1
|
Igawa T, Gillespie TC, Kim ES, Lee LJ, Grogan T, Chu A, Calkins KL. Prospective Cohort Study Investigating Polyunsaturated Fatty Acids and Chronic Lung Disease in Preterm Infants. Am J Perinatol 2025. [PMID: 39638326 DOI: 10.1055/a-2496-2310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Chronic lung disease (CLD) is a complication of prematurity. Studies examining the effects of long-chain polyunsaturated fatty acids (LC-PUFAs) on CLD are conflicting. This study investigated LC-PUFAs in the red blood cell membrane (RBCM) in preterm infants. STUDY DESIGN This prospective observational study included infants with gestational age <32 weeks or birth weight <2 kg and at least one LC-PUFA measurement in the first month of life. Subjects without CLD (CON group) were compared with those with CLD (CLD group) and then by CLD severity. RESULTS Seventy infants were included (CON n = 29; CLD n = 41). Twenty-six infants had Grade 1 CLD; 12 had Grade 2 CLD; 3 had Grade 3 CLD. When the CLD group was compared with the CON group, the overall mean (95% confidence interval) RBCM% for linoleic acid (LA) was similar (CLD vs. CON 12.5% [11.7-13.4%] vs. 11.2% [10.2-12.3%], p = 0.06) but the overall mean arachidonic acid (ARA) was lower (17.6% [17.1-18.0%] vs. 18.6% [18.1-19.2%], p < 0.01). During weeks 1 to 4, LA% was similar, while ARA% was lower in weeks 2 and 3 (18.8 ± 2.2% vs. 20.0 ± 1.5%, p = 0.05, 16.8 ± 2.0% vs. 18.3 ± 1.6%, p = 0.01). A similar trend was noted when groups were compared by CLD severity. The CLD group had a higher overall mean α-linolenic acid (ALA) compared with the CON group (0.4% [0.3-0.4%] vs. 0.2% [0.2-0.3%], p < 0.01) but no difference in docosahexaenoic acid (DHA; 3.8% [3.4-4.1%] vs. 3.8% [3.4-4.3%], p = 0.80). During weeks 1 to 4, ALA% was higher during week 1 only (0.4 ± 0.3% vs. 0.2 ± 0.1%, p < 0.01), and DHA% was similar for weeks 1 to 4. Results were similar when groups were compared by CLD severity. CONCLUSION In this study, low ARA status was associated with CLD. KEY POINTS · In this study, infants with CLD had a similar RBCM% of LA, but a lower percentage of its downstream LC-PUFA, ARA, compared with infants without CLD.. · In this study, infants with CLD had a higher RBCM% of α-linolenic acid, but a similar percentage of its downstream LC-PUFA, DHA, compared with infants without CLD.. · In this study, these trends were similiar when groups were compared by CLD severity..
Collapse
Affiliation(s)
- Teryn Igawa
- Department of Pediatrics, Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA and UCLA Mattel Children's Hospital, Los Angeles
| | - Tessa C Gillespie
- Department of Pediatrics, Stanford University and Stanford Medicine, Palo Alto, California
| | - Esther S Kim
- Division of Neonatology, Department of Pediatrics, UCLA - Olive View, Sylmar, California
| | - Lauren J Lee
- Department of Pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, UCLA, Los Angeles, California
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Alison Chu
- Department of Pediatrics, Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA and UCLA Mattel Children's Hospital, Los Angeles
| | - Kara L Calkins
- Department of Pediatrics, Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA and UCLA Mattel Children's Hospital, Los Angeles
| |
Collapse
|
2
|
Shahabi B, Hernández-Martínez C, Jardí C, Aparicio E, Arija V. Maternal Omega-6/Omega-3 Concentration Ratio During Pregnancy and Infant Neurodevelopment: The ECLIPSES Study. Nutrients 2025; 17:170. [PMID: 39796604 PMCID: PMC11723212 DOI: 10.3390/nu17010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The balance of omega-6/omega-3 (n-6/n-3) is crucial for proper brain function as they have opposite physiological roles. OBJECTIVES To analyze the association between maternal serum ratios of n-6/n-3 in the first and third trimesters of pregnancy and the neurodevelopment of their children in the early days after birth in the population of Northern Spain's Mediterranean region. METHODS Longitudinal study in which 336 mother-child pairs participated. Mother serum concentrations of long-chain polyunsaturated fatty acids (LCPUFAs), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) were determined. Sociodemographic, clinical, lifestyle habits, and obstetrical variables were collected. The Bayley Scales of Infant and Toddler Development (BSID-III) was used to assess infant neurodevelopment. Multiple linear regression models adjusting for confounding factors were performed. RESULTS In the third trimester, a higher maternal n-6/n-3 ratio was negatively associated with infant motor development (β = -0.124, p = 0.023). Similarly, higher ARA/DHA ratios were negatively associated with total motor (β = -2.005, p = 0.002) and fine motor development (β = -0.389, p = 0.001). No significant associations were observed in the first trimester nor for the ARA/EPA ratio in the third trimester. CONCLUSIONS Our findings indicate that an elevated n-6/n-3 ratio and ARA/DHA ratio in the third trimester of pregnancy are associated with poorer motor development outcomes in infants. These results highlight the importance of optimizing maternal fatty acid balance during pregnancy to support fetal neurodevelopment, suggesting a need for further research to verify these associations and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Behnaz Shahabi
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (B.S.); (C.H.-M.); (C.J.); (E.A.)
| | - Carmen Hernández-Martínez
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (B.S.); (C.H.-M.); (C.J.); (E.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43003 Tarragona, Spain
- Research Center for Behavioural Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristina Jardí
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (B.S.); (C.H.-M.); (C.J.); (E.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43003 Tarragona, Spain
| | - Estefanía Aparicio
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (B.S.); (C.H.-M.); (C.J.); (E.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43003 Tarragona, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (B.S.); (C.H.-M.); (C.J.); (E.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43003 Tarragona, Spain
| |
Collapse
|
3
|
Dewi M, Andarwulan N, Wahyuningsih U, Kazimierczak R, Średnicka-Tober D. Maternal Long-Chain Polyunsaturated Fatty Acids Status in Pregnancy and Newborn Body Composition. Nutrients 2024; 17:66. [PMID: 39796500 PMCID: PMC11722585 DOI: 10.3390/nu17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND A number of clinical studies have shown a positive association between the maternal n-3 PUFA status during pregnancy and fetal and newborn development and health. Despite this well-documented role of n-3 PUFAs in pregnancy, data on maternal the LC-PUFAs status during pregnancy in the Indonesian population, to our knowledge, are not yet available. This study reports on the LC-PUFA dietary intake among pregnant women in a suburban population of Bogor City, West Java, Indonesia. It also explores the associations of maternal LC-PUFA intake with maternal blood, cord blood, and breast milk LC-PUFA levels and the associations of the latter with infant body composition. METHODS A total of 142 pregnant women and 104 newborn infants were included in this study. The dietary intake of energy, macronutrients, and selected LC-PUFAs (LA, ALA, EPA, and DHA) was assessed by 2 × 24 h food recall and FFQ. LC-PUFA levels were measured in maternal blood, cord blood, and breast milk. Newborn body composition was determined by anthropometric measures. RESULTS The study found that the inadequate intake of energy, protein, and carbohydrates was highly prevalent among pregnant women subjects. The intake of the most important n-3 PUFAs (ALA, EPA, and DHA) was far below the recommended values. Maternal dietary DHA intakes were negatively associated with birth weight and infant fat mass at birth, and dietary intake of total fat and n-6 LA were associated with increased fat accumulation in newborns at specific body sites. Moreover, positive correlations were identified between the EPA in maternal blood and infant % fat mass, and between the DHA in cord blood and newborn birth weight. CONCLUSIONS Further longitudinal studies, including clinical and biomolecular analyses, are suggested to be conducted to monitor maternal and child health and nutrition in Indonesia and develop well-attuned intervention strategies.
Collapse
Affiliation(s)
- Mira Dewi
- Faculty of Medicine, IPB University, IPB Dramaga Campus, Bogor 16680, West Java, Indonesia;
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, IPB Dramaga Campus, Bogor 16680, West Java, Indonesia
| | - Nuri Andarwulan
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, IPB Dramaga Campus, Bogor 16680, West Java, Indonesia
- Department of Food Science and Technology, Faculty of Agricultural Technology, IPB University, IPB Dramaga Campus, Bogor 16680, West Java, Indonesia
| | - Utami Wahyuningsih
- Faculty of Health Science, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta 12450, West Java, Indonesia;
| | - Renata Kazimierczak
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Dominika Średnicka-Tober
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
4
|
Costello LA, Ziegler K, McCormack L, Akbaryan A, Vargas JC, Harris WS, Jackson KH, Barber M, Morales S, Elliott AJ, Hockett C, Shuffrey LC. Pre-pregnancy overweight or obesity moderates the association between prenatal maternal depressive symptoms and infant cord blood omega-3 levels. BMC Pregnancy Childbirth 2024; 24:535. [PMID: 39143534 PMCID: PMC11323614 DOI: 10.1186/s12884-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Empirical evidence has demonstrated associations between pre-pregnancy obesity and perinatal maternal depressive symptoms. Omega-3 is an essential fatty acid derived from dietary sources that is critical for fetal brain development. Pre-pregnancy obesity is associated with higher omega-3 intake, but a weaker association between dietary intake and respective maternal and cord blood omega-3 levels. Further, lower intake of omega-3 during pregnancy has been linked to higher depressive symptoms. Yet, prior studies have not examined the interactive effects of pre-pregnancy overweight or obesity (OWOB) and prenatal maternal mental health symptoms on infant cord blood omega-3 levels. METHODS Participants included 394 maternal-infant dyads from the NIH Environmental influences on Child Health Outcomes (ECHO) - Safe Passage Study in South Dakota. A pre-pregnancy body mass index (BMI) > 25 was used to dichotomize participants as OWOB (54%) vs. non-OWOB (46%). Prenatal maternal depressive symptoms were measured using the Edinburgh Postnatal Depression Scale (EPDS) and prenatal maternal anxiety symptoms were measured using the State-Trait Anxiety Inventory (STAI). We implemented linear regression models to examine the interaction term between pre-pregnancy BMI category and prenatal maternal mental health symptoms on cord blood omega-3 levels. Secondary analyses were stratified by pre-pregnancy BMI category. RESULTS We observed a significant interaction between pre-pregnancy BMI category and prenatal maternal depressive symptoms with cord blood omega-3 (F(4,379) = 6.21, p < .0001, adj. R2 = 0.05). Stratified models revealed an association between prenatal maternal depressive symptoms with lower cord blood omega-3 levels only among individuals with pre-pregnancy OWOB (β = -0.06, 95% CI = -0.11, -0.02; F (2,208) = 4.00, p < .05, adj R2 = 0.03). No associations were observed among non-OWOB participants. CONCLUSIONS Findings suggest maternal-placental transfer of omega-3 may represent one pathway by which maternal metabolic and mental health impacts infant development.
