1
|
Corvino A, Schneider T, Vu-Bezin J, Loap P, Kirova Y, Prezado Y. Photon mini-GRID therapy for preoperative breast cancer tumor treatment: A treatment plan study. Med Phys 2025. [PMID: 39873910 DOI: 10.1002/mp.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Breast cancer is the leading cause of female cancer mortality worldwide, accounting for 1 in 6 cancer deaths. Surgery, radiation, and systemic therapy are the three pillars of breast cancer treatment, with several strategies developed to combine them. The association of preoperative radiotherapy with immunotherapy may improve breast cancer tumor control by exploiting the tumor radio-induced immune priming. However, this requires the use of hypofractionated radiotherapy (3 × 8 Gy), increasing the risk of toxicity. Mini-GRID therapy (mini-GRT) is an innovative form of spatially fractionated radiation therapy (SFRT) characterized by narrow beam widths between 1 to 2 mm that promises a significant increase in normal tissue dose tolerances and could thereby represent a new alternative for preoperative breast cancer treatment. Mini-GRT has been successfully implemented at the Hospital de Santiago de Compostela (Spain) with a flattening filter-free LINAC (megavoltage x-rays). PURPOSE In this dosimetry proof-of-concept study, we evaluate the feasibility of photon mini-GRT for preoperative breast cancer treatment. We also assess the clinical potential of mini-GRT and compare it with the current treatment standard of intensity-modulated radiotherapy (IMRT). METHODS Seven unbiased breast cancer dosimetries of patients treated with stereotactic body radiotherapy (SBRT) (3 × 8 Gy, IMRT) were selected for the study. Photon mini-GRT was compared with SBRT using three main criteria: (i) the dose to organs at risk (OARs), (ii) the dose constraints dictated by normal tissue tolerance, and (iii) the lateral penumbra in OARs. Tumor coverage was evaluated in terms of normalized total dose at 8 Gy-fractions. The optimized SBRT by IMRT was realized at the Institut Curie, Paris, France. The dose in mini-GRT was calculated by means of Monte Carlo simulations based on the mini-GRT implementation realized at the University Hospital in Santiago de Compostela. RESULTS Compared to SBRT plans, mini-GRT resulted in a reduction of the mean dose to the lungs, heart, chest wall, and lymph nodes in the studied cases by a factor ranging from 50% to 100%. Additionally, valley, mean, and peak doses to normal tissues meet the dose tolerance limits for the considered OARs, the most challenging of all being the skin. The mean dose to the skin was reduced (20%-60% less) for most of the studied cases. Mini-GRT also yielded sharper lateral penumbras in the skin and lungs (size reduced by at least 50%). Similar tumor integral doses were obtained for the two treatment modalities. CONCLUSION Mini-GRT with megavoltage x-rays is an innovative treatment approach already implemented in a clinical context. In this proof-of-concept study, we evaluated mini-GRT for partial breast cancer irradiation, demonstrating its potential for preoperative treatment thanks to the high skin and normal tissue-sparing capabilities. These initial results represent a first step towards clinical use and encourage further prospective clinical studies.
Collapse
Affiliation(s)
- Angela Corvino
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Tim Schneider
- Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Université Paris-Saclay, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Jeremi Vu-Bezin
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
- University Versailles St. Quentin, St. Quentin, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruna, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruna, Spain
| |
Collapse
|
2
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
3
|
Koksal Akbas C, Vurro F, Fiorino C, Cozzarini C, Cavaliere F, Milani P, Broggi S, Del Vecchio A, Di Muzio N, Tacchetti C, Enrico Spinelli A. Preclinical photon minibeam radiotherapy using a custom collimator: Dosimetry characterization and preliminary in-vivo results on a glioma model. Phys Med 2024; 124:103420. [PMID: 38970950 DOI: 10.1016/j.ejmp.2024.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE The purpose of this study is to investigate the dosimetric characteristics of a collimator for minibeam radiotherapy (MBRT) with film dosimetry and Monte Carlo (MC) simulations. The outcome of MBRT with respect to conventional RT using a glioma preclinical model was also evaluated. METHODS A multi-slit collimator was designed to be used with commercial small animal irradiator. The collimator was built by aligning 0.6 mm wide and 5 mm thick parallel lead leaves at 0.4 mm intervals. Dosimetry characteristics were evaluated by Gafchromic (CG) films and TOPAS Monte Carlo (MC) code. An in vivo experiment was performed using a glioma preclinical model by injecting two million GL261cells subcutaneously and treating with 25 Gy, single fraction, with MBRT and conventional RT. Survival curves and acute radiation damage were measured to compare both treatments. RESULTS A satisfactory agreement between experimental results and MC simulations were obtained, the measured FWHM and distance between the peaks were respectively 0.431 and 1.098 mm. In vivo results show that MBRT can provide local tumor control for three weeks after RT treatment and a similar survival fraction of open beam radiotherapy. No severe acute effects were seen for the MBRT group. CONCLUSIONS We developed a minibeam collimator and presented its dosimetric features. Satisfactory agreement between MC and GC films was found with differences consistent with uncertainties due to fabrication and set-up errors. The survival curves of MBRT and open field RT are similar while atoxicity is dramatically lower with MBRT, preliminarily confirming the expected effect.
Collapse
Affiliation(s)
- Canan Koksal Akbas
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Medical Physics Department, Istanbul University Oncology Institute, Istanbul, Turkey
| | - Federica Vurro
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Fiorino
- Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Cesare Cozzarini
- Radiotherapy Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Paolo Milani
- Department of Physics, University of Milan, Milan, Italy
| | - Sara Broggi
- Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Nadia Di Muzio
- Radiotherapy Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
4
|
Lin Y, Li W, Wang A, Johnson D, Gan GN, Gao H. Comprehensive dosimetric commissioning of proton minibeam radiotherapy on a single gantry proton system. Front Oncol 2024; 14:1421869. [PMID: 39099699 PMCID: PMC11294745 DOI: 10.3389/fonc.2024.1421869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Background Proton minibeam radiation therapy (pMBRT) can deliver spatially fractionated dose distributions with submillimeter resolution. These dose distributions exhibit significant heterogeneity in both depth and lateral directions. Accurate characterization of pMBRT doses requires dosimetry devices with high spatial resolution and a wide dynamic range. Furthermore, the dependency of dosimetric measurements on Linear Energy Transfer (LET), as observed in conventional proton therapy, is also present in pMBRT depth dose measurements. Purpose This work demonstrates the process of performing comprehensive dosimetric measurements to characterize the pMBRT collimator on a clinical single-gantry proton machine, utilizing commercially available dosimetry devices. Methods The minibeam collimator is designed to be mounted on the clinical nozzle as a beam-modifying accessory. Three collimators, each with a slit opening of 0.4 mm, are thoroughly evaluated. The center-to-center (c-t-c) distances of the slits for these collimators are 2.8 mm, 3.2 mm, and 4.0 mm, respectively. High spatial resolution dosimetry devices are essential for PMBRT dose characterizations. To meet this requirement, two-dimensional (2D) dose measurement devices, Gafchromic films, are used to measure lateral profiles at various depths. Films are also used for depth dose profile measurements in solid water. Additionally, high-resolution point dose detectors, microDiamond, and Razor diode detectors are employed for lateral profile measurements at various depths. Percent depth dose (PDD) measurements of pMBRT in solid water, with various proton energies, collimators, and air gaps, are performed using Gafchromic films. The film's LET dependency for proton beams is corrected to ensure accurate pMBRT PDD measurements. The Monte Carlo simulation tool TOPAS is utilized to compare and validate all experimental measurements. Results At depths where LET is not a concern, film dose measurements were consistent with microDiamond and Razor diode point measurements. The point detectors need to be orientated with the thin side aligned to the incoming beam. Comparison of the lateral dose profiles extracted from TOPAS simulations, films, microDiamond, and Razor diode detectors shows a passing rate exceeding 98% in 1D gamma analysis at 3% 0.1 mm criteria.However, when the microDiamond detector is orientated to face the pMBRT beam, its spatial resolution may not be sufficient to capture the peak and valley dose accurately. Nevertheless, an accuracy within 2% can still be achieved when comparing the average dose. The PDD measurements show that the peak valley dose ratio (PVDR) of pMBRT can be altered at different depths with different air gaps using the same collimator or different collimators of different c-t-c distances. Conclusion Our study demonstrates that comprehensive dose measurements for pMBRT can be conducted using standard clinical dose measurement devices. These measurements are indispensable for guiding and ensuring accurate dose reporting in pre-clinical studies using the pMBRT technique.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wangyao Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aoxiang Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel Johnson
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gregory N. Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Carver A, Baker S, Dumbill A, Horton S, Green S. Design and characterisation of a minibeam collimator utilising Monte Carlo simulation and a clinical linear accelerator. Phys Med Biol 2024; 69:135001. [PMID: 38759691 DOI: 10.1088/1361-6560/ad4d52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Objective.Spatially fractionated radiotherapy is showing promise as a treatment modality. Initial focus was on beams of photons at low energy produced from a synchrotron but more recently research has expanded to include applications in proton therapy. Interest in photon beams remains and this is the focus of this paperApproach.This study presents a 3D printed tungsten minibeam collimator intended to produce peak-to-valley dose ratios (PVDR) of between seven and ten with a 1 MV, bremsstrahlung generated, photon beam. The design of the collimator is motivated by a Monte Carlo study estimating the PVDR for different collimator designs at different energies. This collimator was characterised on a clinical linear accelerator (Elekta VersaHD) as well as an orthovoltage unit.Main results.The performance of the fabricated collimator was measured on Elekta VersaHD running in unflattened mode with a 6 MV beam. On the Elekta VersaHD units the PVDR was measured to be between approximately 1.5 and 2.0 at 3 cm deep. For measurements with the orthovoltage unit PVDRs of greater than 10 were observed at a depth of 4 cm.Significance.The results confirmed that the predictions from simulation could be reproduced on linear accelerators currently in clinical usage, producing PVDRs between 2-2.5. Using the model to predict PVDRs using 1 MV photon beams, the threshold considered to produce enhanced normal tissue dose tolerance (>7) was surpassed. This suggests the possibility of using such techniques with versions of existing Linac technology which have been modified to operate at low energy and high beam currents.
