1
|
Li Q, Takahashi M, Enobi K, Shimizu K, Shinozaki K, Wakahara S, Sumino T. Comammox Nitrospira was the dominant ammonia oxidizer in an acidic biofilm reactor at pH 5.5 and pH 5. Appl Microbiol Biotechnol 2024; 108:494. [PMID: 39446210 PMCID: PMC11502555 DOI: 10.1007/s00253-024-13306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Nitrification is a vital process in the biological removal of inorganic nitrogen compounds. In order to ensure the stability and effectiveness of this process, buffer solutions should be added to the system to maintain neutral to slightly alkaline conditions. With a focus on the newly discovered comammox Nitrospira, this research investigates the transition of the nitrifying community within a biofilm reactor under different acidic levels (initiated at pH 6 and gradually decreased to pH 5). During the 305-day continuous operation experiment, it was observed that responsible ammonia oxidizers transitioned from ammonia-oxidizing bacteria (AOB) during the initial stages (setup stage and early stage of pH 6) to comammox Nitrospira under pH 5.5 and pH 5. Further analysis using next-generation sequencing targeting both the 16S rRNA region and amoA region revealed a shift in the dominant cluster of both Nitrospirae and comammox Nitrospira under varying pH conditions. Our study identified a distinct cluster of comammox Nitrospira that is phylogenetically closed to sequences found in acidic environments, but exhibits dissimilarity from known comammox Nitrospira isolates and the majority of environmental sequences. This cluster was found to be prevalent in the acidic biofilm reactor studied and thrived particularly well at pH 5. These findings underscore the potential significance of this distinct, uncultivated group of comammox Nitrospira in performing ammonia oxidation under acidic conditions. KEY POINTS: • Ammonia was effectively removed under pH 5.5 and 5 in the biofilm reactor • The dominant ammonia oxidizer was comammox Nitrospira when pH was 5.5 and 5 • A potential acidophilic cluster of comammox Nitrospira was identified in this acidic biofilm reactor.
Collapse
Affiliation(s)
- Qintong Li
- College of Engineering, Shibaura Institute of Technology, Tokyo, Japan.
- Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, Gunma, Japan.
| | - Mikoto Takahashi
- Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Katsuhiro Enobi
- Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, Gunma, Japan
| | - Kazuya Shimizu
- Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, Gunma, Japan
| | | | | | - Tatsuo Sumino
- Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
2
|
Cholet F, Agogué H, Ijaz UZ, Lachaussée N, Pineau P, Smith CJ. Low-abundant but highly transcriptionally active uncharacterised Nitrosomonas drive ammonia-oxidation in the Brouage mudflat, France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174312. [PMID: 38936706 DOI: 10.1016/j.scitotenv.2024.174312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Exploring differences in nitrification within adjacent sedimentary structures of ridges and runnels on the Brouage mudflat, France, we quantified Potential Nitrification Rates (PNR) alongside amoA genes and transcripts. PNR was lower in ridges (≈1.7 fold-lower) than runnels, despite higher (≈1.8 fold-higher) ammonia-oxidizing bacteria (AOB) abundance. However, AOB were more transcriptionally active in runnels (≈1.9 fold-higher). Sequencing of amoA genes and transcripts revealed starkly contrasting profiles with transcripts from ridges and runnels dominated (≈91 % in ridges and ≈98 % in runnels) by low abundant (≈4.6 % of the DNA community in runnels and ≈0.8 % in ridges) but highly active phylotypes. The higher PNR in runnels was explained by higher abundance of this group, an uncharacterised Nitrosomonas sp. cluster. This cluster is phylogenetically similar to other active ammonia-oxidizers with worldwide distribution in coastal environments indicating its potential, but previously overlooked, contribution to ammonia oxidation globally. In contrast DNA profiles were dominated by highly abundant but low-activity clusters phylogenetically distinct from known Nitrosomonas (Nm) and Nitrosospira (Ns). This cluster is also globally distributed in coastal sediments, primarily detected as DNA, and often classified as Nitrosospira or Nitrosomonas. We therefore propose to classify this cluster as Ns/Nm. Our work indicates that low abundant but highly active AOB could be responsible for the nitrification globally, while the abundant AOB Ns/Nm may not be transcriptionally active, and as such account for the lack of correlation between rate processes and gene abundances often reported in the literature. It also raises the question as to what this seemingly inactive group is doing?
