It also sheds light on the mechanism of phase transitions induced by electrochemical potential. For electrochemical systems, effects from a large-scale electrical environment should be taken into consideration, besides effective oxygen partial pressure and temperature.
Collapse
Affiliation(s)
- Catherine Dejoie
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, Grenoble Cedex 9 38043, France
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Fabiano Bernardi
- Programa de Pós-Graduação em Física, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Nobumichi Tamura
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Martin Kunz
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Yi-Lin Huang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chunjuan Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bryan W Eichhorn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
18
|
Wang B, Kim K, Srirangapatanam S, Ustriyana P, Wheelis SE, Fakra SC, Kang M, Rodrigues DC, Ho SP. Data on biomechanics and elemental maps of dental implant-bone complexes in rats. Data Brief 2020; 31:105969. [PMID: 32728601 PMCID: PMC7381497 DOI: 10.1016/j.dib.2020.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 10/30/2022] Open
Abstract
Implant-bone biomechanics and mechanoadaptation of peri‑implant tissue in space (around and along the length of an implant) and time (3-, 11-, and 24-day following implantation) are important for functional osseointegration of dental implants. Spatiotemporal shifts in biomechanics of implant-bone complex in rat maxillae were correlated with maximum (tensile) and minimum (compressive) principal strain profiles in peri‑implant tissue using a hybrid model; biomechanics in situ paired with digital volume correlation. Spatiotemporal changes in elemental counts and their association with mineral density of the peri‑implant tissue were mapped using electron dispersive X-ray and X-ray fluorescence microprobe techniques. Data provided within are related to biomechanical testing of an implant-bone complex in situ. Data also highlight the power of correlating elemental colocalization with tension and compression regions of the peri‑implant tissues to explain spatiotemporal mechanoadaptation of implant-bone complexes. Further interpretation of data is provided in "Mechanoadaptive Strain and Functional Osseointegration of Dental Implants in Rats [1]."
Collapse
Affiliation(s)
- B Wang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, USA
| | - K Kim
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, USA
| | - S Srirangapatanam
- Department of Urology, School of Medicine, UCSF, San Francisco, CA 94143, USA
| | - P Ustriyana
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, USA
| | - S E Wheelis
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX 75080, USA
| | - S C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - M Kang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, USA
| | - D C Rodrigues
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX 75080, USA
| | - S P Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, UCSF, San Francisco, CA 94143, USA.,Department of Urology, School of Medicine, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Du Y, Chrysochoou M. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue from the soda ash process. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122385. [PMID: 32114129 DOI: 10.1016/j.jhazmat.2020.122385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The microstructure of Chromite Ore Processing Residue (COPR) derived from the soda ash roasting process was investigated prior to and after removal of water exchangeable chromate using a host of microscopy and spectroscopy techniques. Soda ash COPR consists mostly of a magnesioferrite (MgFe2O4) matrix that has substantial substitution of trivalent chromium (Cr) for iron. The chromite particles are generally larger than the overall particle size distribution of COPR, containing most of the Cr mass in areas that are greater than 20 μm in diameter; chromite particles are also associated with most of the non-exchangeable hexavalent Cr (Cr(VI)), even though the binding mechanism is not well understood. The remaining non-exchangeable Cr(VI) was found in association with the surrounding Si- and Al-matrix, with spectroscopic evidence of the presence of Cr(VI)-hydrotalcite.
Collapse
Affiliation(s)
- Yaguang Du
- Dept. of Civil and Environmental Engineering, Univ. of Connecticut, Storrs, CT, United States.
| | - Maria Chrysochoou
- Dept. of Civil and Environmental Engineering, Univ. of Connecticut, Storrs, CT, United States.
| |
Collapse
|
20
|
Harvey MA, Erskine PD, Harris HH, Brown GK, Pilon-Smits EAH, Casey LW, Echevarria G, van der Ent A. Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland, Australia. Metallomics 2020; 12:514-527. [PMID: 32055807 DOI: 10.1039/c9mt00244h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se), a trace element essential for human and animal biological processes, is deficient in many agricultural soils. Some extremely rare plants can naturally accumulate extraordinarily high concentrations of Se. The native legume Neptunia amplexicaulis, endemic to a small area near Richmond and Hughenden in Central Queensland, Australia, is one of the strongest Se hyperaccumulators known on Earth, with foliar concentrations in excess of 4000 μg Se g-1 previously recorded. Here, we report on the Se distribution at a whole plant level using laboratory micro X-ray Fluorescence Microscopy (μXRF) and scanning electron microscopy (SEM-EDS), as well as on chemical forms of Se in various tissues using liquid chromatography-mass spectrometry (LC-MS) and synchrotron X-ray absorption spectroscopy (XAS). The results show that Se occurs in the forms of methyl-selenocysteine and seleno-methionine in the foliar tissues, with up to 13 600 μg Se g-1 total in young leaves. Selenium was found to accumulate primarily in the young leaves, flowers, pods and taproot, with lower concentrations present in the fine-roots and stem and the lowest present in the oldest leaves. Trichomes were not found to accumulate Se. We postulate that Se is (re)distributed in this plant via the phloem from older leaves to newer leaves, using the taproot as the main storage organ. High concentrations of Se in the nodes (pulvini) indicate this structure may play an important a role in Se (re)distribution. The overall pattern of Se distribution was similar in a non-Se tolerant closely related species (Neptunia gracilis), although the prevailing Se concentrations were substantially lower than in N. amplexicaulis.
