1
|
Matsumoto Y, Kurakado S, Yamada T, Sugita T. Strategy to Identify Virulence-Related Genes of the Pathogenic Fungus Trichosporon asahii Using an Efficient Gene-Targeting System. Microbiol Immunol 2024. [PMID: 39660720 DOI: 10.1111/1348-0421.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Trichosporon asahii is a pathogenic fungus that causes severe deep-seated mycosis in immunocompromised patients with neutropenia. Understanding the molecular mechanisms of T. asahii infection will facilitate the development of new therapeutic and preventive strategies. Two main obstacles have prevented the identification of virulence-related genes in T. asahii using molecular genetic techniques: the lack of experimental animal infection models for easy evaluation of T. asahii virulence and the lack of genetic recombination technology for T. asahii. To address these issues, we developed a silkworm infection model to quantitatively evaluate T. asahii virulence and a genetic recombination method to generate gene-deficient T. asahii mutants, enabling the identification of virulence factors of T. asahii. In this review, we propose a strategy for identifying virulence-related factors in T. asahii using a silkworm infection model and an efficient gene-targeting system.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
2
|
Iwata K, Sato M, Yoshida S, Wada H, Sekimizu K, Okazaki M. Histopathological analysis of filament formation of Nocardia farcinica in a silkworm infection model. Drug Discov Ther 2024; 18:290-295. [PMID: 39443120 DOI: 10.5582/ddt.2024.01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The silkworm Nocardia infection model has been established as a useful animal model for screening the pathogenicity of Nocardia and evaluating the therapeutic effects of antimicrobial agents against Nocardia infection. No histopathological analysis of silkworms infected with Nocardia farcinica has yet been performed. In this study, we performed histological analyses on organs of silkworms infected with N. farcinica. One day after infection with N. farcinica, the organism developed a branching filamentous form from coccid cells in the hemolymph. In addition, we evaluated effective doses (ED50) values by treating infected silkworms with amikacin 30 seconds and 24 hours after infection and found that the ED50 values treated within 30 seconds and 24 hours after infection were 4.1 μg/larva and 5.6 μg/larva, respectively. Evaluation of treatment with amikacin against the infected silkworms was unaffected by the growth process form of Nocardia. These results suggest that the silkworm Nocardia infection model is a useful tool for evaluating the antimicrobial therapy in the growth process of the N. farcinica.
Collapse
Affiliation(s)
- Koki Iwata
- Graduate School of Clinical Technology, Tokyo University of Technology, Tokyo, Japan
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Mizuho Sato
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Shoko Yoshida
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Hiroo Wada
- Department of Public Health & Division of Medical Education, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Sekimizu
- Drug Discoveries by Silkworm Models, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Genome Pharmaceuticals Institute, Tokyo, Japan
| | - Mitsuhiro Okazaki
- Graduate School of Clinical Technology, Tokyo University of Technology, Tokyo, Japan
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
3
|
Montali A, Berini F, Gamberoni F, Armenia I, Saviane A, Cappellozza S, Gornati R, Bernardini G, Marinelli F, Tettamanti G. In Vivo Efficacy of a Nanoconjugated Glycopeptide Antibiotic in Silkworm Larvae Infected by Staphylococcus aureus. INSECTS 2024; 15:886. [PMID: 39590485 PMCID: PMC11595181 DOI: 10.3390/insects15110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
To contrast the rapid spread of antibiotic resistance in bacteria, new alternative therapeutic options are urgently needed. The use of nanoparticles as carriers for clinically relevant antibiotics represents a promising solution to potentiate their efficacy. In this study, we used Bombyx mori larvae for the first time as an animal model for testing a nanoconjugated glycopeptide antibiotic (teicoplanin) against Staphylococcus aureus infection. B. mori larvae might thus replace the use of mammalian models for preclinical tests, in agreement with the European Parliament Directive 2010/63/EU. The curative effect of teicoplanin (a last resort antibiotic against Gram-positive bacterial pathogens) conjugated to iron oxide nanoparticles was assessed by monitoring the survival rate of the larvae and some immunological markers (i.e., hemocyte viability, phenoloxidase system activation, and lysozyme activity). Human physiological conditions of infection were reproduced by performing the experiments at 37 °C. In this condition, nanoconjugated teicoplanin cured the bacterial infection at the same antibiotic concentration of the free counterpart, blocking the insect immune response without causing mortality of silkworm larvae. These results demonstrate the value and robustness of the silkworm as an infection model for testing the in vivo efficacy of nanoconjugated antimicrobial molecules.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Federica Gamberoni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (F.G.); (I.A.); (R.G.); (G.B.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
4
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
5
|
Yasu T, Matsumoto Y, Sugita T. Evaluation of in vivo pharmacokinetic study of the anti-cancer drug imatinib using silkworms as an animal model. Drug Discov Ther 2024; 18:245-248. [PMID: 39155085 DOI: 10.5582/ddt.2024.01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Imatinib is an oral molecular targeted therapy that acts as a tyrosine kinase inhibitor. Silkworms present a promising experimental model for elucidating the pharmacokinetic and toxicity profiles of various compounds. This study aimed to establish an experimental paradigm for investigating the pharmacokinetics of imatinib in silkworms. A comparative analysis of imatinib pharmacokinetic parameters across silkworms, humans, mice, and rats revealed similarities in time to maximum concentration (Tmax) and apparent clearance values between silkworms and humans. However, differences in elimination half-life (t1/2) and apparent volume of distribution between silkworms and humans remained within 5- and 4-fold ranges, respectively. Importantly, mice demonstrated pharmacokinetic parameters closer to those of humans than rats during imatinib studies. Additionally, silkworms and mice exhibit similar Tmax and t1/2 values. This study highlights the potential of silkworms as valuable tools for investigating imatinib metabolism in pharmacokinetic studies. Furthermore, it underscores the applicability of silkworms in elucidating the pharmacokinetic parameters of various molecular-targeted drugs, thus facilitating advancements in drug development and evaluation.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Education and Research Unit for Comprehensive Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
6
|
Zeng X, Tong L. The Impact of Diabetes on Male Silkworm Reproductive Health. BIOLOGY 2024; 13:557. [PMID: 39194495 DOI: 10.3390/biology13080557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The increasing prevalence of diabetic reproductive complications has prompted the development of innovative animal models. The use of the silkworm Bombyx mori as a model for diabetic reproductive damage shows potential as a valuable research tool. This study employed silkworms as a novel model to investigate diabetic reproductive damage. The silkworms were fed a high-glucose diet containing 10% glucose to induce a diabetic model. Subsequently, the study concentrated on assessing the influence of diabetes on the reproductive system of male silkworms. The results indicate that diabetes resulted in reduced luteinizing hormone (LH) and testosterone (T) levels, as well as elevated triglyceride (TG) levels in male silkworms. Moreover, diabetes mellitus was associated with pathological testicular damage in male silkworms, accompanied by decreased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels, along with increased malondialdehyde (MDA) levels in the testis. Additionally, diabetes mellitus reduced the expression of siwi1 and siwi2 genes in the testis of male silkworms. Overall, these results support using silkworms as a valuable model for studying diabetic reproductive damage.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Qinghai University, Xining 810000, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| | - Li Tong
- Qinghai University, Xining 810000, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| |
Collapse
|
7
|
Yu H, Xu Y, Imani S, Zhao Z, Ullah S, Wang Q. Navigating ESKAPE Pathogens: Considerations and Caveats for Animal Infection Models Development. ACS Infect Dis 2024; 10:2336-2355. [PMID: 38866389 PMCID: PMC11249778 DOI: 10.1021/acsinfecdis.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The misuse of antibiotics has led to the global spread of drug-resistant bacteria, especially multi-drug-resistant (MDR) ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These opportunistic bacteria pose a significant threat, in particular within hospitals, where they cause nosocomial infections, leading to substantial morbidity and mortality. To comprehensively explore ESKAPE pathogenesis, virulence, host immune response, diagnostics, and therapeutics, researchers increasingly rely on necessitate suitable animal infection models. However, no single model can fully replicate all aspects of infectious diseases. Notably when studying opportunistic pathogens in immunocompetent hosts, rapid clearance by the host immune system can limit the expression of characteristic disease symptoms. In this study, we examine the critical role of animal infection models in understanding ESKAPE pathogens, addressing limitations and research gaps. We discuss applications and highlight key considerations for effective models. Thoughtful decisions on disease replication, parameter monitoring, and data collection are crucial for model reliability. By meticulously replicating human diseases and addressing limitations, researchers maximize the potential of animal infection models. This aids in targeted therapeutic development, bridges knowledge gaps, and helps combat MDR ESKAPE pathogens, safeguarding public health.