Collapse
Affiliation(s)
- Antony Carver
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sam Baker
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew Dumbill
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Steven Horton
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Stuart Green
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
6
|
Lin Y, Li W, Johnson D, Prezado Y, Gan GN, Gao H. Development and characterization of the first proton minibeam system for single-gantry proton facility. Med Phys 2024; 51:3995-4006. [PMID: 38642468 DOI: 10.1002/mp.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Minibeam represents a preclinical spatially fractionated radiotherapy modality with great translational potential. The advantage lies in its high therapeutic index (compared to GRID and LATTICE) and ability to treat at greater depth (compared to microbeam). Proton minibeam radiotherapy (pMBRT) is a synergy of proton and minibeam. While the single-gantry proton facility has gained popularity due to its affordability and compact design, it often has limited beam time available for research purposes. Conversely, given the current requirement of pMBRT on specific minibeam hardware collimators, necessitates a reproducible and fast setup to minimize pMBRT treatment time and streamline the switching time between pMBRT and conventional treatment for clinically translation. PURPOSE The contribution of this work is the development and characterization of the first pMBRT system tailored for single-gantry proton facility. The system allows for efficient and reproducible plug-and-play setup, achievable within minutes. METHODS The single room pMBRT system is constructed based on IBA ProteusONE proton machine. The end of nozzle is attached with beam modifying accessories though an accessory drawer. A small snout is attached to the accessory drawer and used to hold apertures and range shifters. The minibeam aperture consists of two components: a fitting ring and an aperture body. Three minibeam apertures were manufactured. The first-generation apertures underwent qualitatively analysis with film, and the second generation aperture underwent more comprehensive quantitative measurement. The reproducibility of the setup is accessed, and the film measurements are performed to characterize the pMBRT system in cross validation with Monte Carlo (MC) simulations. RESULTS We presented initial results of large field pMBRT aperture and the film measurements indicates the effect of source-to-isocenter distance = 930 cm in Y proton scanning direction. Consistent with TOPAS MC simulation, the dose uniformity of pMBRT field <2 cm is demonstrated to be better than 2%, rendering its suitability for pre-clinical studies. Subsequently, we developed the second generation of aperture with five slits and characterized the aperture with film dosimetry studies and compared the results to the benchmark MC. Comprehensive film measurements were also performed to evaluate the effect of divergence, air gap and gantry-angle dependency and repeatability and revealing a consistent performance within 5%. Furthermore, the 2D gamma analysis indicated a passing rate exceeding 99% using 3% dose difference and 0.2 mm distance agreement criteria. We also establish the peak valley dose ratio and the depth dose profile measurements, and the results are within 10% from MC simulation. CONCLUSIONS We have developed the first pMBRT system tailored for a single-gantry proton facility, which has demonstrated accuracy in benchmark with MC simulations, and allows for efficient plug-and-play setup, emphasizing efficiency.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wangyao Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Johnson
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yolanda Prezado
- Institut Curie, University PSL, CNRS UMR3347, INSERM U1021, Orsay, France
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
7
|
Tubin S, Vozenin M, Prezado Y, Durante M, Prise K, Lara P, Greco C, Massaccesi M, Guha C, Wu X, Mohiuddin M, Vestergaard A, Bassler N, Gupta S, Stock M, Timmerman R. Novel unconventional radiotherapy techniques: Current status and future perspectives - Report from the 2nd international radiation oncology online seminar. Clin Transl Radiat Oncol 2023; 40:100605. [PMID: 36910025 PMCID: PMC9996385 DOI: 10.1016/j.ctro.2023.100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
•Improvement of therapeutic ratio by novel unconventional radiotherapy approaches.•Immunomodulation using high-dose spatially fractionated radiotherapy.•Boosting radiation anti-tumor effects by adding an immune-mediated cell killing.
Collapse
Affiliation(s)
- S. Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - M.C. Vozenin
- Radiation Oncology Laboratory, Radiation Oncology Service, Oncology Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Y. Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay 91400, France
| | - M. Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt 64291, Germany
- Technsiche Universität Darmstadt, Institute for Condensed Matter Physics, Darmstadt, Germany
| | - K.M. Prise
- Patrick G Johnston Centre for Cancer Research Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - P.C. Lara
- Canarian Comprehensive Cancer Center, San Roque University Hospital & Fernando Pessoa Canarias University, C/Dolores de la Rocha 9, Las Palmas GC 35001, Spain
| | - C. Greco
- Department of Radiation Oncology Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - M. Massaccesi
- UOC di Radioterapia Oncologica, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C. Guha
- Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States
| | - X. Wu
- Executive Medical Physics Associates, 19470 NE 22nd Road, Miami, FL 33179, United States
| | - M.M. Mohiuddin
- Northwestern Medicine Cancer Center Warrenville and Northwestern Medicine Proton Center, 4455 Weaver Pkwy, Warrenville, IL 60555, United States
| | - A. Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - N. Bassler
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - S. Gupta
- The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - M. Stock
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
- Karl Landsteiner University of Health Sciences, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria
| | - R. Timmerman
- Department of Radiation Oncology, University of Texas, Southwestern Medical Center, Inwood Road Dallas, TX 2280, United States
| |
Collapse
|
8
|
Bertho A, Iturri L, Brisebard E, Juchaux M, Gilbert C, Ortiz R, Sebrie C, Jourdain L, Lamirault C, Ramasamy G, Pouzoulet F, Prezado Y. Evaluation of the Role of the Immune System Response After Minibeam Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 115:426-439. [PMID: 35985455 DOI: 10.1016/j.ijrobp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is an innovative technique that uses a spatial dose modulation. The dose distribution consists of high doses (peaks) in the path of the minibeam and low doses (valleys). The underlying biological mechanism associated with MBRT efficacy remains currently unclear and thus we investigated the potential role of the immune system after treatment with MBRT. METHODS AND MATERIALS Rats bearing an orthotopic glioblastoma cell line were treated with 1 fraction of high dose conventional radiation therapy (30 Gy) or 1 fraction of the same mean dose in MBRT. Both immunocompetent (F344) and immunodeficient (Nude) rats were analyzed in survival studies. Systemic and intratumoral immune cell population changes were studied with flow cytometry and immunohistochemistry (IHC) 2 and 7 days after the irradiation. RESULTS The absence of response of Nude rats after MBRT suggested that T cells were key in the mode of action of MBRT. An inflammatory phenotype was observed in the blood 1 week after irradiation compared with conventional irradiation. Tumor immune cell analysis by flow cytometry showed a substantial infiltration of lymphocytes, specifically of CD8 T cells and B cells in both conventional and MBRT-treated animals. IHC revealed that MBRT induced a faster recruitment of CD8 and CD4 T cells. Animals that were cured by radiation therapy did not suffer tumor growth after reimplantation of tumoral cells, proving the long-term immunity response generated after a high dose of radiation. CONCLUSIONS Our findings show that MBRT can elicit a robust antitumor immune response in glioblastoma while avoiding the high toxicity of a high dose of conventional radiation therapy.
Collapse
Affiliation(s)
- Annaig Bertho
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France.
| | - Lorea Iturri
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | | | - Marjorie Juchaux
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Cristèle Gilbert
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Ramon Ortiz
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Catherine Sebrie
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurene Jourdain
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Charlotte Lamirault
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Gabriel Ramasamy
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Frédéric Pouzoulet
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France; Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie, Institut Curie, PSL University, Université Paris-Saclay, Orsay, France
| | - Yolanda Prezado
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| |
Collapse
|
9
|
Schneider T, Malaise D, Pouzoulet F, Prezado Y. Orthovoltage X-ray Minibeam Radiation Therapy for the Treatment of Ocular Tumours-An In Silico Evaluation. Cancers (Basel) 2023; 15:cancers15030679. [PMID: 36765637 PMCID: PMC9913874 DOI: 10.3390/cancers15030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
(1) Background: Radiotherapeutic treatments of ocular tumors are often challenging because of nearby radiosensitive structures and the high doses required to treat radioresistant cancers such as uveal melanomas. Although increased local control rates can be obtained with advanced techniques such as proton therapy and stereotactic radiosurgery, these modalities are not always accessible to patients (due to high costs or low availability) and side effects in structures such as the lens, eyelids or anterior chamber remain an issue. Minibeam radiation therapy (MBRT) could represent a promising alternative in this regard. MBRT is an innovative new treatment approach where the irradiation field is composed of multiple sub-millimetric beamlets, spaced apart by a few millimetres. This creates a so-called spatial fractionation of the dose which, in small animal experiments, has been shown to increase normal tissue sparing while simultaneously providing high tumour control rates. Moreover, MBRT with orthovoltage X-rays could be easily implemented in widely available and comparably inexpensive irradiation platforms. (2) Methods: Monte Carlo simulations were performed using the TOPAS toolkit to evaluate orthovoltage X-ray MBRT as a potential alternative for treating ocular tumours. Dose distributions were simulated in CT images of a human head, considering six different irradiation configurations. (3) Results: The mean, peak and valley doses were assessed in a generic target region and in different organs at risk. The obtained doses were comparable to those reported in previous X-ray MBRT animal studies where good normal tissue sparing and tumour control (rat glioma models) were found. (4) Conclusions: A proof-of-concept study for the application of orthovoltage X-ray MBRT to ocular tumours was performed. The simulation results encourage the realisation of dedicated animal studies considering minibeam irradiations of the eye to specifically assess ocular and orbital toxicities as well as tumour response. If proven successful, orthovoltage X-ray minibeams could become a cost-effective treatment alternative, in particular for developing countries.
Collapse
Affiliation(s)
- Tim Schneider
- Institut Curie, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Correspondence:
| | - Denis Malaise
- Department of Ophthalmology, Institut Curie, 75005 Paris, France
- LITO, INSERM U1288, Institut Curie, PSL University, 91898 Orsay, France
| | - Frédéric Pouzoulet
- LITO, INSERM U1288, Institut Curie, PSL University, 91898 Orsay, France
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, 91400 Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| |
Collapse
|
10
|
Clements N, Bazalova-Carter M, Esplen N. Monte Carlo optimization of a GRID collimator for preclinical megavoltage ultra-high dose rate spatially-fractionated radiation therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8c1a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. A 2-dimensional pre-clinical SFRT (GRID) collimator was designed for use on the ultra-high dose rate (UHDR) 10 MV ARIEL beamline at TRIUMF. TOPAS Monte Carlo simulations were used to determine optimal collimator geometry with respect to various dosimetric quantities. Approach. The GRID-averaged peak-to-valley dose ratio (PVDR) and mean dose rate of the peaks were investigated with the intent of maximizing both values in a given design. The effects of collimator thickness, focus position, septal width, and hole width on these metrics were found by testing a range of values for each parameter on a cylindrical GRID collimator. For each tested collimator geometry, photon beams with energies of 10, 5, and 1 MV were transported through the collimator and dose rates were calculated at various depths in a water phantom located 1.0 cm from the collimator exit. Main results. In our optimization, hole width proved to be the only collimator parameter which increased both PVDR and peak dose rates. From the optimization results, it was determined that our optimized design would be one which achieves the maximum dose rate for a PVDR
≥
5
at 10 MV. Ultimately, this was achieved using a collimator with a thickness of 75 mm, 0.8 mm septal and hole widths, and a focus position matched to the beam divergence. This optimized collimator maintained the PVDR of 5 in the phantom between water depths of 0–10 cm at 10 MV and had a mean peak dose rate of
3.06
±
0.02
Gy
s
−
1
at 0–1 cm depth. Significance. We have investigated the impact of various GRID-collimator design parameters on the dose rate and spatial fractionation of 10, 5, and 1 MV photon beams. The optimized collimator design for the 10 MV ultra-high dose rate photon beam could become a useful tool for radiobiology studies synergizing the effects of ultra-high dose rate (FLASH) delivery and spatial fractionation.