Collapse
Affiliation(s)
- Maggie-Anne Harvey
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang K, Zheng L, Zhao YD, Liu SH, Ma CY, Dong YH. A micro-focusing and high-flux-throughput beamline design using a bending magnet for microscopic XAFS at the High Energy Photon Source. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1835-1842. [PMID: 31490178 DOI: 10.1107/s160057751900715x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
An optical design study of a bending-magnet beamline, based on multi-bend achromat storage ring lattices, at the High Energy Photon Source, to be built in Beijing, China, is described. The main purpose of the beamline design is to produce a micro-scale beam from a bending-magnet source with little flux loss through apertures. To maximize the flux of the focal spot, the synchrotron source will be 1:1 imaged to a virtual source by a toroidal mirror; a mirror pair will be used to collimate the virtual source into quasi-parallel light which will be refocused by a Kirkpatrick-Baez mirror pair. In the case presented here, a beamline for tender X-rays ranging from 2.1 keV to 7.8 keV, with a spot size of approximately 7 µm (H) × 6 µm (V) and flux up to 2 × 1012 photons s-1, can be achieved for the purpose of X-ray absorption fine-structure (XAFS)-related experiments, such as scanning micro-XAFS and full-field nano-XAFS.
Collapse
Affiliation(s)
- Kun Tang
- Institute of High Energy Physics, 19B Yuquan Road, Shijingshan District, Beijing, People's Republic of China
| | - Lei Zheng
- Institute of High Energy Physics, 19B Yuquan Road, Shijingshan District, Beijing, People's Republic of China
| | - Yi Dong Zhao
- Institute of High Energy Physics, 19B Yuquan Road, Shijingshan District, Beijing, People's Republic of China
| | - Shu Hu Liu
- Institute of High Energy Physics, 19B Yuquan Road, Shijingshan District, Beijing, People's Republic of China
| | - Chen Yan Ma
- Institute of High Energy Physics, 19B Yuquan Road, Shijingshan District, Beijing, People's Republic of China
| | - Yu Hui Dong
- Institute of High Energy Physics, 19B Yuquan Road, Shijingshan District, Beijing, People's Republic of China
| |
Collapse
|
22
|
Getting to the Root of Selenium Hyperaccumulation—Localization and Speciation of Root Selenium and Its Effects on Nematodes. SOIL SYSTEMS 2019. [DOI: 10.3390/soilsystems3030047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elemental hyperaccumulation protects plants from many aboveground herbivores. Little is known about effects of hyperaccumulation on belowground herbivores or their ecological interactions. To examine effects of plant selenium (Se) hyperaccumulation on nematode root herbivory, we investigated spatial distribution and speciation of Se in hyperaccumulator roots using X-ray microprobe analysis, and effects of root Se concentration on root-associated nematode communities. Perennial hyperaccumulators Stanleya pinnata and Astragalus bisulcatus, collected from a natural seleniferous grassland contained 100–1500 mg Se kg−1 root dry weight (DW). Selenium was concentrated in the cortex and epidermis of hyperaccumulator roots, with lower levels in the stele. The accumulated Se consisted of organic (C-Se-C) compounds, indistinguishable from methyl-selenocysteine. The field-collected roots yielded 5–400 nematodes g−1 DW in Baermann funnel extraction, with no correlation between root Se concentration and nematode densities. Even roots containing > 1000 mg Se kg−1 DW yielded herbivorous nematodes. However, greenhouse-grown S. pinnata plants treated with Se had fewer total nematodes than those without Se. Thus, while root Se hyperaccumulation may protect plants from non-specialist herbivorous nematodes, Se-resistant nematode taxa appear to associate with hyperaccumulators in seleniferous habitats, and may utilize high-Se hyperaccumulator roots as food source. These findings give new insight into the ecological implications of plant Se (hyper)accumulation.
Collapse
|
23
|
Baek J, Rungtaweevoranit B, Pei X, Park M, Fakra SC, Liu YS, Matheu R, Alshmimri SA, Alshehri S, Trickett CA, Somorjai GA, Yaghi OM. Bioinspired Metal–Organic Framework Catalysts for Selective Methane Oxidation to Methanol. J Am Chem Soc 2018; 140:18208-18216. [DOI: 10.1021/jacs.8b11525] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | - Myeongkee Park
- Department of Chemistry, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea
| | | | | | | | | | - Saeed Alshehri
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | | | | | | |
Collapse
|
24
|
Heald SM, Dufresne EM. Using refractive lenses to provide a variable spot size for Kirkpatrick-Baez mirrors. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1514-1516. [PMID: 30179192 PMCID: PMC6544195 DOI: 10.1107/s1600577518010603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
For many X-ray microprobe experiments it is desirable to be able to vary the beam size: using large beams for survey scans and a small beam for the final measurements. Beryllium refractive lenses were found to be a simple and controllable method for enlarging the focus in a Kirkpatrick-Baez-based microprobe. They can provide variable spot size, can be quickly inserted or removed and do not move the beam center on the sample.
