1
|
Wang X, Wu S, Yang H, Bao Y, Li Z, Gan C, Deng Y, Cao J, Li X, Wang Y, Ren C, Yang Z, Zhao Z. Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity. Nat Commun 2024; 15:9442. [PMID: 39487147 PMCID: PMC11530632 DOI: 10.1038/s41467-024-53720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Although intracranial neural electrodes have significantly contributed to both fundamental research and clinical treatment of neurological diseases, their implantation requires invasive surgery to open craniotomies, which can introduce brain damage and disrupt normal brain functions. Recent emergence of endovascular neural devices offers minimally invasive approaches for neural recording and stimulation. However, existing endovascular neural devices are unable to resolve single-unit activity in large animal models or human patients, impeding a broader application as neural interfaces in clinical practice. Here, we present the ultraflexible implantable neural electrode as an intravascular device (uFINE-I) for recording brain activity at single-unit resolution. We successfully implanted uFINE-Is into the sheep occipital lobe by penetrating through the confluence of sinuses and recorded both local field potentials (LFPs) and multi-channel single-unit spiking activity under spontaneous and visually evoked conditions. Imaging and histological analysis revealed minimal tissue damage and immune response. The uFINE-I provides a practical solution for achieving high-resolution neural recording with minimal invasiveness and can be readily transferred to clinical settings for future neural interface applications such as brain-machine interfaces (BMIs) and the treatment of neurological diseases.
Collapse
Affiliation(s)
- Xingzhao Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shun Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hantao Yang
- Shanghai Geriatric Medical Center, Shanghai, China
- Zhongshan Hospital, Shanghai, China
| | - Yu Bao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- Fudan University, Shanghai, China
| | - Changchun Gan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Junyan Cao
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yun Wang
- Zhongshan Hospital, Shanghai, China
- Fudan University, Shanghai, China
| | - Chi Ren
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | | | - Zhengtuo Zhao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Li T, Jiang Y, Fu X, Sun Z, Yan Y, Li YF, Liu S. Nanorobot-Based Direct Implantation of Flexible Neural Electrode for BCI. IEEE Trans Biomed Eng 2024; 71:3014-3023. [PMID: 38913534 DOI: 10.1109/tbme.2024.3406940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Brain-Computer Interface (BCI) has gained remarkable prominence in biomedical community. While BCI holds vast potential across diverse domains, the implantation of neural electrodes poses multifaceted challenges to fully explore the power of BCI. Conventional rigid electrodes face the problem of foreign body reaction induced by mechanical mismatch to biological tissue, while flexible electrodes, though more preferential, lack controllability during implantation. Researchers have explored various strategies, from assistive shuttle to biodegradable coatings, to strike a balance between implantation rigidity and post-implantation flexibility. Yet, these approaches may introduce complications, including immune response, inflammations, and raising intracranial pressure. To this end, this paper proposes a novel nanorobot-based technique for direct implantation of flexible neural electrodes, leveraging the high controllability and repeatability of robotics to enhance the implantation quality. This approach features a dual-arm nanorobotic system equipped with stereo microscope, by which a flexible electrode is first visually aligned to the target neural tissue to establish contact and thereafter implanted into brain with well controlled insertion direction and depth. The key innovation is, through dual-arm coordination, the flexible electrode maintains straight along the implantation direction. With this approach, we implanted CNTf electrodes into cerebral cortex of mouse, and captured standard spiking neural signals.
Collapse
|
3
|
Rodríguez‐Meana B, del Valle J, Viana D, Walston ST, Ria N, Masvidal‐Codina E, Garrido JA, Navarro X. Engineered Graphene Material Improves the Performance of Intraneural Peripheral Nerve Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308689. [PMID: 38863325 PMCID: PMC11304253 DOI: 10.1002/advs.202308689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Limb neuroprostheses aim to restore motor and sensory functions in amputated or severely nerve-injured patients. These devices use neural interfaces to record and stimulate nerve action potentials, creating a bidirectional connection with the nervous system. Most neural interfaces are based on standard metal microelectrodes. In this work, a new generation of neural interfaces which replaces metals with engineered graphene, called EGNITE, is tested. In vitro and in vivo experiments are conducted to assess EGNITE biocompatibility. In vitro tests show that EGNITE does not impact cell viability. In vivo, no significant functional decrease or harmful effects are observed. Furthermore, the foreign body reaction to the intraneural implant is similar compared to other materials previously used in neural interfaces. Regarding functionality, EGNITE devices are able to stimulate nerve fascicles, during two months of implant, producing selective muscle activation with about three times less current compared to larger microelectrodes of standard materials. CNAP elicited by electrical stimuli and ENG evoked by mechanical stimuli are recorded with high resolution but are more affected by decreased functionality over time. This work constitutes further proof that graphene-derived materials, and specifically EGNITE, is a promising conductive material of neural electrodes for advanced neuroprostheses.
Collapse
Affiliation(s)
- Bruno Rodríguez‐Meana
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
| | - Jaume del Valle
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Department de Bioquímica i FisiologiaUniversitat de BarcelonaBarcelona08028Spain
| | - Damià Viana
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Steven T. Walston
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Nicola Ria
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Eduard Masvidal‐Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Jose A. Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
- ICREABarcelona08010Spain
| | - Xavier Navarro
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Institut Guttmann of NeurorehabilitationBadalona08916Spain
| |
Collapse
|
4
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
5
|
Xu S, Xiao X, Manshaii F, Chen J. Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging. NANO LETTERS 2024. [PMID: 38606614 DOI: 10.1021/acs.nanolett.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Building on current explorations in chronic optical neural interfaces, it is essential to address the risk of photothermal damage in traditional optogenetics. By focusing on calcium fluorescence for imaging rather than stimulation, injectable fluorescent neural interfaces significantly minimize photothermal damage and improve the accuracy of neuronal imaging. Key advancements including the use of injectable microelectronics for targeted electrical stimulation and their integration with cell-specific genetically encoded calcium indicators have been discussed. These injectable electronics that allow for post-treatment retrieval offer a minimally invasive solution, enhancing both usability and reliability. Furthermore, the integration of genetically encoded fluorescent calcium indicators with injectable bioelectronics enables precise neuronal recording and imaging of individual neurons. This shift not only minimizes risks such as photothermal conversion but also boosts safety, specificity, and effectiveness of neural imaging. Embracing these advancements represents a significant leap forward in biomedical engineering and neuroscience, paving the way for advanced brain-machine interfaces.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Das S, Ghosh B, Sahoo RN, Nayak AK. Recent Advancements in Bioelectronic Medicine: A Review. Curr Drug Deliv 2024; 21:1445-1459. [PMID: 38173212 DOI: 10.2174/0115672018286832231218112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.
Collapse
Affiliation(s)
- Sudipta Das
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Baishali Ghosh
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
7
|
Lee CH, Park YK, Lee K. Recent strategies for neural dynamics observation at a larger scale and wider scope. Biosens Bioelectron 2023; 240:115638. [PMID: 37647685 DOI: 10.1016/j.bios.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The tremendous technical progress in neuroscience offers opportunities to observe a more minor or/and broader dynamic picture of the brain. Moreover, the large-scale neural activity of individual neurons enables the dissection of detailed mechanistic links between neural populations and behaviors. To measure neural activity in-vivo, multi-neuron recording, and neuroimaging techniques are employed and developed to acquire more neurons. The tools introduced concurrently recorded dozens to hundreds of neurons in the coordinated brain regions and elucidated the neuronal ensembles from a massive population perspective of diverse neurons at cellular resolution. In particular, the increasing spatiotemporal resolution of neuronal monitoring across the whole brain dramatically facilitates our understanding of additional nervous system functions in health and disease. Here, we will introduce state-of-the-art neuroscience tools involving large-scale neural population recording and the long-range connections spanning multiple brain regions. Their synergic effects provide to clarify the controversial circuitry underlying neuroscience. These challenging neural tools present a promising outlook for the fundamental dynamic interplay across levels of synaptic cellular, circuit organization, and brain-wide. Hence, more observations of neural dynamics will provide more clues to elucidate brain functions and push forward innovative technology at the intersection of neural engineering disciplines. We hope this review will provide insight into the use or development of recent neural techniques considering spatiotemporal scales of brain observation.