Collapse
Affiliation(s)
- Haojie Yu
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
- Stomatology
Hospital, School of Stomatology, Zhejiang University School of Medicine,
Zhejiang Provincial Clinical Research Center for Oral Diseases, Key
Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yongchang Xu
- Key
Laboratory of Aging and Cancer Biology of Zhejiang Province, School
of Basic Medical Sciences, Hangzhou Normal
University, Hangzhou 311121, China
| | - Saber Imani
- Shulan
International Medical College, Zhejiang
Shuren University, Hangzhou 310015, Zhejiang China
| | - Zhuo Zhao
- Department
of Computer Science and Engineering, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Saif Ullah
- Department
of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Qingjing Wang
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Key Laboratory of Pollution Exposure and Health Intervention
of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| |
Collapse
|
8
|
Plumet L, Magnan C, Ahmad-Mansour N, Sotto A, Lavigne JP, Costechareyre D, Kissa K, Molle V. The zebrafish embryo model: unveiling its potential for investigating phage therapy against methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 2024; 68:e0056124. [PMID: 38899926 PMCID: PMC11232381 DOI: 10.1128/aac.00561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium responsible for a broad spectrum of infections, including cutaneous, respiratory, osteoarticular, and systemic infections. It poses a significant clinical challenge due to its ability to develop antibiotic resistance. This resistance limits therapeutic options, increases the risk of severe complications, and underscores the urgent need for new strategies to address this threat, including the investigation of treatments complementary to antibiotics. The evaluation of novel antimicrobial agents often employs animal models, with the zebrafish embryo model being particularly interesting for studying host-pathogen interactions, establishing itself as a crucial tool in this field. For the first time, this study presents a zebrafish embryo model for the in vivo assessment of bacteriophage efficacy against S. aureus infection. A localized infection was induced by microinjecting either methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus (MSSA). Subsequent treatments involved administering either bacteriophage, vancomycin (the reference antibiotic for MRSA), or a combination of both via the same route to explore potential synergistic effects. Our findings indicate that the bacteriophage was as effective as vancomycin in enhancing survival rates, whether used alone or in combination. Moreover, bacteriophage treatment appears to be even more effective in reducing the bacterial load in S. aureus-infected embryos post-treatment than the antibiotic. Our study validates the use of the zebrafish embryo model and highlights its potential as a valuable tool in assessing bacteriophage efficacy treatments in vivo.
Collapse
Affiliation(s)
- Lucile Plumet
- VBIC, INSERM U1047, University of Montpellier, Montpellier, France
| | - Chloé Magnan
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University of Montpellier, Nîmes, France
| | | | - Albert Sotto
- VBIC, INSERM U1047, Department of Infectious Diseases, CHU Nîmes, University of Montpellier, Nîmes, France
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University of Montpellier, Nîmes, France
| | | | - Karima Kissa
- VBIC, INSERM U1047, University of Montpellier, Montpellier, France
| | - Virginie Molle
- VBIC, INSERM U1047, University of Montpellier, Montpellier, France
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University of Montpellier, Nîmes, France
| |
Collapse
|
9
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
10
|
Matsumoto Y, Sato E, Sugita T. Acid-treated Staphylococcus aureus induces acute silkworm hemolymph melanization. PLoS One 2024; 19:e0298502. [PMID: 38814922 PMCID: PMC11139275 DOI: 10.1371/journal.pone.0298502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
The skin microbiome maintains healthy human skin, and disruption of the microbiome balance leads to inflammatory skin diseases such as folliculitis and atopic dermatitis. Staphylococcus aureus and Cutibacterium acnes are pathogenic bacteria that simultaneously inhabit the skin and cause inflammatory diseases of the skin through the activation of innate immune responses. Silkworms are useful invertebrate animal models for evaluating innate immune responses. In silkworms, phenoloxidase generates melanin as an indicator of innate immune activation upon the recognition of bacterial or fungal components. We hypothesized that S. aureus and C. acnes interact to increase the innate immunity-activating properties of S. aureus. In the present study, we showed that acidification is involved in the activation of silkworm hemolymph melanization by S. aureus. Autoclaved-killed S. aureus (S. aureus [AC]) alone does not greatly activate silkworm hemolymph melanization. On the other hand, applying S. aureus [AC] treated with C. acnes culture supernatant increased the silkworm hemolymph melanization. Adding C. acnes culture supernatant to the medium decreased the pH. S. aureus [AC] treated with propionic acid, acetic acid, or lactic acid induced higher silkworm hemolymph melanization activity than untreated S. aureus [AC]. S. aureus [AC] treated with hydrochloric acid also induced silkworm hemolymph melanization. The silkworm hemolymph melanization activity of S. aureus [AC] treated with hydrochloric acid was inhibited by protease treatment of S. aureus [AC]. These results suggest that acid treatment of S. aureus induces innate immune activation in silkworms and that S. aureus proteins are involved in the induction of innate immunity in silkworms.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Eri Sato
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
11
|
Zore M, San-Martin-Galindo P, Reigada I, Hanski L, Fallarero A, Yli-Kauhaluoma J, Patel JZ. Design and synthesis of etrasimod derivatives as potent antibacterial agents against Gram-positive bacteria. Eur J Med Chem 2024; 263:115921. [PMID: 37948883 DOI: 10.1016/j.ejmech.2023.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents. Inspired by our recent report on the antibacterial activity of etrasimod, an immunomodulating drug candidate, we prepared a series of etrasimod derivatives by varying substituents on the phenyl ring, altering the central tricyclic aromatic ring, and modifying the carboxyl group. From this series of compounds, indole derivative 24f was identified as the most potent antibacterial compound, with the minimum inhibitory concentration (MIC) values between 2.5 and 10 μM against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), S. epidermidis and enterococci. Moreover, 24f exhibited rapid bactericidal activity against S. aureus, low toxicity and hemolytic activity, and a synergistic effect with gentamicin against S. aureus, MRSA, and Enterococcus faecalis. Furthermore, it was shown that neither etrasimod nor 24f affects S. aureus cell membranes. Importantly, 24f did not induce resistance in S. aureus, representing a significant improvement compared to etrasimod. Finally, the antibacterial activity of etrasimod and 24f against S. aureus and MRSA was confirmed in vivo in a Caenorhabditis elegans infection model. Taken together, our study highlights the value of etrasimod and its derivatives as potential antibacterial candidates for combating infections caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014, Helsinki, Finland
| | - Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014, Helsinki, Finland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014, Helsinki, Finland
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014, Helsinki, Finland
| | - Jayendra Z Patel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00014, Helsinki, Finland.