Collapse
Affiliation(s)
- Fabien Cholet
- Advanced Research Centre, Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, 11 Chapel Lane G11 6EW, Glasgow, UK..
| | - Hélène Agogué
- LIENSs, UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Umer Z Ijaz
- Advanced Research Centre, Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, 11 Chapel Lane G11 6EW, Glasgow, UK
| | - Nicolas Lachaussée
- LIENSs, UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Philippe Pineau
- LIENSs, UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Cindy J Smith
- Advanced Research Centre, Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, 11 Chapel Lane G11 6EW, Glasgow, UK
| |
Collapse
|
3
|
Blom P, Smith GJ, van Kessel MAHJ, Koch H, Lücker S. Comprehensive evaluation of primer pairs targeting the ammonia monooxygenase subunit A gene of complete ammonia-oxidizing Nitrospira. Microbiol Spectr 2024; 12:e0051624. [PMID: 39166864 PMCID: PMC11448142 DOI: 10.1128/spectrum.00516-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Since the discovery of complete ammonia oxidizers (comammox) within the genus Nitrospira, their distribution and abundance across habitats have been intensively studied to better understand their ecological significance. Many primers targeting their ammonia monooxygenase subunit A gene (amoA) have been designed to detect and quantify comammox bacteria and to describe their community structure. We identified 38 published primers, but only few had high coverage and specificity for all known comammox Nitrospira or one of the two described subclades. For each target group, we comprehensively evaluated selected primer pairs using in silico analyses, endpoint PCRs, qPCRs, and amplicon sequencing on samples from various environments. Endpoint PCRs and qPCRs showed that the most commonly used primer pairs (comaA-244F/659R, comaB-244F/659R, and Ntsp-amoA162F/359R) produced several bands, which likely inflated quantifications via qPCR. In contrast, the recently published primer combinations CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R resulted mostly in a single band. Furthermore, amplicon sequencing demonstrated that these primer combinations also captured the highest richness of comammox Nitrospira. Taken together, our results indicate that few existing comammox amoA primer combinations have both high specificity and coverage and that the choice of these high-specificity and high-coverage primer pairs substantially impacts the accurate detection, quantification, and community description of comammox bacteria. We, therefore, recommend using the CA377F/C576R, CB377F/C576R, and CA-CB377F/C576R primer pairs.IMPORTANCEBacteria that can fully convert ammonia via nitrite to nitrate, the complete ammonia oxidizers (comammox), were recently discovered and are found in many natural and engineered environments. PCR-based tools to study their abundance and diversity were rapidly developed, resulting in a plethora of primers available, many of which are widely used. The presence of comammox bacteria in an environment can, however, only be correctly determined if the used primers detect all members of this group while not detecting any other guilds. This study assesses the coverage and specificity of existing primers targeting comammox bacteria using both computational and standard molecular techniques, revealing large differences in their performance. The uniform usage of well-performing primers across studies could aid in generating comparable and generalizable data to better understand the importance of comammox bacteria in the environment.
Collapse
Affiliation(s)
- Pieter Blom
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Garrett J Smith
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln an der Donau, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Watari T, Kirishima Y, Choeisai P, Thepubon T, Hirakata Y, Matsueda T, Nagano A, Yamaguchi T, Okubo T, Hatamoto M, Yamaguchi T. Distinct comammox Nitrospira in high-rate down-flow hanging sponge reactor treating municipal wastewater. BIORESOURCE TECHNOLOGY 2024; 408:131160. [PMID: 39074766 DOI: 10.1016/j.biortech.2024.131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
A down-flow hanging sponge (DHS) reactor is a trickling filter system used for wastewater treatment, which employs sponges to retain biomass. This study assessed the process performance of a compact DHS combined with a sedimentation tank with seven phases at varying hydraulic retention times (HRT) over 500 days. The BOD of the DHS effluent was maintained at 4.0 ± 0.5 mg·L-1 for the shortest HRT 0.3 ± 0.1 h. The nitrification efficiency was considerably impacted by the reduced HRT, with NH4+-N and NO3--N concentrations of 9.0 ± 1.2 mgN·L-1 and 2.2 ± 0.5 mgN·L-1, respectively. Nevertheless, the effluent complied with effluent discharge standards throughout the trial period. The number of comammox 16S rRNA gene copies ranged from 5.58 to 13.2 × 107 copies·mL-1, indicating that sponges biomass retained carrier can provide favorable conditions for comammox growth and could contribute to nitrification in the high-rate DHS reactor.