Collapse
|
11
|
Schneider T, Fernandez-Palomo C, Bertho A, Fazzari J, Iturri L, Martin OA, Trappetti V, Djonov V, Prezado Y. Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiother Oncol 2022; 175:169-177. [PMID: 35952978 DOI: 10.1016/j.radonc.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
FLASH radiotherapy (FLASH-RT) and spatially fractionated radiation therapy (SFRT) are two new therapeutical strategies that use non-standard dose delivery methods to reduce normal tissue toxicity and increase the therapeutic index. Although likely based on different mechanisms, both FLASH-RT and SFRT have shown to elicit radiobiological effects that significantly differ from those induced by conventional radiotherapy. With the therapeutic potential having been established separately for each technique, the combination of FLASH-RT and SFRT could therefore represent a winning alliance. In this review, we discuss the state of the art, advantages and current limitations, potential synergies, and where a combination of these two techniques could be implemented today or in the near future.
Collapse
Affiliation(s)
- Tim Schneider
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | | | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Olga A Martin
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; University of Melbourne, Parkville, VIC 3010, Australia
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| |
Collapse
|
12
|
Jin JY. Prospect of radiotherapy technology development in the era of immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:106-112. [PMID: 39034954 PMCID: PMC11256706 DOI: 10.1016/j.jncc.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Radiotherapy (RT) is one of the important modalities for cancer treatments. Mounting evidence suggests that the host immune system is involved in the tumor cell killing during RT, and future RT technology development should aim to minimize radiation dose to the immune system while maintaining a sufficient dose to the tumor. A brief history of RT technology development is first summarized. Three RT technologies, namely FLASH RT, proton therapy, and spatially fractionated RT (SFRT), are singled out for the era of immunotherapy. Besides the technical aspects, the mechanism of FLASH effect is discussed, which is likely the combined results of the recombination effect, oxygen depletion effect and immune sparing effect. The proton therapy should have the advantage of causing much less immune damage in comparison to X-ray based RT due to the Bragg peak. However, the relative biological effectiveness (RBE) uncertainty and range uncertainty may hinder the translation of this advantage into clinical benefit. Research approaches to overcome these two technical hurdles are discussed. Various SFRT approaches and their application are reviewed. These approaches are categorized as single-field 1D/2D SFRT, multi-field 3D SFRT and quasi-3D SFRT techniques. A 3D SFRT approach, which is achieved by placing the Bragg peak of a proton 2D SFRT field in discrete depths, may have special potential because all 3 technologies (FLASH RT, proton therapy and SFRT) may be used in this approach.
Collapse
Affiliation(s)
- Jian-Yue Jin
- Radiation Oncology, Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
13
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
14
|
Schültke E. Flying rats and microbeam paths crossing: the beauty of international interdisciplinary science. Int J Radiat Biol 2022; 98:466-473. [PMID: 34995153 DOI: 10.1080/09553002.2021.2024293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Microbeam radiotherapy (MRT) is a still experimental radiotherapy approach. Two combined parameters contribute to an excellent normal tissue protection and an improved control of malignant tumors in small animal models, compared to conventional radiotherapy: dose deposition at a high dose rate and spatial fractionation at the micrometre level. The international microbeam research community expects to see clinical MRT trials within the next ten years.Physics-associated research is still widely regarded as a male domain. Thus, the question was asked whether this is reflected in the scientific contributions to the field of microbeam radiotherapy. METHOD A literature search was conducted using Pubmed, Semantic Scholar and other sources to look specifically for female contributors to the field of microbeam radiotherapy development. CONCLUSION The original idea for MRT was patented in 1994 by an all-male research team. In approximately 50% of all publications related to microbeam radiotherapy, however, either the first or the senior author is a woman. The contribution of those women who have been driving the development of both technical and biomedical aspects of MRT in the last two decades is highlighted.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
15
|
Prezado Y. Proton minibeam radiation therapy: a promising therapeutic approach for radioresistant tumors. C R Biol 2021; 344:409-420. [DOI: 10.5802/crbiol.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
|
16
|
Trappetti V, Fazzari JM, Fernandez-Palomo C, Scheidegger M, Volarevic V, Martin OA, Djonov VG. Microbeam Radiotherapy-A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. Int J Mol Sci 2021; 22:7755. [PMID: 34299373 PMCID: PMC8303317 DOI: 10.3390/ijms22147755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Jennifer M. Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Maximilian Scheidegger
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Vladislav Volarevic
- Department of Genetics, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
- Peter MacCallum Cancer Centre, Division of Radiation Oncology, Melbourne, VIC 3000, Australia
- University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| |
Collapse
|
17
|
Ex vivo dendritic cell-based (DC) vaccine pulsed with a low dose of liposomal antigen and CpG-ODN improved PD-1 blockade immunotherapy. Sci Rep 2021; 11:14661. [PMID: 34282215 PMCID: PMC8290007 DOI: 10.1038/s41598-021-94250-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022] Open
Abstract
Lack of pre-existing tumor infiltrated T cells resulting in resistance to programmed cell death protein 1 (PD-1) blockade therapies can be solved by combining with anti-cancer vaccines and CpG-ODN in increasing T cell expansion and infiltration. Therefore, we prepared an ex vivo dendritic cell-based (DC) vaccine pulsed with a low dose of either liposomal or non-liposomal gp100 antigen (2.8 µg) plus CpG-ODN (800 ng) formulations and evaluated its anti-tumor activity in combination with anti-PD-1 therapy. Our results showed a combination of liposomal peptide plus CpG-ODN pulsed DC with anti-PD-1 antibody was more efficacious, as evidenced by a significant increase in Teff/Treg TILs with a marked fourfold elevation of IFN-γ expression level in the tumor site of treated mice which reversed resistance to PD-1 blockade in a CD8 T cell-dependent manner. Furthermore, this combination also led to a remarkable tumor remission and prolonged survival rate in melanoma-bearing mice compared to non-liposomal peptide plus CpG-ODN or single-treated liposomal peptide formulations. Our results provide essential insights to devise combining regimens to improve the efficacy of immune checkpoint blockers even by a low dose of peptide and CpG-ODN.
Collapse
|
18
|
Mayerhofer M, Datzmann G, Degiovanni A, Dimov V, Dollinger G. Magnetically focused 70 MeV proton minibeams for preclinical experiments combining a tandem accelerator and a 3 GHz linear post-accelerator. Med Phys 2021; 48:2733-2749. [PMID: 33759211 DOI: 10.1002/mp.14854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/28/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Radiotherapy plays an important role for the treatment of tumor diseases in two-thirds of all cases, but it is limited by side effects in the surrounding healthy tissue. Proton minibeam radiotherapy (pMBRT) is a promising option to widen the therapeutic window for tumor control at reduced side effects. An accelerator concept based on an existing tandem Van de Graaff accelerator and a linac enables the focusing of 70 MeV protons to form minibeams with a size of only 0.1 mm for a preclinical small animal irradiation facility, while avoiding the cost of an RFQ injector. METHODS The tandem accelerator provides a 16 MeV proton beam with a beam brightness of B = 4 nA mm 2 mrad 2 as averaged from 5 µs long pulses with a flat top current of 17 µA at 200 Hz repetition rate. Subsequently, the protons are accelerated to 70 MeV by a 3 GHz linear post-accelerator consisting of two Side Coupled Drift Tube Linac (SCDTL) structures and four Coupled Cavity Linac (CCL) structures [design: AVO-ADAM S.A (Geneva, Switzerland)]. A 3 GHz buncher and four magnetic quadrupole lenses are placed between the tandem and the post-accelerator to maximize the transmission through the linac. A quadrupole triplet situated downstream of the linac structure focuses the protons into an area of (0.1 × 0.1) mm2 . The beam dynamics of the facility is optimized using the particle optics code TRACE three-dimensional (3D). Proton transmission through the facility is elaborated using the particle tracking code TRAVEL. RESULTS A study about buncher amplitude and phase shift between buncher and linac is showing that 49% of all protons available from the tandem can be transported through the post-accelerator. A mean beam current up to 19 nA is expected within an area of (0.1 × 0.1) mm2 at the beam focus. CONCLUSION An extension of existing tandem accelerators by commercially available 3 GHz structures is able to deliver a proton minibeam that serves all requirements to obtain proton minibeams to perform preclinical minibeam irradiations as it would be the case for a complete commercial 3 GHz injector-RFQ-linac combination. Due to the modularity of the linac structure, the irradiation facility can be extended to clinically relevant proton energies up to or above 200 MeV.