Collapse
Affiliation(s)
- Steve M. Heald
- XSD-APS, Argonne National Laboratory, Building 435E, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Eric M. Dufresne
- XSD-APS, Argonne National Laboratory, Building 435E, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
25
|
Lindblom SD, Wangeline AL, Valdez Barillas JR, Devilbiss B, Fakra SC, Pilon-Smits EAH. Fungal Endophyte Alternaria tenuissima Can Affect Growth and Selenium Accumulation in Its Hyperaccumulator Host Astragalus bisulcatus. FRONTIERS IN PLANT SCIENCE 2018; 9:1213. [PMID: 30177943 PMCID: PMC6109757 DOI: 10.3389/fpls.2018.01213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/27/2018] [Indexed: 05/13/2023]
Abstract
Endophytes can enhance plant stress tolerance by promoting growth and affecting elemental accumulation, which may be useful in phytoremediation. In earlier studies, up to 35% elemental selenium (Se0) was found in Se hyperaccumulator Astragalus bisulcatus. Since Se0 can be produced by microbes, the plant Se0 was hypothesized to be microbe-derived. Here we characterize a fungal endophyte of A. bisulcatus named A2. It is common in seeds from natural seleniferous habitat containing 1,000-10,000 mg kg-1 Se. We identified A2 as Alternaria tenuissima via 18S rRNA sequence analysis and morphological characterization. X-ray microprobe analysis of A. bisulcatus seeds that did or did not harbor Alternaria, showed that both contained >90% organic seleno-compounds with C-Se-C configuration, likely methylselenocysteine and glutamyl-methylselenocysteine. The seed Se was concentrated in the embryo, not the seed coat. X-ray microprobe analysis of A2 in pure culture showed the fungus produced Se0 when supplied with selenite, but accumulated mainly organic C-Se-C compounds when supplied with selenate. A2 was completely resistant to selenate up to 300 mg L-1, moderately resistant to selenite (50% inhibition at ∼50 mg Se L-1), but relatively sensitive to methylselenocysteine and to Se extracted from A. bisulcatus (50% inhibition at 25 mg Se L-1). Four-week old A. bisulcatus seedlings derived from surface-sterilized seeds containing endophytic Alternaria were up to threefold larger than seeds obtained from seeds not showing evidence of fungal colonization. When supplied with Se, the Alternaria-colonized seedlings had lower shoot Se and sulfur levels than seedlings from uncolonized seeds. In conclusion, A. tenuissima may contribute to the Se0 observed earlier in A. bisulcatus, and affect host growth and Se accumulation. A2 is sensitive to the Se levels found in its host's tissues, but may avoid Se toxicity by occupying low-Se areas (seed coat, apoplast) and converting plant Se to non-toxic Se0. These findings illustrate the potential for hyperaccumulator endophytes to affect plant properties relevant for phytoremediation. Facultative endophytes may also be applicable in bioremediation and biofortification, owing to their capacity to turn toxic inorganic forms of Se into non-toxic or even beneficial, organic forms with anticarcinogenic properties.
Collapse
Affiliation(s)
- Stormy D. Lindblom
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Ami L. Wangeline
- Department of Biology, Laramie County Community College, Cheyenne, WY, United States
| | - Jose R. Valdez Barillas
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Department of Sciences and Mathematics, Texas A&M University-San Antonio, San Antonio, TX, United States
| | - Berthal Devilbiss
- Department of Biology, Laramie County Community College, Cheyenne, WY, United States
| | - Sirine C. Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | |
Collapse
|
26
|
Ross M, Andersen A, Fox ZW, Zhang Y, Hong K, Lee JH, Cordones A, March AM, Doumy G, Southworth SH, Marcus MA, Schoenlein RW, Mukamel S, Govind N, Khalil M. Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X-ray Wavelengths. J Phys Chem B 2018; 122:5075-5086. [PMID: 29613798 DOI: 10.1021/acs.jpcb.7b12532] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.
Collapse
Affiliation(s)
- Matthew Ross
- Department of Chemistry , University of Washington , Seattle , Washington 98115 , United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Zachary W Fox
- Department of Chemistry , University of Washington , Seattle , Washington 98115 , United States
| | - Yu Zhang
- Department of Chemistry, Physics and Astronomy , University of California , Irvine , California 92697 , United States
| | | | | | | | - Anne Marie March
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | | | | | - Shaul Mukamel
- Department of Chemistry, Physics and Astronomy , University of California , Irvine , California 92697 , United States
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Seattle , Washington 98115 , United States
| |
Collapse
|
27
|
Polishchuk I, Bracha AA, Bloch L, Levy D, Kozachkevich S, Etinger-Geller Y, Kauffmann Y, Burghammer M, Giacobbe C, Villanova J, Hendler G, Sun CY, Giuffre AJ, Marcus MA, Kundanati L, Zaslansky P, Pugno NM, Gilbert PUPA, Katsman A, Pokroy B. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science 2018; 358:1294-1298. [PMID: 29217569 DOI: 10.1126/science.aaj2156] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 11/02/2022]
Abstract
In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar Ophiocoma wendtii This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy. We believe that these calcitic nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.