Collapse
Affiliation(s)
- Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan.
| | - Yoshihiro Kirishima
- Business Department, Global Business Division, NJS Co., LTD., Tokyo 105-0023, Japan
| | - Pairaya Choeisai
- Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanapat Thepubon
- Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuga Hirakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, 305-8566, Japan
| | | | | | - Tsuyoshi Yamaguchi
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Matsue College, Shimane 690-8518, Japan
| | - Tsutomu Okubo
- Department of Civil Engineering, National Institute of Technology, Kisarazu College, Kisarazu, Chiba, 292-0041, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata 940-2188, Japan
| |
Collapse
|
5
|
Atencio B, Geisler E, Rubin-Blum M, Bar-Zeev E, Adar EM, Ram R, Ronen Z. Metabolic adaptations underpin high productivity rates in relict subsurface water. Sci Rep 2024; 14:18126. [PMID: 39103408 PMCID: PMC11300587 DOI: 10.1038/s41598-024-68868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Groundwater aquifers are ecological hotspots with diverse microbes essential for biogeochemical cycles. Their ecophysiology has seldom been studied on a basin scale. In particular, our knowledge of chemosynthesis in the deep aquifers where temperatures reach 60 °C, is limited. Here, we investigated the diversity, activity, and metabolic potential of microbial communities from nine wells reaching ancient groundwater beneath Israel's Negev Desert, spanning two significant, deep (up to 1.5 km) aquifers, the Judea Group carbonate and Kurnub Group Nubian sandstone that contain fresh to brackish, hypoxic to anoxic water. We estimated chemosynthetic productivity rates ranging from 0.55 ± 0.06 to 0.82 ± 0.07 µg C L-1 d-1 (mean ± SD), suggesting that aquifer productivity may be underestimated. We showed that 60% of MAGs harbored genes for autotrophic pathways, mainly the Calvin-Benson-Bassham cycle and the Wood-Ljungdahl pathway, indicating a substantial chemosynthetic capacity within these microbial communities. We emphasize the potential metabolic versatility in the deep subsurface, enabling efficient carbon and energy use. This study set a precedent for global aquifer exploration, like the Nubian Sandstone Aquifer System in the Arabian and Western Deserts, and reconsiders their role as carbon sinks.
Collapse
Affiliation(s)
- Betzabe Atencio
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Eyal Geisler
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Maxim Rubin-Blum
- Department of Marine Biology, Israel Oceanographic and Limnological Research Institute, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Edo Bar-Zeev
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Eilon M Adar
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Roi Ram
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Geological Survey of Israel, Jerusalem, Israel
- Institute of Environmental Physics, Heidelberg University, 69120, Heidelberg, Germany
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
6
|
McKnight MM, Neufeld JD. Comammox Nitrospira among dominant ammonia oxidizers within aquarium biofilter microbial communities. Appl Environ Microbiol 2024; 90:e0010424. [PMID: 38899882 PMCID: PMC11267875 DOI: 10.1128/aem.00104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Nitrification by aquarium biofilters transforms ammonia waste (NH3/NH4+) to less toxic nitrate (NO3-) via nitrite (NO2-). Prior to the discovery of complete ammonia-oxidizing ("comammox" or CMX) Nitrospira, previous research revealed that ammonia-oxidizing archaea (AOA) dominated over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Here, we profiled aquarium biofilter microbial communities and quantified the abundance of all three known ammonia oxidizers using 16S rRNA gene sequencing and quantitative PCR (qPCR), respectively. Biofilter and water samples were each collected from representative residential and commercial freshwater and saltwater aquaria. Distinct biofilter microbial communities were associated with freshwater and saltwater biofilters. Comammox Nitrospira amoA genes were detected in all 38 freshwater biofilter samples (average CMX amoA genes: 2.2 × 103 ± 1.5 × 103 copies/ng) and dominant in 30, whereas AOA were present in 35 freshwater biofilter samples (average AOA amoA genes: 1.1 × 103 ± 2.7 × 103 copies/ng) and only dominant in 7 of them. The AOB were at relatively low abundance within biofilters (average of 3.2 × 101 ± 1.1 × 102 copies of AOB amoA genes/ng of DNA), except for the aquarium with the highest ammonia concentration. For saltwater biofilters, AOA or AOB were differentially abundant, with no comammox Nitrospira detected. Additional sequencing of Nitrospira amoA genes revealed differential distributions, suggesting niche adaptation based on water chemistry (e.g., ammonia, carbonate hardness, and alkalinity). Network analysis of freshwater microbial communities demonstrated positive correlations between nitrifiers and heterotrophs, suggesting metabolic and ecological interactions within biofilters. These results demonstrate that comammox Nitrospira plays a previously overlooked, but important role in home aquarium biofilter nitrification. IMPORTANCE Nitrification is a crucial process that converts toxic ammonia waste into less harmful nitrate that occurs in aquarium biofilters. Prior research found that ammonia-oxidizing archaea (AOA) were dominant over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Our study profiled microbial communities of aquarium biofilters and quantified the abundance of all currently known groups of aerobic ammonia oxidizers. The findings reveal that complete ammonia-oxidizing (comammox) Nitrospira were present in all freshwater aquarium biofilter samples in high abundance, challenging our previous understanding of aquarium nitrification. We also highlight niche adaptation of ammonia oxidizers based on salinity. The network analysis of freshwater biofilter microbial communities revealed significant positive correlations among nitrifiers and other community members, suggesting intricate interactions within biofilter communities. Overall, this study expands our understanding of nitrification in aquarium biofilters, emphasizes the role of comammox Nitrospira, and highlights the value of aquaria as microcosms for studying nitrifier ecology.