Collapse
Affiliation(s)
- Chang Hak Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Young Kwon Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Kwang Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea.
| |
Collapse
|
8
|
Wang Y, Wang Q, Zheng R, Xu X, Yang X, Gui Q, Yang X, Wang Y, Cui H, Pei W. Flexible multichannel electrodes for acute recording in nonhuman primates. MICROSYSTEMS & NANOENGINEERING 2023; 9:93. [PMID: 37484502 PMCID: PMC10359297 DOI: 10.1038/s41378-023-00550-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 07/25/2023]
Abstract
Flexible electrodes have demonstrated better biocompatibility than rigid electrodes in relieving tissue encapsulation and long-term recording. Nonhuman primates are closer to humans in their brains' structural and functional properties, thus making them more suitable than rodents as animal models for potential clinical usage. However, the application of flexible electrodes on nonhuman primates has rarely been reported. In the present study, a flexible multichannel electrode array for nonhuman primates was developed and implemented for extracellular recording in behaving monkeys. To minimize the window of durotomy for reducing possible risks, a guide-tube-compatible implantation solution was designed to deliver the flexible electrodes through the dura into the cortex. The proposed structure for inserting flexible electrodes was characterized ex vivo and validated in vivo. Furthermore, acute recording of multichannel flexible electrodes for the primates was performed. The results showed that the flexible electrodes and implantation method used in this study meet the needs of extracellular recording in nonhuman primates. Task-related neuronal activities with a high signal-to-noise ratio of spikes demonstrated that our whole device is currently a minimally invasive and clinically viable approach for extracellular recording.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Qifan Wang
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - Ruichen Zheng
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xinxiu Xu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - Xinze Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Qiang Gui
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Xiaowei Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Yijun Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - He Cui
- University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Chinese Institute for Brain Research, Beijing, 102206 China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| |
Collapse
|
9
|
Luan L, Yin R, Zhu H, Xie C. Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity. Annu Rev Biomed Eng 2023; 25:185-205. [PMID: 37289556 PMCID: PMC11078330 DOI: 10.1146/annurev-bioeng-090622-050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Penetrating neural electrodes provide a powerful approach to decipher brain circuitry by allowing for time-resolved electrical detections of individual action potentials. This unique capability has contributed tremendously to basic and translational neuroscience, enabling both fundamental understandings of brain functions and applications of human prosthetic devices that restore crucial sensations and movements. However, conventional approaches are limited by the scarce number of available sensing channels and compromised efficacy over long-term implantations. Recording longevity and scalability have become the most sought-after improvements in emerging technologies. In this review, we discuss the technological advances in the past 5-10 years that have enabled larger-scale, more detailed, and longer-lasting recordings of neural circuits at work than ever before. We present snapshots of the latest advances in penetration electrode technology, showcase their applications in animal models and humans, and outline the underlying design principles and considerations to fuel future technological development.
Collapse
Affiliation(s)
- Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Rongkang Yin
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
| | - Hanlin Zhu
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA;
- Rice Neuroengineering Initiative, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
10
|
Letner JG, Patel PR, Hsieh JC, Smith Flores IM, della Valle E, Walker LA, Weiland JD, Chestek CA, Cai D. Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. J Neural Eng 2023; 20:026019. [PMID: 36848679 PMCID: PMC10022369 DOI: 10.1088/1741-2552/acbf78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Objective.Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.Approach.Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8µm diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50µm radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.Main results.Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6µm,X-± S) in layer V motor cortex.Significance.Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting.
Collapse
Affiliation(s)
- Joseph G Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jung-Chien Hsieh
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Israel M Smith Flores
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Elena della Valle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Logan A Walker
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI 48109, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
- Robotics Department, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
11
|
Durand S, Heller GR, Ramirez TK, Luviano JA, Williford A, Sullivan DT, Cahoon AJ, Farrell C, Groblewski PA, Bennett C, Siegle JH, Olsen SR. Acute head-fixed recordings in awake mice with multiple Neuropixels probes. Nat Protoc 2023; 18:424-457. [PMID: 36477710 DOI: 10.1038/s41596-022-00768-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/09/2022] [Indexed: 12/12/2022]
Abstract
Multi-electrode arrays such as Neuropixels probes enable electrophysiological recordings from large populations of single neurons with high temporal resolution. By using such probes, the activity from functionally interacting, yet distinct, brain regions can be measured simultaneously by inserting multiple probes into the same subject. However, the use of multiple probes in small animals such as mice requires the removal of a sizable fraction of the skull, while also minimizing tissue damage and keeping the brain stable during the recordings. Here, we describe a step-by-step process designed to facilitate reliable recordings from up to six Neuropixels probes simultaneously in awake, head-fixed mice. The procedure involves four stages: the implantation of a headframe and a removable glass coverslip, the precise positioning of the Neuropixels probes at targeted points on the brain surface, the placement of a perforated plastic imaging window and the insertion of the probes into the brain of an awake mouse. The approach provides access to multiple brain regions and has been successfully applied across hundreds of mice. The procedure has been optimized for dense recordings from the mouse visual system, but it can be adapted for alternative recording configurations to target multiple probes in other brain areas. The protocol is suitable for users with experience in stereotaxic surgery in mice.
Collapse
Affiliation(s)
| | - Greggory R Heller
- Allen Institute, Seattle, WA, USA.,Department of Brain and Cognitive Sciences, Massachussetts Institute of Technology, Cambridge, MA, USA
| | - Tamina K Ramirez
- Allen Institute, Seattle, WA, USA.,Department of Neurobiology and Behavior, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Y, Yang X, Zhang X, Wang Y, Pei W. Implantable intracortical microelectrodes: reviewing the present with a focus on the future. MICROSYSTEMS & NANOENGINEERING 2023; 9:7. [PMID: 36620394 PMCID: PMC9814492 DOI: 10.1038/s41378-022-00451-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 06/17/2023]
Abstract
Implantable intracortical microelectrodes can record a neuron's rapidly changing action potentials (spikes). In vivo neural activity recording methods often have either high temporal or spatial resolution, but not both. There is an increasing need to record more neurons over a longer duration in vivo. However, there remain many challenges to overcome before achieving long-term, stable, high-quality recordings and realizing comprehensive, accurate brain activity analysis. Based on the vision of an idealized implantable microelectrode device, the performance requirements for microelectrodes are divided into four aspects, including recording quality, recording stability, recording throughput, and multifunctionality, which are presented in order of importance. The challenges and current possible solutions for implantable microelectrodes are given from the perspective of each aspect. The current developments in microelectrode technology are analyzed and summarized.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinze Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiwen Zhang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yijun Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Chinese Institute for Brain Research, 102206 Beijing, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
13
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Ryu D, Lee Y, Lee Y, Lee Y, Hwang S, Kim YK, Jun SB, Lee HW, Ji CH. Silicon optrode array with monolithically integrated SU-8 waveguide and single LED light source. J Neural Eng 2022; 19. [PMID: 35797969 DOI: 10.1088/1741-2552/ac7f5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
This paper presents a conventional LED (light emitting diode) and polymer waveguide coupled silicon optrode array. Unique lens design at the waveguide inlet enables a high light coupling efficiency with a single LED light source, and provides small power consumption compatible with a wireless optogenetic neuromodulation system. To increase the light intensity at the waveguide tip, a lensed waveguide is fabricated with epoxy-based photoresist SU-8, which has a plano-convex lens shape at the waveguide inlet to focus the light in the horizontal direction. In addition, a cylindrical lens is assembled in front of the waveguide inlet to focus the source light in the vertical direction. The glass cylindrical lens and SU-8 plano-convex lens increased the light coupling efficiency by 6.7 dB and 6.6 dB, respectively. The fabricated 1×4 array of optrodes is assembled with a single LED with 465 nm wavelength, which produces a light intensity of approximately 2.7 mW/mm2 at the SU-8 waveguide outlet when 50 mA input current is applied to the LED. Each optrode has four recording electrodes at the SU-8 waveguide outlet. The average impedance of the iridium oxide (IrOx) electroplated recording electrodes is 43.6 kΩ. In-vivo experiment at the hippocampus region CA1 and CA2 demonstrated the capability of optical stimulation and neural signal recording through the LED and SU-8 waveguide coupled silicon optrode array.