| |
Collapse
|
12
|
Hacioglu M, Yilmaz FN, Oyardi O, Bozkurt Guzel C, Inan N, Savage PB, Dosler S. Antimicrobial Activity of Ceragenins against Vancomycin-Susceptible and -Resistant Enterococcus spp. Pharmaceuticals (Basel) 2023; 16:1643. [PMID: 38139770 PMCID: PMC10747769 DOI: 10.3390/ph16121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Ceragenins (CSAs) are a new class of antimicrobial agents designed to mimic the activities of endogenous antimicrobial peptides. In this study, the antibacterial activities of various ceragenins (CSA-13, CSA-44, CSA-90, CSA-131, CSA-138, CSA-142, and CSA-192), linezolid, and daptomycin were assessed against 50 non-repeated Enterococcus spp. (17 of them vancomycin-resistant Enterococcus-VRE) isolated from various clinical specimens. Among the ceragenins evaluated, the MIC50 and MIC90 values of CSA-44 and CSA-192 were the lowest (2 and 4 μg/mL, respectively), and further studies were continued with these two ceragenins. Potential interactions between CSA-44 or CSA-192 and linezolid were tested and synergistic interactions were seen with the CSA-192-linezolid combination against three Enterococcus spp., one of them VRE. The effects of CSA-44 and CSA-192 on the MIC values of vancomycin were also investigated, and the largest MIC change was seen in the vancomycin-CSA-192 combination. The in vivo effects of CSA-44 and CSA-192 were evaluated in a Caenorhabditis elegans model system. Compared to no treatment, increased survival was observed with C. elegans when treated with ceragenins. In conclusion, CSA-44 and CSA-192 appear to be good candidates (alone or in combination) for the treatment of enterococcal infections, including those from VRE.
Collapse
Affiliation(s)
- Mayram Hacioglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (F.N.Y.); (C.B.G.); (S.D.)
| | - Fatima Nur Yilmaz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (F.N.Y.); (C.B.G.); (S.D.)
| | - Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Cagla Bozkurt Guzel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (F.N.Y.); (C.B.G.); (S.D.)
| | - Nese Inan
- Medical Microbiology Laboratory, Dr. Abdurrahman Yurtaslan Oncology Training and Research Hospital, University of Health Sciences Ankara, Ankara 06200, Turkey;
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Sibel Dosler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (F.N.Y.); (C.B.G.); (S.D.)
| |
Collapse
|
13
|
Kurakado S, Matsumoto Y, Sugita T. Comparing the virulence of four major clades of Candida auris strains using a silkworm infection model: Clade IV isolates had higher virulence than the other clades. Med Mycol 2023; 61:myad108. [PMID: 37898558 DOI: 10.1093/mmy/myad108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023] Open
Abstract
Candida auris is an emerging fungal pathogen that is feared to spread of infection because of its propensity for multidrug resistance and high mortality rate. This pathogenic yeast is classified into four major clades by phylogenetic analyses, which are referred to the South Asia clade (clade I), East Asia clade (clade II), South Africa clade (clade III), and South America clade (clade IV), based on the location of the initial isolate. In this study, we evaluated the virulence of C. auris strains belonging to four major clades and the therapeutic effects of micafungin in a silkworm infection model. The highest mortality rate at 21 h after C. auris inoculation was observed for strains from clade IV (80% or more). In contrast, it was 20% or less in those from other clades. Antifungal susceptibility tests indicated resistance to fluconazole and sensitivity to echinocandins in the blood-derived strains. Micafungin prolonged the survival of blood-derived C. auris infected silkworms. These results suggest that the silkworm infection model is useful for evaluating the virulence of C. auris and determining its therapeutic effects.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
14
|
Andrade-Oliveira AL, Lacerda-Rodrigues G, Pereira MF, Bahia AC, Machado EDA, Rossi CC, Giambiagi-deMarval M. Tenebrio molitor as a model system to study Staphylococcus spp virulence and horizontal gene transfer. Microb Pathog 2023; 183:106304. [PMID: 37567328 DOI: 10.1016/j.micpath.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Invertebrates can provide a valuable alternative to traditional vertebrate animal models for studying bacterial and fungal infections. This study aimed to establish the larvae of the coleoptera Tenebrio molitor (mealworm) as an in vivo model for evaluating virulence and horizontal gene transfer between Staphylococcus spp. After identifying the best conditions for rearing T. molitor, larvae were infected with different Staphylococcus species, resulting in dose-dependent killing curves. All species tested killed the insects at higher doses, with S. nepalensis and S. aureus being the most and least virulent, respectively. However, only S. nepalensis was able to kill more than 50% of larvae 72 h post-infection at a low amount of 105 CFU. Staphylococcus infection also stimulated an increase in the concentration of hemocytes present in the hemolymph, which was proportional to the virulence. To investigate T. molitor's suitability as an in vivo model for plasmid transfer studies, we used S. aureus strains as donor and recipient of a plasmid containing the gentamicin resistance gene aac(6')-aph(2″). By inoculating larvae with non-lethal doses of each, we observed conjugation, and obtained transconjugant colonies with a frequency of 1.6 × 10-5 per donor cell. This study demonstrates the potential of T. molitor larvae as a reliable and cost-effective model for analyzing the virulence of Staphylococcus and, for the first time, an optimal environment for the plasmid transfer between S. aureus carrying antimicrobial resistance genes.
Collapse
Affiliation(s)
- Ana Luisa Andrade-Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Geovana Lacerda-Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Monalessa Fábia Pereira
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | - Ana Cristina Bahia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ednildo de Alcântara Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
16
|
Matsumoto Y, Sugiyama Y, Nagamachi T, Yoshikawa A, Sugita T. Hog1-mediated stress tolerance in the pathogenic fungus Trichosporon asahii. Sci Rep 2023; 13:13539. [PMID: 37598230 PMCID: PMC10439922 DOI: 10.1038/s41598-023-40825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023] Open
Abstract
Trichosporon asahii is an opportunistic pathogenic fungus that causes severe and sometimes fatal infections in immunocompromised patients. Hog1, a mitogen-activated protein kinase, regulates the stress resistance of some pathogenic fungi, however its role in T. asahii has not been investigated. Here, we demonstrated that the hog1 gene-deficient T. asahii mutant is sensitive to high temperature, cell membrane stress, oxidative stress, and antifungal drugs. Growth of the hog1 gene-deficient T. asahii mutant was delayed at 40 °C. The hog1 gene-deficient T. asahii mutant also exhibited sensitivity to sodium dodecyl sulfate, hydrogen peroxide, menadione, methyl methanesulfonate, UV exposure, and antifungal drugs such as amphotericin B under a glucose-rich condition. Under a glucose-restricted condition, the hog1 gene-deficient mutant exhibited sensitivity to NaCl and KCl. The virulence of the hog1 gene-deficient mutant against silkworms was attenuated. Moreover, the viability of the hog1 gene-deficient mutant decreased in the silkworm hemolymph. These phenotypes were restored by re-introducing the hog1 gene into the gene-deficient mutant. Our findings suggest that Hog1 plays a critical role in regulating cellular stress responses in T. asahii.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan.
