1
|
Cruz GLT, Gonçalves-Oliveira J, de Lemos ERS, D'Andrea PS, de Andreazzi CS. From host individual traits to community structure and composition: Bartonella infection insights. Parasit Vectors 2024; 17:440. [PMID: 39468608 PMCID: PMC11514747 DOI: 10.1186/s13071-024-06523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Phylogeny, combined with trait-based measures, offers insights into parasite sharing among hosts. However, the specific traits that mediate transmission and the aspects of host community diversity that most effectively explain parasite infection rates remain unclear, even for the Bartonella genus, a vector-borne bacteria that causes persistent blood infections in vertebrates. METHODS This study investigated the association between rodent host traits and Bartonella infection, as well as how rodent community diversity affects the odds of infection in the Atlantic Forest, using generalized linear models. Additionally, we assessed how host traits and phylogenetic similarities influence Bartonella infection among mammal species in Brazil. To this end, rodents were sampled from ten municipalities in Rio de Janeiro, southeastern Brazil. Then, we calculated several diversity indices for each community, including Rényi's diversity profiles, Fisher's alpha, Rao's quadratic entropy (RaoQ), Functional Diversity (FDis), Functional Richness (FRic), and Functional Evenness (FEve). Finally, we compiled a network encompassing all known interactions between mammal species and Bartonella lineages recorded in Brazil. RESULTS We found no significant relationship between diversity indices and the odds of Bartonella infection in rodent communities. Furthermore, there was no statistical support for the influence of individual-level traits (e.g., body length, sex, and age) or species-level ecological traits (e.g., locomotor habitat, dietary guild, and activity period) on Bartonella infection in rodents. A country-scale analysis, considering all mammal species, revealed no effect of host traits or phylogeny on Bartonella infection. CONCLUSIONS This study highlighted wild mammals that share Bartonella lineages with livestock, synanthropic, and domestic animals, underscoring the complexity of their maintenance cycle within the One Health framework. A key question arising from our findings is whether molecular host-cell interactions outweigh host body mass and ecological traits in influencing Bartonella infection, potentially opening new avenues for understanding host-parasite relationships and infection ecology.
Collapse
Affiliation(s)
- Gabriella Lima Tabet Cruz
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Pró-Reitoria de Pós-Graduação, Pesquisa e Inovação (PROPGPI), Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro, Brazil
| | - Jonathan Gonçalves-Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Laboratory for Zoonotic and Vector-Borne Diseases, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Paulo Sergio D'Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
- International Platform for Science, Technology and Innovation in Health, PICTIS, Fiocruz, Ílhavo, Portugal.
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Yehia SA, Badr AM, Bashtar AR, Ibrahim MAA, Mousa MR, Mostafa NA. Immune response, oxidative stress, and histological changes of Wistar rats after being administered with Parascaris equorum antigen. Sci Rep 2024; 14:18069. [PMID: 39103392 PMCID: PMC11300452 DOI: 10.1038/s41598-024-67788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
Worldwide, particularly in developing nations, helminth infections are the leading causes of livestock illness and mortality. Parascaris (P.) equorum, a parasitic worm from the Ascarididae family, significantly impacts the production, health, and working performance of equines. This study aimed to investigate the impact of intraperitoneal sensitization of P. equorum on the immune system, oxidative stress, and histology in Wistar rats. After acclimatization for 7 days, we divided the rats into five groups, each consisting of six rats. Group I, serving as the control, was administered distilled water, followed by groups II (day 7), III (day 14), IV (day 21), and V (day 33). The rats were euthanized every day mentioned (Days 7-33). On day 0, a dosage of 1ml/100 gm rat (containing 500 μg/ml protein content) emulsified crude antigen extract with an incomplete Freund's adjuvant (1:1 volume), followed by a second dose of the same antigen concentration on day 7. To assess the allergenicity of this nematode, we measured a whole blood profile, serum levels of IFN-γ, IL-5, IL-10, IL-13, and IL-33, total immunoglobulins IgE and IgG, and oxidative stress markers. Also, we examined histological changes in the liver, kidney, and spleen. The results showed that values of total leukocyte count, granulocytes, monocytes, and lymphocytes were significantly (P < 0.05) increased on day 14 post-infection relative to other days of investigation. It was found that the levels of total immunoglobulins (IgE and IgG) and cytokines (INF-γ, IL-5, IL-13, and IL-33) on days 14 and 21 were significantly higher than in the control group. At all periods of the experiment, the injected group exhibited significantly higher concentrations of MDA and NO compared to the control group (P < 0.05). Conversely, GSH and CAT levels (P < 0.05) dropped significantly on days 7, 14, and 21. Different rat tissues showed alterations. Ultimately, this study described the detrimental effects of P. equorum crude antigen administration on the immune system, oxidative states, and histological changes of Wistar rats at various intervals.
Collapse
Affiliation(s)
- Salma Adel Yehia
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | | - Mohamed Refat Mousa
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
3
|
Dean AD, Childs DZ, Corripio‐Miyar Y, Evans M, Hayward A, Kenyon F, McNally L, McNeilly TN, Pakeman RJ, Sweeny AR, Nussey DH, Pedersen AB, Fenton A. Host resources and parasite traits interact to determine the optimal combination of host parasite-mitigation strategies. Ecol Evol 2024; 14:e11310. [PMID: 38903143 PMCID: PMC11187858 DOI: 10.1002/ece3.11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 06/22/2024] Open
Abstract
Organisms have evolved diverse strategies to manage parasite infections. Broadly, hosts may avoid infection by altering behaviour, resist infection by targeting parasites or tolerate infection by repairing associated damage. The effectiveness of a strategy depends on interactions between, for example, resource availability, parasite traits (virulence, life-history) and the host itself (nutritional status, immunopathology). To understand how these factors shape host parasite-mitigation strategies, we developed a mathematical model of within-host, parasite-immune dynamics in the context of helminth infections. The model incorporated host nutrition and resource allocation to different mechanisms of immune response: larval parasite prevention; adult parasite clearance; damage repair (tolerance). We also considered a non-immune strategy: avoidance via anorexia, reducing intake of infective stages. Resources not allocated to immune processes promoted host condition, whereas harm due to parasites and immunopathology diminished it. Maximising condition (a proxy for fitness), we determined optimal host investment for each parasite-mitigation strategy, singly and combined, across different environmental resource levels and parasite trait values. Which strategy was optimal varied with scenario. Tolerance generally performed well, especially with high resources. Success of the different resistance strategies (larval prevention or adult clearance) tracked relative virulence of larval and adult parasites: slowly maturing, highly damaging larvae favoured prevention; rapidly maturing, less harmful larvae favoured clearance. Anorexia was viable only in the short term, due to reduced host nutrition. Combined strategies always outperformed any lone strategy: these were dominated by tolerance, with some investment in resistance. Choice of parasite mitigation strategy has profound consequences for hosts, impacting their condition, survival and reproductive success. We show that the efficacy of different strategies is highly dependent on timescale, parasite traits and resource availability. Models that integrate such factors can inform the collection and interpretation of empirical data, to understand how those drivers interact to shape host immune responses in natural systems.
Collapse
Affiliation(s)
- Andrew D. Dean
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | | | | | - Mike Evans
- Department for Disease ControlMoredun Research InstitutePenicuikUK
- The University of Edinburgh Royal (Dick) School of Veterinary StudiesRoslinUK
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adam Hayward
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | - Fiona Kenyon
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | - Luke McNally
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Tom N. McNeilly
- Department for Disease ControlMoredun Research InstitutePenicuikUK
| | | | - Amy R. Sweeny
- School of BiosciencesThe University of SheffieldSheffieldUK
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Daniel H. Nussey
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
4
|
Arcenillas-Hernández I, Ruiz de Ybáñez MR, Tizzani P, Pérez-Cutillas P, Martínez-Carrasco C. Influence of environmental factors on the occurrence of gastrointestinal and cardiopulmonary nematodes in the red fox in the semi-arid Mediterranean areas of the Iberian Peninsula. Res Vet Sci 2024; 171:105199. [PMID: 38458043 DOI: 10.1016/j.rvsc.2024.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Human-induced ecosystem fragmentation is one of the drivers causing wildlife migration from their natural habitats to urban areas, among other reasons. The red fox (Vulpes vulpes) is the most abundant wild canid in the semi-arid Mediterranean areas of the Iberian Peninsula. Water scarcity may result in areas shared by synanthropic fox populations and domestic animals becoming hotspots for parasite transmission. This study describes the gastrointestinal and cardiopulmonary nematode species affecting fox populations in these semi-arid areas and the influence of environmental variables on parasite abundance. A total of 167 foxes collected from 2015 to 2021 in the Region of Murcia (SE Spain) were analysed. Parasite abundance and spatial distribution were evaluated using environmental variables and host characteristics with a Generalised Linear Model and the Moran index. Eleven species (seven from the gastrointestinal tract and four from the cardiopulmonary tract) were described. The influence of biotic and abiotic variables was studied for Angiostrongylus vasorum, Crenosoma vulpis, Uncinaria stenocephala, Toxocara canis and Toxascaris leonina. Temperature, humidity and areas of forest or agricultural land influenced the abundance of these parasites, providing optimal conditions for free-living stages of the direct life cycle nematodes and intermediate hosts. Absolute abundance distribution maps showed defined locations for C. vulpis, T. canis and T. leonina. The results for U. stenocephala, T. canis and T. leonina were particularly important as their higher abundance levels were found close to anthropized areas, which need to be carefully evaluated to prevent transmission of these nematodes between domestic and wild canids and human health.