Collapse
Affiliation(s)
- Daeho Ryu
- Electrical and computer engineering, Seoul National University, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Youjin Lee
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yongseung Lee
- Department of Electrical and Computer Engineering, , Seoul National University, 301 Dong 1116 Ho, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Yena Lee
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Seoyoung Hwang
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yong-Kweon Kim
- Department of Electrical and Computer Engineering, Graduate School of Engineering Practice, Seoul National University, Seoul National University, PO Box 34, Kwanak, Seoul 151-600, Korea, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemungu, Seoul, 03760, Korea (the Republic of)
| | - Hyang Woon Lee
- Departments of Neurology, Medical Science, and Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Ewha Womans University Medical Center, Seoul, 03760, Korea (the Republic of)
| | - Chang-Hyeon Ji
- Department of Electronics and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building #432, Seoul, Republic of Korea, Seoul, 03760, Korea (the Republic of)
| |
Collapse
|
15
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
16
|
Wei C, Wang Y, Pei W, Han X, Lin L, Liu Z, Ming G, Chen R, Wu P, Yang X, Zheng L, Wang Y. Distributed implantation of a flexible microelectrode array for neural recording. MICROSYSTEMS & NANOENGINEERING 2022; 8:50. [PMID: 35572780 PMCID: PMC9098495 DOI: 10.1038/s41378-022-00366-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
Flexible multichannel electrode arrays (fMEAs) with multiple filaments can be flexibly implanted in various patterns. It is necessary to develop a method for implanting the fMEA in different locations and at various depths based on the recording demands. This study proposed a strategy for reducing the microelectrode volume with integrated packaging. An implantation system was developed specifically for semiautomatic distributed implantation. The feasibility and convenience of the fMEA and implantation platform were verified in rodents. The acute and chronic recording results provied the effectiveness of the packaging and implantation methods. These methods could provide a novel strategy for developing fMEAs with more filaments and recording sites to measure functional interactions across multiple brain regions.
Collapse
Affiliation(s)
- Chunrong Wei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- School of Future Technologies, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yang Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- School of Microelectronics, University of Sciences and Technology of China, 230000 Hefei, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinyong Han
- Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics, East China Normal University, 200062 Shanghai, China
| | - Zhiduo Liu
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Gege Ming
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- School of Future Technologies, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ruru Chen
- Brain Machine Fusion Intelligence Institute, 215131 Suzhou, China
| | - Pingping Wu
- University of Chinese Academy of Sciences, 100049 Beijing, China
- School of Future Technologies, University of Chinese Academy of Sciences, 100049 Beijing, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xiaowei Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
| | - Li Zheng
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- School of Future Technologies, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yijun Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Chinese Institute for Brain Research, 102206 Beijing, China
| |
Collapse
|
17
|
Cecchetto C, Vassanelli S, Kuhn B. Simultaneous Two-Photon Voltage or Calcium Imaging and Multi-Channel Local Field Potential Recordings in Barrel Cortex of Awake and Anesthetized Mice. Front Neurosci 2021; 15:741279. [PMID: 34867155 PMCID: PMC8632658 DOI: 10.3389/fnins.2021.741279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Neuronal population activity, both spontaneous and sensory-evoked, generates propagating waves in cortex. However, high spatiotemporal-resolution mapping of these waves is difficult as calcium imaging, the work horse of current imaging, does not reveal subthreshold activity. Here, we present a platform combining voltage or calcium two-photon imaging with multi-channel local field potential (LFP) recordings in different layers of the barrel cortex from anesthetized and awake head-restrained mice. A chronic cranial window with access port allows injecting a viral vector expressing GCaMP6f or the voltage-sensitive dye (VSD) ANNINE-6plus, as well as entering the brain with a multi-channel neural probe. We present both average spontaneous activity and average evoked signals in response to multi-whisker air-puff stimulations. Time domain analysis shows the dependence of the evoked responses on the cortical layer and on the state of the animal, here separated into anesthetized, awake but resting, and running. The simultaneous data acquisition allows to compare the average membrane depolarization measured with ANNINE-6plus with the amplitude and shape of the LFP recordings. The calcium imaging data connects these data sets to the large existing database of this important second messenger. Interestingly, in the calcium imaging data, we found a few cells which showed a decrease in calcium concentration in response to vibrissa stimulation in awake mice. This system offers a multimodal technique to study the spatiotemporal dynamics of neuronal signals through a 3D architecture in vivo. It will provide novel insights on sensory coding, closing the gap between electrical and optical recordings.
Collapse
Affiliation(s)
- Claudia Cecchetto
- Department of Biomedical Sciences, Section of Physiology, University of Padua, Padua, Italy.,Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Stefano Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padua, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
18
|
Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Indexed: 05/08/2023]
Abstract
In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues. An overview of recent studies on 3D bioelectronic devices, such as the use of electrical stimulations and the recording of neural signals from biological subjects, is presented. Subsequently, the recent developments in materials and fabrication processing to 3D micro- and nanostructures are introduced, followed by broad applications of these 3D bioelectronic devices at various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
19
|
Shokur S, Mazzoni A, Schiavone G, Weber DJ, Micera S. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. MED 2021; 2:912-937. [DOI: 10.1016/j.medj.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
|
20
|
Chen L, Hartner J, Dong T, Li A, Watson B, Shih A. Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During In Vivo Microelectrode Insertion Into Rat Brain. IEEE Trans Biomed Eng 2021; 68:2602-2612. [PMID: 33798065 PMCID: PMC8323825 DOI: 10.1109/tbme.2021.3070781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Understanding the in vivo force and tissue dimpling during micro-electrode implantation into the brain are important for neuro-electrophysiology to minimize damage while enabling accurate placement and stable chronic extracellular electrophysiological recordings. Prior studies were unable to measure the sub-mN forces exerted during in vivo insertion of small electrodes. Here, we have investigated the in vivo force and dimpling depth profiles during brain surface membrane rupture (including dura) in anesthetized rats. METHODS A μN-resolution cantilever beam-based measurement system was designed, built, and calibrated and adapted for in vivo use. A total of 244 in vivo insertion tests were conducted on 8 anesthetized rats with 121 through pia mater and 123 through dura and pia combined. RESULTS Both microwire tip sharpening and diameter reduction reduced membrane rupture force (insertion force) and eased brain surface penetration. But dimpling depth and rupture force are not always strongly correlated. Multi-shank silicon probes showed smaller dimpling and rupture force per shank than single shank devices. CONCLUSION A force measurement system with flexible range and μN-level resolution (up to 0.032 μN) was achieved and proved feasible. For both pia-only and dura-pia penetrations in anesthetized rats, the rupture force and membrane dimpling depth at rupture are linearly related to the microwire diameter. SIGNIFICANCE We have developed a new system with both μN-level resolution and capacity to be used in vivo for measurement of force profiles of various neural interfaces into the brain. This allows quantification of brain tissue cutting and provides design guidelines for optimal neural interfaces.