| | - Yu Sugiyama
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Tae Nagamachi
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Asami Yoshikawa
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
17
|
Fries F, Kany AM, Rasheed S, Hirsch AKH, Müller R, Herrmann J. Impact of Drug Administration Routes on the In Vivo Efficacy of the Natural Product Sorangicin a Using a Staphylococcus aureus Infection Model in Zebrafish Embryos. Int J Mol Sci 2023; 24:12791. [PMID: 37628971 PMCID: PMC10454396 DOI: 10.3390/ijms241612791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Staphylococcus aureus causes a wide range of infections, and it is one of the leading pathogens responsible for deaths associated with antimicrobial resistance, the rapid spread of which among S. aureus urges the discovery of new antibiotics. The evaluation of in vivo efficacy of novel drug candidates is usually performed using animal models. Recently, zebrafish (Danio rerio) embryos have become increasingly attractive in early drug discovery. Herein, we established a zebrafish embryo model of S. aureus infection for evaluation of in vivo efficacy of novel potential antimicrobials. A local infection was induced by microinjecting mCherry-expressing S. aureus Newman followed by treatment with reference antibiotics via microinjection into different injection sites as well as via waterborne exposure to study the impact of the administration route on efficacy. We successfully used the developed model to evaluate the in vivo activity of the natural product sorangicin A, for which common mouse models were not successful due to fast degradation in plasma. In conclusion, we present a novel screening platform for assessing in vivo activity at the antibiotic discovery stage. Furthermore, this work provides consideration for the choice of an appropriate administration route based on the physicochemical properties of tested drugs.
Collapse
Affiliation(s)
- Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas M. Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
18
|
Eshima S, Matsumoto Y, Kurakado S, Sugita T. Silkworm model of biofilm formation: In vivo evaluation of antimicrobial tolerance of a cross-kingdom dual-species (Escherichia coli and Candida albicans) biofilm on catheter material. PLoS One 2023; 18:e0288452. [PMID: 37450444 PMCID: PMC10348565 DOI: 10.1371/journal.pone.0288452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are formed by microorganisms and their products on the surface of materials such as medical devices. Biofilm formation protects microorganisms from antimicrobial agents. Bacteria and fungi often form dual-species biofilms on the surfaces of medical devices in clinical settings. An experimental system to evaluate in vivo biofilm formation by the pathogenic fungus Candida albicans was established using silkworms inserted with polyurethane fiber (PF), a catheter material. In the present study, we established an in vivo experimental system using silkworms to evaluate the antimicrobial tolerance of Escherichia coli in single- and dual-species biofilms formed on the surface of the PF. The injection of E. coli into the PF-inserted silkworms led to the formation of a biofilm by E. coli on the surface of the PF. E. coli in the biofilm exhibited tolerance to meropenem (MEPM). Furthermore, when E. coli and C. albicans were co-inoculated into the PF-inserted silkworms, a dual-species biofilm formed on the surface of the PF. E. coli in the dual-species biofilm with C. albicans was more tolerant to MEPM than E. coli in the single-species biofilm. These findings suggest the usefulness of an in vivo experimental system using PF-inserted silkworms to investigate the mechanisms of MEPM tolerance in E. coli in single- and dual-species biofilms.
Collapse
Affiliation(s)
- Shintaro Eshima
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
19
|
Leal JT, Primon-Barros M, de Carvalho Robaina A, Pizzutti K, Mott MP, Trentin DS, Dias CAG. Streptococcus pneumoniae serotype 19A from carriers and invasive disease: virulence gene profile and pathogenicity in a Galleria mellonella model. Eur J Clin Microbiol Infect Dis 2023; 42:399-411. [PMID: 36790530 DOI: 10.1007/s10096-023-04560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE This study aimed to evaluate and compare the presence of genes related to surface proteins between isolates of Streptococcus pneumoniae from healthy carriers (HC) and invasive pneumococcal disease (IPD) with a particular focus on serotype 19A. METHODS The presence of these genes was identified by real-time PCR. Subsequently, we employed the Galleria mellonella larval infection model to study their effect on pathogenicity in vivo. RESULTS The percentage of selected virulence genes was similar between the HC and IPD groups (p > 0.05), and the genes lytA, nanB, pavA, pcpA, phtA, phtB, phtE, rrgA, and sipA were all present in both groups. However, the virulence profile of the isolates differed individually between HC and IPD groups. The highest lethality in G. mellonella was for IPD isolates (p < 0.01), even when the virulence profile was the same as compared to the HC isolates or when the nanA, pspA, pspA-fam1, and pspC genes were not present. CONCLUSIONS The occurrence of the investigated virulence genes was similar between HC and IPD S. pneumoniae serotype 19A groups. However, the IPD isolates showed a higher lethality in the alternative G. mellonella model than the HC isolates, regardless of the virulence gene composition, indicating that other virulence factors may play a decisive role in virulence. Currently, this is the first report using the in vivo G. mellonella model to study the virulence of clinical isolates of S. pneumoniae.
Collapse
Affiliation(s)
- Josiane Trevisol Leal
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Muriel Primon-Barros
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Amanda de Carvalho Robaina
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Kauana Pizzutti
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Mariana Preussler Mott
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia & Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências (PPGBIO), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil.
| | - Cícero Armídio Gomes Dias
- Laboratório de Microbiologia Molecular, Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande Do Sul, Brasil
| |
Collapse
|
20
|
Lin PY, Chan SY, Stern A, Chen PH, Yang HC. Epidemiological profiles and pathogenicity of Vancomycin-resistant Enterococcus faecium clinical isolates in Taiwan. PeerJ 2023; 11:e14859. [PMID: 36855433 PMCID: PMC9968458 DOI: 10.7717/peerj.14859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
The emerging Vancomycin-resistant Enterococcus faecium (VRE-fm) is an opportunistic pathogen causing nosocomial infections. The identification of VRE-fm is important for successful prevention and control in healthcare settings. VRE-fm clinical isolates obtained from regional hospitals in northern Taiwan were characterized for antimicrobial susceptibility, virulence genes and biofilm production. Most isolates exhibited multi-drug resistance and carried the virulence genes, esp and hyl. While all isolates produce biofilms, those isolates that carried esp exhibited greater biofilm production. Isolates with different virulence gene carriages were examined for pathogenicity by using a nematode model, Caenorhabditis elegans, for determining microbial-host interactions. The survival assay showed that C. elegans was susceptible to Linezolid-resistant VRE-fm isolates with hyl. Combining the molecular epidemiological profiles regarding pathogenesis in C. elegans can serve as a guide for physicians in limiting opportunistic infections caused by VRE-fm.