Collapse
Affiliation(s)
- Iryna Polishchuk
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Avigail Aronhime Bracha
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Leonid Bloch
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Davide Levy
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Stas Kozachkevich
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Yael Etinger-Geller
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Yaron Kauffmann
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | | | - Julie Villanova
- The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | - Gordon Hendler
- Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Chang-Yu Sun
- Departments of Physics, Chemistry, Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anthony J Giuffre
- Departments of Physics, Chemistry, Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lakshminath Kundanati
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Centrum für Zahn-, Mund- und Kieferheilkunde, Charité-Universitätsmedizin Berlin, 14197 Berlin, Germany
| | - Nicola M Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy.,School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Ket-Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
| | - Pupa U P A Gilbert
- Departments of Physics, Chemistry, Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alex Katsman
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering and the Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
28
|
Fakra SC, Luef B, Castelle CJ, Mullin SW, Williams KH, Marcus MA, Schichnes D, Banfield JF. Correlative Cryogenic Spectromicroscopy to Investigate Selenium Bioreduction Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:503-512. [PMID: 26371540 DOI: 10.1021/acs.est.5b01409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Accurate mapping of the composition and structure of minerals and associated biological materials is critical in geomicrobiology and environmental research. Here, we have developed an apparatus that allows the correlation of cryogenic transmission electron microscopy (cryo-TEM) and synchrotron hard X-ray microprobe (SHXM) data sets to precisely determine the distribution, valence state, and structure of selenium in biofilms sampled from a contaminated aquifer near Rifle, CO. Results were replicated in the laboratory via anaerobic selenate-reducing enrichment cultures. 16S rRNA analyses of field-derived biofilm indicated the dominance of Betaproteobacteria from the Comamonadaceae family and uncultivated members of the Simplicispira genus. The major product in field and culture-derived biofilms is ∼25-300 nm red amorphous Se0 aggregates of colloidal nanoparticles. Correlative analyses of the cultures provided direct evidence for the microbial dissimilatory reduction of Se(VI) to Se(IV) to Se0. Extended X-ray absorption fine-structure spectroscopy showed red amorphous Se0 with a first shell Se-Se interatomic distance of 2.339 ± 0.003 Å. Complementary scanning transmission X-ray microscopy revealed that these aggregates are strongly associated with a protein-rich biofilm matrix. These findings have important implications for predicting the stability and mobility of Se bioremediation products and understanding of Se biogeochemical cycling. The approach, involving the correlation of cryo-SHXM and cryo-TEM data sets from the same specimen area, is broadly applicable to biological and environmental samples.
Collapse
Affiliation(s)
- Sirine C Fakra
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Birgit Luef
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Cindy J Castelle
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Sean W Mullin
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Kenneth H Williams
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Matthew A Marcus
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Denise Schichnes
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| | - Jillian F Banfield
- Department of Earth and Planetary Science and ‡Department of Plant & Microbial Biology, University of California , Berkeley, California 94720, United States
- Advanced Light Source and ∥Earth Sciences Division, Lawrence Berkeley National Lab , Berkeley, California 94720, United States
| |
Collapse
|
29
|
Li L, Pascal TA, Connell JG, Fan FY, Meckler SM, Ma L, Chiang YM, Prendergast D, Helms BA. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nat Commun 2017; 8:2277. [PMID: 29273748 PMCID: PMC5741623 DOI: 10.1038/s41467-017-02410-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Although it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. Here, we reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network of mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes allow cells to be operated for >100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm-2.
Collapse
Affiliation(s)
- Longjun Li
- The Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tod A Pascal
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Justin G Connell
- The Joint Center for Energy Storage Research, Argonne National Laboratory, Argonne, Lemont, IL, 60439, USA
| | - Frank Y Fan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stephen M Meckler
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Lin Ma
- The Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yet-Ming Chiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David Prendergast
- The Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brett A Helms
- The Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
30
|
Keren R, Mayzel B, Lavy A, Polishchuk I, Levy D, Fakra SC, Pokroy B, Ilan M. Sponge-associated bacteria mineralize arsenic and barium on intracellular vesicles. Nat Commun 2017; 8:14393. [PMID: 28233852 PMCID: PMC5333131 DOI: 10.1038/ncomms14393] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Arsenic and barium are ubiquitous environmental toxins that accumulate in higher trophic-level organisms. Whereas metazoans have detoxifying organs to cope with toxic metals, sponges lack organs but harbour a symbiotic microbiome performing various functions. Here we examine the potential roles of microorganisms in arsenic and barium cycles in the sponge Theonella swinhoei, known to accumulate high levels of these metals. We show that a single sponge symbiotic bacterium, Entotheonella sp., constitutes the arsenic- and barium-accumulating entity within the host. These bacteria mineralize both arsenic and barium on intracellular vesicles. Our results indicate that Entotheonella sp. may act as a detoxifying organ for its host. The marine sponge Theonella swinhoei accumulates toxic arsenic and barium. Here the authors show that these toxic elements are actually accumulated and mineralized within vesicles inside bacteria that live within the sponge tissues.
Collapse
Affiliation(s)
- Ray Keren
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Mayzel
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adi Lavy
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Iryna Polishchuk
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Davide Levy
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Boaz Pokroy
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
31
|
Xiao Q, Maclennan A, Hu Y, Hackett M, Leinweber P, Sham TK. Medium-energy microprobe station at the SXRMB of the CLS. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:333-337. [PMID: 28009575 DOI: 10.1107/s1600577516017604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Micro-XAFS and chemical imaging techniques have been widely applied for studies of heterogeneously distributed systems, mostly in hard X-ray (>5 keV) or in soft X-ray (<1.5 keV) energies. The microprobe endstation of the SXRMB (soft X-ray microcharacterization beamline) at the Canadian Light Source is optimized at the medium energy (1.7-5 keV), and it has been recently commissioned and is available for general users. The technical design and the performance (energy range, beam size and flux) of the SXRMB microprobe are presented. Examples in chemical imaging and micro-XAFS in the medium energy for important elements such as P, S and Ca for soil and biological samples are highlighted.