Collapse
Affiliation(s)
| | - Gerd Datzmann
- Universität der Bundeswehr München, Neubiberg, Germany
| | | | | | | |
Collapse
|
19
|
Prezado Y, Hirayama R, Matsufuji N, Inaniwa T, Martínez-Rovira I, Seksek O, Bertho A, Koike S, Labiod D, Pouzoulet F, Polledo L, Warfving N, Liens A, Bergs J, Shimokawa T. A Potential Renewed Use of Very Heavy Ions for Therapy: Neon Minibeam Radiation Therapy. Cancers (Basel) 2021; 13:cancers13061356. [PMID: 33802835 PMCID: PMC8002595 DOI: 10.3390/cancers13061356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary The treatment of hypoxic tumours continues to be one of the main challenges for radiation therapy. Minibeam radiation therapy (MBRT) shows a highly promising reduction of to-xicity in normal tissue, so that very heavy ions, such as Neon (Ne) or Argon (Ar), with extremely high LET, might become applicable to clinical situations. The high LET in the target would be unrivalled to overcome hypoxia, while MBRT might limit the side effects normally preventing the use of those heavy ions in a conventional radiotherapeutic setting. The work reported in this manuscript is the first experimental proof of the remarkable reduction of normal tissue (skin) toxicities after Ne MBRT irradiations as compared to conventional Ne irradiations. This result might allow for a renewed use of very heavy ions for cancer therapy. Abstract (1) Background: among all types of radiation, very heavy ions, such as Neon (Ne) or Argon (Ar), are the optimum candidates for hypoxic tumor treatments due to their reduced oxygen enhancement effect. However, their pioneering clinical use in the 1970s was halted due to severe side effects. The aim of this work was to provide a first proof that the combination of very heavy ions with minibeam radiation therapy leads to a minimization of toxicities and, thus, opening the door for a renewed use of heavy ions for therapy; (2) Methods: mouse legs were irradiated with either Ne MBRT or Ne broad beams at the same average dose. Skin toxicity was scored for a period of four weeks. Histopathology evaluations were carried out at the end of the study; (3) Results: a significant difference in toxicity was observed between the two irradiated groups. While severe da-mage, including necrosis, was observed in the broad beam group, only light to mild erythema was present in the MBRT group; (4) Conclusion: Ne MBRT is significantly better tolerated than conventional broad beam irradiations.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France;
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
- Correspondence:
| | - Ryochi Hirayama
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
| | - Naruhiro Matsufuji
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Taku Inaniwa
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Immaculada Martínez-Rovira
- Ionizing Radiation Research Group, Physics Department, Universitat Autònoma de Barcelona (UAB), E-08193 Cerdanyola del Vallès, Spain;
| | - Olivier Seksek
- Université Paris-Saclay, CNRS/IN2P3, Université de Paris, IJCLab, Pole Santé, 91405 Orsay, France;
| | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France;
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Sachiko Koike
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Dalila Labiod
- Experimental Radiotherapy Platform, Translational Research Department, Institut Curie, Université Paris Saclay, 91400 Orsay, France; (D.L.); (F.P.)
| | - Frederic Pouzoulet
- Experimental Radiotherapy Platform, Translational Research Department, Institut Curie, Université Paris Saclay, 91400 Orsay, France; (D.L.); (F.P.)
| | - Laura Polledo
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (N.W.); (A.L.)
| | - Nils Warfving
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (N.W.); (A.L.)
| | - Aléthéa Liens
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (L.P.); (N.W.); (A.L.)
| | - Judith Bergs
- Department of Radiology Charité—Universitätsmedizin Berlin, CCM Charitéplatz 1, 10117 Berlin, Germany;
| | - Takashi Shimokawa
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (R.H.); (N.M.); (T.I.); (S.K.); (T.S.)
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
20
|
Lamirault C, Brisebard E, Patriarca A, Juchaux M, Crepin D, Labiod D, Pouzoulet F, Sebrie C, Jourdain L, Le Dudal M, Hardy D, De Marzi L, Dendale R, Jouvion G, Prezado Y. Spatially Modulated Proton Minibeams Results in the Same Increase of Lifespan as a Uniform Target Dose Coverage in F98-Glioma-Bearing Rats. Radiat Res 2021; 194:715-723. [PMID: 32991712 DOI: 10.1667/rade-19-00013.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/14/2020] [Indexed: 11/03/2022]
Abstract
Proton minibeam radiation therapy (pMBRT) is a new approach in proton radiotherapy, by which a significant increase in the therapeutic index has already been demonstrated in RG2 glioma-bearing rats. In the current study we investigated the response of other types of glioma (F98) and performed a comparative evaluation of tumor control effectiveness by pMBRT (with different levels of dose heterogeneity) versus conventional proton therapy. The results of our study showed an equivalent increase in the lifespan for all evaluated groups (conventional proton irradiation and pMBRT) and no significant differences in the histopathological analysis of the tumors or remaining brain tissue. The reduced long-term toxicity observed with pMBRT in previous evaluations at the same dose suggests a possible use of pMBRT to treat glioma with less side effects while ensuring the same tumor control achieved with standard proton therapy.
Collapse
Affiliation(s)
- Charlotte Lamirault
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Elise Brisebard
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Laboratoire d'Histopathologie, VetAgro-Sup, Université de Lyon, Marcy l'Etoile, Lyon, France
| | - Annalisa Patriarca
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France
| | - Marjorie Juchaux
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Delphine Crepin
- Laboratoire Imagerie et Modelisation pour la Neurobiologie et la Cancerologie, CNRS-Paris 7-Paris 11, Campus d'Orsay, France
| | - Dalila Labiod
- Experimental Radiotherapy Platform Institut Curie, University Paris Saclay, Orsay, France
| | - Frederic Pouzoulet
- Experimental Radiotherapy Platform Institut Curie, University Paris Saclay, Orsay, France
| | - Catherine Sebrie
- BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm,Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Laurene Jourdain
- BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm,Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Marine Le Dudal
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Histologie, Embryologie et Anatomie Pathologique, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - David Hardy
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France
| | - Ludovic De Marzi
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France.,Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| | - Remi Dendale
- Radiation Oncology Department, Centre de Protonthérapie d'Orsay, University Paris Saclay, Orsay, France
| | - Gregory Jouvion
- Department of Global Health, Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France.,Sorbonne Université, INSERM, Pathophysiology of Pediatric Genetic Diseases, Assistance Publique - Hôpitaux de Paris, Hôpital Armand-Trousseau, UF Génétique Moléculaire, Paris, France
| | - Yolanda Prezado
- Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| |
Collapse
|
21
|
Sotiropoulos M, Brisebard E, Le Dudal M, Jouvion G, Juchaux M, Crépin D, Sebrie C, Jourdain L, Labiod D, Lamirault C, Pouzoulet F, Prezado Y. X-rays minibeam radiation therapy at a conventional irradiator: Pilot evaluation in F98-glioma bearing rats and dose calculations in a human phantom. Clin Transl Radiat Oncol 2021; 27:44-49. [PMID: 33511291 PMCID: PMC7817429 DOI: 10.1016/j.ctro.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Minibeam radiation therapy (MBRT) is a type of spatial fractionated radiotherapy that uses submillimetric beams. This work reports on a pilot study on normal tissue response and the increase of the lifespan of glioma-bearing rats when irradiated with a tabletop x-ray system. Our results show a significant widening of the therapeutic window for brain tumours treated with MBRT: an important proportion of long-term survivals (60%) coupled with a significant reduction of toxicity when compared with conventional (broad beam) irradiations. In addition, the clinical translation of the minibeam treatment at a conventional irradiator is evaluated through a possible human head treatment plan.
Collapse
Affiliation(s)
- Marios Sotiropoulos
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France
| | - Elise Brisebard
- Institut Pasteur, Neuropathologie Expérimentale, 75015 Paris, France
- Laboratoire d’Histopathologie, VetAgro-Sup, Université de Lyon, Marcy l’Etoile, Lyon, France
| | - Marine Le Dudal
- Institut Pasteur, Neuropathologie Expérimentale, 75015 Paris, France
- Ecole Nationale Vétérinaire d’Alfort, Biopôle, Unité d’Histologie, d’Embryologie et d’Anatomie Pathologique Université Paris-Est, Maisons-Alfort, France
| | - Gregory Jouvion
- Institut Pasteur, Neuropathologie Expérimentale, 75015 Paris, France
| | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France
| | - Delphine Crépin
- Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab-UMR 9012), CNRS/Université Paris-Saclay/Université de Paris, Campus Universitaire, Orsay, France
| | - Catherine Sebrie
- BIOMAPS Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 91401 ORSAY, France
| | - Laurene Jourdain
- BIOMAPS Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 91401 ORSAY, France
| | - Dalila Labiod
- Translational Research Department, Experimental Radiotherapy Platform, Institut Curie, PSL Research University, University Paris Saclay, Orsay, France
| | - Charlotte Lamirault
- Translational Research Department, Experimental Radiotherapy Platform, Institut Curie, PSL Research University, University Paris Saclay, Orsay, France
| | - Frederic Pouzoulet
- Translational Research Department, Experimental Radiotherapy Platform, Institut Curie, PSL Research University, University Paris Saclay, Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, 91400 Orsay, France
| |
Collapse
|
22
|
Esplen N, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol 2020; 65:23TR03. [PMID: 32721941 DOI: 10.1088/1361-6560/abaa28] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultrahigh dose-rate radiotherapy (RT), or 'FLASH' therapy, has gained significant momentum following various in vivo studies published since 2014 which have demonstrated a reduction in normal tissue toxicity and similar tumor control for FLASH-RT when compared with conventional dose-rate RT. Subsequent studies have sought to investigate the potential for FLASH normal tissue protection and the literature has been since been inundated with publications on FLASH therapies. Today, FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. The goal of this review article is to present the current state of this intriguing RT technique and to review existing publications on FLASH-RT in terms of its physical and biological aspects. In the physics section, the current landscape of ultrahigh dose-rate radiation delivery and dosimetry is presented. Specifically, electron, photon and proton radiation sources capable of delivering ultrahigh dose-rates along with their beam delivery parameters are thoroughly discussed. Additionally, the benefits and drawbacks of radiation detectors suitable for dosimetry in FLASH-RT are presented. The biology section comprises a summary of pioneering in vitro ultrahigh dose-rate studies performed in the 1960s and early 1970s and continues with a summary of the recent literature investigating normal and tumor tissue responses in electron, photon and proton beams. The section is concluded with possible mechanistic explanations of the FLASH normal-tissue protection effect (FLASH effect). Finally, challenges associated with clinical translation of FLASH-RT and its future prospects are critically discussed; specifically, proposed treatment machines and publications on treatment planning for FLASH-RT are reviewed.