Collapse
Affiliation(s)
- I Arcenillas-Hernández
- Dpto. de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - M R Ruiz de Ybáñez
- Dpto. de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Espinardo, 30100 Murcia, Spain.
| | - P Tizzani
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, Torino, Italy
| | - P Pérez-Cutillas
- Departamento de Geografía, Facultad de Letras, Universidad de Murcia, Campus de La Merced, 30001 Murcia, Spain
| | - C Martínez-Carrasco
- Dpto. de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Espinardo, 30100 Murcia, Spain
| |
Collapse
|
5
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
6
|
Mendoza H, López-Pérez AM, Rubio AV, Barrón-Rodríguez JJ, Mazari-Hiriart M, Pontifes PA, Dirzo R, Suzán G. Association between anthropization and rodent reservoirs of zoonotic pathogens in Northwestern Mexico. PLoS One 2024; 19:e0298976. [PMID: 38386681 PMCID: PMC10883555 DOI: 10.1371/journal.pone.0298976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The world is facing a major pulse of ecological and social changes that may favor the risk of zoonotic outbreaks. Such risk facilitation may occur through the modification of the host's community diversity and structure, leading to an increase in pathogen reservoirs and the contact rate between these reservoirs and humans. Here, we examined whether anthropization alters the relative abundance and richness of zoonotic reservoir and non-reservoir rodents in three Socio-Ecological Systems. We hypothesized that anthropization increases the relative abundance and richness of rodent reservoirs while decreasing non-reservoir species. We first developed an Anthropization index based on 15 quantitative socio-ecological variables classified into five groups: 1) Vegetation type, 2) Urbanization degree, 3) Water quality, 4) Potential contaminant sources, and 5) Others. We then monitored rodent communities in three regions of Northwestern Mexico (Baja California, Chihuahua, and Sonora). A total of 683 rodents of 14 genera and 27 species were captured, nine of which have been identified as reservoirs of zoonotic pathogens (359 individuals, 53%). In all regions, we found that as anthropization increased, the relative abundance of reservoir rodents increased; in contrast, the relative abundance of non-reservoir rodents decreased. In Sonora, reservoir richness increased with increasing anthropization, while in Baja California and Chihuahua non-reservoir richness decreased as anthropization increased. We also found a significant positive relationship between the anthropization degree and the abundance of house mice (Mus musculus) and deer mice (Peromyscus maniculatus), the most abundant reservoir species in the study. These findings support the hypothesis that reservoir species of zoonotic pathogens increase their abundance in disturbed environments, which may increase the risk of pathogen exposure to humans, while anthropization creates an environmental filtering that promotes the local extinction of non-reservoir species.
Collapse
Affiliation(s)
- Hugo Mendoza
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Andrés M. López-Pérez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, México
| | - André V. Rubio
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Julio J. Barrón-Rodríguez
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marisa Mazari-Hiriart
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paulina A. Pontifes
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- MIVEGEC Unit, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Rodolfo Dirzo
- Departments of Biology and Earth Systems Science, Stanford University, Stanford, CA, United States of America
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
7
|
Lima IAD, Bicca-Marques JC. Opportunistic meat-eating by urban folivorous-frugivorous monkeys. Primates 2024; 65:25-32. [PMID: 37861866 DOI: 10.1007/s10329-023-01098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
The consumption of vertebrate tissues and eggs (hereinafter "meat") is relatively common among some primates that are highly frugivorous or eclectic omnivores, but rare or absent in those that are highly folivorous. The Neotropical howler monkeys (Alouatta spp.) belong in the latter group. Here we report the consumption of meat by free-ranging urban black and gold howler monkeys (Alouatta caraya) and discuss the potential role of the consumed meat as a source of energy, protein, or micronutrients. We studied three groups of howler monkeys (comprising four to seven individuals), living in city squares (0.6, 1.5, and 1.9 ha) in south Brazil, from July 2022 to May 2023 (65 days; 797 h of observations). All of the study groups were spontaneously supplemented daily by people with variable amounts and types of food provided. Meat was only offered in the two larger squares. The groups' diets included leaves (42-49% scan sampling feeding records), fruit (3-20%), and flowers (2-5%) from 13 to 20 plant species, and considerable amounts of supplemented food (27-50%). We recorded 33 individual events of ingestion of supplemented cooked meat, three individual events of dove egg predation, and three bird nest inspections without egg consumption. All members of the two groups in the larger squares, except an infant male, ingested meat at least once. Meat accounted for 1% of total scan feeding records of both groups with access to this supplement. We conclude that whereas the opportunistic consumption of meat probably contributed only minor amounts of energy and protein to the study subjects, it may have benefitted them with micronutrients that are scarce in plant foods.
Collapse
Affiliation(s)
- Isadora Alves de Lima
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Prédio 12C, Sala 401.02, Porto Alegre, RS, 90619-900, Brazil
| | - Júlio César Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6681, Prédio 12C, Sala 401.02, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
8
|
Nieto-Rabiela F, Esponda F, Roche B, Suzán G. Network Analysis of Hosts and Vectors in the Multiple Transmissions of Flavivirus. Vector Borne Zoonotic Dis 2023; 23:537-543. [PMID: 37579044 DOI: 10.1089/vbz.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Background: It is well established that infection patterns in nature can be driven by host, vector, and symbiont communities. One of the first stages in understanding how these complex systems have influenced the incidence of vector-borne diseases is to recognize what are the major vertebrate (i.e., hosts) and invertebrate (i.e., vectors) host species that propagate those microbes. Such identification opens the possibility to identify such essential species to develop targeted preventive efforts. Methods: The goal of this study, which relies on a compilation of a global database based on published literature, is to identify relevant host species in the global transmission of mosquito-borne flaviviruses, such as West Nile virus, St. Louis virus, Dengue virus, and Zika virus, which pose a concern to animal and public health. Results: The analysis of the resulting database involving 1174 vertebrate host species and 46 reported vector species allowed us to establish association networks between these species. Three host species (Mus musculus, Sapajus flavius, Sapajus libidinosus, etc.) have a much larger centrality values, suggesting that they play a key role in flavivirus community interactions. Conclusion: The methods used and the species detected as relevant in the network provide new knowledge and consistency that could aid health officials in rethinking prevention and control strategies with a focus on viral communities and their interactions. Other infectious diseases that harm animal and human health could benefit from such network techniques.
Collapse
Affiliation(s)
- Fabiola Nieto-Rabiela
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, México
- Ecological and Evolutionary Processes within Communities (PEEC), MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Fernando Esponda
- Departamento de computación, Instituto Tecnológico Autónomo de México (ITAM), Ciudad de México, México
| | - Benjamin Roche
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, México
- Ecological and Evolutionary Processes within Communities (PEEC), MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, México
| |
Collapse
|
9
|
Sugden S, Steckler DK, Sanderson D, Abercrombie B, Abercrombie D, Seguin MA, Ford K, St. Clair CC. Age-dependent relationships among diet, body condition, and Echinococcus multilocularis infection in urban coyotes. PLoS One 2023; 18:e0290755. [PMID: 37647321 PMCID: PMC10468061 DOI: 10.1371/journal.pone.0290755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Urban coyotes (Canis latrans) in North America increasingly exhibit a high prevalence of Echinococcus multilocularis, a cestode of recent and rising public health concern that uses rodents as intermediate hosts and canids as definitive hosts. However, little is known about the factors that drive the high urban prevalence of this parasite. We hypothesized that the diet of urban coyotes may contribute to their higher E. multilocularis infection prevalence via either (a) greater exposure to the parasite from increased rodent consumption or (b) increased susceptibility to infection due to the negative health effects of consuming anthropogenic food. We tested these hypotheses by comparing the presence and intensity of E. multilocularis infection to physiological data (age, sex, body condition, and spleen mass), short-term diet (stomach contents), and long-term diet (δ13C and δ15N stable isotopes) in 112 coyote carcasses collected for reasons other than this study from Edmonton, Alberta and the surrounding area. Overall, the best predictor of infection status in this population was young age, where the likelihood of infection decreased with age in rural coyotes but not urban ones. Neither short- nor long-term measures of diet could predict infection across our entire sample, but we found support for our initial hypotheses in young, urban coyotes: both rodent and anthropogenic food consumption effectively predicted E. multilocularis infection in this population. The effects of these predictors were more variable in rural coyotes and older coyotes. We suggest that limiting coyote access to areas in which anthropogenic food and rodent habitat overlap (e.g., compost piles or garbage sites) may effectively reduce the risk of infection, deposition, and transmission of this emerging zoonotic parasite in urban areas.