Collapse
Affiliation(s)
- Lauren A Costello
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, One Park Avenue, 8th Floor, New York, NY, 10016, USA.
| | - Katherine Ziegler
- Avera Research Institute, Sioux Falls, SD, 57108, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, 57108, USA
- Department of Internal Medicine, University of South Dakota School of Medicine, Sioux Falls, SD, 57108, USA
| | - Lacey McCormack
- Avera Research Institute, Sioux Falls, SD, 57108, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, 57108, USA
| | - Anahid Akbaryan
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, One Park Avenue, 8th Floor, New York, NY, 10016, USA
| | - Julianna Collazo Vargas
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, One Park Avenue, 8th Floor, New York, NY, 10016, USA
| | - William S Harris
- Department of Internal Medicine, University of South Dakota School of Medicine, Sioux Falls, SD, 57108, USA
- Fatty Acid Research Institute, Sioux Falls, SD, 57106, USA
| | - Kristina H Jackson
- Fatty Acid Research Institute, Sioux Falls, SD, 57106, USA
- OmegaQuant Analytics, LLC, Sioux Falls, SD, 57106, USA
| | - Maria Barber
- Avera Research Institute, Sioux Falls, SD, 57108, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, 57108, USA
| | - Santiago Morales
- Department of Psychology, University of Southern California, Los Angeles, CA, 90007, USA
| | - Amy J Elliott
- Avera Research Institute, Sioux Falls, SD, 57108, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, 57108, USA
| | - Christine Hockett
- Avera Research Institute, Sioux Falls, SD, 57108, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, 57108, USA
| | - Lauren C Shuffrey
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, One Park Avenue, 8th Floor, New York, NY, 10016, USA
| |
Collapse
|
5
|
Abou Assi A, Heude B, Plancoulaine S, Sarté C, Tafflet M, Yuan WL, Charles MA, Armand M, Bernard JY. Patterns of perinatal polyunsaturated fatty acid status and associated dietary or candidate-genetic factors. J Lipid Res 2024; 65:100562. [PMID: 38762122 PMCID: PMC11231547 DOI: 10.1016/j.jlr.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
Perinatal exposure to omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) can be characterized through biomarkers in maternal or cord blood or breast milk. Objectives were to describe perinatal PUFA status combining multiple biofluids and to investigate how it was influenced by dietary intake during pregnancy and maternal FADS and ELOVL gene polymorphisms. This study involved 1,901 mother-child pairs from the EDEN cohort, with PUFA levels measured in maternal and cord erythrocytes, and colostrum. Maternal dietary PUFA intake during the last trimester was derived from a food frequency questionnaire. Twelve single-nucleotide polymorphisms in FADS and ELOVL genes were genotyped from maternal DNA. Principal component analysis incorporating PUFA levels from the three biofluids identified patterns of perinatal PUFA status. Spearman's correlations explored associations between patterns and PUFA dietary intake, and linear regression models examined pattern associations with FADS or ELOVL haplotypes. Five patterns were retained: "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs"; "Omega-6 LC-PUFAs"; "Colostrum LC-PUFAs"; "Omega-6 precursor (LA) and DGLA"; "Omega-6 precursor and colostrum ALA". Maternal omega-3 LC-PUFA intakes were correlated with "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" (r(DHA) = 0.33) and "Omega-6 LC-PUFAs" (r(DHA) = -0.19) patterns. Strong associations were found between FADS haplotypes and PUFA patterns except for "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs". Lack of genetic association with the "High omega-3 LC-PUFAs, low omega-6 LC-PUFAs" pattern, highly correlated with maternal omega-3 LC-PUFA intake, emphasizes the importance of adequate omega-3 LC-PUFA intake during pregnancy and lactation. This study offers a more comprehensive assessment of perinatal PUFA status and its determinants.
Collapse
Affiliation(s)
- Aline Abou Assi
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France.
| | - Sabine Plancoulaine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France; Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, WAKING, Bron, France
| | | | - Muriel Tafflet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France; Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Marie-Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Martine Armand
- Aix Marseille Université, CNRS, CRMBM, Marseille, France
| | - Jonathan Y Bernard
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| |
Collapse
|
6
|
Venter E, Zandberg L, Venter PVZ, Smuts CM, Kruger HS, Baumgartner J. Female rats consuming an iron and omega-3 fatty acid deficient diet preconception require combined iron and omega-3 fatty acid supplementation for the prevention of bone impairments in offspring. J Dev Orig Health Dis 2024; 15:e6. [PMID: 38653729 DOI: 10.1017/s2040174424000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We previously showed in rats that pre- and postnatal deficiencies in iron and omega-3 (n-3) fatty acids can impair bone development, with additive and potentially irreversible effects when combined. This study aimed to investigate, in female rats consuming a combined iron and n-3 fatty acid deficient (ID + n-3 FAD) diet preconception, whether supplementation with iron and docosahexaenoic/eicosapentaenoic acid (DHA/EPA), alone and in combination, can prevent bone impairments in offspring. Using a 2 × 2 factorial design, female Wistar rats consuming an ID + n-3 FAD diet preconception were randomised to receive an: 1) iron supplemented (Fe + n-3 FAD), 2) DHA/EPA supplemented (ID + DHA/EPA), 3) Fe + DHA/EPA, or 4) ID + n-3 FAD diet from gestational day 10 throughout pregnancy and lactation. Post-weaning, offspring (n = 24/group; male:female = 1:1) remained on the respective experimental diets for three weeks until postnatal day 42-45. Offspring born to female rats consuming a control diet preconception and an Fe+DHA/EPA diet throughout pregnancy and lactation served as non-deficient reference group (Control+Fe+DHA/EPA). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry and bone strength using three-point bending tests. Only offspring in the Fe+DHA/EPA group had significantly higher spine and femur BMD, and higher femur stiffness than offspring in the ID + n-3 FAD group, and had similar spine BMD and femur stiffness as the Control + Fe + DHA/EPA group. Offspring in the Fe + DHA/EPA group further had significantly higher femur strength (ultimate load) than the other experimental groups, and a similar femur strength as the Control + Fe + DHA/EPA group. This study shows that only combined iron and DHA/EPA supplementation can prevent bone impairments in offspring of female rats consuming an iron and n-3 FA deficient diet preconception.