Collapse
Affiliation(s)
| | - Josh D. Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Pan J, Li J, Zhang T, Liu T, Xu K, Wang C, Zheng M. Complete ammonia oxidation (comammox) at pH 3-4 supports stable production of ammonium nitrate from urine. WATER RESEARCH 2024; 257:121686. [PMID: 38705065 DOI: 10.1016/j.watres.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
This study developed a new process that stably produced ammonium nitrate (NH4NO3), an important and commonly used fertilizer, from the source-separated urine by comammox Nitrospira. In the first stage, the complete conversion of ammonium to nitrate was achieved by comammox Nitrospira. In this scenario, the pH was maintained at 6 by adding external alkali, which also provided sufficient alkalinity for full nitrification. In the second stage, the NH4NO3 was produced directly by comammox Nitropsira by converting half of the ammonium in urine into nitrate. In this case, no alkali was added and pH automatically dropped and self-maintained at an extremely acidic level (pH 3-4). In both scenarios, negligible nitrite accumulation was observed, while the final product of the second stage contained ammonium and nitrate at the molar ratio of 1:1. The dominance of comammox Nitrospira over canonical ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was systematically proved by the combination of 16S rRNA gene amplicon sequencing, quantitative polymerase chain reaction, and metagenomics. Notably, metagenomic sequencing suggested that the relative abundance of comammox Nitrospira was over 20 % under the acidic condition at pH 3-4, while canonical AOB and NOB were undetectable. Batch experiments showed that the optimal pH for the enriched comammox Nitrospira was ∼7, which could sustain their activity in a wider pH range from 4 to 8 surprisingly but lost activity at pH 3 and 9. The findings not only present an application potential of comammox Nitrospira in nitrogen recovery from urine wastewater but also report the survivability of comammox bacteria in acidic environments.
Collapse
Affiliation(s)
- Junhao Pan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingting Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kangning Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
8
|
Guo Z, Ma XS, Ni SQ. Journey of the swift nitrogen transformation: Unveiling comammox from discovery to deep understanding. CHEMOSPHERE 2024; 358:142093. [PMID: 38679176 DOI: 10.1016/j.chemosphere.2024.142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
COMplete AMMonia OXidizer (comammox) refers to microorganisms that have the function of oxidizing NH4+ to NO3- alone. The discovery of comammox overturned the two-step theory of nitrification in the past century and triggered many important scientific questions about the nitrogen cycle in nature. This comprehensive review delves into the origin and discovery of comammox, providing a detailed account of its detection primers, clades metabolic variations, and environmental factors. An in-depth analysis of the ecological niche differentiation among ammonia oxidizers was also discussed. The intricate role of comammox in anammox systems and the relationship between comammox and nitrogen compound emissions are also discussed. Finally, the relationship between comammox and anammox is displayed, and the future research direction of comammox is prospected. This review reveals the metabolic characteristics and distribution patterns of comammox in ecosystems, providing new perspectives for understanding nitrogen cycling and microbial ecology. Additionally, it offers insights into the potential application value and prospects of comammox.
Collapse
Affiliation(s)
- Zheng Guo
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Xue Song Ma
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China.