Collapse
Affiliation(s)
- Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Deanna K. Steckler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Sanderson
- Department of Biological Sciences, MacEwan University, Edmonton, Alberta, Canada
| | - Bill Abercrombie
- Animal Damage Control, Bushman Inc., Sherwood Park, Alberta, Canada
| | | | - M. Alexis Seguin
- IDEXX Laboratories, Inc., Westbrook, Maine, United States of America
| | - Kyra Ford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
10
|
D'Bastiani E, Princepe D, Marquitti FMD, Boeger WA, Campião KM, Araujo SBL. Effect of Host-Switching on the Ecological and Evolutionary Patterns of Parasites. Syst Biol 2023; 72:912-924. [PMID: 37097763 DOI: 10.1093/sysbio/syad022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Speciation via host-switching is a macroevolutionary process that emerges from a microevolutionary dynamic where individual parasites switch hosts, establish a new association, and reduce reproductive contact with the original parasite lineage. Phylogenetic distance and geographic distribution of the hosts have been shown to be determinants of the capacity and opportunity of the parasite to change hosts. Although speciation via host-switching has been reported in many host-parasite systems, its dynamic on the individual, population and community levels is poorly understood. Here we propose a theoretical model to simulate parasite evolution considering host-switching events on the microevolutionary scale, taking into account the macroevolutionary history of the hosts, to evaluate how host-switching can affect ecological and evolutionary patterns of parasites in empirical communities at regional and local scales. In the model, parasite individuals can switch hosts under variable intensity and have their evolution driven by mutation and genetic drift. Mating is sexual and only individuals that are sufficiently similar can produce offspring. We assumed that parasite evolution occurs at the same evolutionary time scale as their hosts, and that the intensity of host-switching decreases as the host species differentiate. Ecological and evolutionary patterns were characterized by the turnover of parasite species among host species, and parasite evolutionary tree imbalance respectively. We found a range of host-switching intensity that reproduces ecological and evolutionary patterns observed in empirical communities. Our results showed that turnover decreased as host-switching intensity increased, with low variation among the model replications. On the other hand, tree imbalance showed wide variation and non-monotonic tendency. We concluded that tree imbalance was sensitive to stochastic events, whereas turnover may be a good indicator of host-switching. We found that local communities corresponded to higher host-switching intensity when compared to regional communities, highlighting that spatial scale is a limitation for host-switching. [Dispersal of parasites, opportunity and capacity of interaction, phylogenetic conservatism, and community structure.].
Collapse
Affiliation(s)
- Elvira D'Bastiani
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| | - Débora Princepe
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP-Campinas, São Paulo, Brasil
| | - Flavia M D Marquitti
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP-Campinas, São Paulo, Brasil
- Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP-Campinas, São Paulo, Brasil
| | - Walter A Boeger
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
- Departamento de Zoologia, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| | - Karla M Campião
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
- Departamento de Zoologia, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| | - Sabrina B L Araujo
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
- Departamento de Física, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| |
Collapse
|
11
|
Hector TE, Gehman ALM, King KC. Infection burdens and virulence under heat stress: ecological and evolutionary considerations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220018. [PMID: 36744570 PMCID: PMC9900716 DOI: 10.1098/rstb.2022.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/17/2022] [Indexed: 02/07/2023] Open
Abstract
As a result of global change, hosts and parasites (including pathogens) are experiencing shifts in their thermal environment. Despite the importance of heat stress tolerance for host population persistence, infection by parasites can impair a host's ability to cope with heat. Host-parasite eco-evolutionary dynamics will be affected if infection reduces host performance during heating. Theory predicts that within-host parasite burden (replication rate or number of infecting parasites per host), a key component of parasite fitness, should correlate positively with virulence-the harm caused to hosts during infection. Surprisingly, however, the relationship between within-host parasite burden and virulence during heating is often weak. Here, we describe the current evidence for the link between within-host parasite burden and host heat stress tolerance. We consider the biology of host-parasite systems that may explain the weak or absent link between these two important host and parasite traits during hot conditions. The processes that mediate the relationship between parasite burden and host fitness will be fundamental in ecological and evolutionary responses of host and parasites in a warming world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- T. E. Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - A.-L. M. Gehman
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC Canada, V0N 1M0
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC Canada, V6T 1Z4
| | - K. C. King
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
12
|
Franquesa-Soler M, Spaan D, Hernández-Jaramillo A, Andresen E. Citizen’s Perceptions on Urban Black Howler Monkeys (Alouatta pigra) in the City of Palenque (Mexico): A Case Study to Aid Policy Decisions. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Moubarak M, Fischhoff IR, Han BA, Castellanos AA. A spatially explicit risk assessment of salamander populations to
Batrachochytrium salamandrivorans
in the United States. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | | | - Barbara A. Han
- Cary Institute of Ecosystem Studies Millbrook New York USA
| | | |
Collapse
|
15
|
Estavillo C, Weyland F, Herrera L. Zoonotic Disease Risk and Life-History Traits: Are Reservoirs Fast Life Species? ECOHEALTH 2022; 19:390-401. [PMID: 35841485 DOI: 10.1007/s10393-022-01608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The relationship between humans, wildlife and disease transmission can be complex and context-dependent, and disease dynamics may be determined by idiosyncratic species. Therefore, an outstanding question is how general is the finding that species with faster life histories are more probable hosts of zoonoses. Ecological knowledge on species, jointly with public health data, can provide relevant information on species that should be targeted for epidemiological surveillance or management. We investigated whether mammal species traits can be good indicators of zoonotic reservoir status in an intensified agricultural region of Argentina. We find support for a relationship between reservoir status and the pace of life syndrome, confirming that fast life histories can be a factor of zoonotic risk. Nonetheless, we observed that for certain zoonosis, reservoirs may display a slow pace of life, suggesting that idiosyncratic interactions can occur. We conclude that applying knowledge from the life history-disease relationship can contribute significantly to disease risk assessment. Such an approach may be especially valuable in the current context of environmental change and agricultural intensification.
Collapse
Affiliation(s)
- Candelaria Estavillo
- Grupo de Estudio de Agroecosistemas y Paisajes Rurales, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, CONICET, EEI INTA Balcarce, Ruta 226 Km 73.5, Balcarce, Prov. de Buenos Aires, Argentina.
| | - Federico Weyland
- Grupo de Estudio de Agroecosistemas y Paisajes Rurales, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, CONICET, EEI INTA Balcarce, Ruta 226 Km 73.5, Balcarce, Prov. de Buenos Aires, Argentina
| | - Lorena Herrera
- Grupo de Estudio de Agroecosistemas y Paisajes Rurales, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, CONICET, EEI INTA Balcarce, Ruta 226 Km 73.5, Balcarce, Prov. de Buenos Aires, Argentina
| |
Collapse
|
16
|
Ma Z(S, Zhang YP. Ecology of Human Medical Enterprises: From Disease Ecology of Zoonoses, Cancer Ecology Through to Medical Ecology of Human Microbiomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships; but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet.
Collapse
|
17
|
Combs MA, Kache PA, VanAcker MC, Gregory N, Plimpton LD, Tufts DM, Fernandez MP, Diuk-Wasser MA. Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. GLOBAL CHANGE BIOLOGY 2022; 28:1705-1724. [PMID: 34889003 DOI: 10.1111/gcb.16033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.
Collapse
Affiliation(s)
- Matthew A Combs
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Pallavi A Kache
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Nichar Gregory
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Laura D Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Danielle M Tufts
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
18
|
French SK, Pearl DL, Sutton WB, Peregrine AS, Jardine CM. Environmental factors associated with Baylisascaris procyonis infection from a population of raccoons in Toronto, Ontario, Canada. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Cohen H, Smith GP, Sardiñas H, Zorn JF, McFrederick QS, Woodard SH, Ponisio LC. Mass-flowering monoculture attracts bees, amplifying parasite prevalence. Proc Biol Sci 2021; 288:20211369. [PMID: 34641730 DOI: 10.1098/rspb.2021.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the global agricultural footprint expands, it is increasingly important to address the link between the resource pulses characteristic of monoculture farming and wildlife epidemiology. To understand how mass-flowering crops impact host communities and subsequently amplify or dilute parasitism, we surveyed wild and managed bees in a monoculture landscape with varying degrees of floral diversification. We screened 1509 bees from 16 genera in sunflower fields and in non-crop flowering habitat across 200 km2 of the California Central Valley. We found that mass-flowering crops increase bee abundance. Wild bee abundance was subsequently associated with higher parasite presence, but only in sites with a low abundance of non-crop flowers. Bee traits related to higher dispersal ability (body size) and diet breadth (pollen lecty) were also positively related to parasite presence. Our results highlight the importance of non-crop flowering habitat for supporting bee communities. We suggest monoculture alone cannot support healthy bees.