Collapse
Affiliation(s)
- Estelle Venter
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Philip vZ Venter
- Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Herculina S Kruger
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition (CEN), North-West University (NWU), Potchefstroom, South Africa
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
7
|
Wang W, Abdelrahman M, Yang Y, Lv H, Yang L. RNA Sequencing Reveals the Inhibitory Effect of High Levels of Arachidonic Acid and Linoleic Acid on C2C12 Differentiation and Myogenic Biomarkers. Nutrients 2024; 16:706. [PMID: 38474834 DOI: 10.3390/nu16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past three decades, studies have shown that consuming polyunsaturated fatty acids (PUFAs) can enhance animal and human health and welfare through biological, biochemical, pathological, and pharmacological impacts. Furthermore, omega-6 plays key roles in the cardiopulmonary system, including promoting airway relaxation and inhibiting atherosclerosis and hypertension. However, findings from investigations of the effects of omega-6 fatty acids on molecular and cellular activity and discussions on their influence on biomarkers are still unclear. Therefore, the present study aimed to evaluate omega-6 fatty acids, the arachidonic acid (AA), and linoleic acid (LA) effects on C2C12 proliferation, myogenesis morphology, and relative myogenic biomarker expression through the Wnt pathway. C2C12 cells were cultured with and without 25, 50, 100, and 150 µM of LA and AA and then subjected to CCK8, Giemsa staining, RT qPCR, Western blotting, and RNA Sequencing. The CCK8 Assay results showed that 25, 50, 100, and 150 µM LA significantly decreased the viability after 72 h for 25, 50, 100, and 150 µM concentrations. Also, AA supplementation decreased cell viability after 24 h for 150 µM, 48 h for 150 µM, and 72 h for 50, 100, and 150 µM concentrations. Moreover, the LA and AA inhibitory effects noticed through Gimesa staining were morphological changes during myoblast differentiation. Both LA and AA showed inhibiting IGF1, Cola1, Col6a2, Col6a1, Itga10, Itga11, SFRP2, DAAM2, and NKD2 effects; however, the depressing effect was higher for AA compared to LA. The previous results were confirmed through Western blotting, which showed that 50 µM LA and AA significantly reduced DAAM2 and SFRP2 protein levels compared to the control. Regarding RNA sequencing results, LA and AA increased the number of differentially expressed (DE) Mt-rRNA and snoRNA; however, the numbers of lncRNA detected decreased compared to the control. Our findings demonstrate that high and moderate LA and AA concentrations reduce primary myoblast proliferation and differentiation. Also, they highlight novel biomarkers and regulatory factors to improve our understanding of how the nutrition of fatty acids can control and modulate the myogenesis and differentiation process through different biomarker families.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Mohamed Abdelrahman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Ying Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
8
|
Ortiz M, Álvarez D, Muñoz Y, Crisosto N, Valenzuela R, Maliqueo M. Linoleic and Arachidonic Fatty Acids and their Potential Relationship with Inflammation, Pregnancy, and Fetal Development. Curr Med Chem 2024; 31:5046-5060. [PMID: 37415369 DOI: 10.2174/0929867331666230706161144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
A healthy maternal diet must consider an appropriate supply of long-chain polyunsaturated fatty acids (LCPUFAs) precursors to ensure adequate growth and development of the fetus. In this regard, n-6 PUFAs, predominantly linoleic (C18:2 n-6, LA) and arachidonic acid (C20:4 n-6), have a central role in the development of the central nervous system because they are part of the membrane structure and participate in the metabolism and signal transduction of cells. Nevertheless, they can also be transformed into inflammatory metabolites promoting the pathogenesis of cardiovascular diseases, cancer, and autoimmune or inflammatory conditions. In modern westernized societies, there is a high dietary consumption of foods rich in n-6 PUFAs which could have detrimental consequences for the fetus and neonate due to excessive exposure to these fatty acids (FAs). OBJECTIVE To summarize the evidence of maternal, placental, and fetal alterations that an excessive intake of n-6 polyunsaturated FAs (PUFAs), LA, and AA, could produce during pregnancy. METHODS A thorough review of the literature regarding the effects of n-6 PUFAs during pregnancy and lactation including in vivo and in vitro models, was carried out using the PubMed database from the National Library of Medicine-National Institutes of Health. RESULTS An elevated intake of n-6 PUFA, specifically LA, during pregnancy influences children's motor, cognitive, and verbal development during infancy and early childhood. Similarly, they could harm the placenta and the development of other fetal organs such as the fat tissue, liver, and cardiovascular system. CONCLUSION Maternal diet, specifically LA intake, could have significant repercussions on fetal development and long-term consequences in the offspring, including the possibility of future metabolic and mental diseases. It would be necessary to focus on the prevention of these alterations through timely dietary interventions in the target population.
Collapse
Affiliation(s)
- Macarena Ortiz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Daniela Álvarez
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Yasna Muñoz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
- Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
10
|
Hergenrader A, VanOrmer M, Slotkowski R, Thompson M, Freeman A, Paetz O, Sweeney S, Wegner L, Ali K, Bender N, Chaudhary R, Thoene M, Hanson C, Anderson-Berry A. Omega-3 Polyunsaturated Fatty Acid Levels in Maternal and Cord Plasma Are Associated with Maternal Socioeconomic Status. Nutrients 2023; 15:4432. [PMID: 37892508 PMCID: PMC10609830 DOI: 10.3390/nu15204432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) play a crucial role in fetal growth and neurodevelopment, while omega-6 (n-6) PUFAs have been associated with adverse pregnancy outcomes. Previous studies have demonstrated that socioeconomic status (SES) influences dietary intake of n-3 and n-6 PUFAs, but few studies have evaluated the association between maternal and cord plasma biomarkers of PUFAs and socioeconomic markers. An IRB-approved study enrolled mother-infant pairs (n = 55) at the time of delivery. Maternal and cord plasma PUFA concentrations were analyzed using gas chromatography. Markers of SES were obtained from validated surveys and maternal medical records. Mann-Whitney U tests and linear regression models were utilized for statistical analysis. Maternal eicosapentaenoic acid (EPA) (p = 0.02), cord EPA (p = 0.04), and total cord n-3 PUFA concentrations (p = 0.04) were significantly higher in college-educated mothers vs. mothers with less than a college education after adjustment for relevant confounders. Insurance type and household income were not significantly associated with n-3 or n-6 PUFA plasma concentrations after adjustment. Our findings suggest that mothers with lower educational status may be at risk of lower plasma concentrations of n-3 PUFAs at delivery, which could confer increased susceptibility to adverse pregnancy and birth outcomes.
Collapse
Affiliation(s)
- Alexandra Hergenrader
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew VanOrmer
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rebecca Slotkowski
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maranda Thompson
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alyssa Freeman
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Olivia Paetz
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah Sweeney
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lauren Wegner
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Khadijjta Ali
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicole Bender
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ridhi Chaudhary
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Melissa Thoene
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Medical Nutrition Education Program, College of Allied Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ann Anderson-Berry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Guriec N, Le Foll C, Delarue J. Long-chain n-3 PUFA given before and throughout gestation and lactation in rats prevent high-fat diet-induced insulin resistance in male offspring in a tissue-specific manner. Br J Nutr 2023; 130:1121-1136. [PMID: 36688295 DOI: 10.1017/s000711452300017x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study investigated whether long-chain n-3 PUFA (LC n-3 PUFA) given to pregnant rats fed a high-fat (HF) diet may prevent fetal programming in male offspring at adulthood. Six weeks before mating, and throughout gestation and lactation, female nulliparous Sprague-Dawley rats were given a chow (C) diet, HF (60·6 % fat from maize, rapeseed oils and lard) or HF in which one-third of fat was replaced by fish oil (HF n-3). At weaning, the three offspring groups were randomly separated in two groups fed C diet, or HF without LC n-3 PUFA, for 7 weeks until adulthood. Glucose tolerance and insulin sensitivity were assessed by an oral glucose tolerance test both at weaning and at adulthood. Insulin signalling was determined in liver, muscle and adipose tissue by quantification of the phosphorylation of Akt on Ser 473 at adulthood. At weaning, as at adulthood, offspring from HF-fed dams were obese and displayed glucose intolerance (GI) and insulin resistance (IR), but not those from HFn-3 fed dams. Following the post-weaning C diet, phosphorylation of Akt was strongly reduced in all tissues of offspring from HF dams, but to a lesser extent in liver and muscle of offspring from HFn-3 dams. However, it was abolished in all tissues of all offspring groups fed the HF post-weaning diet. Thus, LC n-3 PUFA introduced in a HF in dams partially prevented the transmission of GI and IR in adult offspring even though they were fed without LC n-3 PUFA from weaning.
Collapse
Affiliation(s)
- Nathalie Guriec
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Christelle Le Foll
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Jacques Delarue
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
- ER 7479 SPURBO, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| |
Collapse
|
12
|
Harmancıoğlu B, Kabaran S. Maternal high fat diets: impacts on offspring obesity and epigenetic hypothalamic programming. Front Genet 2023; 14:1158089. [PMID: 37252665 PMCID: PMC10211392 DOI: 10.3389/fgene.2023.1158089] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is associated with rapid weight gain and fetal fat mass increase at an early stage. Also, HFD during pregnancy can cause the activation of proinflammatory cytokines. Maternal insulin resistance and inflammation lead to increased adipose tissue lipolysis, and also increased free fatty acid (FFA) intake during pregnancy (˃35% of energy from fat) cause a significant increase in FFA levels in the fetus. However, both maternal insulin resistance and HFD have detrimental effects on adiposity in early life. As a result of these metabolic alterations, excess fetal lipid exposure may affect fetal growth and development. On the other hand, increase in blood lipids and inflammation can adversely affect the development of the liver, adipose tissue, brain, skeletal muscle, and pancreas in the fetus, increasing the risk for metabolic disorders. In addition, maternal HFD is associated with changes in the hypothalamic regulation of body weight and energy homeostasis by altering the expression of the leptin receptor, POMC, and neuropeptide Y in the offspring, as well as altering methylation and gene expression of dopamine and opioid-related genes which cause changes in eating behavior. All these maternal metabolic and epigenetic changes may contribute to the childhood obesity epidemic through fetal metabolic programming. Dietary interventions, such as limiting dietary fat intake <35% with appropriate fatty acid intake during the gestation period are the most effective type of intervention to improve the maternal metabolic environment during pregnancy. Appropriate nutritional intake during pregnancy should be the principal goal in reducing the risks of obesity and metabolic disorders.
Collapse
|
13
|
An Early and Sustained Inflammatory State Induces Muscle Changes and Establishes Obesogenic Characteristics in Wistar Rats Exposed to the MSG-Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24054730. [PMID: 36902158 PMCID: PMC10003260 DOI: 10.3390/ijms24054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 03/05/2023] Open
Abstract
The model of obesity induced by monosodium glutamate cytotoxicity on the hypothalamic nuclei is widely used in the literature. However, MSG promotes persistent muscle changes and there is a significant lack of studies that seek to elucidate the mechanisms by which damage refractory to reversal is established. This study aimed to investigate the early and chronic effects of MSG induction of obesity upon systemic and muscular parameters of Wistar rats. The animals were exposed to MSG subcutaneously (4 mg·g-1 b.w.) or saline (1.25 mg·g-1 b.w.) daily from PND01 to PND05 (n = 24). Afterwards, in PND15, 12 animals were euthanized to determine the plasma and inflammatory profile and to assess muscle damage. In PND142, the remaining animals were euthanized, and samples for histological and biochemical analyses were obtained. Our results suggest that early exposure to MSG reduced growth, increased adiposity, and inducted hyperinsulinemia and a pro-inflammatory scenario. In adulthood, the following were observed: peripheral insulin resistance, increased fibrosis, oxidative distress, and a reduction in muscle mass, oxidative capacity, and neuromuscular junctions, increased fibrosis, and oxidative distress. Thus, we can conclude that the condition found in adult life and the difficulty restoring in the muscle profile is related to the metabolic damage established early on.