Collapse
|
21
|
Restoring upper extremity function with brain-machine interfaces. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:153-186. [PMID: 34446245 DOI: 10.1016/bs.irn.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the most exciting advances to emerge in neural interface technologies has been the development of real-time brain-machine interface (BMI) neuroprosthetic devices to restore upper extremity function. BMI neuroprostheses, made possible by synergistic advances in neural recording technologies, high-speed computation and signal processing, and neuroscience, have permitted the restoration of volitional movement to patients suffering the loss of upper-extremity function. In this chapter, we review the scientific and technological advances underlying these remarkable devices. After presenting an introduction to the current state of the field, we provide an accessible technical discussion of the two fundamental requirements of a successful neuroprosthesis: signal extraction from the brain and signal decoding that results in robust prosthetic control. We close with a presentation of emerging technologies that are likely to substantially advance the field.
Collapse
|
22
|
Park SY, Na K, Voroslakos M, Song H, Slager N, Oh S, Seymour J, Buzsaki G, Yoon E. A Miniaturized 256-Channel Neural Recording Interface with Area-Efficient Hybrid Integration of Flexible Probes and CMOS Integrated Circuits. IEEE Trans Biomed Eng 2021; 69:334-346. [PMID: 34191721 DOI: 10.1109/tbme.2021.3093542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a miniaturized, minimally invasive high-density neural recording interface that occupies only a 1.53 mm2 footprint for hybrid integration of a flexible probe and a 256-channel integrated circuit chip. To achieve such a compact form factor, we developed a custom flip-chip bonding technique using anisotropic conductive film and analog circuit-under-pad in a tiny pitch of 75 m. To enhance signal-to-noise ratios, we applied a reference-replica topology that can provide the matched input impedance for signal and reference paths in low-noise aimpliers (LNAs). The analog front-end (AFE) consists of LNAs, buffers, programmable gain amplifiers, 10b ADCs, a reference generator, a digital controller, and serial-peripheral interfaces (SPIs). The AFE consumes 51.92 W from 1.2 V and 1.8 V supplies in an area of 0.0161 mm2 per channel, implemented in a 180 nm CMOS process. The AFE shows > 60 dB mid-band CMRR, 6.32 Vrms input-referred noise from 0.5 Hz to 10 kHz, and 48 M input impedance at 1 kHz. The fabricated AFE chip was directly flip-chip bonded with a 256-channel flexible polyimide neural probe and assembled in a tiny head-stage PCB. Full functionalities of the fabricated 256-channel interface were validated in both in vitro and in vivo experiments, demonstrating the presented hybrid neural recording interface is suitable for various neuroscience studies in the quest of large scale, miniaturized recording systems.
Collapse
|
23
|
Pimenta S, Rodrigues JA, Machado F, Ribeiro JF, Maciel MJ, Bondarchuk O, Monteiro P, Gaspar J, Correia JH, Jacinto L. Double-Layer Flexible Neural Probe With Closely Spaced Electrodes for High-Density in vivo Brain Recordings. Front Neurosci 2021; 15:663174. [PMID: 34211364 PMCID: PMC8239195 DOI: 10.3389/fnins.2021.663174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible polymer neural probes are an attractive emerging approach for invasive brain recordings, given that they can minimize the risks of brain damage or glial scaring. However, densely packed electrode sites, which can facilitate neuronal data analysis, are not widely available in flexible probes. Here, we present a new flexible polyimide neural probe, based on standard and low-cost lithography processes, which has 32 closely spaced 10 μm diameter gold electrode sites at two different depths from the probe surface arranged in a matrix, with inter-site distances of only 5 μm. The double-layer design and fabrication approach implemented also provides additional stiffening just sufficient to prevent probe buckling during brain insertion. This approach avoids typical laborious augmentation strategies used to increase flexible probes’ mechanical rigidity while allowing a small brain insertion footprint. Chemical composition analysis and metrology of structural, mechanical, and electrical properties demonstrated the viability of this fabrication approach. Finally, in vivo functional assessment tests in the mouse cortex were performed as well as histological assessment of the insertion footprint, validating the biological applicability of this flexible neural probe for acquiring high quality neuronal recordings with high signal to noise ratio (SNR) and reduced acute trauma.
Collapse
Affiliation(s)
- Sara Pimenta
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
| | - José A Rodrigues
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
| | - Francisca Machado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Ribeiro
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
| | - Marino J Maciel
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
| | | | - Patricia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Gaspar
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - José H Correia
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
| | - Luis Jacinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Boergens KM, Tadić A, Hopper MS, McNamara I, Fell D, Sahasrabuddhe K, Kong Y, Straka M, Sohal HS, Angle MR. Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model. J Neural Eng 2021; 18. [PMID: 34038875 DOI: 10.1088/1741-2552/ac0585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
Objective. The safe insertion of high density intracortical electrode arrays has been a long-standing practical challenge for neural interface engineering and applications such as brain-computer interfaces (BCIs). However, the pia mater can be difficult to penetrate and causes deformation of underlying cortical tissue during insertion of high-density intracortical arrays. This can lead to neuron damage or failed insertions. The development of a method to ease insertion through the pia mater would represent a significant step toward inserting high density intracortical arrays.Approach. Here we describe a surgical procedure, inspired by laser corneal ablation, that can be used in translational models to thin the pia mater.Main results. We demonstrate that controlled pia removal with laser ablation over a small area of cortex allows for microelectrode arrays to be inserted into the cortex with less force, thus reducing deformation of underlying tissue during placement of the microelectrodes. This procedure allows for insertion of high-density electrode arrays and subsequent acute recordings of spiking neuron activity in sheep cortex. We also show histological and electrophysiological evidence that laser removal of the pia does not acutely affect neuronal viability in the region.Significance. Laser ablation of the pia reduces insertion forces of high-density arrays with minimal to no acute damage to cortical neurons. This approach suggests a promising new path for clinical BCI with high-density microelectrode arrays.
Collapse
Affiliation(s)
| | | | | | | | - Devin Fell
- Paradromics, Inc., Austin, TX, United States of America
| | | | - Yifan Kong
- Paradromics, Inc., Austin, TX, United States of America
| | | | | | | |
Collapse
|
25
|
Chen ZS, Pesaran B. Improving scalability in systems neuroscience. Neuron 2021; 109:1776-1790. [PMID: 33831347 PMCID: PMC8178195 DOI: 10.1016/j.neuron.2021.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022]
Abstract
Emerging technologies to acquire data at increasingly greater scales promise to transform discovery in systems neuroscience. However, current exponential growth in the scale of data acquisition is a double-edged sword. Scaling up data acquisition can speed up the cycle of discovery but can also misinterpret the results or possibly slow down the cycle because of challenges presented by the curse of high-dimensional data. Active, adaptive, closed-loop experimental paradigms use hardware and algorithms optimized to enable time-critical computation to provide feedback that interprets the observations and tests hypotheses to actively update the stimulus or stimulation parameters. In this perspective, we review important concepts of active and adaptive experiments and discuss how selectively constraining the dimensionality and optimizing strategies at different stages of discovery loop can help mitigate the curse of high-dimensional data. Active and adaptive closed-loop experimental paradigms can speed up discovery despite an exponentially increasing data scale, offering a road map to timely and iterative hypothesis revision and discovery in an era of exponential growth in neuroscience.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Bijan Pesaran
- Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
26
|
Li X, Liu C, Wang R. Light Modulation of Brain and Development of Relevant Equipment. J Alzheimers Dis 2021; 74:29-41. [PMID: 32039856 DOI: 10.3233/jad-191240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Light modulation plays an important role in understanding the pathology of brain disorders and improving brain function. Optogenetic techniques can activate or silence targeted neurons with high temporal and spatial accuracy and provide precise control, and have recently become a method for quick manipulation of genetically identified types of neurons. Photobiomodulation (PBM) is light therapy that utilizes non-ionizing light sources, including lasers, light emitting diodes, or broadband light. It provides a safe means of modulating brain activity without any irreversible damage and has established optimal treatment parameters in clinical practice. This manuscript reviews 1) how optogenetic approaches have been used to dissect neural circuits in animal models of Alzheimer's disease, Parkinson's disease, and depression, and 2) how low level transcranial lasers and LED stimulation in humans improves brain activity patterns in these diseases. State-of-the-art brain machine interfaces that can record neural activity and stimulate neurons with light have good prospects in the future.