| |
Collapse
|
9
|
Vilardi KJ, Johnston J, Dai Z, Cotto I, Tuttle E, Patterson A, Stubbins A, Pieper KJ, Pinto AJ. Nitrogen source influences the interactions of comammox bacteria with aerobic nitrifiers. Microbiol Spectr 2024; 12:e0318123. [PMID: 38511951 PMCID: PMC11064514 DOI: 10.1128/spectrum.03181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
While the co-existence of comammox Nitrospira with canonical nitrifiers is well documented in diverse ecosystems, there is still a dearth of knowledge about the mechanisms underpinning their interactions. Understanding these interaction mechanisms is important as they may play a critical role in governing nitrogen biotransformation in natural and engineered ecosystems. In this study, we tested the ability of two environmentally relevant factors (nitrogen source and availability) to shape interactions between strict ammonia and nitrite-oxidizing bacteria and comammox Nitrospira in continuous flow column reactors. The composition of inorganic nitrogen species in reactors fed either ammonia or urea was similar during the lowest input nitrogen concentration (1 mg-N/L), but higher concentrations (2 and 4 mg-N/L) promoted significant differences in nitrogen species composition and nitrifier abundances. The abundance and diversity of comammox Nitrospira were dependent on both nitrogen source and input concentrations as multiple comammox Nitrospira populations were preferentially enriched in the urea-fed system. In contrast, their abundance was reduced in response to higher nitrogen concentrations in the ammonia-fed system. The preferential enrichment of comammox Nitrospira in the urea-fed system could be associated with their ureolytic activity calibrated to their ammonia oxidation rates, thus minimizing ammonia accumulation, which may be partially inhibitory. However, an increased abundance of comammox Nitrospira was not associated with a reduced abundance of nitrite oxidizers in the urea-fed system while a negative correlation was found between them in the ammonia-fed system, the latter dynamic likely emerging from reduced availability of nitrite to strict nitrite oxidizers at low ammonia concentrations. IMPORTANCE Nitrification is an essential biological process in drinking water and wastewater treatment systems for treating nitrogen pollution. The discovery of comammox Nitrospira and their detection alongside canonical nitrifiers in these engineered ecosystems have made it necessary to understand the environmental conditions that regulate their abundance and activity relative to other better-studied nitrifiers. This study aimed to evaluate two important factors that could potentially influence the behavior of nitrifying bacteria and, therefore, impact nitrification processes. Column reactors fed with either ammonia or urea were systematically monitored to capture changes in nitrogen biotransformation and the nitrifying community as a function of influent nitrogen concentration, nitrogen source, and reactor depth. Our findings show that with increased ammonia availability, comammox Nitrospira decreased in abundance while nitrite oxidizers abundance increased. Yet, in systems with increasing urea availability, comammox Nitrospira abundance and diversity increased without an associated reduction in the abundance of canonical nitrifiers.
Collapse
Affiliation(s)
- Katherine Jeanne Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Juliet Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zihan Dai
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Irmarie Cotto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Erin Tuttle
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Ariana Patterson
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Aron Stubbins
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kelsey J. Pieper
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ameet J. Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Yang X, Shi Y, Ying G, Li M, He Z, Shu L. Cooperation among nitrifying microorganisms promotes the irreversible biotransformation of sulfamonomethoxine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171395. [PMID: 38447730 DOI: 10.1016/j.scitotenv.2024.171395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Ammonia-oxidizing microorganisms, including AOA (ammonia-oxidizing archaea), AOB (ammonia-oxidizing bacteria), and Comammox (complete ammonia oxidization) Nitrospira, have been reported to possess the capability for the biotransformation of sulfonamide antibiotics. However, given that nitrifying microorganisms coexist and operate as communities in the nitrification process, it is surprising that there is a scarcity of studies investigating how their interactions would affect the biotransformation of sulfonamide antibiotics. This study aims to investigate the sulfamonomethoxine (SMM) removal efficiency and mechanisms among pure cultures of phylogenetically distinct nitrifiers and their combinations. Our findings revealed that AOA demonstrated the highest SMM removal efficiency and rate among the pure cultures, followed by Comammox Nitrospira, NOB, and AOB. However, the biotransformation of SMM by AOA N. gargensis is reversible, and the removal efficiency significantly decreased from 63.84 % at 167 h to 26.41 % at 807 h. On the contrary, the co-culture of AOA and NOB demonstrated enhanced and irreversible SMM removal efficiency compared to AOA alone. Furthermore, the presence of NOB altered the SMM biotransformation of AOA by metabolizing TP202 differently, possibly resulting from reduced nitrite accumulation. This study offers novel insights into the potential application of nitrifying communities for the removal of sulfonamide antibiotics (SAs) in engineered ecosystems.