Collapse
|
14
|
Vamadeva SG, Patel K, Ravi Mangu S, Ellur G, Sukhdeo SV, Sharan K. Maternal omega-3 LC-PUFA supplementation programs an improved bone mass in the offspring with a more pronounced effect in females than males at adulthood. J Nutr Biochem 2023; 113:109245. [PMID: 36473540 DOI: 10.1016/j.jnutbio.2022.109245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Early balanced nutrition is vital in achieving optimal skeletal mass and its maintenance. Although a lower omega-6 (n-6): omega-3 (n-3) long-chain polyunsaturated fatty acid (LC-PUFA) ratio is strongly linked with bone health, its maternal effect in the programming of the offspring's skeleton remains to be elucidated. Plugged C57BL/6 mice were fed either n-3 LC-PUFA Enriched Diet (LED) or a control diet (C) throughout their gestation and lactation. Offspring born to both the groups were weaned onto C till 6, 12, and 24 weeks of their age. Offspring's skeleton metabolism and serum fatty acid composition was studied. In humans, seventy-five mother-female newborns pairs from term gestation were tested for their maternal LC-PUFA status relationships to venous cord blood bone biomarkers. Offspring of maternal LED supplemented mice exhibited a superior bone phenotype over C, more prominent in females than males. A lower serum n-6/n-3 LC-PUFA in the LED group offspring was strongly associated with blood biomarkers of bone metabolism. Sexual dimorphism evidenced had a strong correlation between offspring's LC-PUFA levels and bone turnover markers in serum. A higher potential for osteoblastic differentiation in both LED offspring genders and reduced osteoclastogenesis in females was cell-autonomous effect. The human cross-sectional study also showed a positive correlation between maternal n-3 PUFA and cord blood markers of bone formation in female newborns at birth. Maternal dietary n-6/ n-3 fat quality determines offspring's bone growth and development. Our data suggest that the skeleton of female offspring is likely to be more sensitive to this early exposure.
Collapse
Affiliation(s)
- Sowmya Giriyapura Vamadeva
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Govindraj Ellur
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
15
|
Tajonar K, Gonzalez-Ronquillo M, Relling A, Nordquist RE, Nawroth C, Vargas-Bello-Pérez E. Toward assessing the role of dietary fatty acids in lamb's neurological and cognitive development. Front Vet Sci 2023; 10:1081141. [PMID: 36865439 PMCID: PMC9971820 DOI: 10.3389/fvets.2023.1081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding and measuring sheep cognition and behavior can provide us with measures to safeguard the welfare of these animals in production systems. Optimal neurological and cognitive development of lambs is important to equip individuals with the ability to better cope with environmental stressors. However, this development can be affected by nutrition with a special role from long-chain fatty acid supply from the dam to the fetus or in lamb's early life. Neurological development in lambs takes place primarily during the first two trimesters of gestation. Through late fetal and early postnatal life, the lamb brain has a high level of cholesterol synthesis. This rate declines rapidly at weaning and remains low throughout adulthood. The main polyunsaturated fatty acids (PUFA) in the brain are ω-6 arachidonic acid and ω-3 docosahexaenoic acid (DHA), which are elements of plasma membranes' phospholipids in neuronal cells. DHA is essential for keeping membrane integrity and is vital for normal development of the central nervous system (CNS), and its insufficiency can damage cerebral functions and the development of cognitive capacities. In sheep, there is evidence that supplying PUFA during gestation or after birth may be beneficial to lamb productive performance and expression of species-specific behaviors. The objective of this perspective is to discuss concepts of ruminant behavior and nutrition and reflect on future research directions that could help to improve our knowledge on how dietary fatty acids (FA) relate to optimal neurological and cognitive development in sheep.
Collapse
Affiliation(s)
- Karen Tajonar
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Manuel Gonzalez-Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Alejandro Relling
- Department of Animal Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Rebecca E. Nordquist
- Unit Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Christian Nawroth
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Christian Nawroth ✉
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom,Einar Vargas-Bello-Pérez ✉
| |
Collapse
|
16
|
Something Smells Fishy: How Lipid Mediators Impact the Maternal-Fetal Interface and Neonatal Development. Biomedicines 2023; 11:biomedicines11010171. [PMID: 36672679 PMCID: PMC9855822 DOI: 10.3390/biomedicines11010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized.
Collapse
|
17
|
Roque-Jiménez JA, Oviedo-Ojeda MF, Whalin M, Lee-Rangel HA, Relling AE. Ewe early gestation supplementation with eicosapentaenoic and docosahexaenoic acids affects the liver, muscle, and adipose tissue fatty acid profile and liver mRNA expression in the offspring. J Anim Sci 2023; 101:skad144. [PMID: 37158288 PMCID: PMC10263116 DOI: 10.1093/jas/skad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Our objectives were to assess the effects of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) supplementation to pregnant ewes during the first third of gestation on their offspring's liver, adipose, and muscle tissues fatty acid (FA) profile and liver mRNA expression after a finishing period receiving diets with different FA profiles. Twenty-four post-weaning lambs, blocked by sex and body weight, were used in a 2 × 2 factorial arrangement of treatments. The first factor was dam supplementation (DS) in the first third of gestation with 1.61% of Ca salts of palm fatty acid distillate (PFAD) or Ca salts enriched with EPA-DHA. Ewes were exposed to rams with marking paint harnesses during the breeding. Ewes started DS at the day of mating, considered day 1 of conception. Twenty-eight days after mating, ultrasonography was used to confirm pregnancy, and nonpregnant ewes were removed from the groups. After weaning, the offspring lambs were supplemented (LS, second main factor) with two different FA sources (1.48% of PFAD or 1.48% of EPA-DHA) during the growing and fattening phase. Lambs were fed the LS diet for 56 d and sent to slaughter, where the liver, muscle, and adipose tissue samples were collected for FA analysis. Liver samples were collected for relative mRNA expression for genes associated with FA transport and metabolism. The data were analyzed as a mixed model in SAS (9.4). In the liver, the amount of C20:5 and C22:6 (P < 0.01) increased in lambs with LS-EPA-DHA, while some C18:1 cis FA isomers were greater in the lambs from DS-PFAD. In muscle, amounts of C22:1, C20:5, and C22:5 increased (P < 0.05) in lambs born from DS-EPA-DHA. The adipose tissue amounts of C20:5, C22:5, and C22:6 were greater (P < 0.01) in lambs from LS-EPA-DHA. Interactions (DS × LS; P < 0.05) were observed for DNMT3β, FABP-1, FABP-5, SCD, and SREBP-1; having greater mRNA expression in liver tissue of LS-EPA-DHA, DS-PFAD and LS-PFAD, DS-EPA-DHA lambs compared with the lambs in the other two treatments. Liver ELOVL2 mRNA relative expression (P < 0.03) was greater in the offspring of DS-PFAD. Relative mRNA expression (P < 0.05) of GLUT1, IGF-1, LPL, and PPARγ increased in the liver from LS-EPA-DHA lambs. Dam supplementation during early gestation using with different FA sources changed the lipid FA profile in MT, LT, and SAT during the finishing period depending on the tissue and type of FA source administered during the growing phase.
Collapse
Affiliation(s)
- José A Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Mario F Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor A Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
18
|
Patel AK, Chauhan AS, Kumar P, Michaud P, Gupta VK, Chang JS, Chen CW, Dong CD, Singhania RR. Emerging prospects of microbial production of omega fatty acids: Recent updates. BIORESOURCE TECHNOLOGY 2022; 360:127534. [PMID: 35777644 DOI: 10.1016/j.biortech.2022.127534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Healthy foods containing omega-3/omega-6 polyunsaturated fatty acids (PUFAs) have been in great demand because of their unique dietary and health properties. Reduction in chronic inflammatory and autoimmune diseases has shown their therapeutic and health-promoting effects when consumed under recommended ratio 1:1-1:4, however imbalanced ratios (>1:4, high omega-6) enhance these risks. The importance of omega-6 is apparent however microbial production favors larger production of omega-3. Current research focus is prerequisite to designing omega-6 production strategies for better application prospects, for which thraustochytrids could be promising due to higher lipid productivity. This review provides recent updates on essential fatty acids production from potential microbes and their application, especially major insights on omega research, also discussed the novel possible strategies to promote omega-3 and omega-6 accumulation via engineering and omics approaches. It covers strategies to block the conversion of omega-6 into omega-3 by enzyme inhibition, nanoparticle-mediated regulation and/or metabolic flux regulation, etc.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Ajeet Singh Chauhan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Prashant Kumar
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institute Pascal, 63000 Clermont-Ferrand, France
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| |
Collapse
|
19
|
Li LJ, Wu J, Chen Z, Weir NL, Tsai MY, Albert P, Zhang C. Plasma phospholipid polyunsaturated fatty acids composition in early pregnancy and fetal growth trajectories throughout pregnancy: Findings from the US fetal growth studies-singletons cohort. EBioMedicine 2022; 82:104180. [PMID: 35853297 PMCID: PMC9294651 DOI: 10.1016/j.ebiom.2022.104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022] Open
Abstract
Background We aimed to investigate plasma phospholipid PUFA levels in early pregnancy and fetal growth trajectories throughout pregnancy. Methods Within the NICHD Fetal Growth Studies–Singleton Cohort, we enrolled 2,802 pregnant women at gestational weeks 8–13 and randomly assigned them to four ultrasonogram schedules to capture weekly fetal growth throughout pregnancy. Eleven plasma phospholipid PUFAs were measured at early pregnancy using blood samples collected from a subsample of 321 pregnant women. We modeled fetal growth trajectories across tertiles of PUFAs with cubic splines using linear mixed models after adjusting for major confounders. We then compared pairwise weekly fetal growth biometrics referencing the lowest tertile in each PUFA using the Wald test. Findings Among plasma n-3 PUFAs in early pregnancy, docosahexaenoic acid (DHA, 22:6n3) and alpha-linolenic acid (ALA, 18:3n3) showed positive associations with all fetal growth measurements. For instance, compared with the lowest tertile, the highest tertile of DHA had greater estimated fetal growth (EFW) and abdominal circumference (AC), starting at 13 weeks of gestation and throughout pregnancy (at gestational week 38: 3235.3 vs. 3089.0 g for EFW; 344.6 vs. 339.2 mm for AC). As for plasma n-6 PUFAs, some showed positive associations (e.g., linoleic acid [LA], 18:2n6) while others (e.g., docosatetraenoic acid [DTA], 22:4n6) showed inverse associations with fetal growth measures. Interpretation Our data suggested that higher plasma levels of DHA and ALA in the first trimester were associated with increased fetal size and weight throughout subsequent pregnancy. Funding National Institute of Child Health and Human Development intramural funding.