Collapse
Affiliation(s)
- Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
23
|
Conventional dose rate spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric parameters-A preclinical study in a Fischer 344 rat model. PLoS One 2020; 15:e0229053. [PMID: 32569277 PMCID: PMC7307781 DOI: 10.1371/journal.pone.0229053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To identify key dosimetric parameters that have close associations with tumor treatment response and body weight change in SFRT treatments with a large range of spatial-fractionation scale at dose rates of several Gy/min. Methods Six study arms using uniform tumor radiation, half-tumor radiation, 2mm beam array radiation, 0.3mm minibeam radiation, and an untreated arm were used. All treatments were delivered on a 320kV x-ray irradiator. Forty-two female Fischer 344 rats with fibrosarcoma tumor allografts were used. Dosimetric parameters studied are peak dose and width, valley dose and width, peak-to-valley-dose-ratio (PVDR), volumetric average dose, percentage volume directly irradiated, and tumor- and normal-tissue EUD. Animal survival, tumor volume change, and body weight change (indicative of treatment toxicity) are tested for association with the dosimetric parameters using linear regression and Cox Proportional Hazards models. Results The dosimetric parameters most closely associated with tumor response are tumor EUD (R2 = 0.7923, F-stat = 15.26*; z-test = -4.07***), valley (minimum) dose (R2 = 0.7636, F-stat = 12.92*; z-test = -4.338***), and percentage tumor directly irradiated (R2 = 0.7153, F-stat = 10.05*; z-test = -3.837***) per the linear regression and Cox Proportional Hazards models, respectively. Tumor response is linearly proportional to valley (minimum) doses and tumor EUD. Average dose (R2 = 0.2745, F-stat = 1.514 (no sig.); z-test = -2.811**) and peak dose (R2 = 0.04472, F-stat = 0.6874 (not sig.); z-test = -0.786 (not sig.)) show the weakest associations to tumor response. Only the uniform radiation arm did not gain body weight post-radiation, indicative of treatment toxicity; however, body weight change in general shows weak association with all dosimetric parameters except for valley (minimum) dose (R2 = 0.3814, F-stat = 13.56**), valley width (R2 = 0.2853, F-stat = 8.783**), and peak width (R2 = 0.2759, F-stat = 8.382**). Conclusions For a single-fraction SFRT at conventional dose rates, valley, not peak, dose is closely associated with tumor treatment response and thus should be used for treatment prescription. Tumor EUD, valley (minimum) dose, and percentage tumor directly irradiated are the top three dosimetric parameters that exhibited close associations with tumor response.
Collapse
|
24
|
Mazal A, Prezado Y, Ares C, de Marzi L, Patriarca A, Miralbell R, Favaudon V. FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. Br J Radiol 2020; 93:20190807. [PMID: 32003574 PMCID: PMC7066940 DOI: 10.1259/bjr.20190807] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After years of lethargy, studies on two non-conventional microstructures in time and space of the beams used in radiation therapy are enjoying a huge revival. The first effect called “FLASH” is based on very high dose-rate irradiation (pulse amplitude ≥106 Gy/s), short beam-on times (≤100 ms) and large single doses (≥10 Gy) as experimental parameters established so far to give biological and potential clinical effects. The second effect relies on the use of arrays of minibeams (e.g., 0.5–1 mm, spaced 1–3.5 mm). Both approaches have been shown to protect healthy tissues as an endpoint that must be clearly specified and could be combined with each other (e.g., minibeams under FLASH conditions). FLASH depends on the presence of oxygen and could proceed from the chemistry of peroxyradicals and a reduced incidence on DNA and membrane damage. Minibeams action could be based on abscopal effects, cell signalling and/or migration of cells between “valleys and hills” present in the non-uniform irradiation field as well as faster repair of vascular damage. Both effects are expected to maintain intact the tumour control probability and might even preserve antitumoural immunological reactions. FLASH in vivo experiments involving Zebrafish, mice, pig and cats have been done with electron beams, while minibeams are an intermediate approach between X-GRID and synchrotron X-ray microbeams radiation. Both have an excellent rationale to converge and be applied with proton beams, combining focusing properties and high dose rates in the beam path of pencil beams, and the inherent advantage of a controlled limited range. A first treatment with electron FLASH (cutaneous lymphoma) has recently been achieved, but clinical trials have neither been presented for FLASH with protons, nor under the minibeam conditions. Better understanding of physical, chemical and biological mechanisms of both effects is essential to optimize the technical developments and devise clinical trials.
Collapse
Affiliation(s)
| | - Yolanda Prezado
- IMNC, University Paris-Sud and Paris-Saclay, CNRS/IN2P3, Orsay, France
| | - Carme Ares
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Ludovic de Marzi
- Institut Curie, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France.,Institut Curie, Inserm U 1021-CNRS UMR 3347, Paris-Saclay and PSL Research Universities, Orsay, France
| | - Annalisa Patriarca
- Institut Curie, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France
| | | | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Paris-Saclay and PSL Research Universities, Orsay, France
| |
Collapse
|
25
|
Dos Santos M, Delorme R, Salmon R, Prezado Y. Minibeam radiation therapy: A micro- and nano-dosimetry Monte Carlo study. Med Phys 2020; 47:1379-1390. [PMID: 31900944 DOI: 10.1002/mp.14009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is an innovative strategy based on a distinct dose delivery method that is administered using a series of narrow (submillimetric) parallel beams. To shed light on the biological effects of MBRT irradiation, we explored the micro- and nanodosimetric characteristics of three promising MBRT modalities (photon, electron, and proton) using Monte Carlo (MC) calculations. METHODS Irradiation with proton (100 MeV), electron (300 MeV), and photon (effective energy of 69 keV) minibeams were simulated using Geant4 MC code and the Geant4-DNA extension, which allows the simulation of energy transfer points with nanometric accuracy. As the target of the simulations, cells containing spherical nuclei with or without a detailed description of the DNA (deoxyribonucleic acid) geometry were placed at different depths in peak and valley regions in a water phantom. The energy deposition and number of events in the cell nuclei were recorded in the microdosimetry study, and the number of DNA breaks and their complexity were determined in the nanodosimetric study, where a multi-scale simulation approach was used for the latter. For DNA damage assessment, an adapted DBSCAN clustering algorithm was used. To compare the photon MBRT (xMBRT), electron MBRT (eMBRT), and proton MBRT (pMBRT) approaches, we considered the treatment of a brain tumor located at a depth of 75 mm. RESULTS Both mean energy deposition at micrometric scale and DNA damage in the "valley" cell nuclei were very low as compared with these parameters in the peak region at all depths for xMBRT and at depths of 0 to 30 mm and 0 to 50 mm for eMBRT and pMBRT, respectively. Only the charged minibeams were favorable for tumor control by producing similar effects in peak and valley cells after 70 mm. At the micrometer scale, the energy deposited per event pointed to a potential advantage of proton beams for tumor control, as more aggressive events could be expected at the end of their tracks. At the nanometer scale, all three MBRT modalities produced direct clustered DNA breaks, although the majority of damage (>93%) was composed of isolated single strand breaks. The pMBRT led to a significant increase in the proportion of clustered single strand breaks and double-strand breaks at the end of its range as compared to the entrance (7% at 75 mm vs 3% at 10 mm) in contrast to eMBRT and xMBRT. In the latter cases, the proportions of complex breaks remained constant, irrespective of the depth and region (peak or valley). CONCLUSIONS Enhanced normal tissue sparing can be expected with these three MBRT techniques. Among the three modalities, pMBRT offers an additional gain for radioresistant tumors, as it resulted in a higher number of complex DNA damage clusters in the tumor region. These results can aid understanding of the biological mechanisms of MBRT.
Collapse
Affiliation(s)
- M Dos Santos
- Department of Radiobiology and regenerative medicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc), IRSN, F-92260, Fontenay-aux-Roses, France
| | - R Delorme
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91400, Orsay, France.,Université de Paris, IMNC, F-91400, Orsay, France
| | - R Salmon
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91400, Orsay, France.,Université de Paris, IMNC, F-91400, Orsay, France
| | - Y Prezado
- Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91400, Orsay, France.,Université de Paris, IMNC, F-91400, Orsay, France
| |
Collapse
|
26
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Minibeam radiation therapy at a conventional irradiator: Dose-calculation engine and first tumor-bearing animals irradiation. Phys Med 2020; 69:256-261. [PMID: 31918378 DOI: 10.1016/j.ejmp.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is a novel therapeutic strategy, whose exploration was hindered due to its restriction to large synchrotrons. Our recent implementation of MBRT in a wide-spread small animal irradiator offers the possibility of performing systematic radiobiological studies. The aim of this research was to develop a set of dosimetric tools to reliably guide biological experiments in the irradiator. METHODS A Monte Carlo (Geant4)-based dose calculation engine was developed. It was then benchmarked against a series of dosimetric measurements performed with gafchromic films. Two voxelized rat phantoms (ROBY, computer tomography) were used to evaluate the treatment plan of F98 tumor-bearing rats. The response of a group of 7 animals receiving a unilateral irradiation of 58 Gy was compared to a group of non-irradiated controls. RESULTS The good agreement between calculations and the experimental data allowed the validation of the dose-calculation engine. The latter was first used to compare the dose distributions in computer tomography images of a rat's head and in a digital model of a rat's head (ROBY), obtaining a good general agreement. Finally, with respect to the in vivo experiment, the increase of mean survival time of the treated group with respect to the controls was modest but statistically significant. CONCLUSIONS The developed dosimetric tools were used to reliably guide the first MBRT treatments of intracranial glioma-bearing rats outside synchrotrons. The significant tumor response obtained with respect to the non-irradiated controls, despite the heterogenous dose coverage of the target, might indicate the participation of non-targeted effects.
Collapse
|
28
|
Sammer M, Zahnbrecher E, Dobiasch S, Girst S, Greubel C, Ilicic K, Reindl J, Schwarz B, Siebenwirth C, Walsh DWM, Combs SE, Dollinger G, Schmid TE. Proton pencil minibeam irradiation of an in-vivo mouse ear model spares healthy tissue dependent on beam size. PLoS One 2019; 14:e0224873. [PMID: 31765436 PMCID: PMC6876838 DOI: 10.1371/journal.pone.0224873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Proton radiotherapy using minibeams of sub-millimeter dimensions reduces side effects in comparison to conventional proton therapy due to spatial fractionation. Since the proton minibeams widen with depth, the homogeneous irradiation of a tumor can be ensured by adjusting the beam distances to tumor size and depth to maintain tumor control as in conventional proton therapy. The inherent advantages of protons in comparison to photons like a limited range that prevents a dosage of distal tissues are maintained by proton minibeams and can even be exploited for interlacing from different beam directions. A first animal study was conducted to systematically investigate and quantify the tissue-sparing effects of proton pencil minibeams as a function of beam size and dose distributions, using beam widths between σ = 95, 199, 306, 411, 561 and 883 μm (standard deviation) at a defined center-to-center beam distance (ctc) of 1.8 mm. The average dose of 60 Gy was distributed in 4x4 minibeams using 20 MeV protons (LET ~ 2.7 keV/μm). The induced radiation toxicities were measured by visible skin reactions and ear swelling for 90 days after irradiation. The largest applied beam size to ctc ratio (σ/ctc = 0.49) is similar to a homogeneous irradiation and leads to a significant 3-fold ear thickness increase compared to the control group. Erythema and desquamation was also increased significantly 3–4 weeks after irradiation. With decreasing beam sizes and thus decreasing σ/ctc, the maximum skin reactions are strongly reduced until no ear swelling or other visible skin reactions should occur for σ/ctc < 0.032 (extrapolated from data). These results demonstrate that proton pencil minibeam radiotherapy has better tissue-sparing for smaller σ/ctc, corresponding to larger peak-to-valley dose ratios PVDR, with the best effect for σ/ctc < 0.032. However, even quite large σ/ctc (e.g. σ/ctc = 0.23 or 0.31, i.e. PVDR = 10 or 2.7) show less acute side effects than a homogeneous dose distribution. This suggests that proton minibeam therapy spares healthy tissue not only in the skin but even for dose distributions appearing in deeper layers close to the tumor enhancing its benefits for clinical proton therapy.