Collapse
Affiliation(s)
- Hamutahl Cohen
- Institute of Food and Agricultural Sciences, University of Florida, Collier County Extension Service, 14700 Immokalee Road, Naples, FL 34120, USA.,Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Gordon P Smith
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Hillary Sardiñas
- California Association of Resource Conservation Districts, 801 K Street, MS 14-15, Sacramento, CA 95814, USA
| | - Jocelyn F Zorn
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Lauren C Ponisio
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| |
Collapse
|
20
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Strauss AT, Bowerman L, Porath‐Krause A, Seabloom EW, Borer ET. Mixed infection, risk projection, and misdirection: Interactions among pathogens alter links between host resources and disease. Ecol Evol 2021; 11:9599-9609. [PMID: 34306646 PMCID: PMC8293790 DOI: 10.1002/ece3.7781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022] Open
Abstract
A growing body of literature links resources of hosts to their risk of infectious disease. Yet most hosts encounter multiple pathogens, and projections of disease risk based on resource availability could be fundamentally wrong if they do not account for interactions among pathogens within hosts. Here, we measured infection risk of grass hosts (Avena sativa) exposed to three naturally co-occurring viruses either singly or jointly (barley and cereal yellow dwarf viruses [B/CYDVs]: CYDV-RPV, BYDV-PAV, and BYDV-SGV) along experimental gradients of nitrogen and phosphorus supply. We asked whether disease risk (i.e., infection prevalence) differed in single versus co-inoculations, and whether these differences varied with rates and ratios of nitrogen and phosphorus supply. In single inoculations, the viruses did not respond strongly to nitrogen or phosphorus. However, in co-inoculations, we detected illustrative cases of 1) resource-dependent antagonism (lower prevalence of RPV with increasing N; possibly due to competition), 2) resource-dependent facilitation (higher prevalence of SGV with decreasing N:P; possibly due to immunosuppression), and 3) weak or no interactions within hosts (for PAV). Together, these within-host interactions created emergent patterns for co-inoculated hosts, with both infection prevalence and viral richness increasing with the combination of low nitrogen and high phosphorus supply. We demonstrate that knowledge of multiple pathogens is essential for predicting disease risk from host resources and that projections of risk that fail to acknowledge resource-dependent interactions within hosts could be qualitatively wrong. Expansions of theory from community ecology theory may help anticipate such relationships by linking host resources to diverse pathogen communities.
Collapse
Affiliation(s)
- Alexander T. Strauss
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
| | - Lucas Bowerman
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Anita Porath‐Krause
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
22
|
Siciliano-Martina L, Light JE, Lawing AM. Cranial morphology of captive mammals: a meta-analysis. Front Zool 2021; 18:4. [PMID: 33485360 PMCID: PMC7825229 DOI: 10.1186/s12983-021-00386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Captive facilities such as zoos are uniquely instrumental in conservation efforts. To fulfill their potential as bastions for conservation, zoos must preserve captive populations as appropriate proxies for their wild conspecifics; doing so will help to promote successful reintroduction efforts. Morphological changes within captive populations may be detrimental to the fitness of individual animals because these changes can influence functionality; thus, it is imperative to understand the breadth and depth of morphological changes occurring in captive populations. Here, we conduct a meta-analysis of scientific literature reporting comparisons of cranial measures between captive and wild populations of mammals. We investigate the pervasiveness of cranial differences and whether cranial morphological changes are associated with ecological covariates specific to individual species, such as trophic level, dietary breadth, and home range size. RESULTS Cranial measures of skull length, skull width, and the ratio of skull length-to-width differed significantly between many captive and wild populations of mammals reported in the literature. Roughly half of captive populations differed from wild populations in at least one cranial measure, although the degree of changes varied. Carnivorous species with a limited dietary breadth displayed the most consistent changes associated with skull widening. Species with a more generalized diet displayed less morphological changes in captivity. CONCLUSIONS Wild and captive populations of mammals differed in cranial morphology, but the nature and magnitude of their cranial differences varied considerably across taxa. Although changes in cranial morphology occur in captivity, specific changes cannot be generalized for all captive mammal populations. The nature of cranial changes in captivity may be specific to particular taxonomic groups; thus, it may be possible to establish expectations across smaller taxonomic units, or even disparate groups that utilize their cranial morphology in a similar way. Given that morphological changes occurring in captive environments like zoos have the potential to limit reintroduction success, our results call for a critical evaluation of current captive husbandry practices to prevent unnecessary morphological changes.
Collapse
Affiliation(s)
- Leila Siciliano-Martina
- Interdisciplinary Program in Ecology & Evolutionary Biology, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Jessica E Light
- Interdisciplinary Program in Ecology & Evolutionary Biology, Texas A&M University, College Station, TX, 77843, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - A Michelle Lawing
- Interdisciplinary Program in Ecology & Evolutionary Biology, Texas A&M University, College Station, TX, 77843, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
23
|
Millán J, Di Cataldo S, Volokhov DV, Becker DJ. Worldwide occurrence of haemoplasmas in wildlife: Insights into the patterns of infection, transmission, pathology and zoonotic potential. Transbound Emerg Dis 2020; 68:3236-3256. [PMID: 33210822 DOI: 10.1111/tbed.13932] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Haemotropic mycoplasmas (haemoplasmas) have increasingly attracted the attention of wildlife disease researchers due to a combination of wide host range, high prevalence and genetic diversity. A systematic review identified 75 articles that investigated haemoplasma infection in wildlife by molecular methods (chiefly targeting partial 16S rRNA gene sequences), which included 131 host genera across six orders. Studies were less common in the Eastern Hemisphere (especially Africa and Asia) and more frequent in the Artiodactyla and Carnivora. Meta-analysis showed that infection prevalence did not vary by geographic region nor host order, but wild hosts showed significantly higher prevalence than captive hosts. Using a taxonomically flexible machine learning algorithm, we also found vampire bats and cervids to have greater prevalence, whereas mink, a subclade of vesper bats, and true foxes all had lower prevalence compared to the remaining sampled mammal phylogeny. Haemoplasma genotype and nucleotide diversity varied little among wild mammals but were marginally lower in primates and bats. Coinfection with more than one haemoplasma species or genotype was always confirmed when assessed. Risk factors of infection identified were sociality, age, males and high trophic levels, and both prevalence and diversity were often higher in undisturbed environments. Haemoplasmas likely use different and concurrent transmission routes and typically display enzootic dynamics when wild populations are studied longitudinally. Haemoplasma pathology is poorly known in wildlife but appears subclinical. Candidatus Mycoplasma haematohominis, which causes disease in humans, probably has it natural host in bats. Haemoplasmas can serve as a model system in ecological and evolutionary studies, and future research on these pathogens in wildlife must focus on increasing the geographic range and taxa of studies and elucidating pathology, transmission and zoonotic potential. To facilitate such work, we recommend using universal PCR primers or NGS protocols to detect novel haemoplasmas and other genetic markers to differentiate among species and infer cross-species transmission.
Collapse
Affiliation(s)
- Javier Millán
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Fundación ARAID, Zaragoza, Spain.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Sophia Di Cataldo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
24
|
Albery GF, Becker DJ. Fast-lived Hosts and Zoonotic Risk. Trends Parasitol 2020; 37:117-129. [PMID: 33214097 DOI: 10.1016/j.pt.2020.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Because most emerging human pathogens originate in mammals, many studies aim to identify host traits that determine the risk of sourcing zoonotic outbreaks. Studies regularly assert that 'fast-lived' mammal species exhibiting greater fecundity and shorter lifespans tend to host more zoonoses; however, the causes of this association remain poorly understood and they cover a range of immune and nonimmune mechanisms. We discuss these drivers in the context of evolutionary ecology and wildlife-human interactions. Ultimately, differentiating these mechanisms will require linking interspecific variation in life history with immunity, pathogen diversity, transmissibility, and zoonotic risk, and critical data gaps currently limit our ability to do so. We highlight sampling and analytical frameworks to address this gap and to better inform zoonotic reservoir prediction.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA.