Collapse
Affiliation(s)
- Qunfeng Xiao
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, Canada S7N 2V3
| | - Aimee Maclennan
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, Canada S7N 2V3
| | - Yongfeng Hu
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, Canada S7N 2V3
| | - Mark Hackett
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2
| | - Peter Leinweber
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 6, 18051 Rostock, Germany
| | - Tsun Kong Sham
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ONT, Canada N6A 5B7
| |
Collapse
|
32
|
Kennedy G, Melaet G, Han HL, Ralston WT, Somorjai GA. In Situ Spectroscopic Investigation into the Active Sites for Crotonaldehyde Hydrogenation at the Pt Nanoparticle–Co3O4 Interface. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01640] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Griffin Kennedy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gérôme Melaet
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Hui-Ling Han
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Walter T. Ralston
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gabor A. Somorjai
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Miyamoto C, Marcus MA, Sakata K, Kurisu M, Takahashi Y. Depth-dependent Calcium Speciation in Individual Aerosol Particles by Combination of Fluorescence Yield and Conversion Electron Yield XAFS Using X-ray Microbeam. CHEM LETT 2016. [DOI: 10.1246/cl.160392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Toner BM, Rouxel OJ, Santelli CM, Bach W, Edwards KJ. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ(57/54)Fe Observations. Front Microbiol 2016; 7:648. [PMID: 27242685 PMCID: PMC4862312 DOI: 10.3389/fmicb.2016.00648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings reveal a dynamic range of Fe transformation pathways consistent with a continuum of micro-environments having variable redox conditions. These micro-environments likely support redox cycling of Fe and S and are consistent with culture-dependent and -independent assessments of microbial physiology and genetic diversity of hydrothermal sulfide deposits.
Collapse
Affiliation(s)
- Brandy M. Toner
- Département des Ressources Physiques et Écosystèmes de Fond de Mer, Water, and Climate, University of Minnesota-Twin CitiesSt. Paul, MN, USA
| | - Olivier J. Rouxel
- Department of Deep-sea Physical Resources and Ecosystems, Centre de Brest, Institut Français de Recherche pour l'Exploitation de la MerPlouzané, France
| | - Cara M. Santelli
- Department of Earth Sciences, University of Minnesota-Twin CitiesMinneapolis, MN, USA
| | - Wolfgang Bach
- Department of Geosciences and MARUM, University of BremenBremen, Germany
| | - Katrina J. Edwards
- Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
35
|
Grangeon S, Claret F, Roosz C, Sato T, Gaboreau S, Linard Y. Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance. J Appl Crystallogr 2016; 49:771-783. [PMID: 27275135 PMCID: PMC4886978 DOI: 10.1107/s1600576716003885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/07/2016] [Indexed: 11/11/2022] Open
Abstract
The structure of nanocrystalline calcium silicate hydrates (C-S-H) having Ca/Si ratios ranging between 0.57 ± 0.05 and 1.47 ± 0.04 was studied using an electron probe micro-analyser, powder X-ray diffraction, 29Si magic angle spinning NMR, and Fourier-transform infrared and synchrotron X-ray absorption spectroscopies. All samples can be described as nanocrystalline and defective tobermorite. At low Ca/Si ratio, the Si chains are defect free and the Si Q3 and Q2 environments account, respectively, for up to 40.2 ± 1.5% and 55.6 ± 3.0% of the total Si, with part of the Q3 Si being attributable to remnants of the synthesis reactant. As the Ca/Si ratio increases up to 0.87 ± 0.02, the Si Q3 environment decreases down to 0 and is preferentially replaced by the Q2 environment, which reaches 87.9 ± 2.0%. At higher ratios, Q2 decreases down to 32.0 ± 7.6% for Ca/Si = 1.38 ± 0.03 and is replaced by the Q1 environment, which peaks at 68.1 ± 3.8%. The combination of X-ray diffraction and NMR allowed capturing the depolymerization of Si chains as well as a two-step variation in the layer-to-layer distance. This latter first increases from ∼11.3 Å (for samples having a Ca/Si ratio <∼0.6) up to 12.25 Å at Ca/Si = 0.87 ± 0.02, probably as a result of a weaker layer-to-layer connectivity, and then decreases down to 11 Å when the Ca/Si ratio reaches 1.38 ± 0.03. The decrease in layer-to-layer distance results from the incorporation of interlayer Ca that may form a Ca(OH)2-like structure, nanocrystalline and intermixed with C-S-H layers, at high Ca/Si ratios.
Collapse
Affiliation(s)
- Sylvain Grangeon
- D3E/SVP, BRGM (French Geological Survey) , 3 avenue Claude Guillemin, Orléans, 45060, France
| | - Francis Claret
- D3E/SVP, BRGM (French Geological Survey) , 3 avenue Claude Guillemin, Orléans, 45060, France
| | - Cédric Roosz
- D3E/SVP, BRGM (French Geological Survey), 3 avenue Claude Guillemin, Orléans, 45060, France; Scientific Division, Andra, 1-7 rue Jean Monnet, Parc de la Croix Blanche, Châtenay-Malabry, France
| | - Tsutomu Sato
- Laboratory of Environmental Geology, Research Group of Geoenvironmental/Engineering Division of Solid Waste, Resources and Geoenvironmental/Engineering Graduate School of Engineering, Hokkaido University , Kita 13 Nishi 8, Sapporo, Japan
| | - Stéphane Gaboreau
- D3E/SVP, BRGM (French Geological Survey) , 3 avenue Claude Guillemin, Orléans, 45060, France
| | - Yannick Linard
- Centre de Meuse/Haute Marne, Andra , Bure, 55290, France
| |
Collapse
|
36
|
Voegelin A, Pfenninger N, Petrikis J, Majzlan J, Plötze M, Senn AC, Mangold S, Steininger R, Göttlicher J. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5390-8. [PMID: 25885948 DOI: 10.1021/acs.est.5b00629] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.