Collapse
Affiliation(s)
- Matthias Sammer
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Esther Zahnbrecher
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Stefanie Girst
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Christoph Greubel
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Katarina Ilicic
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Judith Reindl
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Benjamin Schwarz
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Christian Siebenwirth
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany.,Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Dietrich W M Walsh
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany.,Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| | - Günther Dollinger
- Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Oberschleißheim, Germany
| |
Collapse
|
29
|
Schneider T, Patriarca A, Prezado Y. Improving the dose distributions in minibeam radiation therapy: Helium ions vs protons. Med Phys 2019; 46:3640-3648. [DOI: 10.1002/mp.13646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/26/2023] Open
Affiliation(s)
- Tim Schneider
- IMNC‐UMR 8165 CNRS Paris 7 and Paris 11 Universities 15 rue Georges Clemenceau Orsay Cedex 91405France
| | - Annalisa Patriarca
- Institut Curie PSL Research University Centre de protonthrapie d’Orsay Campus universitaire btiment 101 Orsay 91898France
| | - Yolanda Prezado
- IMNC‐UMR 8165 CNRS Paris 7 and Paris 11 Universities 15 rue Georges Clemenceau Orsay Cedex 91405France
| |
Collapse
|
30
|
Affiliation(s)
- R. Delorme
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay et Université Paris Diderot
| | - D. Marchand
- Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay
| | - C. Vallerand
- Laboratoire de l'Accélérateur Linéaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay
| |
Collapse
|
31
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
32
|
Prezado Y, Jouvion G, Patriarca A, Nauraye C, Guardiola C, Juchaux M, Lamirault C, Labiod D, Jourdain L, Sebrie C, Dendale R, Gonzalez W, Pouzoulet F. Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas. Sci Rep 2018; 8:16479. [PMID: 30405188 PMCID: PMC6220274 DOI: 10.1038/s41598-018-34796-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel strategy which has already shown a remarkable reduction in neurotoxicity as to compared with standard proton therapy. Here we report on the first evaluation of tumor control effectiveness in glioma bearing rats with highly spatially modulated proton beams. Whole brains (excluding the olfactory bulb) of Fischer 344 rats were irradiated. Four groups of animals were considered: a control group (RG2 tumor bearing rats), a second group of RG2 tumor-bearing rats and a third group of normal rats that received pMBRT (70 Gy peak dose in one fraction) with very heterogeneous dose distributions, and a control group of normal rats. The tumor-bearing and normal animals were followed-up for 6 months and one year, respectively. pMBRT leads to a significant tumor control and tumor eradication in 22% of the cases. No substantial brain damage which confirms the widening of the therapeutic window for high-grade gliomas offered by pMBRT. Additionally, the fact that large areas of the brain can be irradiated with pMBRT without significant side effects, would allow facing the infiltrative nature of gliomas.
Collapse
Affiliation(s)
- Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - Gregory Jouvion
- Institut Pasteur, Neuropathologie Expérimentale, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Consuelo Guardiola
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Marjorie Juchaux
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Charlotte Lamirault
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Dalila Labiod
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - Laurene Jourdain
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Catherine Sebrie
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Remi Dendale
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Wilfredo Gonzalez
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Frederic Pouzoulet
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| |
Collapse
|
33
|
Guardiola C, Prezado Y, Roulin C, Bergs JW. Effect of X-ray minibeam radiation therapy on clonogenic survival of glioma cells. Clin Transl Radiat Oncol 2018; 13:7-13. [PMID: 30211325 PMCID: PMC6134191 DOI: 10.1016/j.ctro.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
The goal is to compare, in vitro, the efficiency of minibeam radiotherapy (MBRT) and standard RT in inducing clonogenic cell death in glioma cell lines. With this aim, we report on the first in vitro study performed in an X-ray Small Animal Radiation Research Platform (SARRP) modified for minibeam irradiations. F98 rat and U87 human glioma cells were irradiated with either an array of minibeams (MB) or with conventional homogeneous beams (broad beam, BB). A specially designed multislit collimator was used to generate the minibeams with a with of a center-to-center distance of 1465 (±10) μm, and a PVDR value of 12.4 (±2.3) measured at 1 cm depth in a water phantom. Cells were either replated for clonogenic assay directly (immediate plating, IP) or 24 h after irradiation (delayed plating, DP) to assess the effect of potentially lethal damage repair (PLDR) on cell survival. Our hypothesis is that with MBRT, a similar level of clonogenic cell death can be reached compared to standard RT, when using equal mean radiation doses. To prove this, we performed dose escalations to determine the minimum integrated dose needed to reach a similar level of clonogenic cell death for both treatments. We show that this minimum dose can vary per cell line: in F98 cells a dose of 19 Gy was needed to obtain similar levels of clonogenic survival, whereas in U87 cells there was still a slightly increased survival with MB compared to BB 19 Gy treatment. The results suggest also an impairment of DNA damage repair in F98 cells as there is no difference in clonogenic cell survival between immediately and delayed plated cells for each dose and irradiation mode. For U87 cells, a small IP-DP effect was observed in the case of BB irradiation up to a dose of 17 Gy. However, at 19 Gy BB, as well as for the complete dose range of MB irradiation, U87 cells did not show a difference in clonogenic survival between IP and DP. We therefore speculate that MBRT might influence PLDR. The current results show that X-ray MBRT is a promising method for treatment of gliomas: future preclinical and clinical studies should aim at reaching a minimum radiation (valley) dose for effective eradication of gliomas with increased sparing of normal tissues compared to standard RT.
Collapse
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Christophe Roulin
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Judith W.J. Bergs
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| |
Collapse
|
34
|
De Marzi L, Patriarca A, Nauraye C, Hierso E, Dendale R, Guardiola C, Prezado Y. Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study. Med Phys 2018; 45:5305-5316. [PMID: 30311639 DOI: 10.1002/mp.13209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is an innovative approach that combines the advantages of minibeam radiation therapy with the more precise ballistics of protons to further reduce the side effects of radiation. One of the main challenges of this approach is the generation of very narrow proton pencil beams with an adequate dose-rate to treat patients within a reasonable treatment time (several minutes) in existing clinical facilities. The aim of this study was to demonstrate the feasibility of implementing pMBRT by combining the pencil beam scanning (PBS) technique with the use of multislit collimators. This proof of concept study of pMBRT with a clinical system is intended to guide upcoming biological experiments. METHODS Monte Carlo simulations (TOPAS v3.1.p2) were used to design a suitable multislit collimator to implement planar pMBRT for conventional pencil beam scanning settings. Dose distributions (depth-dose curves, lateral profiles, Peak-to-Valley Dose Ratio (PVDR) and dose-rates) for different proton beam energies were assessed by means of Monte Carlo simulations and experimental measurements in a water tank using commercial ionization chambers and a new p-type silicon diode, the IBA RAZOR. An analytical intensity-modulated dose calculation algorithm designed to optimize the weight of individual Bragg peaks composing the field was also developed and validated. RESULTS Proton minibeams were then obtained using a brass multislit collimator with five slits measuring 2 cm × 400 μm in width with a center-to-center distance of 4 mm. The measured and calculated dose distributions (depth-dose curves and lateral profiles) showed a good agreement. Spread-out Bragg peaks (SOBP) and homogeneous dose distributions around the target were obtained by means of intensity modulation of Bragg peaks, while maintaining spatial fractionation at shallow depths. Mean dose-rates of 0.12 and 0.09 Gy/s were obtained for one iso-energy layer and a SOBP conditions in the presence of multislit collimator. CONCLUSIONS This study demonstrates the feasibility of implementing pMBRT on a PBS system. It also confirms the reliability of RAZOR detector for pMBRT dosimetry. This newly developed experimental methodology will support the design of future preclinical research with pMBRT.
Collapse
Affiliation(s)
- Ludovic De Marzi
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Eric Hierso
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Rémi Dendale
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Consuelo Guardiola
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| |
Collapse
|
35
|
Esplen NM, Chergui L, Johnstone CD, Bazalova-Carter M. Monte Carlo optimization of a microbeam collimator design for use on the small animal radiation research platform (SARRP). ACTA ACUST UNITED AC 2018; 63:175004. [DOI: 10.1088/1361-6560/aad7e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
González W, Prezado Y. Spatial fractionation of the dose in heavy ions therapy: An optimization study. Med Phys 2018; 45:2620-2627. [PMID: 29633284 DOI: 10.1002/mp.12902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The alliance of charged particle therapy and the spatial fractionation of the dose, as in minibeam or Grid therapy, is an innovative strategy to improve the therapeutic index in the treatment of radioresistant tumors. The aim of this work was to assess the optimum irradiation configuration in heavy ion spatially fractionated radiotherapy (SFRT) in terms of ion species, beam width, center-to-center distances, and linear energy transfer (LET), information that could be used to guide the design of the future biological experiments. The nuclear fragmentation leading to peak and valley regions composed of different secondary particles, creates the need for a more complete dosimetric description that the classical one in SFRT. METHODS Monte Carlo simulations (GATE 6.2) were performed to evaluate the dose distributions for different ions, beam widths, and spacings. We have also assessed the 3D-maps of dose-averaged LET and proposed a new parameter, the peak-to-valley-LET ratio, to offer a more thorough physical evaluation of the technique. RESULTS Our results show that beam widths larger than 400 μm are needed in order to keep a ratio between the dose in the entrance and the dose in the target of the same order as in conventional irradiations. A large ctc distance (3500 μm) would favor tissue sparing since it provides higher PVDR, it leads to a reduced contribution of the heavier nuclear fragments and a LET value in the valleys a factor 2 lower than the LET in the ctc leading to homogeneous distributions in the target. CONCLUSIONS Heavy ions MBRT provide advantageous dose distributions. Thanks to the reduced lateral scattering, the use of submillimetric beams still allows to keep a ratio between the dose in the entrance and the dose in the target of the same order as in conventional irradiations. Large ctc distances (3500 μm) should be preferred since they lead to valley doses composed of lighter nuclear fragments resulting in a much reduced dose-averaged LET values in normal tissue, favoring its preservation. Among the different ions species evaluated, Ne stands out as the one leading to the best balance between high PVDR and PVLR in normal tissues and high LET values (close to 100 keV/μm) and a favorable oxygen enhancement ratio in the target region.