Collapse
Affiliation(s)
- Pei-Yun Lin
- Department of Laboratory, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan
| | - Shang-Yih Chan
- Department of Internal Medicine, Taipei City Hospital, Yang-Ming Branch, Taipei, Taiwan,Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan,Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, USA
| | - Po-Hsiang Chen
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| |
Collapse
|
21
|
Qiu JF, Cui WZ, Zhang Q, Dai TM, Liu K, Li JL, Wang YJ, Sima YH, Xu SQ. Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in Bombyx mori. INSECT SCIENCE 2023; 30:31-46. [PMID: 35446483 DOI: 10.1111/1744-7917.13043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The circadian clock plays a critical role in the regulation of host immune defense. However, the mechanistic basis for this regulation is largely unknown. Herein, the core clock gene cryptochrome1 (cry1) knockout line in Bombyx mori, an invertebrate animal model, was constructed to obtain the silkworm with dysfunctional molecular clock, and the dynamic regulation of the circadian clock on the immune responsiveness within 24 h of Staphylococcus aureus infection was analyzed. We found that deletion of cry1 decreased viability of silkworms and significantly reduced resistance of larvae to S. aureus. Time series RNA-seq analysis identified thousands of rhythmically expressed genes, including immune response genes, in the larval immune tissue, fat bodies. Uninfected cry1 knockout silkworms exhibited expression patterns of rhythmically expressed genes similar to wild-type (WT) silkworms infected with S. aureus. However, cry1 knockout silkworms exhibited a seriously weakened response to S. aureus infection. The immune response peaked at 6 and 24 h after infection, during which "transcription storms" occurred, and the expression levels of the immune response genes, PGRP and antimicrobial peptides (AMPs), were significantly upregulated in WT. In contrast, cry1 knockout did not effectively activate Toll, Imd, or NF-κB signaling pathways during the immune adjustment period from 12 to 18 h after infection, resulting in failure to initiate the immune responsiveness peak at 24 h after infection. This may be related to inhibited silkworm fat body energy metabolism. These results demonstrated the dynamic regulation of circadian clock on silkworm immune response to bacterial infection and provided important insights into host antimicrobial defense mechanisms.
Collapse
Affiliation(s)
- Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Jiang-Lan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China, Guangxi Province
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| |
Collapse
|
22
|
Potentially Virulent Multi-Drug Resistant Escherichia fergusonii Isolated from Inanimate Surface in a Medical University: Omphisa fuscidentalis as an Alternative for Bacterial Virulence Determination. Diagnostics (Basel) 2023; 13:diagnostics13020279. [PMID: 36673089 PMCID: PMC9858318 DOI: 10.3390/diagnostics13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023] Open
Abstract
Multi-drug resistant (MDR) bacteria are becoming a worldwide problem due to limited options for treatment. Moreover, patients infected by MDR with highly virulent accessories are worsening the symptoms, even to the point of causing death. In this study, we isolated bacteria from 14 inanimate surfaces that could potentially be reservoirs for the spread of bacterial infections in the medical university. Blood agar media was used for bacterial isolation. The bacterial colony that showed hemolytic activities on each surface was tested for antimicrobial susceptibility against eight different antibiotics. We found that MDR bacterium, namely TB1, which was isolated from a toilet bowl, was non-susceptible to ampicillin, imipenem, chloramphenicol, amoxicillin-clavulanic acid, gentamicin, and tetracycline. Another MDR bacterium isolated from the mobile phone screen of security officers, namely HSO, was resistant to chloramphenicol, gentamicin, tetracycline, and cefixime. An in vivo virulence test of bacterial isolates used Omphisa fuscidentalis larvae as an alternative to Galleria mellonella larvae for the infection model. A virulence test of TB1 in O. fuscidentalis larvae revealed 20% survival in the bacterial density of 104 and 105 CFU/larvae; and 0% survival in the bacterial density of 106 CFU/larvae at 24 h after injection. Bacterial identification was performed for TB1 as a potential virulent isolate. Bacterial identification using partial 16s rRNA gene showed that TB1 exhibited 99.84% identity to Escherichia fergusonii 2611. This study concludes that TB1 is a potentially virulent MDR E. fergusonii isolated from toilet bowls at a medical university.
Collapse
|
23
|
Quantitative evaluation of Mycobacterium abscessus clinical isolate virulence using a silkworm infection model. PLoS One 2022; 17:e0278773. [PMID: 36538550 PMCID: PMC9767372 DOI: 10.1371/journal.pone.0278773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium abscessus causes chronic skin infections, lung diseases, and systemic or disseminated infections. Here we investigated whether the virulence of M. abscessus clinical isolates could be evaluated by calculating the median lethal dose (LD50) in a silkworm infection model. M. abscessus subsp. abscessus cells were injected into the silkworm hemolymph. When reared at 37˚C, the silkworms died within 2 days post-infection with M. abscessus subsp. abscessus. Viable cell numbers of M. abscessus increased in the hemolymph of silkworms injected with M. abscessus. Silkworms were not killed by injections with heat-killed M. abscessus cells. The administration of clarithromycin, an antibacterial drug used to treat the infection in humans, prolonged the survival time of silkworms injected with M. abscessus. The LD50 values of 7 clinical isolates in the silkworm infection model were differed by up to 9-fold. The Mb-17 isolate, which was identified as a virulent strain in the silkworm infection model, induced more detachment of human THP-1-derived macrophages during infection than the Mb-10 isolate. These findings suggest that the silkworm M. abscessus infection model can be used to quantitatively evaluate the virulence of M. abscessus clinical isolates in a short time period.
Collapse
|
24
|
Knockout of ykcB, a Putative Glycosyltransferase, Leads to Reduced Susceptibility to Vancomycin in Bacillus subtilis. J Bacteriol 2022; 204:e0038722. [PMID: 36409129 PMCID: PMC9765085 DOI: 10.1128/jb.00387-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vancomycin resistance of Gram-positive bacteria poses a serious health concern around the world. In this study, we searched for vancomycin-tolerant mutants from a gene deletion library of a model Gram-positive bacterium, Bacillus subtilis, to elucidate the mechanism of vancomycin resistance. We found that knockout of ykcB, a glycosyltransferase that is expected to utilize C55-P-glucose to glycosylate cell surface components, caused reduced susceptibility to vancomycin in B. subtilis. Knockout of ykcB altered the susceptibility to multiple antibiotics, including sensitization to β-lactams and increased the pathogenicity to silkworms. Furthermore, the ykcB-knockout mutant had (i) a decreased amount of lipoteichoic acid, (ii) decreased biofilm formation, and (iii) an increased content of diglucosyl diacylglycerol, a glycolipid that shares a precursor with C55-P-glucose. These phenotypes and vancomycin tolerance were abolished by knockout of ykcC, a gene in the same operon with ykcB probably involved in C55-P-glucose synthesis. Overexpression of ykcC enhanced vancomycin tolerance in both the parent strain and the ykcB-knockout mutant. These findings suggest that ykcB deficiency induces structural changes of cell surface molecules depending on the ykcC function, leading to reduced susceptibility to vancomycin, decreased biofilm formation, and increased pathogenicity to silkworms. IMPORTANCE Although vancomycin is effective against Gram-positive bacteria, vancomycin-resistant bacteria are a major public health concern. While the vancomycin-resistance mechanisms of clinically important bacteria such as Staphylococcus aureus, Enterococcus faecium, and Streptococcus pneumoniae are well studied, they remain unclear in other Gram-positive bacteria. In the present study, we searched for vancomycin-tolerant mutants from a gene deletion library of a model Gram-positive bacterium, Bacillus subtilis, and found that knockout of a putative glycosyltransferase, ykcB, caused vancomycin tolerance in B. subtilis. Notably, unlike the previously reported vancomycin-resistant bacterial strains, ykcB-deficient B. subtilis exhibited increased virulence while maintaining its growth rate. Our results broaden the fundamental understanding of vancomycin-resistance mechanisms in Gram-positive bacteria.