Collapse
Affiliation(s)
- Xiaoran Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
27
|
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 2021. [PMID: 33859006 DOI: 10.1101/2020.10.27.358291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- UCL Institute of Ophthalmology, University College London, London, UK.
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Michael Okun
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marius Pachitariu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marius Bauza
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Jai Bhagat
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia Böhm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders, Leuven, Belgium
- IMEC, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Britton Sauerbrei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rik J J van Daal
- ATLAS Neuroengineering, Leuven, Belgium
- Neuroelectronics Research Flanders, Leuven, Belgium
- Micro- and Nanosystems, KU Leuven, Leuven, Belgium
| | - Abraham Z Vollan
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - John O'Keefe
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sebastian Haesler
- Neuroelectronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
28
|
Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm C, Broux M, Chen S, Colonell J, Gardner RJ, Karsh B, Kloosterman F, Kostadinov D, Mora-Lopez C, O'Callaghan J, Park J, Putzeys J, Sauerbrei B, van Daal RJJ, Vollan AZ, Wang S, Welkenhuysen M, Ye Z, Dudman JT, Dutta B, Hantman AW, Harris KD, Lee AK, Moser EI, O'Keefe J, Renart A, Svoboda K, Häusser M, Haesler S, Carandini M, Harris TD. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 2021; 372:eabf4588. [PMID: 33859006 PMCID: PMC8244810 DOI: 10.1126/science.abf4588] [Citation(s) in RCA: 420] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- UCL Institute of Ophthalmology, University College London, London, UK.
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - Anna Lebedeva
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Michael Okun
- Centre for Systems Neuroscience and Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marius Pachitariu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Marius Bauza
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Maxime Beau
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Jai Bhagat
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia Böhm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders, Leuven, Belgium
- IMEC, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
| | - Dimitar Kostadinov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Britton Sauerbrei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rik J J van Daal
- ATLAS Neuroengineering, Leuven, Belgium
- Neuroelectronics Research Flanders, Leuven, Belgium
- Micro- and Nanosystems, KU Leuven, Leuven, Belgium
| | - Abraham Z Vollan
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - John O'Keefe
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sebastian Haesler
- Neuroelectronics Research Flanders, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
29
|
Hybrid Multisite Silicon Neural Probe with Integrated Flexible Connector for Interchangeable Packaging. SENSORS 2021; 21:s21082605. [PMID: 33917654 PMCID: PMC8068078 DOI: 10.3390/s21082605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022]
Abstract
Multisite neural probes are a fundamental tool to study brain function. Hybrid silicon/polymer neural probes combine rigid silicon and flexible polymer parts into one single device and allow, for example, the precise integration of complex probe geometries, such as multishank designs, with flexible biocompatible cabling. Despite these advantages and benefiting from highly reproducible fabrication methods on both silicon and polymer substrates, they have not been widely available. This paper presents the development, fabrication, characterization, and in vivo electrophysiological assessment of a hybrid multisite multishank silicon probe with a monolithically integrated polyimide flexible interconnect cable. The fabrication process was optimized at wafer level, and several neural probes with 64 gold electrode sites equally distributed along 8 shanks with an integrated 8 µm thick highly flexible polyimide interconnect cable were produced. The monolithic integration of the polyimide cable in the same fabrication process removed the necessity of the postfabrication bonding of the cable to the probe. This is the highest electrode site density and thinnest flexible cable ever reported for a hybrid silicon/polymer probe. Additionally, to avoid the time-consuming bonding of the probe to definitive packaging, the flexible cable was designed to terminate in a connector pad that can mate with commercial zero-insertion force (ZIF) connectors for electronics interfacing. This allows great experimental flexibility because interchangeable packaging can be used according to experimental demands. High-density distributed in vivo electrophysiological recordings were obtained from the hybrid neural probes with low intrinsic noise and high signal-to-noise ratio (SNR).
Collapse
|
30
|
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. MICROMACHINES 2021; 12:124. [PMID: 33498905 PMCID: PMC7912435 DOI: 10.3390/mi12020124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.
Collapse
Affiliation(s)
- Csaba Forro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Davide Caron
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Vincenzo Gallo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Francesca Santoro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| |
Collapse
|
31
|
Vandekerckhove B, Missinne J, Vonck K, Bauwens P, Verplancke R, Boon P, Raedt R, Vanfleteren J. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. MICROMACHINES 2020; 12:38. [PMID: 33396287 PMCID: PMC7824489 DOI: 10.3390/mi12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant's elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients.
Collapse
Affiliation(s)
- Bram Vandekerckhove
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Jeroen Missinne
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Kristl Vonck
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Pieter Bauwens
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Rik Verplancke
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Paul Boon
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Robrecht Raedt
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Jan Vanfleteren
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| |
Collapse
|
32
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
33
|
Luan L, Robinson JT, Aazhang B, Chi T, Yang K, Li X, Rathore H, Singer A, Yellapantula S, Fan Y, Yu Z, Xie C. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability. Neuron 2020; 108:302-321. [PMID: 33120025 PMCID: PMC7646678 DOI: 10.1016/j.neuron.2020.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Electrical neural interfaces serve as direct communication pathways that connect the nervous system with the external world. Technological advances in this domain are providing increasingly more powerful tools to study, restore, and augment neural functions. Yet, the complexities of the nervous system give rise to substantial challenges in the design, fabrication, and system-level integration of these functional devices. In this review, we present snapshots of the latest progresses in electrical neural interfaces, with an emphasis on advances that expand the spatiotemporal resolution and extent of mapping and manipulating brain circuits. We include discussions of large-scale, long-lasting neural recording; wireless, miniaturized implants; signal transmission, amplification, and processing; as well as the integration of interfaces with optical modalities. We outline the background and rationale of these developments and share insights into the future directions and new opportunities they enable.
Collapse
Affiliation(s)
- Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Taiyun Chi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kaiyuan Yang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Xue Li
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Haad Rathore
- NeuroEngineering Initiative, Rice University, Houston, TX, USA; Applied Physics Graduate Program, Rice University, Houston, TX, USA
| | - Amanda Singer
- NeuroEngineering Initiative, Rice University, Houston, TX, USA; Applied Physics Graduate Program, Rice University, Houston, TX, USA
| | - Sudha Yellapantula
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA
| | - Yingying Fan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Zhanghao Yu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; NeuroEngineering Initiative, Rice University, Houston, TX, USA.
| |
Collapse
|
34
|
Woods GA, Rommelfanger NJ, Hong G. Bioinspired Materials for In Vivo Bioelectronic Neural Interfaces. MATTER 2020; 3:1087-1113. [PMID: 33103115 PMCID: PMC7583599 DOI: 10.1016/j.matt.2020.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The success of in vivo neural interfaces relies on their long-term stability and large scale in interrogating and manipulating neural activity after implantation. Conventional neural probes, owing to their limited spatiotemporal resolution and scale, face challenges for studying the massive, interconnected neural network in its native state. In this review, we argue that taking inspiration from biology will unlock the next generation of in vivo bioelectronic neural interfaces. Reducing the feature sizes of bioelectronic neural interfaces to mimic those of neurons enables high spatial resolution and multiplexity. Additionally, chronic stability at the device-tissue interface is realized by matching the mechanical properties of bioelectronic neural interfaces to those of the endogenous tissue. Further, modeling the design of neural interfaces after the endogenous topology of the neural circuitry enables new insights into the connectivity and dynamics of the brain. Lastly, functionalization of neural probe surfaces with coatings inspired by biology leads to enhanced tissue acceptance over extended timescales. Bioinspired neural interfaces will facilitate future developments in neuroscience studies and neurological treatments by leveraging bidirectional information transfer and integrating neuromorphic computing elements.