Collapse
Affiliation(s)
- Andreas Voegelin
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Numa Pfenninger
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Julia Petrikis
- ‡Friedrich-Schiller-University Jena, Institute of Geosciences, Mineralogy, Burgweg 11, D-07749 Jena, Germany
| | - Juraj Majzlan
- ‡Friedrich-Schiller-University Jena, Institute of Geosciences, Mineralogy, Burgweg 11, D-07749 Jena, Germany
| | - Michael Plötze
- §ETH Zurich, Institute for Geotechnical Engineering, CH-8093 Zurich, Switzerland
| | - Anna-Caterina Senn
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland
| | - Stefan Mangold
- ∥Karlsruhe Institute of Technology, ANKA Synchrotron Radiation Facility, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralph Steininger
- ∥Karlsruhe Institute of Technology, ANKA Synchrotron Radiation Facility, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jörg Göttlicher
- ∥Karlsruhe Institute of Technology, ANKA Synchrotron Radiation Facility, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
37
|
Yashchuk VV, Morrison GY, Marcus MA, Domning EE, Merthe DJ, Salmassi F, Smith BV. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:666-74. [PMID: 25931083 PMCID: PMC4416681 DOI: 10.1107/s1600577515001459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4-17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described.
Collapse
Affiliation(s)
- Valeriy V. Yashchuk
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, CA 94720, USA
| | - Gregory Y. Morrison
- Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, CA 94720, USA
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, CA 94720, USA
| | - Edward E. Domning
- Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, CA 94720, USA
| | - Daniel J. Merthe
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, CA 94720, USA
| | - Farhad Salmassi
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, CA 94720, USA
| | - Brian V. Smith
- Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 15R0317, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Gainsforth Z, Butterworth AL, Stodolna J, Westphal AJ, Huss GR, Nagashima K, Ogliore R, Brownlee DE, Joswiak D, Tyliszczak T, Simionovici AS. Constraints on the formation environment of two chondrule-like igneous particles from Comet 81P/Wild 2. METEORITICS & PLANETARY SCIENCE 2015; 50:976-1004. [PMID: 31031558 PMCID: PMC6480418 DOI: 10.1111/maps.12445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using chemical and petrologic evidence and modeling, we deduce that two chondrule-like particles named Iris and Callie, from Stardust cometary track C2052,12,74, formed in an environment very similar to that seen for type II chondrules in meteorites. Iris was heated near liquidus, equilibrated, and cooled at ≤ 100 °C/hr and within ≈ 2 log units of the IW buffer with a high partial pressure of Na such as would be present with dust enrichments of ≈ 103. There was no detectable metamorphic, nebular or aqueous alteration. In previous work Ogliore et al. (2012) reported that Iris formed late, > 3 Myr after CAIs, assuming 26Al was homogenously distributed, and was rich in heavy oxygen. Iris may be similar to assemblages found only in interplanetary dust particles and Stardust cometary samples called Kool particles. Callie is chemically and isotopically very similar but not identical to Iris.
Collapse
Affiliation(s)
- Zack Gainsforth
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Anna L. Butterworth
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Julien Stodolna
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Andrew J. Westphal
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Gary R. Huss
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - Kazu Nagashima
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - Ryan Ogliore
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Mānoa, Honolulu, HI 96822 USA
| | - Donald E. Brownlee
- Department of Astronomy, University of Washington, Seattle, WA 98195 USA
| | - David Joswiak
- Department of Astronomy, University of Washington, Seattle, WA 98195 USA
| | - Tolek Tyliszczak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Alexandre S. Simionovici
- Institut des Sciences de la Terre, Observatoire des Sciences de l’Univers de Grenoble, Grenoble, France
| |
Collapse
|
39
|
Alford ÉR, Lindblom SD, Pittarello M, Freeman JL, Fakra SC, Marcus MA, Broeckling C, Pilon-Smits EAH, Paschke MW. Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:1895-905. [PMID: 25366855 DOI: 10.3732/ajb.1400223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY Are there dimensions of symbiotic root interactions that are overlooked because plant mineral nutrition is the foundation and, perhaps too often, the sole explanation through which we view these relationships? In this paper we investigate how the root nodule symbiosis in selenium (Se) hyperaccumulator and nonaccumulator Astragalus species influences plant selenium (Se) accumulation. METHODS In greenhouse studies, Se was added to nodulated and nonnodulated hyperaccumulator and nonaccumulator Astragalus plants, followed by investigation of nitrogen (N)-Se relationships. Selenium speciation was also investigated, using x-ray microprobe analysis and liquid chromatography-mass spectrometry (LC-MS). KEY RESULTS Nodulation enhanced biomass production and Se to S ratio in both hyperaccumulator and nonaccumulator plants. The hyperaccumulator contained more Se when nodulated, while the nonaccumulator contained less S when nodulated. Shoot [Se] was positively correlated with shoot N in Se-hyperaccumulator species, but not in nonhyperaccumulator species. The x-ray microprobe analysis showed that hyperaccumulators contain significantly higher amounts of organic Se than nonhyperaccumulators. LC-MS of A. bisulcatus leaves revealed that nodulated plants contained more γ-glutamyl-methylselenocysteine (γ-Glu-MeSeCys) than nonnodulated plants, while MeSeCys levels were similar. CONCLUSIONS Root nodule mutualism positively affects Se hyperaccumulation in Astragalus. The microbial N supply particularly appears to contribute glutamate for the formation of γ-Glu-MeSeCys. Our results provide insight into the significance of symbiotic interactions in plant adaptation to edaphic conditions. Specifically, our findings illustrate that the importance of these relationships are not limited to alleviating macronutrient deficiencies.