Collapse
|
25
|
Matsumoto Y, Sato E, Sugita T. Acute melanization of silkworm hemolymph by peptidoglycans of the human commensal bacterium Cutibacterium acnes. PLoS One 2022; 17:e0271420. [PMID: 36155485 PMCID: PMC9512201 DOI: 10.1371/journal.pone.0271420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cutibacterium acnes is a pathogenic bacterium that cause inflammatory diseases of the skin and intervertebral discs. The immune activation induced by C. acnes requires multiple cellular responses in the host. Silkworm, an invertebrate, generates melanin by phenoloxidase upon recognizing bacterial or fungal components. Therefore, the melanization reaction can be used as an indicator of innate immune activation. A silkworm infection model was developed for evaluating the virulence of C. acnes, but a system for evaluating the induction of innate immunity by C. acnes using melanization as an indicator has not yet been established. Here we demonstrated that C. acnes rapidly causes melanization of the silkworm hemolymph. On the other hand, Staphylococcus aureus, a gram-positive bacterium identical to C. acnes, does not cause immediate melanization. Even injection of heat-killed C. acnes cells caused melanization of the silkworm hemolymph. DNase, RNase, and protease treatment of the heat-treated C. acnes cells did not decrease the silkworm hemolymph melanization. Treatment with peptidoglycan-degrading enzymes, such as lysostaphin and lysozyme, however, decreased the induction of melanization by the heat-treated C. acnes cells. These findings suggest that silkworm hemolymph melanization may be a useful indicator to evaluate innate immune activation by C. acnes and that C. acnes peptidoglycans are involved in the induction of innate immunity in silkworms.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
- * E-mail:
| | - Eri Sato
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
26
|
Montali A, Berini F, Saviane A, Cappellozza S, Marinelli F, Tettamanti G. A Bombyx mori Infection Model for Screening Antibiotics against Staphylococcus epidermidis. INSECTS 2022; 13:748. [PMID: 36005373 PMCID: PMC9409246 DOI: 10.3390/insects13080748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The increasing number of microorganisms that are resistant to antibiotics is prompting the development of new antimicrobial compounds and strategies to fight bacterial infections. The use of insects to screen and test new drugs is increasingly considered a promising tool to accelerate the discovery phase and limit the use of mammalians. In this study, we used for the first time the silkworm, Bombyx mori, as an in vivo infection model to test the efficacy of three glycopeptide antibiotics (GPAs), against the nosocomial pathogen Staphylococcus epidermidis. To reproduce the human physiological temperature, the bacterial infection was performed at 37 °C and it was monitored over time by evaluating the survival rate of the larvae, as well the response of immunological markers (i.e., activity of hemocytes, activation of the prophenoloxidase system, and lysozyme activity). All the three GPAs tested (vancomycin, teicoplanin, and dalbavancin) were effective in curing infected larvae, significantly reducing their mortality and blocking the activation of the immune system. These results corroborate the use of this silkworm infection model for the in vivo studies of antimicrobial molecules active against staphylococci.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| |
Collapse
|
27
|
Knockout of mlaA increases Escherichia coli virulence in a silkworm infection model. PLoS One 2022; 17:e0270166. [PMID: 35830444 PMCID: PMC9278758 DOI: 10.1371/journal.pone.0270166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
The mlaA gene encodes a lipoprotein to maintain an outer membrane lipid asymmetry in gram-negative bacteria. Although the role of mlaA in bacterial virulence has been studied in several bacterial species, there are no reports of its role in E. coli virulence. In this study, we found that knockout of mlaA in E. coli increased its virulence against silkworms. The mlaA-knockout mutant was sensitive to several antibiotics and detergents, but resistant to vancomycin and chlorhexidine. The mlaA-knockout mutant grew faster than the parent strain in the presence of silkworm hemolymph. The mlaA-knockout mutant also produced a larger amount of outer membrane vesicles than the parent strain. These findings suggest that mlaA knockout causes E. coli resistance to specific antimicrobial substances and increases outer membrane vesicle production, thereby enhancing E. coli virulence properties in the silkworm infection model.
Collapse
|
28
|
Wirth F, Staudt KJ, Araújo BV, Ishida K. Experimental models for pharmacokinetic and pharmacodynamic studies of antifungals used in cryptococcosis treatment. Future Microbiol 2022; 17:969-982. [PMID: 35694892 DOI: 10.2217/fmb-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on cryptococcosis in the mammal animal model have demonstrated the occurrence of central nervous system infection and similarities in fungal pathogenicity with clinical and immunological features of the human infection. Although there is still a lack of studies involving pharmacokinetics (PK) and pharmacodynamics (PD) in animal models of cryptococcosis in the literature, these experimental models are useful for understanding this mycosis and antifungal effectiveness in improving the therapeutic schemes. The scope of this review is to describe and discuss the main mammal animal models for PK and PD studies of antifungals used in cryptococcosis treatment. Alternative models and computational methods are also addressed. All approaches for PK/PD studies are relevant to investigating drug-infection interaction and improving cryptococcosis therapy.
Collapse
Affiliation(s)
- Fernanda Wirth
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Keli J Staudt
- Faculty of Pharmacy, Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Bibiana V Araújo
- Faculty of Pharmacy, Pharmaceutical Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
29
|
Wang Q, Sun Z, Ma S, Liu X, Xia H, Chen K. Molecular mechanism and potential application of bacterial infection in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104381. [PMID: 35245606 DOI: 10.1016/j.dci.2022.104381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
As a representative species of Lepidoptera, Bombyx mori has been widely studied and applied. However, bacterial infection has always been an important pathogen threatening the growth of silkworms. Bombyx mori can resist various pathogenic bacteria through their own physical barrier and innate immune system. However, compared with other insects, such as Drosophila melanogaster, research on the antibacterial mechanism of silkworms is still in its infancy. This review systematically summarized the routes of bacterial infection in silkworms, the antibacterial mechanism of silkworms after ingestion or wounding infection, and the intestinal bacteria and infection of silkworms. Finally, we will discuss silkworms as a model animal for studying bacterial infectious diseases and screening antibacterial drugs.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Shangshang Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
30
|
VanKoten HW, Moore RS, Cloninger MJ. Nanoparticles To Study Lectins in Caenorhabditis elegans: Multivalent Galactose β1-4 Fucose-Functionalized Dendrimers Provide Protection from Oxidative Stress. Biomacromolecules 2021; 22:4720-4729. [PMID: 34704753 DOI: 10.1021/acs.biomac.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galectins are galactoside-binding lectins that are functional dimers or higher-order oligomers. Multivalent binding has been shown to augment the relatively low affinity of the galectins for their galactoside-binding partners, enabling the galectins to play an important role in the global remodeling of cells that occurs during the stress conditions of disease states, including heart disease and cancer. The presence of galectins in the nematode Caenorhabditis elegans and their galactoside-binding properties have been demonstrated, but the role of multivalent interactions for C. elegans galectins is unknown. Here, we describe the synthesis of Galβ1-4Fuc-functionalized poly(amidoamine) dendrimers and their utility in studies using C. elegans during oxidative stress. C. elegans were fed Galβ1-4Fuc-functionalized dendrimers and RNA interference to knock down lectins lec-1 and lec-10 while undergoing oxidative stress. C. elegans that were pretreated with the glycodendrimers were less susceptible to oxidative stress than untreated controls. Worms that were fed fluorescently tagged glycodendrimers and imaged indicated that the dendrimers are primarily present in the digestive tract of the worms, and uptake into the vulva and proximal gonads could also be observed in some instances. This study suggests that multivalently presented Galβ1-4Fuc can protect C. elegans from oxidative stress.