Collapse
Affiliation(s)
- Grace A. Woods
- Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA
| | - Nicholas J. Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
35
|
Egert D, Pettibone JR, Lemke S, Patel PR, Caldwell CM, Cai D, Ganguly K, Chestek CA, Berke JD. Cellular-scale silicon probes for high-density, precisely localized neurophysiology. J Neurophysiol 2020; 124:1578-1587. [PMID: 32965150 DOI: 10.1152/jn.00352.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural implants with large numbers of electrodes have become an important tool for examining brain functions. However, these devices typically displace a large intracranial volume compared with the neurons they record. This large size limits the density of implants, provokes tissue reactions that degrade chronic performance, and impedes the ability to accurately visualize recording sites within intact circuits. Here we report next-generation silicon-based neural probes at a cellular scale (5 × 10 µm cross section), with ultra-high-density packing (as little as 66 µm between shanks) and 64 or 256 closely spaced recording sites per probe. We show that these probes can be inserted into superficial or deep brain structures and record large spikes in freely behaving rats for many weeks. Finally, we demonstrate a slice-in-place approach for the precise registration of recording sites relative to nearby neurons and anatomical features, including striatal µ-opioid receptor patches. This scalable technology provides a valuable tool for examining information processing within neural circuits and potentially for human brain-machine interfaces.NEW & NOTEWORTHY Devices with many electrodes penetrating into the brain are an important tool for investigating neural information processing, but they are typically large compared with neurons. This results in substantial damage and makes it harder to reconstruct recording locations within brain circuits. This paper presents high-channel-count silicon probes with much smaller features and a method for slicing through probe, brain, and skull all together. This allows probe tips to be directly observed relative to immunohistochemical markers.
Collapse
Affiliation(s)
- Daniel Egert
- Department of Neurology, University of California, San Francisco, California
| | - Jeffrey R Pettibone
- Department of Neurology, University of California, San Francisco, California
| | - Stefan Lemke
- Neuroscience Graduate Program, University of California, San Francisco, California
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ciara M Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Dawen Cai
- Department of Molecular and Cell Biology, University of Michigan, Ann Arbor, Michigan
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, California.,Veterans Affairs Medical Center, San Francisco, California.,Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan.,Neurosciences Program, University of Michigan, Ann Arbor, Michigan.,Robotics Program, University of Michigan, Ann Arbor, Michigan
| | - Joshua D Berke
- Department of Neurology, University of California, San Francisco, California.,Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| |
Collapse
|
36
|
Kim D, Kang H, Nam Y. Compact 256-channel multi-well microelectrode array system for in vitro neuropharmacology test. LAB ON A CHIP 2020; 20:3410-3422. [PMID: 32785330 DOI: 10.1039/d0lc00384k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microelectrode arrays (MEAs) have been extensively used to measure extracellular spike activity from cultured neurons using multiple electrodes embedded in a planar glass substrate. This system has been implemented to investigate drug effects by detecting pharmacological perturbation reflected in spontaneous network activity. By configuring multiple wells in an MEA, a high-throughput electrophysiological assay has become available, speeding up drug tests. Despite its merits in acquiring massive amounts of electrophysiological data, the high cost and the bulky size of commercial multi-well MEA systems and most importantly its lack of customizability prevent potential users from fully implementing the system in drug experiments. In this work, we have developed a microelectrode array based drug testing platform by incorporating a custom-made compact 256-channel multi-well MEA in a standard microscope slide and commercial application-specific integrated circuit (ASIC) chip based recording system. We arranged 256 electrodes in 16 wells to maximize data collection from a single chip. The multi-well MEA in this work has a more compact design with reduced chip size compared to previously reported multi-well MEAs. Four synaptic modulators (NMDA, AMPA, bicuculline (BIC) and ATP) were applied to a multi-well MEA and neural spike activity was analyzed to study their neurophysiological effects on cultured neurons. Analyzing various neuropharmacological compounds has become much more accessible by utilizing commercially available digital amplifier chips and customizing a user-preferred analog-front-end interface design with additional benefits in reduced platform size and cost.
Collapse
Affiliation(s)
- Daejeong Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | |
Collapse
|
37
|
Ayub S, David F, Klein E, Borel M, Paul O, Gentet LJ, Ruther P. Compact Optical Neural Probes With Up to 20 Integrated Thin-Film $\mu$LEDs Applied in Acute Optogenetic Studies. IEEE Trans Biomed Eng 2020; 67:2603-2615. [DOI: 10.1109/tbme.2020.2966293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Abbott J, Ye T, Krenek K, Gertner RS, Wu W, Jung HS, Ham D, Park H. Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array. LAB ON A CHIP 2020; 20:3239-3248. [PMID: 32756639 DOI: 10.1039/d0lc00553c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The synaptic connections between neurons are traditionally determined by correlating the action potentials (APs) of a pre-synaptic neuron and small-amplitude subthreshold potentials of a post-synaptic neuron using invasive intracellular techniques, such as patch clamping. Extracellular recording by a microelectrode array can non-invasively monitor network activities of a large number of neurons, but its reduced sensitivity usually prevents direct measurements of synaptic signals. Here, we demonstrate that a newly developed complementary metal-oxide-semiconductor (CMOS) nanoelectrode array (CNEA) is capable of extracellularly determining direct synaptic connections in dense, multi-layer cultures of dissociated rat neurons. We spatiotemporally correlate action potential signals of hundreds of active neurons, detect small (∼1 pA after averaging) extracellular synaptic signals at the region where pre-synaptic axons and post-synaptic dendrites/somas overlap, and use those signals to map synaptic connections. We use controlled stimulation to assess stimulation-dependent synaptic strengths and to titrate a synaptic blocker (CNQX: IC50 ∼ 1 μM). The new capabilities demonstrated here significantly enhance the utilities of CNEAs in connectome mapping and drug screening applications.
Collapse
Affiliation(s)
- Jeffrey Abbott
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Tianyang Ye
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Keith Krenek
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Wenxuan Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Han Sae Jung
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Donhee Ham
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Hongkun Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Schaffer L, Nagy Z, Kincses Z, Fiath R, Ulbert I. Spatial Information Based OSort for Real-Time Spike Sorting Using FPGA. IEEE Trans Biomed Eng 2020; 68:99-108. [PMID: 32746008 DOI: 10.1109/tbme.2020.2996281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Spiking activity of individual neurons can be separated from the acquired multi-unit activity with spike sorting methods. Processing the recorded high-dimensional neural data can take a large amount of time when performed on general-purpose computers. METHODS In this paper, an FPGA-based real-time spike sorting system is presented which takes into account the spatial correlation between the electrical signals recorded with closely-packed recording sites to cluster multi-channel neural data. The system uses a spatial window-based version of the Online Sorting algorithm, which uses unsupervised template-matching for clustering. RESULTS The test results show that the proposed system can reach an average accuracy of 86% using simulated data (16-32 neurons, 4-10 dB Signal-to-Noise Ratio), while the single-channel clustering version achieves only 74% average accuracy in the same cases on a 128-channel electrode array. The developed system was also tested on in vivo cortical recordings obtained from an anesthetized rat. CONCLUSION The proposed FPGA-based spike sorting system can process more than 11000 spikes/second, so it can be used during in vivo experiments providing real-time feedback on the location and electrophysiological properties of well-separable single units. SIGNIFICANCE The proposed spike sorting system could be used to reduce the positioning error of the closely-packed recording site during a neural measurement.