Collapse
Affiliation(s)
- Élan R Alford
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Stormy D Lindblom
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Marco Pittarello
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - John L Freeman
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Corey Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Elizabeth A H Pilon-Smits
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Mark W Paschke
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA
| |
Collapse
|
40
|
Chemical and oxidation-state imaging of mineralogical intergrowths: The application of X-ray photo-emission electron microscopy (XPEEM). Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Blazina T, Sun Y, Voegelin A, Lenz M, Berg M, Winkel LH. Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat Commun 2014; 5:4717. [DOI: 10.1038/ncomms5717] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/14/2014] [Indexed: 11/09/2022] Open
|
42
|
Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science 2014; 344:757-60. [PMID: 24789974 DOI: 10.1126/science.1252229] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Viruses are the most abundant biological entities in the oceans and a pervasive cause of mortality of microorganisms that drive biogeochemical cycles. Although the ecological and evolutionary effects of viruses on marine phototrophs are well recognized, little is known about their impact on ubiquitous marine lithotrophs. Here, we report 18 genome sequences of double-stranded DNA viruses that putatively infect widespread sulfur-oxidizing bacteria. Fifteen of these viral genomes contain auxiliary metabolic genes for the α and γ subunits of reverse dissimilatory sulfite reductase (rdsr). This enzyme oxidizes elemental sulfur, which is abundant in the hydrothermal plumes studied here. Our findings implicate viruses as a key agent in the sulfur cycle and as a reservoir of genetic diversity for bacterial enzymes that underpin chemosynthesis in the deep oceans.
Collapse
Affiliation(s)
- Karthik Anantharaman
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John A Breier
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Kathleen A Wendt
- Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, MN 55108, USA
| | - Brandy M Toner
- Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, MN 55108, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
43
|
Santoro G, Buffet A, Döhrmann R, Yu S, Körstgens V, Müller-Buschbaum P, Gedde U, Hedenqvist M, Roth SV. Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:043901. [PMID: 24784620 DOI: 10.1063/1.4869784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe the new experimental possibilities of the micro- and nanofocus X-ray scattering beamline P03 of the synchrotron source PETRA III at DESY, Hamburg (Germany), which arise from experiments with smaller beam sizes in the micrometer range. This beamline has been upgraded recently to perform new kinds of experiments. The use of an intermediate focus allows for reducing the beam size of microfocused hard X-rays while preserving a large working distance between the focusing elements and the focus position. For the first time, this well-known methodology has been employed to grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS). As examples, we highlight the applications to in situ studies using microfluidic devices in GISAXS geometry as well as the investigation of the crystallinity of thin films in GIWAXS geometry.
Collapse
Affiliation(s)
- G Santoro
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - A Buffet
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - R Döhrmann
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - S Yu
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - V Körstgens
- Physik-Department, Technische Universität München, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, D-85748 Garching, Germany
| | - P Müller-Buschbaum
- Physik-Department, Technische Universität München, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, D-85748 Garching, Germany
| | - U Gedde
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-10044 Stockholm, Sweden
| | - M Hedenqvist
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-10044 Stockholm, Sweden
| | - S V Roth
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| |
Collapse
|
44
|
Fuller CC, Bargar JR. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2165-72. [PMID: 24460038 PMCID: PMC3991428 DOI: 10.1021/es402576f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (μSXRF) mapping, and chemical extraction. μSXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present.
Collapse
Affiliation(s)
- Christopher C. Fuller
- U.S. Geological Survey, Menlo Park, CA 94025
- Corresponding author: 345 Middlefield Rd MS 496: Menlo Park, CA 94025; ; tel: 650-329-4479, FAX: 650-329-4463
| | - John R. Bargar
- Chemistry and Catalysis Division, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025
| |
Collapse
|
45
|
Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nat Commun 2014; 5:3192. [DOI: 10.1038/ncomms4192] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/02/2014] [Indexed: 01/24/2023] Open
|
46
|
Singer DM, Fox PM, Guo H, Marcus MA, Davis JA. Sorption and redox reactions of As(III) and As(V) within secondary mineral coatings on aquifer sediment grains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11569-11576. [PMID: 24041305 DOI: 10.1021/es402754f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Important reactive phenomena that affect the transport and fate of many elements occur at the mineral-water interface (MWI), including sorption and redox reactions. Fundamental knowledge of these phenomena are often based on observations of ideal mineral-water systems, for example, studies of molecular scale reactions on single crystal faces or the surfaces of pure mineral powders. Much less is understood about MWI in natural environments, which typically have nanometer to micrometer scale secondary mineral coatings on the surfaces of primary mineral grains. We examined sediment grain coatings from a well-characterized field site to determine the causes of rate limitations for arsenic (As) sorption and redox processes within the coatings. Sediments were obtained from the USGS field research site on Cape Cod, MA, and exposed to synthetic contaminated groundwater solutions. Uptake of As(III) and As(V) into the coatings was studied with a combination of electron microscopy and synchrotron techniques to assess concentration gradients and reactive processes, including electron transfer reactions. Transmission electron microscopy (TEM) and X-ray microprobe (XMP) analyses indicated that As was primarily associated with micrometer- to submicrometer aggregates of Mn-bearing nanoparticulate goethite. As(III) oxidation by this phase was observed but limited by the extent of exposed surface area of the goethite grains to the exterior of the mineral coatings. Secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site, and may need to be included explicitly in reactive transport models.