Collapse
Affiliation(s)
- Harrison W VanKoten
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - Rebecca S Moore
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, United States
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| |
Collapse
|
31
|
Pont S, Blanc-Potard AB. Zebrafish Embryo Infection Model to Investigate Pseudomonas aeruginosa Interaction With Innate Immunity and Validate New Therapeutics. Front Cell Infect Microbiol 2021; 11:745851. [PMID: 34660345 PMCID: PMC8515127 DOI: 10.3389/fcimb.2021.745851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected patients with cystic fibrosis (CF). Considering the intrinsic and acquired resistance of P. aeruginosa to currently used antibiotics, new therapeutic strategies against this pathogen are urgently needed. Whereas virulence factors of P. aeruginosa are well characterized, the interplay between P. aeruginosa and the innate immune response during infection remains unclear. Zebrafish embryo is now firmly established as a potent vertebrate model for the study of infectious human diseases, due to strong similarities of its innate immune system with that of humans and the unprecedented possibilities of non-invasive real-time imaging. This model has been successfully developed to investigate the contribution of bacterial and host factors involved in P. aeruginosa pathogenesis, as well as rapidly assess the efficacy of anti-Pseudomonas molecules. Importantly, zebrafish embryo appears as the state-of-the-art model to address in vivo the contribution of innate immunity in the outcome of P. aeruginosa infection. Of interest, is the finding that the zebrafish encodes a CFTR channel closely related to human CFTR, which allowed to develop a model to address P. aeruginosa pathogenesis, innate immune response, and treatment evaluation in a CF context.
Collapse
Affiliation(s)
- Stéphane Pont
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| |
Collapse
|
32
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
33
|
Kokhanyuk B, Bodó K, Sétáló G, Németh P, Engelmann P. Bacterial Engulfment Mechanism Is Strongly Conserved in Evolution Between Earthworm and Human Immune Cells. Front Immunol 2021; 12:733541. [PMID: 34539669 PMCID: PMC8440998 DOI: 10.3389/fimmu.2021.733541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Invertebrates, including earthworms, are applied to study the evolutionarily conserved cellular immune processes. Earthworm immunocytes (so-called coelomocytes) are functionally similar to vertebrate myeloid cells and form the first line of defense against invading pathogens. Hereby, we compared the engulfment mechanisms of THP-1 human monocytic cells, differentiated THP-1 (macrophage-like) cells, and Eisenia andrei coelomocytes towards Escherichia coli and Staphylococcus aureus bacteria applying various endocytosis inhibitors [amantadine, 5-(N-ethyl-N-isopropyl) amiloride, colchicine, cytochalasin B, cytochalasin D, methyl-ß-cyclodextrin, and nystatin]. Subsequently, we investigated the messenger RNA (mRNA) expressions of immune receptor-related molecules (TLR, MyD88, BPI) and the colocalization of lysosomes with engulfed bacteria following uptake inhibition in every cell type. Actin depolymerization by cytochalasin B and D has strongly inhibited the endocytosis of both bacterial strains in the studied cell types, suggesting the conserved role of actin-dependent phagocytosis. Decreased numbers of colocalized lysosomes/bacteria supported these findings. In THP-1 cells TLR expression was increased upon cytochalasin D pretreatment, while this inhibitor caused a dropped LBP/BPI expression in differentiated THP-1 cells and coelomocytes. The obtained data reveal further insights into the evolution of phagocytes in eukaryotes. Earthworm and human phagocytes possess analogous mechanisms for bacterial internalization.
Collapse
Affiliation(s)
- Bohdana Kokhanyuk
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
34
|
Development of an efficient gene-targeting system for elucidating infection mechanisms of the fungal pathogen Trichosporon asahii. Sci Rep 2021; 11:18270. [PMID: 34521867 PMCID: PMC8440527 DOI: 10.1038/s41598-021-97287-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Trichosporon asahii is a pathogenic fungus that causes severe, deep-seated fungal infections in neutropenic patients. Elucidating the infection mechanisms of T. asahii based on genetic studies requires a specific gene-targeting system. Here, we established an efficient gene-targeting system in a highly pathogenic T. asahii strain identified using the silkworm infection model. By comparing the pathogenicity of T. asahii clinical isolates in a silkworm infection model, T. asahii MPU129 was identified as a highly pathogenic strain. Using an Agrobacterium tumefaciens-mediated gene transfer system, we obtained a T. asahii MPU129 mutant lacking the ku70 gene, which encodes the Ku70 protein involved in the non-homologous end-joining repair of DNA double-strand breaks. The ku70 gene-deficient mutant showed higher gene-targeting efficiency than the wild-type strain for constructing a mutant lacking the cnb1 gene, which encodes the beta-subunit of calcineurin. The cnb1 gene-deficient mutant showed reduced pathogenicity against silkworms compared with the parental strain. These results suggest that an efficient gene-targeting system in a highly pathogenic T. asahii strain is a useful tool for elucidating the molecular mechanisms of T. asahii infection.