Collapse
Affiliation(s)
- Ling-Jun Li
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Wu
- Glotech Inc., Bethesda, Maryland, USA
| | - Zhen Chen
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie L Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul Albert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cuilin Zhang
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
20
|
Chen C, Tang T, Shi Q, Zhou Z, Fan J. The potential and challenge of microalgae as promising future food sources. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Umbilical cord blood metabolomics: association with intrauterine hyperglycemia. Pediatr Res 2022; 91:1530-1535. [PMID: 33980991 DOI: 10.1038/s41390-021-01516-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Intrauterine hyperglycemia can harm a fetus's growth and development, and this can be seen in the umbilical cord blood metabolism disorder. However, the metabolites and metabolic mechanisms involved in the condition remain unknown. METHODS Targeted metabolomics using liquid chromatography and MetaboAnalyst were conducted in this study to explore differences in metabolites and metabolic pathways between individuals with hyperglycemia or well-controlled gestational diabetes mellitus (GDM) and healthy controls. RESULTS Univariate analysis found that the hyperglycemic and healthy control groups differed in 30 metabolites, while the well-controlled GDM and the healthy control groups differed only in three metabolites-ursodeoxycholic acid, docosahexaenoic acid, and 8,11,14-eicosatrienoic acid. Most of these metabolic variations were negatively associated with neonatal weights. Further research showed that the variations in the metabolites were primarily associated with the metabolic pathways of linoleic acid (LA) and alpha-linolenic acid (ALA). CONCLUSION Gestational hyperglycemia and well-controlled GDM, which may play a major role by inhibiting the LA and ALA metabolic pathways, have detrimental effects on cord blood metabolism. IMPACT The main point of this paper is that intrauterine hyperglycemia has a negative effect on cord blood metabolism mainly through the linoleic acid and alpha-linolenic acid metabolic pathways. This is a study to report a new association between well-controlled GDM and cord blood metabolism. This study provides a possible explanation for the association between intrauterine hyperglycemia and neonatal adverse birth outcomes.
Collapse
|
22
|
Lugarà R, Realini L, Kreuzer M, Giller K. Effects of maternal high-energy diet and spirulina supplementation in pregnant and lactating sows on performance, quality of carcass and meat, and its fatty acid profile in male and female offspring. Meat Sci 2022; 187:108769. [DOI: 10.1016/j.meatsci.2022.108769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
|
23
|
Patel A, Desai SS, Mane VK, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Thompson M, Ulu A, Yuil-Valdes AG, Mukherjee M, Thoene M, Van Ormer M, Slotkowski R, Lyden E, Anderson Berry A, Hanson CK, Nordgren TM, Natarajan SK. Omega-6 and Omega-3 Fatty Acid-Derived Oxylipins from the Lipoxygenase Pathway in Maternal and Umbilical Cord Plasma at Delivery and Their Relationship with Infant Growth. Int J Mol Sci 2022; 23:ijms23020708. [PMID: 35054892 PMCID: PMC8775763 DOI: 10.3390/ijms23020708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/03/2023] Open
Abstract
Omega-3 and omega-6 fatty acids are important for neonatal development and health. One mechanism by which omega-3 and omega-6 fatty acids exert their effects is through their metabolism into oxylipins and specialized pro-resolving mediators. However, the influence of oxylipins on fetal growth is not well understood. Therefore, the objective of this study was to identify oxylipins present in maternal and umbilical cord plasma and investigate their relationship with infant growth. Liquid chromatography-tandem mass spectrometry was used to quantify oxylipin levels in plasma collected at the time of delivery. Spearman's correlations highlighted significant correlations between metabolite levels and infant growth. They were then adjusted for maternal obesity (normal body mass index (BMI: ≤30 kg/m2) vs. obese BMI (>30 kg/m2) and smoking status (never vs. current/former smoker) using linear regression modeling. A p-value < 0.05 was considered statistically significant. Our study demonstrated a diverse panel of oxylipins from the lipoxygenase pathway present at the time of delivery. In addition, both omega-3 and omega-6 oxylipins demonstrated potential influences on the birth length and weight percentiles. The oxylipins present during pregnancy may influence fetal growth and development, suggesting potential metabolites to be used as biomarkers for infant outcomes.
Collapse
Affiliation(s)
- Maranda Thompson
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.T.); (M.T.); (M.V.O.); (R.S.); (A.A.B.)
| | - Arzu Ulu
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.U.); (T.M.N.)
| | - Ana G. Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maheswari Mukherjee
- Cytotechnology Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Melissa Thoene
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.T.); (M.T.); (M.V.O.); (R.S.); (A.A.B.)
| | - Matthew Van Ormer
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.T.); (M.T.); (M.V.O.); (R.S.); (A.A.B.)
| | - Rebecca Slotkowski
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.T.); (M.T.); (M.V.O.); (R.S.); (A.A.B.)
| | - Elizabeth Lyden
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ann Anderson Berry
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.T.); (M.T.); (M.V.O.); (R.S.); (A.A.B.)
| | - Corrine K. Hanson
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tara M. Nordgren
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.U.); (T.M.N.)
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, CO 80525, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-805-7520
| |
Collapse
|
25
|
Yau SY, Yip YSL, Formolo DA, He S, Lee THY, Wen C, Hryciw DH. Chronic consumption of a high linoleic acid diet during pregnancy, lactation and post-weaning period increases depression-like behavior in male, but not female offspring. Behav Brain Res 2022; 416:113538. [PMID: 34418475 DOI: 10.1016/j.bbr.2021.113538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an essential role in brain development. Emerging data have suggested a possible link between an imbalance in PUFAs and cognitive behavioral deficits in offspring. A diet rich in high linoleic acid (HLA), typically from preconception to lactation, leads to an increase in the ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids in the fetus. Arising research has suggested that a deficiency in omega-3 fatty acids is a potential risk factor for inducing autism spectrum disorder (ASD)-like behavioral deficits. However, the impact of a high n- diet during preconception, pregnancy, lactation, and post-weaning on the brain development of adolescent offspring are yet to be determined. This study examined whether consumption of an HLA diet during pregnancy, lactation, and post-weaning induced social and cognitive impairments in female and male offspring rats that resemble autistic phenotypes in humans. Female Wistar Kyoto rats were fed with either HLA or low linoleic acid (LLA) control diet for 10 weeks before mating, then continued with the same diet throughout the pregnancy and lactation period. Female and male offspring at 5 weeks old were subjected to behavioral tests to assess social interaction behavior and depression-/anxiety-like behavior. Our result showed that chronic consumption of an HLA diet did not affect sociability and social recognition memory, but induced depression-like behavior in male but not in female offspring.
Collapse
Affiliation(s)
- Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Yvette Siu Ling Yip
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Douglas A Formolo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Siyuen He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Thomas Ho Yin Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia; School of Environment and Science, Griffith University, Nathan, QLD, Australia; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA. Associations Of Delta Fatty Acid Desaturase Gene Polymorphisms With Lipid Metabolism Disorders. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Overweight, obesity, type 2 diabetes mellitus, metabolic syndrome, cardiovascular diseases, and non-alcoholic fatty liver disease are common chronic ailments associated with lipid metabolism disorders. One of the mechanisms of these disorders is related to the deficiency and/or change in the balance of essential fatty acids (FAs). At the same time, the provision of ω3 and ω6 polyunsaturated fatty acids (PUFAs) depends, besides sufficient dietary intake, on efficiency of their endogenous biosynthesis by desaturation and elongation processes regulated by FA elongases and FA desaturases. Desaturases are encoded by PUFA desaturase genes (FADSs): FADS1 and FADS2. Alteration of FA desaturase activity and single nucleotide polymorphisms (SNPs) in the FADS1 and FADS2 gene cluster are associated with lipid metabolism dysfunction and may affect the pathogenesis of lipid-related diseases. People of different ages, from different ethnic backgrounds and countries may exhibit varying degrees of response to dietary supplements of ω3 and ω6 PUFAs. The study of the relationship between lipid metabolism disorders and genetic factors controlling FA metabolism is an important research area since the health effects of alimentary ω3 and ω6 PUFAs can depend on genetic variants of the FADS genes. This review summarizes the literature data on the association of FADS gene polymorphisms with lipid metabolism disorders and their role in the development of chronic non-communicable pathologies associated with changes in lipid metabolism.