Collapse
Affiliation(s)
- Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guangguo Ying
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Mengyuan Li
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Ghimire-Kafle S, Weaver ME, Kimbrel MP, Bollmann A. Competition between ammonia-oxidizing archaea and complete ammonia oxidizers from freshwater environments. Appl Environ Microbiol 2024; 90:e0169823. [PMID: 38349190 PMCID: PMC10952389 DOI: 10.1128/aem.01698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
Aerobic ammonia oxidizers (AOs) are prokaryotic microorganisms that contribute to the global nitrogen cycle by performing the first step of nitrification, the oxidation of ammonium to nitrite and nitrate. While aerobic AOs are found ubiquitously, their distribution is controlled by key environmental conditions such as substrate (ammonium) availability. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are generally found in oligotrophic environments with low ammonium availability. However, whether AOA and comammox share these habitats or outcompete each other is not well understood. We assessed the competition for ammonium between an AOA and comammox enriched from the freshwater Lake Burr Oak. The AOA enrichment culture (AOA-BO1) contained Nitrosarchaeum sp. BO1 as the ammonia oxidizer and Nitrospira sp. BO1 as the nitrite oxidizer. The comammox enrichment BO4 (cmx-BO4) contained the comammox strain Nitrospira sp. BO4. The competition experiments were performed either in continuous cultivation with ammonium as a growth-limiting substrate or in batch cultivation with initial ammonium concentrations of 50 and 500 µM. Regardless of the ammonium concentration, Nitrospira sp. BO4 outcompeted Nitrosarchaeum sp. BO1 under all tested conditions. The dominance of Nitrospira sp. BO4 could be explained by the ability of comammox to generate more energy through the complete oxidation of ammonia to nitrate and their more efficient carbon fixation pathway-the reductive tricarboxylic acid cycle. Our results are supported by the higher abundance of comammox compared to AOA in the sediment of Lake Burr Oak. IMPORTANCE Nitrification is a key process in the global nitrogen cycle. Aerobic ammonia oxidizers play a central role in the nitrogen cycle by performing the first step of nitrification. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are the dominant nitrifiers in environments with low ammonium availability. While AOA have been studied for almost 20 years, comammox were only discovered 8 years ago. Until now, there has been a gap in our understanding of whether AOA and comammox can co-exist or if one strain would be dominant under ammonium-limiting conditions. Here, we present the first study characterizing the competition between freshwater AOA and comammox under varying substrate concentrations. Our results will help in elucidating the niches of two key nitrifiers in freshwater lakes.
Collapse
Affiliation(s)
| | - Matt E. Weaver
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
12
|
Nguyen Quoc B, Peng B, De Clippeleir H, Winkler MKH. Case study: Bioaugmenting the comammox dominated biomass from B-stage to enhance nitrification in A-stage at Blue Plains AWWTP. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11005. [PMID: 38407520 DOI: 10.1002/wer.11005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
A comprehensive case study was undertaken at the Blue Plains wastewater treatment plant (WWTP) to explore the bioaugmentation technique of introducing nitrifying sludge into the non-nitrifying stage over the course of two operational years. This innovative approach involved the return of waste activated sludge (WAS) from the biological nutrient removal (BNR) system to enhance the nitrification in the high carbon removal rate system. The complete ammonia oxidizer (comammox) Nitrospira Nitrosa was identified as the main nitrifier in the system. Bioaugmentation was shown to be successful as nitrifiers returned from BNR were able to increase the nitrifying activity of the high carbon removal rate system. There was a positive correlation between returned sludge from the BNR stage and the specific total kjeldahl nitrogen (TKN) removal rate in A stage. The bioaugmentation process resulted in a remarkable threefold increase in the specific TKN removal rate within the A stage. Result suggested that recycling of WAS is a simple technique to bio-augment a low SRT system with nitrifiers and add ammonia oxidation to a previously non-nitrifying stage. The results from this case study hold the potential for applicable implications for other WWTPs that have a similar operational scheme to Blue Plains, allowing them to reuse WAS from the B stage, previously considered waste, to enhance nitrification and thus improving overall nitrogen removal performance. PRACTITIONER POINTS: Comammox identifying as main nitrifier in the B stage. Comammox enriched sludge from B stage successfully bio-augmented the East side of A stage up to threefold. Bioaugmentation of comammox in the West side of A stage was potentially inhibited by the gravity thickened overflow. Sludge returned from B stage to A stage can improve nitrification with a very minor retrofits and short startup times.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Bo Peng
- DC Water and Sewer Authority, Washington, District of Columbia, USA
| | | | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Zhang J, Zhou M, Shi F, Lei Z, Wang Y, Hu M, Zhao J. The abundance of comammox bacteria was higher than that of ammonia-oxidizing archaea and bacteria in rhizosphere of emergent macrophytes in a typical shallow lake riparian. Int Microbiol 2024; 27:67-79. [PMID: 38062210 DOI: 10.1007/s10123-023-00465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/20/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106-2.45 × 108 copies g-1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104-3.58 × 106 copies g-1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102-6.89 × 103 copies g-1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.
Collapse
Affiliation(s)
- Jiahui Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Mingzhi Zhou
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Fengning Shi
- Yunnan Hydrology and Water Resources Bureau, Kunming, 650100, China
| | - Ziyan Lei
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Mingming Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China.