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
25
|
Parasites of an Arctic scavenger; the wolverine ( Gulo gulo). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:178-185. [PMID: 33134077 PMCID: PMC7591336 DOI: 10.1016/j.ijppaw.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022]
Abstract
Parasites are fundamental components within all ecosystems, shaping interaction webs, host population dynamics and behaviour. Despite this, baseline data is lacking to understand the parasite ecology of many Arctic species, including the wolverine (Gulogulo), a top Arctic predator and scavenger. Here, we combined traditional count methods (i.e. adult helminth recovery, where taxonomy was confirmed by molecular identification) with 18S rRNA high-throughput sequencing to document the wolverine parasite community. Further, we investigated whether the abundance of parasites detected using traditional methods were associated with host metadata, latitude, and longitude (ranging from the northern limit of the boreal forest to the low Arctic and Arctic tundra in Nunavut, Canada). Adult parasites in intestinal contents were identified as Baylisascaris devosi in 72% (n = 39) of wolverines and Taenia spp. in 22% (n = 12), of which specimens from 2 wolverines were identified as T. twitchelli based on COX1 sequence. 18S rRNA high-throughput sequencing on DNA extracted from faeces detected additional parasites, including a pseudophyllid cestode (Diplogonoporus spp. or Diphyllobothrium spp.), two metastrongyloid lungworms (Angiostrongylus spp. or Aelurostrongylus spp., and Crenosoma spp.), an ascarid nematode (Ascaris spp. or Toxocara spp.), a Trichinella spp. nematode, and the protozoan Sarcocystis spp., though each at a prevalence less than 13% (n = 7). The abundance of B. devosi significantly decreased with latitude (slope = -0.68; R2 = 0.17; P = 0.004), suggesting a northerly limit in distribution. We describe B. devosi and T. twitchelli in Canadian wolverines for the first time since 1978, and extend the recorded geographic distribution of these parasites ca 2000 km to the East and into the tundra ecosystem. Our findings illustrate the value of molecular methods in support of traditional methods, encouraging additional work to improve the advancement of molecular screening for parasites. Combining traditional and molecular methods better captures parasite diversity. B. devosi and Taenia spp. distribution extends ca 2000 km East and into the tundra. The abundance of B. devosi in wolverines significantly decreases with latitude. B. devosi and Taenia spp. abundance is not associated with wolverine host metadata.
Collapse
|
26
|
Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, Urbano P, Cuervo A, Ramírez JD. Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasit Vectors 2020; 13:434. [PMID: 32867816 PMCID: PMC7457505 DOI: 10.1186/s13071-020-04310-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Triatomines are hematophagous insects that play an important role as vectors of Trypanosoma cruzi, the causative agent of Chagas disease. These insects have adapted to multiple blood-feeding sources that can affect relevant aspects of their life-cycle and interactions, thereby influencing parasitic transmission dynamics. We conducted a characterization of the feeding sources of individuals from the primary circulating triatomine genera in Colombia using amplicon-based next-generation sequencing (NGS). METHODS We used 42 triatomines collected in different departments of Colombia. DNA was extracted from the gut. The presence of T. cruzi was identified using real-time PCR, and discrete typing units (DTUs) were determined by conventional PCR. For blood-feeding source identification, PCR products of the vertebrate 12S rRNA gene were obtained and sequenced by next-generation sequencing (NGS). Blood-meal sources were inferred using blastn against a curated reference dataset containing the 12S rRNA sequences belonging to vertebrates with a distribution in South America that represent a potential feeding source for triatomine bugs. Mean and median comparison tests were performed to evaluate differences in triatomine blood-feeding sources, infection state, and geographical regions. Lastly, the inverse Simpson's diversity index was calculated. RESULTS The overall frequency of T. cruzi infection was 83.3%. TcI was found as the most predominant DTU (65.7%). A total of 67 feeding sources were detected from the analyses of approximately 7 million reads. The predominant feeding source found was Homo sapiens (76.8%), followed by birds (10.5%), artiodactyls (4.4%), and non-human primates (3.9%). There were differences among numerous feeding sources of triatomines of different species. The diversity of feeding sources also differed depending on the presence of T. cruzi. CONCLUSIONS To the best of our knowledge, this is the first study to employ amplicon-based NGS of the 12S rRNA gene to depict blood-feeding sources of multiple triatomine species collected in different regions of Colombia. Our findings report a striking read diversity that has not been reported previously. This is a powerful approach to unravel transmission dynamics at microgeographical levels.
Collapse
Affiliation(s)
- Luisa M Arias-Giraldo
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Fundación Universitaria Internacional del Trópico Americano (Unitropico), Yopal, Colombia
| | - Andrés Cuervo
- Secretaría Departamental de Salud de Arauca, Arauca, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
27
|
Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, Jones KE. Zoonotic host diversity increases in human-dominated ecosystems. Nature 2020; 584:398-402. [DOI: 10.1038/s41586-020-2562-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
|
28
|
Aldana M, Pulgar J, Hernández B, George-Nascimento M, Lagos NA, García-Huidobro MR. Context-Dependence in parasite effects on keyhole limpets. MARINE ENVIRONMENTAL RESEARCH 2020; 157:104923. [PMID: 32094097 DOI: 10.1016/j.marenvres.2020.104923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Parasites alter the reproductive performance of their hosts, limit their growth, and thereby modify the energy budget of these hosts. Experimental studies and theoretical models suggest that the outcome of the host-parasite interactions could be determined by ecological factors such as food availability levels in the local habitats. Nutrient inputs may affect the host's food resource availability with positive or negative effects on parasite infection rates and tolerance of infection, however this has not been specifically evaluated in natural systems. In this study, we evaluate the effects of parasitism by Proctoeces humboldti on body size, gonadosomatic index (GSI), and metabolic rate (oxygen consumption) of their second intermediate host Fissurella crassa limpets, under contrasting natural conditions of productivity (upwelling center vs upwelling shadow sites). Our results evidenced that parasitized limpets collected from the intertidal habitat influenced by coastal upwelling site showed greater shell length, muscular foot biomass and GSI as compared to non-parasitized limpets collected in the same site, and compared to parasitized and non-parasitized limpets collected from the sites under the influence of upwelling shadow conditions. Oxygen consumption was lower in parasitized limpets collected from the upwelling-influenced site than in the other groups, independent of age, suggesting reduced metabolic stress in infected individuals inhabiting these productive sites. Our results suggest that increased productivity in upwelling sites could mitigate the conflict for resources in the P. humboldti - F. crassa system, influencing where such interaction is found in the continuum between parasitism and mutualism. Since parasitism is ubiquitous in natural systems, and play important roles in ecological and evolutionary processes, it is important to analyze host-parasite interaction across a variety of ecological conditions, especially in biological conservation.
Collapse
Affiliation(s)
- M Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile.
| | - J Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - B Hernández
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - M George-Nascimento
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - N A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - M R García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| |
Collapse
|
29
|
Merrill L, Stewart Merrill TE, Barger AM, Benson TJ. Avian Health across the Landscape: Nestling Immunity Covaries with Changing Landcover. Integr Comp Biol 2020; 59:1150-1164. [PMID: 31086961 DOI: 10.1093/icb/icz037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape composition of an organism's home range or territory should influence aspects of its condition, including measures of immune function. Changes in immunocompetence arising from variation in landcover may provide important links between habitat changes and patterns of disease spread. To establish a baseline understanding for whether immune measures covary with changes in landcover, we examined associations between immunological parameters and landcover composition for adults and nestlings of five shrubland bird species. Specifically, we examined the bacteria-killing ability (BKA) of the blood plasma and profiles of the five avian leukocytes as our measures of immune function, and assessed the proportion of area around each bird's nest that was composed of the four major landcover types in the Midwestern USA: row crop agriculture, developed, forest, and grass/shrub. We performed landcover assessments at 100 and 1000 m radius buffers to identify whether associations between habitat and immune function differed at the two spatial scales. As part of this work, we examined age and species-related immunological variation, as well as associations among the immune parameters. There was little evidence linking variation in immune function to landcover composition for the adults at either spatial scale, but there were numerous associations for nestlings, and these were stronger at the 1000 than 100 m spatial scale. The proportion of grass/shrub around the nest had the largest impact on immune function, although the effect varied by immune parameter and species. BKA and basophils were inversely associated with grass/shrub for all species, whereas lymphocytes were positively associated with grass/shrub for all species. We also documented species-level differences among adults and nestlings for BKA and all leukocytes except monocytes. As expected, we found that nestlings had reduced levels of BKA, lymphocytes, monocytes, and elevated heterophils compared with adults (except for field sparrow-Spizella pusilla-nestlings, which had higher lymphocytes). Basophils generally did not differ by age class, and eosinophils exhibited species-specific patterns, in which they were higher for nestling American robins (Turdus migratorius) and gray catbirds (Dumetella carolinensis) compared with adults, but lower in the other nestlings. Heterophils and lymphocytes were inversely associated for all species and age classes, and basophil levels were positively associated with BKA across species and age classes. Together, these findings bolster our understanding of age and species-specific variation in immune function, and provide evidence that immune measures can covary with changes in landcover.