Collapse
Affiliation(s)
- David M Singer
- Earth Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | | | | | | | | |
Collapse
|
47
|
Pushkar Y, Robison G, Sullivan B, Fu SX, Kohne M, Jiang W, Rohr S, Lai B, Marcus MA, Zakharova T, Zheng W. Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone. Aging Cell 2013; 12:823-32. [PMID: 23738916 DOI: 10.1111/acel.12112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 01/05/2023] Open
Abstract
Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein. Analysis of age-related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age-related effects). We demonstrate that the Cu distribution and age-related concentration changes in the brain are highly cell specific.
Collapse
Affiliation(s)
- Yulia Pushkar
- Department of Physics; Purdue University; 525 Northwestern Ave.; West Lafayette; IN; 47907; USA
| | - Gregory Robison
- Department of Physics; Purdue University; 525 Northwestern Ave.; West Lafayette; IN; 47907; USA
| | - Brendan Sullivan
- Department of Physics; Purdue University; 525 Northwestern Ave.; West Lafayette; IN; 47907; USA
| | - Sherleen X. Fu
- School of Health Sciences; Purdue University; 550 Stadium Mall Drive; West Lafayette; IN; 47907; USA
| | - Meghan Kohne
- Department of Physics; Purdue University; 525 Northwestern Ave.; West Lafayette; IN; 47907; USA
| | - Wendy Jiang
- School of Health Sciences; Purdue University; 550 Stadium Mall Drive; West Lafayette; IN; 47907; USA
| | - Sven Rohr
- Department of Physics; Purdue University; 525 Northwestern Ave.; West Lafayette; IN; 47907; USA
| | - Barry Lai
- X-ray Science Division; Advanced Photon Source; Argonne National Laboratory; Building 401; 9700 S. Cass Ave.; Argonne; IL; 60439; USA
| | - Matthew A. Marcus
- Advanced Light Source; Lawrence Berkeley National Laboratory; 1 Cyclotron Rd.; Berkeley; CA; 94720; USA
| | - Taisiya Zakharova
- Department of Physics; Purdue University; 525 Northwestern Ave.; West Lafayette; IN; 47907; USA
| | - Wei Zheng
- School of Health Sciences; Purdue University; 550 Stadium Mall Drive; West Lafayette; IN; 47907; USA
| |
Collapse
|
48
|
Chen X, Liu L, Liu Z, Marcus MA, Wang WC, Oyler NA, Grass ME, Mao B, Glans PA, Yu PY, Guo J, Mao SS. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 2013; 3:1510. [PMID: 23528851 PMCID: PMC3607837 DOI: 10.1038/srep01510] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 02/04/2013] [Indexed: 12/21/2022] Open
Abstract
The recent discovery of “black” TiO2 nanoparticles with visible and infrared absorption has triggered an explosion of interest in the application of TiO2 in a diverse set of solar energy systems; however, what a black TiO2 nanoparticle really is remains a mystery. Here we elucidate more properties and try to understand the inner workings of black TiO2 nanoparticles with hydrogenated disorders in a surface layer surrounding a crystalline core. Contrary to traditional findings, Ti3+ here is not responsible for the visible and infrared absorption of black TiO2, while there is evidence of mid-gap states above the valence band maximum due to the hydrogenated, engineered disorders. The hydrogen atoms, on the other hand, can undergo fast diffusion and exchange. The enhanced hydrogen mobility may be explained by the presence of the hydrogenated, disordered surface layer. This unique structure thus may give TiO2, one of the most-studied oxide materials, a renewed potential.
Collapse
Affiliation(s)
- Xiaobo Chen
- University of Missouri - Kansas City, Department of Chemistry, Kansas City, MO 64110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gorlin Y, Lassalle-Kaiser B, Benck JD, Gul S, Webb SM, Yachandra VK, Yano J, Jaramillo TF. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc 2013; 135:8525-34. [PMID: 23758050 DOI: 10.1021/ja3104632] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In situ X-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs RHE produces a disordered Mn3(II,III,III)O4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed Mn(III,IV) oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3(II,III,III)O4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the Mn(III,IV) oxide, rather than Mn3(II,III,III)O4, is the phase pertinent to the observed OER activity.
Collapse
Affiliation(s)
- Yelena Gorlin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | | | - Jesse D Benck
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Sheraz Gul
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025
| | - Vittal K Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
50
|
Schmidt R, Tantoyotai P, Fakra SC, Marcus MA, Yang SI, Pickering IJ, Bañuelos GS, Hristova KR, Freeman JL. Selenium biotransformations in an engineered aquatic ecosystem for bioremediation of agricultural wastewater via brine shrimp production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5057-5065. [PMID: 23621086 DOI: 10.1021/es305001n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter-feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp ( Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested.
Collapse
Affiliation(s)
- Radomir Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | | | | | | | | | | | | | | | | |
Collapse
|