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
14
|
Abkar L, Moghaddam HS, Fowler SJ. Microbial ecology of drinking water from source to tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168077. [PMID: 37914126 DOI: 10.1016/j.scitotenv.2023.168077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
As drinking water travels from its source, through various treatment processes, hundreds to thousands of kilometres of distribution network pipes, to the taps in private homes and public buildings, it is exposed to numerous environmental changes, as well as other microbes living in both water and on surfaces. This review aims to identify the key locations and factors that are associated with changes in the drinking water microbiome throughout conventional urban drinking water systems from the source to the tap water. Over the past 15 years, improvements in cultivation-independent methods have enabled studies that allow us to answer such questions. As a result, we are beginning to move towards predicting the impacts of disturbances and interventions resulting ultimately in management of drinking water systems and microbial communities rather than mere observation. Many challenges still exist to achieve effective management, particularly within the premise plumbing environment, which exhibits diverse and inconsistent conditions that may lead to alterations in the microbiota, potentially presenting public health risks. Finally, we recommend the establishment of global collaborative projects on the drinking water microbiome that will enhance our current knowledge and lead to tools for operators and researchers alike to improve global access to high-quality drinking water.
Collapse
Affiliation(s)
- Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | | | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
15
|
Yang Q, Zhong Y, Feng SW, Wen P, Wang H, Wu J, Yang S, Liang JL, Li D, Yang Q, Tam NFY, Peng P. Temporal enrichment of comammox Nitrospira and Ca. Nitrosocosmicus in a coastal plastisphere. THE ISME JOURNAL 2024; 18:wrae186. [PMID: 39375018 PMCID: PMC11471898 DOI: 10.1093/ismejo/wrae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Plastic marine debris is known to harbor a unique microbiome (termed the "plastisphere") that can be important in marine biogeochemical cycles. However, the temporal dynamics in the plastisphere and their implications for marine biogeochemistry remain poorly understood. Here, we characterized the temporal dynamics of nitrifying communities in the plastisphere of plastic ropes exposed to a mangrove intertidal zone. The 39-month colonization experiment revealed that the relative abundances of Nitrospira and Candidatus Nitrosocosmicus representatives increased over time according to 16S rRNA gene amplicon sequencing analysis. The relative abundances of amoA genes in metagenomes implied that comammox Nitrospira were the dominant ammonia oxidizers in the plastisphere, and their dominance increased over time. The relative abundances of two metagenome-assembled genomes of comammox Nitrospira also increased with time and positively correlated with extracellular polymeric substances content of the plastisphere but negatively correlated with NH4+ concentration in seawater, indicating the long-term succession of these two parameters significantly influenced the ammonia-oxidizing community in the coastal plastisphere. At the end of the colonization experiment, the plastisphere exhibited high nitrification activity, leading to the release of N2O (2.52 ng N2O N g-1) in a 3-day nitrification experiment. The predicted relative contribution of comammox Nitrospira to N2O production (17.9%) was higher than that of ammonia-oxidizing bacteria (4.8%) but lower than that of ammonia-oxidizing archaea (21.4%). These results provide evidence that from a long-term perspective, some coastal plastispheres will become dominated by comammox Nitrospira and thereby act as hotspots of ammonia oxidation and N2O production.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
| | - Shi-wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, No. 1, Daxue Road, Songshanhu District, Dongguan 523808, P. R. China
| | - Qiong Yang
- Guangdong Neilingding Futian National Nature Reserve, No. 1, Mangrove Road, Futian District, Shenzhen 518040, P. R. China
| | - Nora F Y Tam
- School of Science and Technology, Hong Kong Metropolitan University, 30 Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong 999077, P. R. China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Ping’an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Yu B, Zeng Q, Li J, Li J, Tan X, Gao X, Mao Z, Huang P, Wu S. Sediment depth-related variations of comammox Nitrospira: Evidence in the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167055. [PMID: 37709074 DOI: 10.1016/j.scitotenv.2023.167055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The recent discovery of comammox Nitrospira as complete ammonia-oxidizing microorganism has fundamentally revolutionized our understanding of nitrogen cycling in sediment environments. However, knowledge regarding their abundance, biodiversity, community structure, and interactions is predominantly limited to the upper layers (0-20 cm). To address this gap, we collected sediment samples along profiles ranging from 0 to 300 cm in depth at three locations within the middle segment of the Three Gorges Reservoir (TGR), China. Quantitative real-time PCR (qPCR) analyses suggested that comammox bacteria were not only ubiquitous in deep sediments but also more abundant than ammonia-oxidizing bacteria (AOB). Ammonia monooxygenases subunit A (amoA) gene amplicon sequencing illuminated that comammox bacteria were more sensitive to sedimental depth compared to AOB and ammonia-oxidizing archaea (AOA), as evidenced by a more significant decline in community diversity and similarity over distance along sediment vertical profiles. Notably, we discovered that the amoA gene abundance, alpha- and beta-diversity of comammox bacteria exerted an essential contribution to potential nitrification rates according to random forest model. Phylogenetic analysis indicted that most comammox bacteria within sediment samples belonged to clade A.2. Intriguingly, the average relative abundance of comammox clade A.2 displayed a noteworthy rise with sediment depth, whereas clade A.1 demonstrated a converse pattern, unveiling distinct ecological niche adaptations of these two clades along the sediment profile. Ecological network analysis further revealed closer interactions between comammox bacteria and canonical ammonia oxidizers in the superficial layer (0-40 cm), with the network structure gradually simplifying from superficial to deep sediment (200-300 cm). Overall, these findings broaden the current recognition of the geographic distribution and niche segregation of comammox bacteria at the fine scale of the sediments ecosystems and provide insights into sediment depth-related variations of their coexistence network patterns in large freshwater reservoirs.