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | | | - Yulia K. Denisenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Marina V. Antonyuk
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
27
|
Rousseau-Ralliard D, Aubrière MC, Daniel N, Dahirel M, Morin G, Prézelin A, Bertrand J, Rey C, Chavatte-Palmer P, Couturier-Tarrade A. Importance of Windows of Exposure to Maternal High-Fat Diet and Feto-Placental Effects: Discrimination Between Pre-conception and Gestational Periods in a Rabbit Model. Front Physiol 2021; 12:784268. [PMID: 34899400 PMCID: PMC8656279 DOI: 10.3389/fphys.2021.784268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
Context and Aim: Lipid overnutrition in female rabbits, from prepuberty, leads to impaired metabolism (dyslipidemia and increased adiposity) and follicular atresia, and, when continued during gestation, affects offspring phenotype with intrauterine growth retardation (IUGR) and leads to placental and lipid metabolism abnormalities. Growth retardation is already observed in embryo stage, indicating a possible implication of periconceptional exposure. The objective of this study was to discriminate the effects of preconception and gestational exposures on feto-placental development. Materials and Methods: Rabbit 1-day zygotes were collected from female donors under control (CD) or high-fat-high-cholesterol (HD) diet and surgically transferred to the left and right uterus, respectively, of each H (n = 6) or C (n = 7) synchronized recipients. Close to term, four combinations, CC (n = 10), CH (n = 13), HC (n = 13), and HH (n = 6), of feto-placental units were collected, for biometry analyses. Fatty acid (FA) profiles were determined in placental labyrinth, decidua, fetal plasma, and fetal liver by gas chromatography and explored further by principal component analysis (PCA). Candidate gene expression was also analyzed by RT-qPCR in the placenta and fetal liver. Data were analyzed by Kruskal–Wallis followed by Dunn’s pairwise comparison test. Combinations of different data sets were combined and explored by multifactorial analysis (MFA). Results: Compared to controls, HH fetuses were hypotrophic with reduced placental efficiency and altered organogenesis, CH presented heavier placenta but less efficient, whereas HC presented a normal biometry. However, the MFA resulted in a good separation of the four groups, discriminating the effects of each period of exposure. HD during gestation led to reduced gene expression (nutrient transport and metabolism) and big changes in FA profiles in both tissues with increased membrane linoleic acid, lipid storage, and polyunsaturated-to-saturated FA ratios. Pre-conception exposure had a major effect on fetal biometry and organogenesis in HH, with specific changes in FA profiles (increased MUFAs and decreased LCPUFAs). Conclusion: Embryo origin left traces in end-gestation feto-placental unit; however, maternal diet during gestation played a major role, either negative (HD) or positive (control). Thus, an H embryo developed favorably when transferred to a C recipient (HC) with normal biometry at term, despite disturbed and altered FA profiles.
Collapse
Affiliation(s)
- Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Marie-Christine Aubrière
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | | | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
28
|
Macías-Cruz U, Vicente-Pérez R, Correa-Calderon A, Mellado M, Meza-Herrera CA, Arechiga CF, Avendaño-Reyes L. n-6 Polyunsaturated fatty acids in the feeding of late gestation hair ewes: the effects on thermoregulation, growth, and metabolism of heat-stressed growing lambs. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:2077-2086. [PMID: 34226974 DOI: 10.1007/s00484-021-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The objective was to determine the effects of feeding soybean oil (SBO), an ingredient rich in n-6 polyunsaturated fatty acids (PUFA), to late gestation hair ewes on physiological responses, feedlot performance, and serum metabolite and electrolyte concentrations of their growing ewe lambs under outdoor heat stress conditions. Twenty-four Dorper × Pelibuey ewe lambs weaned (body weight = 21.5 ± 0.2 kg, age= 2 months, and multiple birth) born from ewes fed 0, 30, or 60 mg of SBO/kg dry matter (DM) during late gestation were selected (n = 8/treatment) to conduct a 30-day feeding trial during the summer season of a desert region (temperature = 34 °C and temperature-humidity index = 35 units). While rectal temperature was unaffected in any daytime, respiratory rate in the afternoon quadratically increased (P = 0.05) as the SBO levels increased from 0 to 60 mg/kg DM in the maternal diet. Final weight, average daily gain, and feed efficiency linearly increased (P = 0.04) with increasing levels of SBO. Body surface temperatures and serum concentration of glucose, cholesterol, triglyceride, total protein, urea, sodium, potassium, and chlorine did not vary by the SBO inclusion in the maternal diet. In conclusion, feeding late gestation hair ewes with source rich in n-6 PUFA appears to be an effective maternal nutritional strategy to improve post-weaning growth without compromising the thermoregulatory ability of their growing offspring under a heat stress environment.
Collapse
Affiliation(s)
- Ulises Macías-Cruz
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México
| | - Ricardo Vicente-Pérez
- Departamento de Producción Agrícola CUCSUR, Universidad de Guadalajara, Autlán de Navarro, Jalisco, 48900, México
| | - Abelardo Correa-Calderon
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México
| | - Miguel Mellado
- Departamento de Nutrición Animal, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, 25315, México
| | - Cesar A Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Bermejillo, Durango, 35230, México
| | - Carlos F Arechiga
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Calera, Zacatecas, 98500, México
| | - Leonel Avendaño-Reyes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, Baja California, 21705, México.
| |
Collapse
|
29
|
Lee JG, Kim G, Park SG, Yon JM, Yeom J, Song HE, Cheong SA, Lim JS, Sung YH, Kim K, Yoo HJ, Hong EJ, Nam KH, Seong JK, Kim CJ, Nam SY, Baek IJ. Lipid signatures reflect the function of the murine primary placentation. Biol Reprod 2021; 106:583-596. [PMID: 34850819 DOI: 10.1093/biolre/ioab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The placenta regulates maternal-fetal communication, and its defect leads to significant pregnancy complications. The maternal and embryonic circulations are primitively connected in early placentation, but the function of the placenta during this developmentally essential period is relatively unknown. We thus performed a comparative proteomic analysis of the placenta before and after primary placentation and found that the metabolism and transport of lipids were characteristically activated in this period. The placental fatty acid (FA) carriers in specific placental compartments were upregulated according to gestational age, and metabolomic analysis also showed that the placental transport of FAs increased in a time-dependent manner. Further analysis of two mutant mice models with embryonic lethality revealed that lipid-related signatures could reflect the functional state of the placenta. Our findings highlight the importance of the nutrient transport function of the primary placenta in the early gestational period and the role of lipids in embryonic development.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Song
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Aparicio E, Martín-Grau C, Hernández-Martinez C, Voltas N, Canals J, Arija V. Changes in fatty acid levels (saturated, monounsaturated and polyunsaturated) during pregnancy. BMC Pregnancy Childbirth 2021; 21:778. [PMID: 34789176 PMCID: PMC8596903 DOI: 10.1186/s12884-021-04251-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND During pregnancy a high amount of fatty acids (FA) is necessary to meet foetus demands, which vary during gestation. The present study describes the changes in maternal fatty acid concentrations during pregnancy in a sample of pregnant women. METHODS This is a longitudinal study of 479 pregnant women who were monitored from the first trimester to third trimester of pregnancy. Data on maternal characteristics were recorded and a serum sample was collected in each trimester. The fatty acid profile (saturated (SFA: total, lauric acid, myristic acid, palmitic acid, stearic acid), monounsaturated (MUFA: total, palmitoleic acid, oleic acid) and polyunsaturated fatty acids (PUFA: total omega-6 (n-6), linoleic acid, dihomo-γ-linolenic acid, arachidonic acid (AA), total omega-3 (n-3), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)) was analysed with a gas chromatography-mass spectrometry combination. RESULTS From the first trimester to third trimester of pregnancy, a significant increase in total SFA, total MUFA and total n-6 PUFA was found. (p < 0.001). Nevertheless, the serum concentration of arachidonic acid (AA), eicosapentaenoic acid (EPA) and total n-3 PUFA decreased during gestation (p < 0.001). A statistically non-significant result was observed for the docosahexaenoic acid (DHA) serum concentration between the first and third trimesters of pregnancy. Significant correlations were observed between each total fatty acid concentrations of the first and third trimesters. CONCLUSION The circulating serum concentration of SFA, MUFA and n-6 PUFA increases during pregnancy, whereas essential fatty acids such as AA and EPA decrease, and DHA remains unchanged. Further research is necessary to understand the role played by FA throughout gestation.
Collapse
Affiliation(s)
- Estefania Aparicio
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
| | - Carla Martín-Grau
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Clinical Chemistry Laboratory, Catalan Institute of Health (ICS)-Camp de Tarragona-Terres de l'Ebre, Joan XXIII University Hospital in Tarragona, 43005, Tarragona, Spain
| | - Carmen Hernández-Martinez
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
- Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Nuria Voltas
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
- Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Josefa Canals
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
- Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Victoria Arija
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain.
| |
Collapse
|
31
|
Demmelmair H, Koletzko B. Perinatal Polyunsaturated Fatty Acid Status and Obesity Risk. Nutrients 2021; 13:3882. [PMID: 34836138 PMCID: PMC8625539 DOI: 10.3390/nu13113882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
High obesity rates in almost all regions of the world prompt an urgent need for effective obesity prevention. Very good scientific evidence from cell culture and rodent studies show that the availability of essential polyunsaturated fatty acids (PUFA) and their long-chain polyunsaturated derivatives, namely, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, influence adipogenesis; for this reason, early life status may influence later obesity risk. The respective PUFA effects could be mediated via their eicosanoid derivatives, their influence on cell membrane properties, the browning of white adipose tissue, changes to the offspring gut microbiome, their influence on developing regulatory circuits, and gene expression during critical periods. Randomized clinical trials and observational studies show divergent findings in humans, with mostly null findings but also the positive and negative effects of an increased n-3 to n-6 PUFA ratio on BMI and fat mass development. Hence, animal study findings cannot be directly extrapolated to humans. Even though the mechanistic data basis for the effects of n-3 PUFA on obesity risk appears promising, no recommendations for humans can be derived at present.