Collapse
|
40
|
Guo L. Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA). J Neural Eng 2020; 17:036018. [PMID: 32365334 DOI: 10.1088/1741-2552/ab8fc5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Intracortical electrical neural recording using solid-state electrodes is a prevalent approach in addressing neurophysiological queries and implementing brain-computer interfacing systems. As a variety of ultra-density microelectrode arrays (ultra-density MEAs) are being created more recently, this paper answers to the rising demand for a more rigorous theory concerning this new type of neural electrode technology, both to guide the proper design and to inform the proper usage. APPROACH This design and use problem of ultra-density MEAs for functional intracortical neuronal circuit mapping is approached from a signal analysis perspective. Starting with quantitative derivations of key basic concepts, the concept of ultra-density MEA is defined in the context for fully resolving the voltage sources within its view volume. Then, the principle of using such an ultra-density MEA for functional neural mapping is elaborated, and a recursive approach to completely resolve all voltage sources from the ultra-density MEA's recordings is proposed. This approach is further validated using a simulated experiment. Last, the limitations and implications of this work are discussed. MAIN RESULTS MEAs can only be used to map the extracellular somatic action potential (esAP) sources in a neural microcircuit, and AP propagation along individual axons cannot be detected. The key for the ultra-density MEA design is to make sure that each spatial unit of analysis (SUA) contains no more than one active esAP source. The unique neural resolving capability of ultra-density MEAs comparing to conventional MEAs is to be able to spatiotemporally resolve each esAP source within its view volume. SIGNIFICANCE The ultimate capability and limitation of neural electrode array technology at such an unprecedented fabrication resolution is unraveled. This work strives to further the discussions on this topic into a more quantitative and rational direction, while providing a theoretical guideline for the rational development and neuroscientific application of an ultra-density MEA for intracortical functional mapping.
Collapse
Affiliation(s)
- Liang Guo
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
41
|
Chen B, Zhang B, Chen C, Hu J, Qi J, He T, Tian P, Zhang X, Ni G, Cheng MMC. Penetrating glassy carbon neural electrode arrays for brain-machine interfaces. Biomed Microdevices 2020; 22:43. [PMID: 32504225 DOI: 10.1007/s10544-020-00498-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper presents a fabrication method for glassy carbon neural electrode arrays that combines 3D printing and chemical pyrolysis technology. The carbon electrodes have excellent biological compatibility and can be used in neural signal recording. A pretreated Si wafer is used as the substrate for 3D printing, and then, stereolithography 3D printing technology is employed to print photosensitive resin into a cone shape. Next, chemical pyrolysis is applied to convert the 3D prints into glassy carbon electrodes and modify the electrochemical performance of the carbon electrodes. Finally, the glassy carbon electrodes are packed with conductive wires and PDMS. The proposed fabrication method simplifies the manufacturing process of carbon materials, and electrodes can be fabricated without the need of deep reactive ion etching (DRIE). The height of the carbon electrodes is 1.5 mm, and the exposure area of the tips is 0.78 mm2, which is convenient for the implantation procedure. The specific capacitance of the glassy carbon arrays is higher than that of a platinum electrode (9.18 mF/cm2 vs 3.32 mF/cm2, respectively), and the impedance at 1 kHz is lower (7.1 kΩ vs 8.8 kΩ). The carbon electrodes were tested in vivo, and they showed excellent performance in neural signal recording. The signal-to-noise ratio of the carbon electrodes is 50.73 ± 6.11, which is higher than that of the Pt electrode (20.15 ± 5.32) under the same testing conditions. The proposed fabrication method of glassy carbon electrodes provides a novel approach to manufacture penetrating electrodes for nerve interfaces in biomedical engineering and microelectromechanical systems.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Boshen Zhang
- Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Jie Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China.
| | - Jin Qi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Tao He
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Pan Tian
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Xinuo Zhang
- Department of Orthopedics, China Capital Medical University affiliate Beijing Chaoyang Hospital, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Mark Ming-Cheng Cheng
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
42
|
Rynes ML, Ghanbari L, Schulman DS, Linn S, Laroque M, Dominguez J, Navabi ZS, Sherman P, Kodandaramaiah SB. Assembly and operation of an open-source, computer numerical controlled (CNC) robot for performing cranial microsurgical procedures. Nat Protoc 2020; 15:1992-2023. [PMID: 32405052 DOI: 10.1038/s41596-020-0318-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Cranial microsurgery is an essential procedure for accessing the brain through the skull that can be used to introduce neural probes that measure and manipulate neural activity. Neuroscientists have typically used tools such as high-speed drills adapted from dentistry to perform these procedures. As the number of technologies available for neuroscientists has increased, the corresponding cranial microsurgery procedures to deploy them have become more complex. Using a robotic tool that automatically performs these procedures could standardize cranial microsurgeries across neuroscience laboratories and democratize the more challenging procedures. We have recently engineered a robotic surgery platform that utilizes principles of computer numerical control (CNC) machining to perform a wide variety of automated cranial procedures. Here, we describe how to adapt, configure and use an inexpensive desktop CNC mill equipped with a custom-built surface profiler for performing CNC-guided microsurgery on mice. Detailed instructions are provided to utilize this 'Craniobot' for performing circular craniotomies for coverslip implantation, large craniotomies for implanting transparent polymer skulls for cortex-wide imaging access and skull thinning for intact skull imaging. The Craniobot can be set up in <2 weeks using parts that cost <$1,500, and we anticipate that the Craniobot could be easily adapted for use in other small animals.
Collapse
Affiliation(s)
- Mathew L Rynes
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Leila Ghanbari
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Daniel Sousa Schulman
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Samantha Linn
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Michael Laroque
- Schools of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Zahra S Navabi
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Peter Sherman
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Suhasa B Kodandaramaiah
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA. .,Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
43
|
Lycke R, Sun L, Luan L, Xie C. Spikes to Pixels: Camera Chips for Large-scale Electrophysiology. Trends Neurosci 2020; 43:269-271. [PMID: 32353330 DOI: 10.1016/j.tins.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Implanted neural probes are among the most important techniques in both fundamental and clinical neuroscience. Despite great successes and promise, neural electrodes are technically limited by their scalability. A recent study by Obaid et al. demonstrated an innovative way to greatly scale up the channel count and density of neural electrode arrays.
Collapse
Affiliation(s)
- Roy Lycke
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Liuyang Sun
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Neuorengineering Initiative, Rice University, Houston, TX, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Neuorengineering Initiative, Rice University, Houston, TX, USA.
| |
Collapse
|
44
|
Mikhaylov A, Pimashkin A, Pigareva Y, Gerasimova S, Gryaznov E, Shchanikov S, Zuev A, Talanov M, Lavrov I, Demin V, Erokhin V, Lobov S, Mukhina I, Kazantsev V, Wu H, Spagnolo B. Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics. Front Neurosci 2020; 14:358. [PMID: 32410943 PMCID: PMC7199501 DOI: 10.3389/fnins.2020.00358] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Here we provide a perspective concept of neurohybrid memristive chip based on the combination of living neural networks cultivated in microfluidic/microelectrode system, metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to control the analog memristive circuits, process the decoded information, and arrange a feedback stimulation of biological culture as parts of a bidirectional neurointerface. Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering of the network of dissociated hippocampal neuron cells, fabrication of a large-scale cross-bar array of memristive devices tailored using device engineering, resistive state programming, or non-linear dynamics, as well as hardware implementation of spiking neural networks (SNNs) based on the arrays of memristive devices and integrated CMOS electronics. The concept represents an example of a brain-on-chip system belonging to a more general class of memristive neurohybrid systems for a new-generation robotics, artificial intelligence, and personalized medicine, discussed in the framework of the proposed roadmap for the next decade period.