Collapse
Affiliation(s)
- L Merrill
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, 61801, USA
| | - T E Stewart Merrill
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | - A M Barger
- College of Veterinary Medicine, University of Illinois, Urbana-Champaign, 61802, USA
| | - T J Benson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Urbana-Champaign, 61820, USA
| |
Collapse
|
30
|
The application of meta-analytic (multi-level) models with multiple random effects: A systematic review. Behav Res Methods 2020; 52:2031-2052. [DOI: 10.3758/s13428-020-01373-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Borremans B, Faust C, Manlove KR, Sokolow SH, Lloyd-Smith JO. Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180344. [PMID: 31401953 PMCID: PMC6711298 DOI: 10.1098/rstb.2018.0344] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 11/12/2022] Open
Abstract
Pathogen spillover between different host species is the trigger for many infectious disease outbreaks and emergence events, and ecosystem boundary areas have been suggested as spatial hotspots of spillover. This hypothesis is largely based on suspected higher rates of zoonotic disease spillover and emergence in fragmented landscapes and other areas where humans live in close vicinity to wildlife. For example, Ebola virus outbreaks have been linked to contacts between humans and infected wildlife at the rural-forest border, and spillover of yellow fever via mosquito vectors happens at the interface between forest and human settlements. Because spillover involves complex interactions between multiple species and is difficult to observe directly, empirical studies are scarce, particularly those that quantify underlying mechanisms. In this review, we identify and explore potential ecological mechanisms affecting spillover of pathogens (and parasites in general) at ecosystem boundaries. We borrow the concept of 'permeability' from animal movement ecology as a measure of the likelihood that hosts and parasites are present in an ecosystem boundary region. We then discuss how different mechanisms operating at the levels of organisms and ecosystems might affect permeability and spillover. This review is a step towards developing a general theory of cross-species parasite spillover across ecosystem boundaries with the eventual aim of improving predictions of spillover risk in heterogeneous landscapes. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Benny Borremans
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Universiteit Hasselt, Hasselt, Limburg, Belgium
| | - Christina Faust
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Kezia R. Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - James O. Lloyd-Smith
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
32
|
Becker DJ, Washburne AD, Faust CL, Mordecai EA, Plowright RK. The problem of scale in the prediction and management of pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190224. [PMID: 31401958 PMCID: PMC6711304 DOI: 10.1098/rstb.2019.0224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 01/28/2023] Open
Abstract
Disease emergence events, epidemics and pandemics all underscore the need to predict zoonotic pathogen spillover. Because cross-species transmission is inherently hierarchical, involving processes that occur at varying levels of biological organization, such predictive efforts can be complicated by the many scales and vastness of data potentially required for forecasting. A wide range of approaches are currently used to forecast spillover risk (e.g. macroecology, pathogen discovery, surveillance of human populations, among others), each of which is bound within particular phylogenetic, spatial and temporal scales of prediction. Here, we contextualize these diverse approaches within their forecasting goals and resulting scales of prediction to illustrate critical areas of conceptual and pragmatic overlap. Specifically, we focus on an ecological perspective to envision a research pipeline that connects these different scales of data and predictions from the aims of discovery to intervention. Pathogen discovery and predictions focused at the phylogenetic scale can first provide coarse and pattern-based guidance for which reservoirs, vectors and pathogens are likely to be involved in spillover, thereby narrowing surveillance targets and where such efforts should be conducted. Next, these predictions can be followed with ecologically driven spatio-temporal studies of reservoirs and vectors to quantify spatio-temporal fluctuations in infection and to mechanistically understand how pathogens circulate and are transmitted to humans. This approach can also help identify general regions and periods for which spillover is most likely. We illustrate this point by highlighting several case studies where long-term, ecologically focused studies (e.g. Lyme disease in the northeast USA, Hendra virus in eastern Australia, Plasmodium knowlesi in Southeast Asia) have facilitated predicting spillover in space and time and facilitated the design of possible intervention strategies. Such studies can in turn help narrow human surveillance efforts and help refine and improve future large-scale, phylogenetic predictions. We conclude by discussing how greater integration and exchange between data and predictions generated across these varying scales could ultimately help generate more actionable forecasts and interventions. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Christina L. Faust
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
33
|
Back JP, Bicca-Marques JC. Supplemented howler monkeys eat less wild fruits, but do not change their activity budgets. Am J Primatol 2019; 81:e23051. [PMID: 31520447 DOI: 10.1002/ajp.23051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023]
Abstract
Research on the influence of food supplementation on primate behavior has focused on terrestrial and semiterrestrial species. Its effects on highly arboreal species are poorly known. We assessed the influence of food supplementation on the feeding behavior and activity budget of four adult female and two adult male brown howler monkeys (Alouatta guariba clamitans) belonging to two groups (JA and RO) that inhabited periurban forest fragments in southern Brazil. We used the "focal-animal" method during 6-8 full days per month from March to August 2017 (916 h of observation) to record the behavior of the study subjects. The feeding events of the focal individual were recorded using the "all occurrences" method. The supplementation was unevenly distributed during the day and accounted for 5-6% of all feeding events of male and female howlers, respectively. JA always received fruit in a platform, whereas RO had access to fruits and processed foods on roofs and directly from humans. The mean biomass of wild foods ingested by each adult per day was >300% higher than the ingested biomass of supplemented foods (females: 395 vs. 109 g/day; males: 377 vs. 120 g/day), but the ingestion rate of supplemented foods was ca. 400% higher than that of wild foods (females: 17 vs. 4 g/min; males: 19 vs. 5 g/min). The activity budgets of females and males were dominated by resting (66-72%) followed by feeding (18-14%), moving (12-11%), and socializing (2%). We found that food supplementation reduced the ingestion of wild fruits, but it did not affect the howlers' need to ingest a given amount of leaves per day and the time spent resting, feeding, moving, and socializing.
Collapse
Affiliation(s)
- Janaína Paula Back
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Júlio César Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
34
|
Erazo D, Gottdenker NL, González C, Guhl F, Cuellar M, Kieran TJ, Glenn TC, Umaña JD, Cordovez J. Generalist host species drive Trypanosoma cruzi vector infection in oil palm plantations in the Orinoco region, Colombia. Parasit Vectors 2019; 12:274. [PMID: 31138275 PMCID: PMC6540391 DOI: 10.1186/s13071-019-3519-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oil palm plantation establishment in Colombia has the potential to impact Chagas disease transmission by increasing the distribution range of Rhodnius prolixus. In fact, previous studies have reported Trypanosoma cruzi natural infection in R. prolixus captured in oil palms (Elaeis guineensis) in the Orinoco region, Colombia. The aim of this study is to understand T. cruzi infection in vectors in oil palm plantations relative to community composition and host dietary specialization by analyzing vector blood meals and comparing these results to vectors captured in a native palm tree species, Attalea butyracea. METHODS Rhodnius prolixus nymphs (n = 316) were collected from A. butyracea and E. guineensis palms in Tauramena, Casanare, Colombia. Vector blood meals from these nymphs were determined by amplifying and sequencing a vertebrate-specific 12S rRNA gene fragment. RESULTS Eighteen vertebrate species were identified and pigs (Sus scrofa) made up the highest proportion of blood meals in both habitats, followed by house mouse (Mus musculus) and opossum (Didelphis marsupialis). Individual bugs feeding only from generalist mammal species had the highest predicted vector infection rate, suggesting that generalist mammalian species are more competent hosts for T. cruzi infection . CONCLUSIONS Oil palm plantations and A. butyracea palms found in altered areas provide a similar quality habitat for R. prolixus populations in terms of blood meal availability. Both habitats showed similarities in vector infection rate and potential host species, representing a single T. cruzi transmission scenario at the introduced oil palm plantation and native Attalea palm interface.