Collapse
Affiliation(s)
- W González
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Y Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| |
Collapse
|
37
|
Prezado Y, Dos Santos M, Gonzalez W, Jouvion G, Guardiola C, Heinrich S, Labiod D, Juchaux M, Jourdain L, Sebrie C, Pouzoulet F. Transfer of Minibeam Radiation Therapy into a cost-effective equipment for radiobiological studies: a proof of concept. Sci Rep 2017; 7:17295. [PMID: 29229965 PMCID: PMC5725561 DOI: 10.1038/s41598-017-17543-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/23/2017] [Indexed: 01/13/2023] Open
Abstract
Minibeam radiation therapy (MBRT) is an innovative synchrotron radiotherapy technique able to shift the normal tissue complication probability curves to significantly higher doses. However, its exploration was hindered due to the limited and expensive beamtime at synchrotrons. The aim of this work was to develop a cost-effective equipment to perform systematic radiobiological studies in view of MBRT. Tumor control for various tumor entities will be addressable as well as studies to unravel the distinct biological mechanisms involved in normal and tumor tissues responses when applying MBRT. With that aim, a series of modifications of a small animal irradiator were performed to make it suitable for MBRT experiments. In addition, the brains of two groups of rats were irradiated. Half of the animals received a standard irradiation, the other half, MBRT. The animals were followed-up for 6.5 months. Substantial brain damage was observed in the group receiving standard RT, in contrast to the MBRT group, where no significant lesions were observed. This work proves the feasibility of the transfer of MBRT outside synchrotron sources towards a small animal irradiator.
Collapse
Affiliation(s)
- Y Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - M Dos Santos
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - W Gonzalez
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - G Jouvion
- Histopathologie Humaine et Modèles Animaux, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - C Guardiola
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - S Heinrich
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - D Labiod
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - M Juchaux
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - L Jourdain
- Imagerie par Résonance Magnétique Médicale et Multi-modalités (IR4M-UMR8081), Université Paris Sud, 91405, Orsay, France
| | - C Sebrie
- Imagerie par Résonance Magnétique Médicale et Multi-modalités (IR4M-UMR8081), Université Paris Sud, 91405, Orsay, France
| | - F Pouzoulet
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| |
Collapse
|
38
|
Martínez-Rovira I, González W, Brons S, Prezado Y. Carbon and oxygen minibeam radiation therapy: An experimental dosimetric evaluation. Med Phys 2017; 44:4223-4229. [PMID: 28556241 DOI: 10.1002/mp.12383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/03/2017] [Accepted: 05/21/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To perform dosimetric characterization of a minibeam collimator in both carbon and oxygen ion beams to guide optimal setup geometry and irradiation for future radiobiological studies. METHODS Carbon and oxygen minibeams were generated using a prototype tungsten multislit collimator presenting line apertures 700 μm wide, which are spaced 3500 μm centre-to-centre distance apart. Several radiation beam spots generated the desired field size of 15 × 15 mm2 and production of a 50 mm long spread out Bragg peak (SOBP) centered at 80 mm depth in water. Dose evaluations were performed with two different detectors: a PTW microDiamond® single crystal diamond detector and radiochromic films (EBT3). Peak-to-valley dose ratio (PVDR) values, output factors (OF), penumbras, and full width at half maximum (FWHM) were measured. RESULTS Measured lateral dose profiles exhibited spatial fractionation of dose at depth in a water phantom in the expected form of peaks and valleys for both carbon and oxygen radiation fields. The diamond detector and radiochromic film provided measurements of PVDR in good agreement. PVDR values at shallow depth were about 60 and decreased to about 10 at 80 mm depth in water. OF in the center of the SOBP was about 0.4; this value is larger than the corresponding one in proton minibeam radiation therapy measured using a comparable collimator due to a reduced lateral scattering for carbon and oxygen minibeams. CONCLUSIONS Carbon and oxygen minibeams may be produced by a mechanical collimator. PVDR values and output factors measured in this first study of these minibeam radiation types indicate there is potential for their therapeutic use. Optimization of minibeam collimator design and the number and size of focal spots for irradiation are advocated to improve PDVR values and dose distributions for each specific applied use.
Collapse
Affiliation(s)
- Immaculada Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France.,Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Avinguda de l'Eix Central, Edicifi C, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Wilfredo González
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Clinic, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| |
Collapse
|
39
|
Livingstone J, Adam JF, Crosbie JC, Hall CJ, Lye JE, McKinlay J, Pelliccia D, Pouzoulet F, Prezado Y, Stevenson AW, Häusermann D. Preclinical radiotherapy at the Australian Synchrotron's Imaging and Medical Beamline: instrumentation, dosimetry and a small-animal feasibility study. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:854-865. [PMID: 28664893 DOI: 10.1107/s1600577517006233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Therapeutic applications of synchrotron X-rays such as microbeam (MRT) and minibeam (MBRT) radiation therapy promise significant advantages over conventional clinical techniques for some diseases if successfully transferred to clinical practice. Preclinical studies show clear evidence that a number of normal tissues in animal models display a tolerance to much higher doses from MRT compared with conventional radiotherapy. However, a wide spread in the parameters studied makes it difficult to make any conclusions about the associated tumour control or normal tissue complication probabilities. To facilitate more systematic and reproducible preclinical synchrotron radiotherapy studies, a dedicated preclinical station including small-animal irradiation stage was designed and installed at the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron. The stage was characterized in terms of the accuracy and reliability of the vertical scanning speed, as this is the key variable in dose delivery. The measured speed was found to be within 1% of the nominal speed for the range of speeds measured by an interferometer. Furthermore, dose measurements confirm the expected relationship between speed and dose and show that the measured dose is independent of the scan direction. Important dosimetric parameters such as peak dose, valley dose, the collimator output factor and peak-to-valley dose ratio are presented for 5 mm × 5 mm, 10 mm × 10 mm and 20 mm × 20 mm field sizes. Finally, a feasibility study on three glioma-bearing rats was performed. MRT and MBRT doses were prescribed to achieve an average dose of 65 Gy in the target, and magnetic resonance imaging follow-up was performed at various time points after irradiation to follow the tumour volume. Although it is impossible to draw conclusions on the different treatments with such a small number of animals, the feasibility of end-to-end preclinical synchrotron radiotherapy studies using the IMBL preclinical stage is demonstrated.
Collapse
Affiliation(s)
| | - Jean François Adam
- Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble-Alpes, Grenoble, France
| | - Jeffrey C Crosbie
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Chris J Hall
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Jessica E Lye
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia
| | | | - Daniele Pelliccia
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Yolanda Prezado
- Unité Imagerie et Modelisation en Neurobiologie et Cancerologie, Centre Nationnal de la Recherche Scientifique, Orsay, France
| | | | | |
Collapse
|
40
|
Darban SA, Badiee A, Jaafari MR. PNC27 anticancer peptide as targeting ligand significantly improved antitumor efficacy of Doxil in HDM2-expressing cells. Nanomedicine (Lond) 2017; 12:1475-1490. [DOI: 10.2217/nnm-2017-0069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the potential of PNC27 peptide, 12–26 of p53 with high affinity for HDM2 protein, as targeting ligand for Doxil to improve its antitumor activity. Materials & methods: Doxil postinserted with 25, 50, 100 and 200 PNC27 peptides per liposome. Flow cytometry and confocal analysis were performed on C26 colon carcinoma (HDM2 positive) and B16F0 melanoma (HDM2 negative) cells. In vivo studies were performed on BALB/c mice bearing C26 and C57BL/6 mice bearing B16F0 tumor models. Results: PNC27–Doxil showed significant cellular uptake and cytotoxicity in C26 cells compared with Doxil. PNC27–Doxil (100 PNC27 peptide) significantly improved therapeutic efficacy of Doxil without compromising its biodistribution in C26 tumor. However, these results were not observed in B16F0 cells. Conclusion: PNC27 is a promising targeting ligand for Doxil against HDM2-positive cancers.
Collapse
Affiliation(s)
- Shahrzad Amiri Darban
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| |
Collapse
|
41
|
Guardiola C, Peucelle C, Prezado Y. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy. Med Phys 2017; 44:1470-1478. [DOI: 10.1002/mp.12131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/11/2022] Open
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| | - Cécile Peucelle
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| | - Yolanda Prezado
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| |
Collapse
|
42
|
González W, Peucelle C, Prezado Y. Theoretical dosimetric evaluation of carbon and oxygen minibeam radiation therapy. Med Phys 2017; 44:1921-1929. [PMID: 28236644 DOI: 10.1002/mp.12175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Charged particles have several advantages over x-ray radiations, both in terms of physics and radiobiology. The combination of these advantages with those of minibeam radiation therapy (MBRT) could help enhancing the therapeutic index for some cancers with poor prognosis. Among the different ions explored for therapy, carbon ions are considered to provide the optimum physical and biological characteristics. Oxygen could be advantageous due to a reduced oxygen enhancement ratio along with a still moderate biological entrance dose. The aforementioned reasons justified an in-depth evaluation of the dosimetric features of carbon and oxygen minibeam radiation therapy to establish the interest of further explorations of this avenue. MATERIALS AND METHODS The GATE/Geant4 6.2 Monte Carlo simulation platform was employed to simulate arrays of rectangular carbon and oxygen minibeams (600 μm × 2 cm) at a water phantom entrance. They were assumed to be generated by means of a magnetic focusing. The irradiations were performed with a 2-cm-long spread-out Bragg peak (SOBP) centered at 7-cm-depth. Several center-to-center (c-t-c) distances were considered. Peak and valley doses, as well as peak-to-valley dose ratio (PVDR) and the relative contribution of nuclear fragments and electromagnetic processes were assessed. In addition, the type and proportion of the secondary nuclear fragments were evaluated in both peak and valley regions. RESULTS Carbon and oxygen MBRT lead to very similar dose distributions. No significant advantage of oxygen over carbon ions was observed from physical point of view. Favorable dosimetric features were observed for both ions. Thanks to the reduced lateral scattering, the standard shape of the depth dose curves (in the peaks) is maintained even for submillimetric beam sizes. When a narrow c-t-c is considered (910-980 μm), a (quasi) homogenization of the dose can be obtained at the target, while a spatial fractionation of the dose is maintained in the proximal normal tissues with low PVDR. In contrast when a larger c-t-c is used (3500 μm) extremely high PVDR (≥ 50) are obtained in normal tissues, corresponding to very low valley doses. This suggests that carbon and oxygen MBRT might lead to a significant reduction of normal tissue complication probability. The main participant to the valley doses are secondary nuclear products at all depths. Among them the highest yield in normal tissues corresponds to the lightest fragments, neutrons and protons. Heavier fragments are dominant in the valleys only at the target position, which might favor tumor control. CONCLUSIONS The computed dose distributions suggest that a spatial fractionation of the dose combined to the use of submillimetric field sizes might allow profiting from the high efficiency of carbon and oxygen ions for the treatment of radioresistant tumors, while preserving normal tissues. Only biological experiments could confirm the shifting of the normal tissue complication probability curves. The authors' results support the further exploration of this avenue.