Collapse
Affiliation(s)
- Alexey Mikhaylov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Pimashkin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Yana Pigareva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | - Evgeny Gryaznov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sergey Shchanikov
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Anton Zuev
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Max Talanov
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Laboratory of Motor Neurorehabilitation, Kazan Federal University, Kazan, Russia
| | | | - Victor Erokhin
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
- Kurchatov Institute, Moscow, Russia
- CNR-Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parma, Italy
| | - Sergey Lobov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Irina Mukhina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Technology Group, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Victor Kazantsev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Huaqiang Wu
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Bernardo Spagnolo
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Dipartimento di Fisica e Chimica-Emilio Segrè, Group of Interdisciplinary Theoretical Physics, Università di Palermo and CNISM, Unità di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy
| |
Collapse
|
45
|
Kim K, Vöröslakos M, Seymour JP, Wise KD, Buzsáki G, Yoon E. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat Commun 2020; 11:2063. [PMID: 32345971 PMCID: PMC7188816 DOI: 10.1038/s41467-020-15769-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
The combination of in vivo extracellular recording and genetic-engineering-assisted optical stimulation is a powerful tool for the study of neuronal circuits. Precise analysis of complex neural circuits requires high-density integration of multiple cellular-size light sources and recording electrodes. However, high-density integration inevitably introduces stimulation artifact. We present minimal-stimulation-artifact (miniSTAR) μLED optoelectrodes that enable effective elimination of stimulation artifact. A multi-metal-layer structure with a shielding layer effectively suppresses capacitive coupling of stimulation signals. A heavily boron-doped silicon substrate silences the photovoltaic effect induced from LED illumination. With transient stimulation pulse shaping, we reduced stimulation artifact on miniSTAR μLED optoelectrodes to below 50 μVpp, much smaller than a typical spike detection threshold, at optical stimulation of >50 mW mm-2 irradiance. We demonstrated high-temporal resolution (<1 ms) opto-electrophysiology without any artifact-induced signal quality degradation during in vivo experiments. MiniSTAR μLED optoelectrodes will facilitate functional mapping of local circuits and discoveries in the brain.
Collapse
Affiliation(s)
- Kanghwan Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mihály Vöröslakos
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, 10016, USA
| | - John P Seymour
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kensall D Wise
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, 10016, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
46
|
Guitchounts G, Cox D. 64-Channel Carbon Fiber Electrode Arrays for Chronic Electrophysiology. Sci Rep 2020; 10:3830. [PMID: 32123283 PMCID: PMC7052209 DOI: 10.1038/s41598-020-60873-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
A chief goal in neuroscience is to understand how neuronal activity relates to behavior, perception, and cognition. However, monitoring neuronal activity over long periods of time is technically challenging, and limited, in part, by the invasive nature of recording tools. While electrodes allow for recording in freely-behaving animals, they tend to be bulky and stiff, causing damage to the tissue they are implanted in. One solution to this invasiveness problem may be probes that are small enough to fly under the immune system's radar. Carbon fiber (CF) electrodes are thinner and more flexible than typical metal or silicon electrodes, but the arrays described in previous reports had low channel counts and required time-consuming manual assembly. Here we report the design of an expanded-channel-count carbon fiber electrode array (CFEA) as well as a method for fast preparation of the recording sites using acid etching and electroplating with PEDOT-TFB, and demonstrate the ability of the 64-channel CFEA to record from rat visual cortex. We include designs for interfacing the system with micro-drives or flex-PCB cables for recording from multiple brain regions, as well as a facilitated method for coating CFs with the insulator Parylene-C. High-channel-count CFEAs may thus be an alternative to traditional microwire-based electrodes and a practical tool for exploring the neural code.
Collapse
Affiliation(s)
- Grigori Guitchounts
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- Program in Neuroscience, Harvard University, Cambridge, Massachusetts, 02138, USA.
| | - David Cox
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
47
|
Raspopovic S, Cimolato A, Panarese A, Vallone F, Del Valle J, Micera S, Navarro X. Neural signal recording and processing in somatic neuroprosthetic applications. A review. J Neurosci Methods 2020; 337:108653. [PMID: 32114143 DOI: 10.1016/j.jneumeth.2020.108653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Neurointerfaces have acquired major relevance as both rehabilitative and therapeutic tools for patients with spinal cord injury, limb amputations and other neural disorders. Bidirectional neural interfaces are a key component for the functional control of neuroprosthetic devices. The two main neuroprosthetic applications of interfaces with the peripheral nervous system (PNS) are: the refined control of artificial prostheses with sensory neural feedback, and functional electrical stimulation (FES) systems attempting to generate motor or visceral responses in paralyzed organs. The results obtained in experimental and clinical studies with both, extraneural and intraneural electrodes are very promising in terms of the achieved functionality for the neural stimulation mode. However, the results of neural recordings with peripheral nerve interfaces are more limited. In this paper we review the different existing approaches for PNS signals recording, denoising, processing and classification, enabling their use for bidirectional interfaces. PNS recordings can provide three types of signals: i) population activity signals recorded by using extraneural electrodes placed on the outer surface of the nerve, which carry information about cumulative nerve activity; ii) spike activity signals recorded with intraneural electrodes placed inside the nerve, which carry information about the electrical activity of a set of individual nerve fibers; and iii) hybrid signals, which contain both spiking and cumulative signals. Finally, we also point out some of the main limitations, which are hampering clinical translation of neural decoding, and indicate possible solutions for improvement.
Collapse
Affiliation(s)
- Stanisa Raspopovic
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zürich, Switzerland
| | - Andrea Cimolato
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zürich, Switzerland; NEARLab - Neuroengineering and Medical Robotics Laboratory, DEIB Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milano, Italy; IIT Central Research Labs Genova, Istituto Italiano Tecnologia, 16163, Genova, Italy
| | | | - Fabio Vallone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, I-56127, Pisa, Italy
| | - Jaume Del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma De Barcelona, CIBERNED, 08193, Bellaterra, Spain
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, I-56127, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale De Lausanne, Lausanne, CH-1015, Switzerland.
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma De Barcelona, CIBERNED, 08193, Bellaterra, Spain; Institut Guttmann De Neurorehabilitació, Badalona, Spain.
| |
Collapse
|
48
|
Abstract
We here present a 0.15 µm CMOS high input impedance and low noise AC coupled flipped voltage follower-based amplifier for high integration level in integrated circuits in a wide range of sensing applications. With such a circuit, it is possible to achieve a high level of integration, thanks to the absence of passive resistors, and also to implement a very high input impedance without capacitive feedback thanks to bootstrap operation, thus offering a very low high-pass cutoff frequency. Simulated results with a proven and well modeled standard technology show a whole circuit input-referred noise of 5.4 µVrms. The bias voltage is ±0.6 V with a total power consumption of the single amplifier of 20 µW. The very low circuit complexity allows a very low estimated reduced area occupation giving, as a general example, the possibility of integrating an array of up to thousands of channels for biomedical applications. Detailed simulation results, PVT analysis and comparison tables are also presented in the paper.
Collapse
|
49
|
Yang L, Lee K, Villagracia J, Masmanidis SC. Open source silicon microprobes for high throughput neural recording. J Neural Eng 2020; 17:016036. [PMID: 31731284 DOI: 10.1088/1741-2552/ab581a] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Microfabricated multielectrode arrays are widely used for high throughput recording of extracellular neural activity, which is transforming our understanding of brain function in health and disease. Currently there is a plethora of electrode-based tools being developed at higher education and research institutions. However, taking such tools from the initial research and development phase to widespread adoption by the neuroscience community is often hindered by several obstacles. The objective of this work is to describe the development, application, and open dissemination of silicon microprobes for recording neural activity in vivo. APPROACH We propose an open source dissemination platform as an alternative to commercialization. This framework promotes recording tools that are openly and inexpensively available to the community. The silicon microprobes are designed in house, but the fabrication and assembly processes are carried out by third party companies. This enables mass production, a key requirement for large-scale dissemination. MAIN RESULTS We demonstrate the operation of silicon microprobes containing up to 256 electrodes in conjunction with optical fibers for optogenetic manipulations or fiber photometry. These data provide new insights about the relationship between calcium activity and neural spiking activity. We also describe the current state of dissemination of these tools. A file repository of resources related to designing, using, and sharing these tools is maintained online. SIGNIFICANCE This paper is likely to be a valuable resource for both current and prospective users, as well as developers of silicon microprobes. Based on their extensive usage by a number of labs including ours, these tools present a promising alternative to other types of electrode-based technologies aimed at high throughput recording in head-fixed animals. This work also demonstrates the importance of validating fiber photometry measurements with simultaneous electrophysiological recordings.
Collapse
|
50
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|