Collapse
Affiliation(s)
- Diana Erazo
- Grupo de Investigación en Biología Matemática y Computacional (BIOMAC), Universidad de los Andes, Bogota, Colombia
| | - Nicole L. Gottdenker
- Department of Pathology, School of Veterinary Medicine, The University of Georgia, Athens, GA USA
| | - Camila González
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Monica Cuellar
- Grupo de Investigación en Ingeniería Biomédica (GIB), Universidad de los Andes, Bogota, Colombia
| | - Troy J. Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA USA
| | - Travis C. Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA USA
| | - Juan D. Umaña
- Grupo de Investigación en Biología Matemática y Computacional (BIOMAC), Universidad de los Andes, Bogota, Colombia
| | - Juan Cordovez
- Grupo de Investigación en Biología Matemática y Computacional (BIOMAC), Universidad de los Andes, Bogota, Colombia
| |
Collapse
|
35
|
The impact of botfly parasitism on the health of the gracile mouse opossum (Gracilinanus agilis). Parasitology 2019; 146:1013-1021. [PMID: 30915931 DOI: 10.1017/s003118201900026x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fragmented habitats generally harbour small populations that are potentially more prone to local extinctions caused by biotic factors such as parasites. We evaluated the effects of botflies (Cuterebra apicalis) on naturally fragmented populations of the gracile mouse opossum (Gracilinanus agilis). We examined how sex, food supplementation experiment, season and daily climatic variables affected body condition and haemoglobin concentration in animals that were parasitized or not by botflies. Although parasitism did not affect body condition, haemoglobin concentrations were lower in parasitized animals. Among the non-parasitized individuals, haemoglobin concentration increased with the increase of maximum temperature and the decrease of relative humidity, a climatic pattern found at the peak of the dry season. However, among parasitized animals, the opposite relationship between haemoglobin concentration and relative humidity occurred, as a consequence of parasite-induced anaemia interacting with dehydration as an additional stressor. We conclude that it is critical to assess how climate affects animal health (through blood parameters) to understand the population consequences of parasitism on the survival of individuals and hence of small population viability.
Collapse
|
36
|
Lang SN, Germerodt S, Glock C, Skerka C, Zipfel PF, Schuster S. Molecular crypsis by pathogenic fungi using human factor H. A numerical model. PLoS One 2019; 14:e0212187. [PMID: 30779817 PMCID: PMC6380567 DOI: 10.1371/journal.pone.0212187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Molecular mimicry is the formation of specific molecules by microbial pathogens to avoid recognition and attack by the immune system of the host. Several pathogenic Ascomycota and Zygomycota show such a behaviour by utilizing human complement factor H to hide in the blood stream. We call this type of mimicry molecular crypsis. Such a crypsis can reach a point where the immune system can no longer clearly distinguish between self and non-self cells. Thus, a trade-off between attacking disguised pathogens and erroneously attacking host cells has to be made. Based on signalling theory and protein-interaction modelling, we here present a mathematical model of molecular crypsis of pathogenic fungi using the example of Candida albicans. We tackle the question whether perfect crypsis is feasible, which would imply that protection of human cells by complement factors would be useless. The model identifies pathogen abundance relative to host cell abundance as the predominant factor influencing successful or unsuccessful molecular crypsis. If pathogen cells gain a (locally) quantitative advantage over host cells, even autoreactivity may occur. Our new model enables insights into the mechanisms of candidiasis-induced sepsis and complement-associated autoimmune diseases.
Collapse
Affiliation(s)
- Stefan N. Lang
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Christina Glock
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Skerka
- Dept. of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Peter F. Zipfel
- Dept. of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Schuster
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
37
|
Satterfield DA, Marra PP, Sillett TS, Altizer S. Responses of migratory species and their pathogens to supplemental feeding. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531149 DOI: 10.1098/rstb.2017.0094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Migratory animals undergo seasonal and often spectacular movements and perform crucial ecosystem services. In response to anthropogenic changes, including food subsidies, some migratory animals are now migrating shorter distances or halting migration altogether and forming resident populations. Recent studies suggest that shifts in migratory behaviour can alter the risk of infection for wildlife. Although migration is commonly assumed to enhance pathogen spread, for many species, migration has the opposite effect of lowering infection risk, if animals escape from habitats where pathogen stages have accumulated or if strenuous journeys cull infected hosts. Here, we summarize responses of migratory species to supplemental feeding and review modelling and empirical work that provides support for mechanisms through which resource-induced changes in migration can alter pathogen transmission. In particular, we focus on the well-studied example of monarch butterflies and their protozoan parasites in North America. We also identify areas for future research, including combining new technologies for tracking animal movements with pathogen surveillance and exploring potential evolutionary responses of hosts and pathogens to changing movement patterns. Given that many migratory animals harbour pathogens of conservation concern and zoonotic potential, studies that document ongoing shifts in migratory behaviour and infection risk are vitally needed.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Peter P Marra
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Civitello DJ, Allman BE, Morozumi C, Rohr JR. Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531153 DOI: 10.1098/rstb.2017.0101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Anthropogenic resource supplementation can shape wildlife disease directly by altering the traits and densities of hosts and parasites or indirectly by stimulating prey, competitor or predator species. We first assess the direct epidemiological consequences of supplementation, highlighting the similarities and differences between food provisioning and two widespread forms of nutrient input: agricultural fertilization and aquatic nutrient enrichment. We then review an aquatic disease system and a general model to assess whether predator and competitor species can enhance or overturn the direct effects of enrichment. All forms of supplementation can directly affect epidemics by increasing host population size or altering parasite production within hosts, but food provisioning is most likely to aggregate hosts and increase parasite transmission. However, if predators or competitors increase in response to supplementation, they could alter resource-fuelled outbreaks in focal hosts. We recommend identifying the traits of hosts, parasites or interacting species that best predict epidemiological responses to supplementation and evaluating the relative importance of these direct and indirect mechanisms. Theory and experiments should examine the timing of behavioural, physiological and demographic changes for realistic, variable scenarios of supplementation. A more integrative view of resource supplementation and wildlife disease could yield broadly applicable disease management strategies.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- David J Civitello
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA .,Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Brent E Allman
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Connor Morozumi
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
39
|
Altizer S, Becker DJ, Epstein JH, Forbes KM, Gillespie TR, Hall RJ, Hawley DM, Hernandez SM, Martin LB, Plowright RK, Satterfield DA, Streicker DG. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531154 DOI: 10.1098/rstb.2017.0102] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA .,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel J Becker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kristian M Forbes
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Biology, The Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Infectious Disease, College of Veterinary Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lynn B Martin
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Daniel G Streicker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
40
|
Becker DJ, Hall RJ, Forbes KM, Plowright RK, Altizer S. Anthropogenic resource subsidies and host-parasite dynamics in wildlife. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531141 DOI: 10.1098/rstb.2017.0086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Daniel J Becker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA .,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Kristian M Forbes
- Department of Virology, University of Helsinki, Helsinki, Finland.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.,Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
41
|
Tiddi B, Pfoh R, Agostini I. The impact of food provisioning on parasite infection in wild black capuchin monkeys: a network approach. Primates 2019; 60:297-306. [PMID: 30631972 DOI: 10.1007/s10329-018-00711-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
Nonhuman primates host a variety of gastrointestinal parasites that infect individuals through different transmission routes. Social contact among group members (e.g., body contact, grooming) brings the risk of parasite infection, especially when the pathogen infection is directly transmitted. Along with this, accidental provisioning (i.e., food provisioning occurring during close tourist-wildlife interactions) is also considered to increase the risk of infection, as aggregation during feeding can cause higher exposure to parasite infective stages. However, while some attention has been paid to the relationship between social behavior and parasites, the link between accidental food provisioning and characteristics of parasite infection in primates has thus far received less attention. This study examines the potential effect of accidental provisioning on patterns of inter-individual spatial association, and in turn on parasite infection risk in a wild group of black capuchin monkeys (Sapajus nigritus) in Iguazú National Park, Argentina. To do so, we simulated events of accidental provisioning via researcher-managed provisioning experiments and tested whether experimental provisioning affects the inter-individual spatial distribution within groups. In addition, we determined whether patterns of parasite infection were better predicted by naturally occurring spatial networks (i.e., spatial association during natural observations) or by provisioning spatial networks (i.e., spatial interactions during experimental provisioning). We found a significant increase in network centrality that was potentially associated with an overall increase in individual connections with other group members during experimental trials. However, when assessing the effects of natural and provisioning network metrics on parasite characteristics, we did not observe a significant effect of centrality measures (i.e., closeness and betweenness) on parasite richness and single infection by Filariopsis sp. Taken together, our findings suggest that alterations of within-group spatial networks due to accidental provisioning may have a limited influence in determining the characteristics of parasite infections in black capuchin monkeys.