Collapse
|
35
|
Kurakado S, Matsumoto Y, Sugita T. Efficacy of Posaconazole against Rhizopus oryzae Infection in Silkworm. Med Mycol J 2021; 62:53-57. [PMID: 34471035 DOI: 10.3314/mmj.21-00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rhizopus oryzae causes fatal invasive mucormycosis, especially in immunocompromised patients. Posaconazole is used to treat mucormycosis caused by R. oryzae, which is resistant to fluconazole and voriconazole. We evaluated the efficacy of posaconazole against R. oryzae in vivo using a silkworm infection model at 37℃, the human body temperature. The level of pathogenicity differed among the R. oryzae isolates, and posaconazole prolonged the survival of infected silkworms. Therefore, the silkworm infection model is suitable for investigating the virulence factors of R. oryzae and developing antifungal agents for mucormycosis.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University
| | | | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
36
|
Reginald K, Wong YR, Shah SMR, Teh KF, Freddy Jalin EJ, Khan NA. Investigating immune responses of the house cricket, Acheta domesticus to pathogenic Eschericia coli K1. Microbes Infect 2021; 23:104876. [PMID: 34332091 DOI: 10.1016/j.micinf.2021.104876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Insects models are excellent models of the innate immune system, as they are free from the influences of the vertebrate adaptive immunity. Crickets are hemimetabolous insects belonging to the order Orthopteran order that have not been as extensively characterized as other holometabolous insects, and may provide new insights to the insect immune responses. In this study, we aim to characterize the innate immune responses of the common house cricket, Acheta domesticus in response to a human pathogenic bacterium E. coli K1. METHODS Crickets were injected with sterile buffer, live E. coli K1 or heat-killed E. coli K1. Physiological effects such as mortality and weight change of the crickets were determined 24-, 48 and 72-hours post injection while immunological effects such as hemocyte counts, bacteremia, phenoloxidase and lysozyme activity of the crickets were measured at 2- and 24-hours post-injection. RESULTS The injection of E. coli K1 in crickets resulted in >85% mortality 3-days post injection, accompanied by significant weight loss. E. coli K1 injection caused a significant increase in both phenoloxidase and lysozyme activities in cricket hemolymphs 24-hours post injection. Live E. coli K1 injected crickets resulted in a significant reduction in circulating hemocytes 24-hours post injection which was not observed in other treatment groups. This was consistent with the resolution of bacteremia observed 24-hours post infection in live E. coli K1 injected crickets. CONCLUSION Our study provides new insights on the innate immune response to pathogenic E. coli K1 in a cricket model.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia.
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Eunice Jalin Freddy Jalin
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia; Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
37
|
Evaluation of Antibacterial Drugs Using Silkworms Infected by Cutibacterium acnes. INSECTS 2021; 12:insects12070619. [PMID: 34357279 PMCID: PMC8303438 DOI: 10.3390/insects12070619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Cutibacterium acnes is a causative agent of inflammatory skin diseases and systemic infections. Systemic infections caused by C. acnes are difficult to treat, and the development of a systemic infection model for C. acnes would be useful for elucidating the mechanisms of infection and searching for therapeutic agents. In this study, we established a silkworm infection model as a new experimental system to evaluate the interaction between C. acnes and the host, and the efficacy of antibacterial drugs. Silkworms infected with C. acnes died when reared at 37 °C. The dose of injected bacterial cells required to kill half of the silkworms (LD50) was determined under rearing conditions at 37 °C. The viable cell number of C. acnes was increased in the hemolymph and fat body of the infected silkworms. Silkworms injected with autoclaved C. acnes cells did not die during the study period. The survival time of silkworms injected with C. acnes was prolonged by the injection of antibacterial drugs such as tetracycline and clindamycin. These findings suggest that the silkworm C. acnes infection model can be used to evaluate host toxicity caused by C. acnes and the in vivo efficacy of antimicrobial drugs.
Collapse
|
38
|
Rasheed S, Fries F, Müller R, Herrmann J. Zebrafish: An Attractive Model to Study Staphylococcus aureus Infection and Its Use as a Drug Discovery Tool. Pharmaceuticals (Basel) 2021; 14:594. [PMID: 34205723 PMCID: PMC8235121 DOI: 10.3390/ph14060594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Non-mammalian in vivo disease models are particularly popular in early drug discovery. Zebrafish (Danio rerio) is an attractive vertebrate model, the success of which is driven by several advantages, such as the optical transparency of larvae, the small and completely sequenced genome, the small size of embryos and larvae enabling high-throughput screening, and low costs. In this review, we highlight zebrafish models of Staphyloccoccus aureus infection, which are used in drug discovery and for studying disease pathogenesis and virulence. Further, these infection models are discussed in the context of other relevant zebrafish models for pharmacological and toxicological studies as part of early drug profiling. In addition, we examine key differences to commonly applied models of S.aureus infection based on invertebrate organisms, and we compare their frequency of use in academic research covering the period of January 2011 to January 2021.
Collapse
Affiliation(s)
- Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
| | - Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; (S.R.); (F.F.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover–Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
39
|
Yasu T, Matsumoto Y, Sugita T. Pharmacokinetics of voriconazole and its alteration by Candida albicans infection in silkworms. J Antibiot (Tokyo) 2021; 74:443-449. [PMID: 34045695 DOI: 10.1038/s41429-021-00428-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/09/2022]
Abstract
Voriconazole (VRCZ) is a triazole antifungal agent used for the treatment and prophylaxis of invasive fungal infections. Therapeutic drug monitoring of VRCZ is widely applied clinically because of the large inter-individual variability that is generally observed in VRCZ exposure. The blood levels of VRCZ are increased during an underlying inflammatory reaction, which is associated with infections. Silkworms are useful experimental animals for evaluating the pharmacokinetics and toxicity of compounds. In this study, we investigated the pharmacokinetic parameters, such as elimination half-life, clearance, and distribution volume of VRCZ using silkworms. The pharmacokinetic parameters of VRCZ were determined based on the concentrations in silkworm hemolymph after injection of VRCZ. The elimination half-life of VRCZ in silkworms was found to be similar to that observed in humans. In addition, we assessed the impact of Candida albicans infection on VRCZ concentrations in a silkworm infection model. The VRCZ concentration at 12 h after injection in the Candida albicans-infected group was significantly higher than that in the non-infected group. In the silkworm infection model, we were able to reproduce the relationship between inflammation and VRCZ blood concentrations, as observed in humans. We demonstrate that silkworms can be an effective alternative model animal for studying the pharmacokinetics of VRCZ. We also show that silkworms can be used to indicate essential infection and inflammation-based pharmacokinetic variations in VRCZ, which is usually observed in the clinic.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
40
|
Absence of osmoregulated periplasmic glucan confers antimicrobial resistance and increases virulence in Escherichia coli. J Bacteriol 2021; 203:e0051520. [PMID: 33846116 DOI: 10.1128/jb.00515-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important toward understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm-infection model and revealed that deletion of the opgGH operon encoding synthases for osmoregulated periplasmic glucan (OPG) increased the virulence of non-pathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to the host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm killing activity of E. coli In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased the antibiotic resistance and the virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence of E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR- independent manner.IMPORTANCEThe gene mutation types that increase bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increases E. coli virulence against silkworms. The OPG-knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli, but also support the usefulness of utilizing the bacterial experimental evolution method in the silkworm infection model.
Collapse
|
41
|
Kaito C, Murakami K, Imai L, Furuta K. Animal infection models using non-mammals. Microbiol Immunol 2020; 64:585-592. [PMID: 32757288 PMCID: PMC7590188 DOI: 10.1111/1348-0421.12834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Abstract
The use of non-human animal models for infection experiments is important for investigating the infectious processes of human pathogenic bacteria at the molecular level. Mammals, such as mice and rabbits, are also utilized as animal infection models, but large numbers of animals are needed for these experiments, which is costly, and fraught with ethical issues. Various non-mammalian animal infection models have been used to investigate the molecular mechanisms of various human pathogenic bacteria, including Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa. This review discusses the desirable characteristics of non-mammalian infection models and describes recent non-mammalian infection models that utilize Caenorhabditis elegans, silkworm, fruit fly, zebrafish, two-spotted cricket, hornworm, and waxworm.
Collapse
Affiliation(s)
- Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kanade Murakami
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Lina Imai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|