Collapse
Affiliation(s)
- Wilfredo González
- IMNC-UMR 8165, CNRS; Paris 11 Universities, 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Cécile Peucelle
- IMNC-UMR 8165, CNRS; Paris 11 Universities, 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS; Paris 11 Universities, 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| |
Collapse
|
43
|
Marchand D. A new platform for research and applications with electrons: the PRAE project. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201713801012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
44
|
Brönnimann D, Bouchet A, Schneider C, Potez M, Serduc R, Bräuer-Krisch E, Graber W, von Gunten S, Laissue JA, Djonov V. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Sci Rep 2016; 6:33601. [PMID: 27640676 PMCID: PMC5027521 DOI: 10.1038/srep33601] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25–100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a+ thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.
Collapse
Affiliation(s)
- Daniel Brönnimann
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Audrey Bouchet
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Christoph Schneider
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Marine Potez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Raphaël Serduc
- Université Grenoble Alpes, EA-Rayonnement Synchrotron et Recherche Medicale, ESRF, ID17 F-38043 Grenoble, France
| | - Elke Bräuer-Krisch
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble, France
| | - Werner Graber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Jean Albert Laissue
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| |
Collapse
|
45
|
Peucelle C, Nauraye C, Patriarca A, Hierso E, Fournier-Bidoz N, Martínez-Rovira I, Prezado Y. Proton minibeam radiation therapy: Experimental dosimetry evaluation. Med Phys 2016; 42:7108-13. [PMID: 26632064 DOI: 10.1118/1.4935868] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. METHODS Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. RESULTS A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. CONCLUSIONS pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth, the worst scenario), while a spatial fractionation of the dose is retained in the normal tissues in the beam path, potentially leading to a gain in tissue sparing. This is the first complete experimental implementation of this promising technique. Biological experiments are needed in order to confirm the clinical potential of pMBRT.
Collapse
Affiliation(s)
- C Peucelle
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - C Nauraye
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - A Patriarca
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - E Hierso
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - N Fournier-Bidoz
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay 91898, France
| | - I Martínez-Rovira
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - Y Prezado
- IMNC-UMR 8165, CNRS; Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| |
Collapse
|
46
|
Bouchet A, Bräuer-Krisch E, Prezado Y, El Atifi M, Rogalev L, Le Clec'h C, Laissue JA, Pelletier L, Le Duc G. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma. Int J Radiat Oncol Biol Phys 2016; 95:1485-1494. [DOI: 10.1016/j.ijrobp.2016.03.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 11/29/2022]
|
47
|
Peucelle C, Martínez-Rovira I, Prezado Y. Spatial fractionation of the dose using neon and heavier ions: A Monte Carlo study. Med Phys 2016; 42:5928-36. [PMID: 26429267 DOI: 10.1118/1.4930960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work explores a new radiation therapy approach which might trigger a renewed use of neon and heavier ions to treat cancers. These ions were shown to be extremely efficient in radioresistant tumor killing. Unfortunately, the efficient region also extends into the normal tissue in front of the tumor. The strategy the authors propose is to profit from the well-established sparing effect of thin spatially fractionated beams, so that the impact on normal tissues might be minimized while a high tumor control is achieved. The main goal of this work is to provide a proof of concept of this new approach. With that aim, a dosimetric study was carried out as a first step to evaluate the interest of further explorations of this avenue. METHODS The gate/geant4 v.6.1 Monte Carlo simulation platform was employed to simulate arrays of rectangular minibeams (700 μm × 2 cm) of four ions (Ne, Si, Ar, and Fe). The irradiations were performed with a 2 cm-long spread-out Bragg peak centered at 7 cm-depth. Dose distributions in a water phantom were scored considering two minibeams center-to-center distances: 1400 and 3500 μm. Peak and valley doses, peak-to-valley dose ratios (PVDRs), beam penumbras, and relative contribution of nuclear fragments and electromagnetic processes were assessed as figures of merit. In addition, the type and proportion of the secondary nuclear fragments were evaluated in both peak and valley regions. RESULTS Extremely high PVDR values (>100) and low valley doses were obtained. The higher the atomic number (Z) of the primary ion is, the lower the valleys and the narrower the penumbras. Although the yield of secondary nuclear products increases with Z, the actual dose being deposited by the secondary nuclear fragments in the valleys starts to be the dominant contribution at deeper points, helping in the sparing of proximal normal tissues. Additionally, a wider center-to-center distance leads to a minimized contribution of heavier secondary fragments in valleys. CONCLUSIONS The computed dose distributions suggest that a spatial fractionation of the dose combined to the use of submillimetric field sizes might allow profiting from the high efficiency of neon and heavier ions for the treatment of radioresistant tumors, while preserving normal tissues. The authors' results support the further exploration of this avenue. Next steps include the realization of biological experiment to confirm the shifting of normal tissue complication probability curves.
Collapse
Affiliation(s)
- C Peucelle
- IMNC-UMR 8165, CNRS Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - I Martínez-Rovira
- IMNC-UMR 8165, CNRS Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| | - Y Prezado
- IMNC-UMR 8165, CNRS Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex 91406, France
| |
Collapse
|
48
|
Belley MD, Stanton IN, Hadsell M, Ger R, Langloss BW, Lu J, Zhou O, Chang SX, Therien MJ, Yoshizumi TT. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam. Med Phys 2015; 42:1966-72. [PMID: 25832087 DOI: 10.1118/1.4915078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). METHODS The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. RESULTS The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s(-1), a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s(-1)). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded that measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). CONCLUSIONS This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape.
Collapse
Affiliation(s)
- Matthew D Belley
- Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 and Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710
| | - Ian N Stanton
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Mike Hadsell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel Ger
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brian W Langloss
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Sha X Chang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599; and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Michael J Therien
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Terry T Yoshizumi
- Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705;Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710; and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
49
|
Chtcheprov P, Burk L, Yuan H, Inscoe C, Ger R, Hadsell M, Lu J, Zhang L, Chang S, Zhou O. Physiologically gated microbeam radiation using a field emission x-ray source array. Med Phys 2015; 41:081705. [PMID: 25086515 DOI: 10.1118/1.4886015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. METHODS The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic(©) films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only during a portion of the mouse respiratory cycle when there was minimum motion. Parallel planes of microbeams with 12.4 Gy/plane dose and 900 μm pitch were delivered. The microbeam profiles with and without gating were analyzed using γ-H2Ax immunofluorescence staining. RESULTS The phantom study showed that the respiratory motion caused a 50% drop in PVDR from 11.5 when there is no motion to 5.4, whereas there was only a 5.5% decrease in PVDR for gated irradiation compared to the no motion case. In the in vivo study, the histology result showed gating increased PVDR by a factor of 2.4 compared to the nongated case, similar to the result from the phantom study. The full width at tenth maximum of the microbeam decreased by 40% in gating in vivo and close to 38% with phantom studies. CONCLUSIONS The CNT field emission x-ray source array can be synchronized to physiological signals for gated delivery of x-ray radiation to minimize motion-induced beam blurring. Gated MRT reduces valley dose between lines during long-time radiation of a moving object. The technique allows for more precise MRT treatments and makes the CNT MRT device practical for extended treatment.
Collapse
Affiliation(s)
- Pavel Chtcheprov
- Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599
| | - Laurel Burk
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Hong Yuan
- Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599
| | - Christina Inscoe
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Rachel Ger
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Michael Hadsell
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Lei Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514
| |
Collapse
|
50
|
Martínez-Rovira I, Fois G, Prezado Y. Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med Phys 2015; 42:685-93. [PMID: 25652482 DOI: 10.1118/1.4905042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Spatial fractionation of the dose has proven to be a promising approach to increase the tolerance of healthy tissue, which is the main limitation of radiotherapy. A good example of that is GRID therapy, which has been successfully used in the management of large tumors with low toxicity. The aim of this work is to explore new avenues using nonconventional sources: GRID therapy by using kilovoltage (synchrotron) x-rays, the use of very high-energy electrons, and proton GRID therapy. They share in common the use of the smallest possible grid sizes in order to exploit the dose-volume effects. METHODS Monte Carlo simulations (penelope/peneasy and geant4/GATE codes) were used as a method to study dose distributions resulting from irradiations in different configurations of the three proposed techniques. As figure of merit, percentage (peak and valley) depth dose curves, penumbras, and central peak-to-valley dose ratios (PVDR) were evaluated. As shown in previous biological experiments, high PVDR values are requested for healthy tissue sparing. A superior tumor control may benefit from a lower PVDR. RESULTS High PVDR values were obtained in the healthy tissue for the three cases studied. When low energy photons are used, the treatment of deep-seated tumors can still be performed with submillimetric grid sizes. Superior PVDR values were reached with the other two approaches in the first centimeters along the beam path. The use of protons has the advantage of delivering a uniform dose distribution in the tumor, while healthy tissue benefits from the spatial fractionation of the dose. In the three evaluated techniques, there is a net reduction in penumbra with respect to radiosurgery. CONCLUSIONS The high PVDR values in the healthy tissue and the use of small grid sizes in the three presented approaches might constitute a promising alternative to treat tumors with such spatially fractionated radiotherapy techniques. The dosimetric results presented here support the interest of performing radiobiology experiments in order to evaluate these new avenues.
Collapse
Affiliation(s)
- I Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| | - G Fois
- Dipartimento di Fisica, Università degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042, Italy
| | - Y Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage-15 rue Georges Clemenceau, Orsay cedex 91406, France
| |
Collapse
|