Collapse
Affiliation(s)
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Pediatrics, Dr. von Hauner Children’s Hospital, University of Munich Medical Centre, LMU—Ludwig-Maximilians-Universität Munich, D-80337 Munich, Germany;
| |
Collapse
|
32
|
Shao T, Ireland FA, McCann JC, Shike DW. Effects of supplements differing in fatty acid profile to late gestational beef cows on cow performance, calf growth performance, and mRNA expression of genes associated with myogenesis and adipogenesis. J Anim Sci Biotechnol 2021; 12:67. [PMID: 34120653 PMCID: PMC8201839 DOI: 10.1186/s40104-021-00588-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Maternal nutrition during gestation affects fetal development, which has long-term programming effects on offspring postnatal growth performance. With a critical role in protein and lipid metabolism, essential fatty acids can influence the development of muscle and adipose tissue. The experiment investigated the effects of late gestation supplements (77 d prepartum), either rich in saturated and monounsaturated fatty acids (CON; 155 g/cow/d EnerGII) or polyunsaturated fatty acids (PUFA; 80 g/cow/d Strata and 80 g/cow/d Prequel), on cow performance and subsequent calf growth performance as well as mRNA expression in longissimus muscle (LM) and subcutaneous adipose tissue at birth and weaning. Results There was no difference (P ≥ 0.34) in cow body weight (BW) or body condition score from pre-supplementation through weaning. Relative concentrations of C18:3n-3 and C20:4n-6 decreased (P ≤ 0.05) to a greater extent from mid-supplementation to calving for PUFA compared with CON cows. Cow plasma C20:0, C20:5n-3, and C22:6n-3 were increased (P ≤ 0.01) in PUFA during supplementation period. At birth, PUFA steers had greater (P = 0.01) plasma C20:5n-3. No differences (P ≥ 0.33) were detected in steer birth BW or dam milk production, however, CON steers tended (P = 0.06) to have greater pre-weaning average daily gain and had greater (P = 0.05) weaning BW compared with PUFA. For mRNA expression in steers: MYH7 and C/EBPβ in LM increased (P ≤ 0.04) to a greater extent from birth to weaning for PUFA compared with CON; MYF5 in LM and C/EBPβ in adipose tissue tended (P ≤ 0.08) to decrease more from birth to weaning for CON compared with PUFA; SCD in PUFA adipose tissue tended (P = 0.08) to decrease to a greater extent from birth to weaning than CON. In addition, maternal PUFA supplementation tended (P = 0.08) to decrease MYOG mRNA expression in LM and decreased (P = 0.02) ZFP423 in adipose tissue during the pre-weaning stage. Conclusions Late gestation PUFA supplementation decreased pre-weaning growth performance of the subsequent steer progeny compared with CON supplementation, which could have been a result of downregulated mRNA expression of myogenic genes during pre-weaning period. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00588-w.
Collapse
Affiliation(s)
- Taoqi Shao
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank A Ireland
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
33
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The clinical impact of maternal weight on offspring health: lights and shadows in breast milk metabolome. Expert Rev Proteomics 2021; 18:571-606. [PMID: 34107825 DOI: 10.1080/14789450.2021.1940143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pre-pregnancy overweight and obesity, depending on maternal nutrition and metabolic state, can influence fetal, neonatal and long-term offspring health, regarding cardio-metabolic, respiratory, immunological and cognitive outcomes. Thus, maternal weight can act, through mechanisms that are not full understood, on the physiology and metabolism of some fetal organs and tissues, to adapt themselves to the intrauterine environment and nutritional reserves. These effects could occur by modulating gene expression, neonatal microbiome, and through breastfeeding. AREAS COVERED In this paper, we investigated the potential effects of metabolites found altered in breast milk (BM) of overweight/obese mothers, through an extensive review of metabolomics studies, and the potential short- and long-term clinical effects in the offspring, especially regarding overweight, glucose homeostasis, insulin resistance, oxidative stress, infections, immune processes, and neurodevelopment. EXPERT OPINION Metabolomics seems the ideal tool to investigate BM variation depending on maternal or fetal/neonatal factors. In particular, BM metabolome alterations according to maternal conditions were recently pointed out in cases of gestational diabetes, preeclampsia, intrauterine growth restriction and maternal overweight/obesity. In our opinion, even if BM is the food of choice in neonatal nutrition, the deepest comprehension of its composition in overweight/obese mothers could allow targeted supplementation, to improve offspring health and metabolic homeostasis.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, section of Pediatrics, University of Pisa, Italy. Via Roma, 55, 56126 Pisa PI, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| |
Collapse
|
34
|
Heras-Molina A, Pesántez-Pacheco JL, Garcia-Contreras C, Vázquez-Gómez M, López A, Benítez R, Núñez Y, Astiz S, Óvilo C, Isabel B, González-Bulnes A. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Prenatal Effects on Growth and Metabolism. Animals (Basel) 2021; 11:ani11061699. [PMID: 34200304 PMCID: PMC8227179 DOI: 10.3390/ani11061699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The present study aimed to determine benefits and risks of a dietary supplementation combining hydroxytyrosol and n-3 polyunsaturated fatty acids (PUFA) on prenatal development and metabolic traits in swine, a model of intrauterine growth restricted (IUGR) pregnancies. No effects were found regarding sows’ weight and adiposity. Treated sows had larger litters, with smaller fetuses. However, these animals had better development of some major organs. Fetuses from the treated group had better glycemic and lipidic indexes, but no effects on anti/prooxidant profiles were found. Abstract Maternal supplementation with antioxidants and n-3 PUFAs may be a promising strategy to reduce the risk of intrauterine growth restriction and preterm delivery, which may diminish the appearance of low-birth-neonates. A previous studies showed beneficial outcomes of the combination of hydroxytyrosol and linoleic acid, but there is no data of its prenatal effects. The present study aimed to determine the possible prenatal implications of such maternal supplementation at prenatal stages in swine, a model of IUGR pregnancies. Results showed effects on litter size, with treated sows having larger litters and, therefore, smaller fetuses. However, the brain/head weight ratio showed a positive effect of the treatment in development, as well as in some other major organs like lungs, spleen, or kidneys. On the other hand, treated piglets showed better glycemic and lipidemic profiles, which could explain postnatal effects. However, further research on the implications of the treatment on litter size and prenatal and postnatal development must be done before practical recommendation can be given.
Collapse
Affiliation(s)
- Ana Heras-Molina
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
| | - José Luis Pesántez-Pacheco
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
- Faculty of Agricultural Sciences, School of Veterinary Medicine and Zootechnics, University of Cuenca, Avda. Doce de Octubre, Cuenca 010220, Ecuador
| | - Consolación Garcia-Contreras
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
| | - Marta Vázquez-Gómez
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
- Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Trav. dels Turons, 08193 Bellaterra, Spain
| | - Adrián López
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
| | - Rita Benítez
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
| | - Yolanda Núñez
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
| | - Susana Astiz
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
| | - Cristina Óvilo
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
| | - Beatriz Isabel
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (B.I.)
| | - Antonio González-Bulnes
- SGIT-INIA, Ctra. De La Coruña Km. 7.5, 28040 Madrid, Spain; (A.H.-M.); (J.L.P.-P.); (C.G.-C.); (A.L.); (R.B.); (Y.N.); (S.A.); (C.Ó.)
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Correspondence:
| |
Collapse
|
35
|
A better quality of maternal dietary fat reduces the chance of large-for-gestational-age infants: A prospective cohort study. Nutrition 2021; 91-92:111367. [PMID: 34265579 DOI: 10.1016/j.nut.2021.111367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES We sought to investigate the relationship between the usual intake of fatty acids and indices of dietary fat quality in pregnant women and the birth-weight categories of their newborns. METHODS This prospective cohort study was conducted with 734 mother-infant pairs in Brazil. Dietary intake was estimated through 24-h dietary recalls. Secondary data on birth weight, sex of the newborn, and pregnancy duration were obtained. The relationship of fatty acids and indices with birth-weight categories were investigated using logistic regression models adjusted for confounding factors. We considered P values < 0.05 significant. RESULTS The median (interquartile range) maternal age was 27 (23-31) y; 46.2% of the pregnant women had pregestational body mass index ≥ 25 kg/m2, 18.1% had gestational diabetes mellitus, and 11.2% had hypertension. Regarding the newborns, 68 (9.3%) were classified as small for gestational age, 545 (74.2%) as appropriate size for gestational age, and 121 (16.5%) as large for gestational age. In adjusted logistic regression models, a lower chance of being large for gestational age was observed among the children of women classified in the third tertile (versus the first tertile) for intake of polyunsaturated fatty acids (odds ratio [OR], 0.52; 95% confidence interval [CI], 0.31-0.89; P = 0.02), ω-3 fatty acids (OR, 0.48; 95% CI, 0.28-0.80; P = 0.005), and ω-6 fatty acids (OR, 0.56; 95% CI, 0.33-0.96; P = 0.04) and for ratios of polyunsaturated to saturated fatty acids (OR, 0.54; 95% CI, 0.32-0.92; P = 0.03) and hypocholesterolemic to hypercholesterolemic fatty acids (OR, 0.51; 95% CI, 0.30-0.87; P = 0.01). CONCLUSIONS The data suggest that better-quality fat in the maternal diet can reduce the chance of a large-for-gestational-age newborn.
Collapse
|
36
|
Estrada-Gutiérrez G, Zambrano E, Polo-Oteyza E, Cardona-Pérez A, Vadillo-Ortega F. Intervention during the first 1000 days in Mexico. Nutr Rev 2021; 78:80-90. [PMID: 33196088 DOI: 10.1093/nutrit/nuaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Health systems and society are facing the growing problem of obesity and its accompanying comorbidities. New approaches to reduce these problems must be oriented to population groups in which long-lasting effects of interventions may occur. Biological processes occurring during the first 1000 days of life, which may be modulated by environmental modifications and result in phenotypes with differential risk for noncommunicable chronic disease, constitute an opportunity for interventions. The nutritional and general health conditions of pregnant women and the fetus, as well as toddlers, can be improved with interventions during the first 1000 days, offering pregnancy care, promoting breastfeeding, instructing on the use of complementary foods, and educating on the adequacy of the family dietary patterns for children. Evidence that interventions during this period result in promotion of children's growth and development, influencing the risk for development of obesity in infancy, is available. In this article, an ongoing program in Mexico City directed to offer continuum of care during the first 1000 days is described.