Collapse
Affiliation(s)
- Barbara Tiddi
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany. .,Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany.
| | - Romina Pfoh
- Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Iguazú, Misiones, Argentina.,Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA), Puerto Iguazú, Argentina
| | - Ilaria Agostini
- Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Iguazú, Misiones, Argentina.,Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA), Puerto Iguazú, Argentina
| |
Collapse
|
42
|
Affiliation(s)
- Bethany J Hoye
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Sánchez CA, Becker DJ, Teitelbaum CS, Barriga P, Brown LM, Majewska AA, Hall RJ, Altizer S. On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol Lett 2018; 21:1869-1884. [PMID: 30369000 DOI: 10.1111/ele.13160] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/18/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
Body condition metrics are widely used to infer animal health and to assess costs of parasite infection. Since parasites harm their hosts, ecologists might expect negative relationships between infection and condition in wildlife, but this assumption is challenged by studies showing positive or null condition-infection relationships. Here, we outline common condition metrics used by ecologists in studies of parasitism, and consider mechanisms that cause negative, positive, and null condition-infection relationships in wildlife systems. We then perform a meta-analysis of 553 condition-infection relationships from 187 peer-reviewed studies of animal hosts, analysing observational and experimental records separately, and noting whether authors measured binary infection status or intensity. Our analysis finds substantial heterogeneity in the strength and direction of condition-infection relationships, a small, negative average effect size that is stronger in experimental studies, and evidence for publication bias towards negative relationships. The strongest predictors of variation in study outcomes are host thermoregulation and the methods used to evaluate body condition. We recommend that studies aiming to assess parasite impacts on body condition should consider host-parasite biology, choose condition measures that can change during the course of infection, and employ longitudinal surveys or manipulate infection status when feasible.
Collapse
Affiliation(s)
- Cecilia A Sánchez
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Claire S Teitelbaum
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Paola Barriga
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Leone M Brown
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Department of Biology, Tufts University, Medford, MA, USA
| | - Ania A Majewska
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Richard J Hall
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| |
Collapse
|
44
|
Kessler MK, Becker DJ, Peel AJ, Justice NV, Lunn T, Crowley DE, Jones DN, Eby P, Sánchez CA, Plowright RK. Changing resource landscapes and spillover of henipaviruses. Ann N Y Acad Sci 2018; 1429:78-99. [PMID: 30138535 DOI: 10.1111/nyas.13910] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat-borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross-species transmission of henipaviruses, from reservoir host density and distribution to within-host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land-use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.
Collapse
Affiliation(s)
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.,The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Nathan V Justice
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Tamika Lunn
- The Griffith School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Daniel E Crowley
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Devin N Jones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Peggy Eby
- The School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia A Sánchez
- The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,The Odum School of Ecology, University of Georgia, Athens, Georgia
| | - Raina K Plowright
- Department of Ecology, Montana State University, Bozeman, Montana.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
45
|
Becker DJ, Snedden CE, Altizer S, Hall RJ. Host Dispersal Responses to Resource Supplementation Determine Pathogen Spread in Wildlife Metapopulations. Am Nat 2018; 192:503-517. [PMID: 30205031 DOI: 10.1086/699477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many wildlife species occupy landscapes that vary in the distribution, abundance, and quality of food resources. Increasingly, urbanized and agricultural habitats provide supplemental food resources that can have profound consequences for host distributions, movement patterns, and pathogen exposure. Understanding how host and pathogen dispersal across landscapes is affected by the spatial extent of food-supplemented habitats is therefore important for predicting the consequences for pathogen spread and impacts on host occupancy. Here we develop a generalizable metapopulation model to understand how the relative abundance of provisioned habitats across the landscape and how the host dispersal responses to provisioning and infection influence patch occupancy by hosts and their pathogens. We find that pathogen invasion and landscape-level infection prevalence are greatest when provisioning increases patch attractiveness and disperser production and when infection has minimal costs on dispersal success. Alternatively, if provisioning promotes site fidelity or reduces disperser production, increasing the fraction of food-supplemented habitats can reduce landscape-scale infection prevalence and minimize disease-induced declines in host occupancy. This work highlights the importance of considering how resources and infection jointly influence host dispersal for predicting how changing resource distributions influence the spread of infectious diseases.
Collapse
|
46
|
Becker DJ, Czirják GÁ, Volokhov DV, Bentz AB, Carrera JE, Camus MS, Navara KJ, Chizhikov VE, Fenton MB, Simmons NB, Recuenco SE, Gilbert AT, Altizer S, Streicker DG. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170089. [PMID: 29531144 PMCID: PMC5882995 DOI: 10.1098/rstb.2017.0089] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Human activities create novel food resources that can alter wildlife-pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host-pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Dmitriy V Volokhov
- Center for Biologics Evaluation & Research, U.S. Food & Drug Administration, Rockville, MD, USA
| | - Alexandra B Bentz
- Department of Poultry Science, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jorge E Carrera
- Facultad de Ciencias, Universidad Nacional de Piura, Piura, Perú
- Programa de Conservación de Murciélagos de Perú, Piura, Perú
| | - Melinda S Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Kristen J Navara
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Vladimir E Chizhikov
- Center for Biologics Evaluation & Research, U.S. Food & Drug Administration, Rockville, MD, USA
| | - M Brock Fenton
- Department of Biology, Western University, London, Ontario, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Sergio E Recuenco
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Amy T Gilbert
- National Wildlife Research Center, United States Department of Agriculture, Fort Collins, CO, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| | - Daniel G Streicker
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
47
|
Stokke BG, Ratikainen II, Moksnes A, Røskaft E, Schulze-Hagen K, Leech DI, Møller AP, Fossøy F. Characteristics determining host suitability for a generalist parasite. Sci Rep 2018; 8:6285. [PMID: 29674671 PMCID: PMC5908913 DOI: 10.1038/s41598-018-24627-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/06/2018] [Indexed: 11/09/2022] Open
Abstract
Host quality is critical for parasites. The common cuckoo Cuculus canorus is a generalist avian brood parasite, but individual females show strong preference for a specific host species. Here, we use three extensive datasets to investigate different host characteristics determining cuckoo host selection at the species level: (i) 1871 population-specific parasitism rates collected across Europe; (ii) 14 K cases of parasitism in the United Kingdom; and (iii) 16 K cases of parasitism in Germany, with data collected during the period 1735-2013. We find highly consistent effects of the different host species traits across our three datasets: the cuckoo prefers passerine host species of intermediate size that breed in grass- or shrubland and that feed their nestlings with insects, and avoids species that nest in cavities. Based on these results, we construct a novel host suitability index for all passerine species breeding in Europe, and show that host species known to have a corresponding cuckoo host race (gens) rank among the most suitable hosts in Europe. The distribution of our suitability index shows that host species cannot be classified as suitable or not but rather range within a continuum of suitability.
Collapse
Affiliation(s)
- Bård G Stokke
- Department of Biology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Sluppen, NO-7485, Trondheim, Norway.
| | - Irja I Ratikainen
- Department of Biology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Arne Moksnes
- Department of Biology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Eivin Røskaft
- Department of Biology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | | | - David I Leech
- British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, UK
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay, Cedex, France
| | - Frode Fossøy
- Department of Biology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Sluppen, NO-7485, Trondheim, Norway
| |
Collapse
|
48
|
Becker DJ, Streicker DG, Altizer S, Derryberry E. Using host species traits to understand the consequences of resource provisioning for host-parasite interactions. J Anim Ecol 2018; 87:511-525. [PMID: 29023699 PMCID: PMC5836909 DOI: 10.1111/1365-2656.12765] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
Supplemental food provided to wildlife by human activities can be more abundant and predictable than natural resources, and subsequent changes in wildlife ecology can have profound impacts on host-parasite interactions. Identifying traits of species associated with increases or decreases in infection outcomes with resource provisioning could improve assessments of wildlife most prone to disease risks in changing environments. We conducted a phylogenetic meta-analysis of 342 host-parasite interactions across 56 wildlife species and three broad taxonomic groups of parasites to identify host-level traits that influence whether provisioning is associated with increases or decreases in infection. We predicted dietary generalists that capitalize on novel food would show greater infection in provisioned habitats owing to population growth and food-borne exposure to contaminants and parasite infectious stages. Similarly, species with fast life histories could experience stronger demographic and immunological benefits from provisioning that affect parasite transmission. We also predicted that wide-ranging and migratory behaviours could increase infection risks with provisioning if concentrated and non-seasonal foods promote dense aggregations that increase exposure to parasites. We found that provisioning increased infection with bacteria, viruses, fungi and protozoa (i.e. microparasites) most for wide-ranging, dietary generalist host species. Effect sizes for ectoparasites were also highest for host species with large home ranges but were instead lowest for dietary generalists. In contrast, the type of provisioning was a stronger correlate of infection outcomes for helminths than host species traits. Our analysis highlights host traits related to movement and feeding behaviour as important determinants of whether species experience greater infection with supplemental feeding. These results could help prioritize monitoring wildlife with particular trait profiles in anthropogenic habitats to reduce infectious disease risks in provisioned populations.
Collapse
Affiliation(s)
- Daniel J. Becker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseaseUniversity of GeorgiaAthensGAUSA
| | - Daniel G. Streicker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Sonia Altizer
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseaseUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|