Collapse
Affiliation(s)
- Guadalupe Estrada-Gutiérrez
- Dirección de Investigación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, México City, México
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | | | - Arturo Cardona-Pérez
- Dirección General, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, México City, México
| | - Felipe Vadillo-Ortega
- Dirección de Investigación y Unidad de Vinculación de la Facultad de Medicina, UNAM, Instituto Nacional de Medicina Genómica, México City, México
| |
Collapse
|
37
|
Roque-Jiménez JA, Rosa-Velázquez M, Pinos-Rodríguez JM, Vicente-Martínez JG, Mendoza-Cervantes G, Flores-Primo A, Lee-Rangel HA, Relling AE. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals (Basel) 2021; 11:ani11030762. [PMID: 33801880 PMCID: PMC8001802 DOI: 10.3390/ani11030762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The objective of the current review is to provide a broad perspective on developmental program aspects of dietary n-3 FA supplementation in ruminants during pre-conception, conception, pregnancy, early life, including its effects on production, lipid metabolism, and health of the offspring. Offspring growth and metabolism could change depending on the FA profile and the stage of gestation when the dam is supplemented. Despite this extended review we are highlighting areas that we consider that there is a lack of information. Abstract Nutrition plays a critical role in developmental programs. These effects can be during gametogenesis, gestation, or early life. Omega-3 polyunsaturated fatty acids (PUFA) are essential for normal physiological functioning and for the health of humans and all domestic species. Recent studies have demonstrated the importance of n-3 PUFA in ruminant diets during gestation and its effects on pre-and postnatal offspring growth and health indices. In addition, different types of fatty acids have different metabolic functions, which affects the developmental program differently depending on when they are supplemented. This review provides a broad perspective of the effect of fatty acid supplementation on the developmental program in ruminants, highlighting the areas of a developmental program that are better known and the areas that more research may be needed.
Collapse
Affiliation(s)
- José Alejandro Roque-Jiménez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Milca Rosa-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Juan Manuel Pinos-Rodríguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Jorge Genaro Vicente-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | | | - Argel Flores-Primo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Héctor Aarón Lee-Rangel
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
- Correspondence: ; Tel.: +1-330-263-3900
| |
Collapse
|
38
|
Maternal Factors Associated with Levels of Fatty Acids, Specifically n-3 PUFA during Pregnancy: ECLIPSES Study. Nutrients 2021; 13:nu13020317. [PMID: 33499257 PMCID: PMC7912138 DOI: 10.3390/nu13020317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
An optimal fatty acid (FA) profile during pregnancy, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), is essential for the health of the mother and child. Our aim was to identify the socioeconomic and maternal lifestyle factors associated with serum FA concentration in pregnant women. A longitudinal study was conducted on 479 pregnant women, who were assessed during the first (T1) and third (T3) trimesters of pregnancy. Data on maternal characteristics, food consumption, and lifestyle were collected. Serum FA concentrations were analysed by a gas chromatography–mass spectrometry combination. The multiple linear regression showed that high educational level and older age were significantly associated with higher EPA and DHA concentrations and lower values of n-6/n-3 and arachidonic acid (AA)/EPA in T1 and/or T3. Regarding diet—fish and seafood consumption increased EPA concentration and reduced n-6/n-3 and AA/EPA values in both trimesters, whereas its consumption increased DHA concentration only in T1. Smoking was associated with lower DHA concentration in T1 and higher values of n-6/n-3 ratio in both trimester. Overweight and obesity were associated with higher values of n-6/n-3 ratio and AA/EPA ratio in T1. A statistically non-significant association was observed with saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). In conclusion, high educational levels, older age, fish, seafood consumption, and/or non-smoking, are factors that influence better omega-3 polyunsaturated fatty acid (n-3 PUFA) profile in both trimesters of pregnancy. Further research is needed to go in-depth into these findings and their health consequences.
Collapse
|
39
|
Orsso CE, Colin-Ramirez E, Field CJ, Madsen KL, Prado CM, Haqq AM. Adipose Tissue Development and Expansion from the Womb to Adolescence: An Overview. Nutrients 2020; 12:E2735. [PMID: 32911676 PMCID: PMC7551046 DOI: 10.3390/nu12092735] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Prevalence rates of pediatric obesity continue to rise worldwide. Adipose tissue (AT) development and expansion initiate in the fetus and extend throughout the lifespan. This paper presents an overview of the AT developmental trajectories from the intrauterine period to adolescence; factors determining adiposity expansion are also discussed. The greatest fetal increases in AT were observed in the third pregnancy trimester, with growing evidence suggesting that maternal health and nutrition, toxin exposure, and genetic defects impact AT development. From birth up to six months, healthy term newborns experience steep increases in AT; but a subsequent reduction in AT is observed during infancy. Important determinants of AT in infancy identified in this review included feeding practices and factors shaping the gut microbiome. Low AT accrual rates are maintained up to puberty onset, at which time, the pattern of adiposity expansion becomes sex dependent. As girls experience rapid increases and boys experience decreases in AT, sexual dimorphism in hormone secretion can be considered the main contributor for changes. Eating patterns/behaviors and interactions between dietary components, gut microbiome, and immune cells also influence AT expansion. Despite the plasticity of this tissue, substantial evidence supports that adiposity at birth and infancy highly influences its levels across subsequent life stages. Thus, a unique window of opportunity for the prevention and/or slowing down of the predisposition toward obesity, exists from pregnancy through childhood.
Collapse
Affiliation(s)
- Camila E. Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | | | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2C2, Canada;
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.J.F.); (C.M.P.)
| | - Andrea M. Haqq
- Department of Pediatrics and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R7, Canada
| |
Collapse
|
40
|
Colucci P, De Castro V, Peloso A, Splendori M, Trezza V, Campolongo P. Perinatal exposure to omega-3 fatty acid imbalance leads to early behavioral alterations in rat pups. Behav Brain Res 2020; 392:112723. [DOI: 10.1016/j.bbr.2020.112723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023]
|
41
|
Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020; 12:E310. [PMID: 31991592 PMCID: PMC7071282 DOI: 10.3390/nu12020310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Many early studies presented beneficial effects of polyunsaturated fatty acids (PUFA) on cardiovascular risk factors and disease. However, results from recent meta-analyses indicate that this effect would be very low or nil. One of the factors that may contribute to the inconsistency of the results is that, in most studies, genetic factors have not been taken into consideration. It is known that fatty acid desaturase (FADS) gene cluster in chromosome 11 is a very important determinant of plasma PUFA, and that the prevalence of the single nucleotide polymorphisms (SNPs) varies greatly between populations and may constitute a bias in meta-analyses. Previous genome-wide association studies (GWAS) have been carried out in other populations and none of them have investigated sex and Mediterranean dietary pattern interactions at the genome-wide level. Our aims were to undertake a GWAS to discover the genes most associated with serum PUFA concentrations (omega-3, omega-6, and some fatty acids) in a scarcely studied Mediterranean population with metabolic syndrome, and to explore sex and adherence to Mediterranean diet (MedDiet) interactions at the genome-wide level. Serum PUFA were determined by NMR spectroscopy. We found strong robust associations between various SNPs in the FADS cluster and omega-3 concentrations (top-ranked in the adjusted model: FADS1-rs174547, p = 3.34 × 10-14; FADS1-rs174550, p = 5.35 × 10-14; FADS2-rs1535, p = 5.85 × 10-14; FADS1-rs174546, p = 6.72 × 10-14; FADS2-rs174546, p = 9.75 × 10-14; FADS2- rs174576, p = 1.17 × 10-13; FADS2-rs174577, p = 1.12 × 10-12, among others). We also detected a genome-wide significant association with other genes in chromosome 11: MYRF (myelin regulatory factor)-rs174535, p = 1.49 × 10-12; TMEM258 (transmembrane protein 258)-rs102275, p = 2.43 × 10-12; FEN1 (flap structure-specific endonuclease 1)-rs174538, p = 1.96 × 10-11). Similar genome-wide statistically significant results were found for docosahexaenoic fatty acid (DHA). However, no such associations were detected for omega-6 PUFAs or linoleic acid (LA). For total PUFA, we observed a consistent gene*sex interaction with the DNTTIP2 (deoxynucleotidyl transferase terminal interacting protein 2)-rs3747965 p = 1.36 × 10-8. For adherence to MedDiet, we obtained a relevant interaction with the ME1 (malic enzyme 1) gene (a gene strongly regulated by fat) in determining serum omega-3. The top-ranked SNP for this interaction was ME1-rs3798890 (p = 2.15 × 10-7). In the regional-wide association study, specifically focused on the FADS1/FASD2/FADS3 and ELOVL (fatty acid elongase) 2/ELOVL 5 regions, we detected several statistically significant associations at p < 0.05. In conclusion, our results confirm a robust role of the FADS cluster on serum PUFA in this population, but the associations vary depending on the PUFA. Moreover, the detection of some sex and diet interactions underlines the need for these associations/interactions to be studied in all specific populations so as to better understand the complex metabolism of PUFA.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
| | - Jose V. Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Eva M. Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - José I. González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Ignacio M. Giménez-Alba
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain;
- Red Temática de Investigación Cooperativa en Patología Ocular (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ophthalmology Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, 46017 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | | | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Assisted Reproduction Unit of the University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|