Collapse
Affiliation(s)
- Baohong Yu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Quanchao Zeng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| | - Jinlin Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Jun Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Xun Tan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Xin Gao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Ziqiang Mao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Ping Huang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
17
|
Tang X, Li Y, Liu M, Hou L, Han P. Abundance, diversity and physiological preferences of comammox Nitrospira in urban groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167333. [PMID: 37748616 DOI: 10.1016/j.scitotenv.2023.167333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Complete ammonia oxidizer (comammox Nitrospira), catalyze complete nitrification process in a single organism, are frequently detected in groundwater ecosystem. However, the ecological niches and environmental driving factors of comammox Nitrospira in urban groundwater are largely unknown. Here we investigated the communities of ammonia oxidizers in urban groundwater located in Shanghai city, China. Quantitative analysis demonstrated the dominance of comammox Nitrospira over classical ammonia oxidizers (ammonia-oxidizing archaea and bacteria, AOA and AOB). Phylogenetic analysis showed clades B and A2 comprise the majority of comammox Nitrospira groups. Temperature was one of the most vital factors affecting comammox Nitrospira community. Furthermore, clade A comammox Nitrospira can be enriched by urea substrate, which was in line with the ability of utilizing urea by the pure clade A comammox culture Nitrospira inopinata. In addition, we observed that relatively low temperature (<20 °C) and high copper levels (>0.04 mg L-1) can stimulate the growth of comammox Nitrospira. Overall, this study revealed the presence, diversity and physiological preferences of comammox Nitrospira in urban groundwater nitrification, shedding insights on the ecological roles of comammox Nitrospira in subsurface environment.
Collapse
Affiliation(s)
- Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
18
|
Bertagnolli AD, Maritan AJ, Tumolo BB, Fritz SF, Oakland HC, Mohr EJ, Poole GC, Albertson LK, Stewart FJ. Net-spinning caddisflies create denitrifier-enriched niches in the stream microbiome. ISME COMMUNICATIONS 2023; 3:111. [PMID: 37848489 PMCID: PMC10582121 DOI: 10.1038/s43705-023-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Larval net-spinning caddisflies (Hydropsychidae) function as ecosystem engineers in streams where they construct protective retreats composed of organic and inorganic material affixed with silk filtration nets that alter streambed hydrology. We hypothesized that hydropsychid bio-structures (retreats, nets) are microhabitats for microbes with oxygen-sensitive metabolisms, and therefore increase the metabolic heterogeneity of streambed microbial assemblages. Metagenomic and 16 S rRNA gene amplicon analysis of samples from a montane stream (Cherry Creek, Montana, USA) revealed that microbiomes of caddisfly bio-structures are taxonomically and functionally distinct from those of the immediately adjacent rock biofilm (~2 cm distant) and enriched in microbial taxa with established roles in denitrification, nitrification, and methane production. Genes for denitrification, high oxygen affinity terminal oxidases, hydrogenases, oxidative dissimilatory sulfite reductases, and complete ammonia oxidation are significantly enriched in caddisfly bio-structures. The results suggest a novel ecosystem engineering effect of caddisflies through the creation of low-oxygen, denitrifier-enriched niches in the stream microbiome. Facilitation of metabolic diversity in streambeds may be a largely unrecognized mechanism by which caddisflies alter whole-stream biogeochemistry.
Collapse
Affiliation(s)
- Anthony D Bertagnolli
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Andrew J Maritan
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Benjamin B Tumolo
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Samuel F Fritz
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Hayley C Oakland
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Elizabeth J Mohr
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Geoffrey C Poole
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
- Montana Institute on Ecosystems, Montana State University, Bozeman, MT, 59717, USA
| | | | - Frank J Stewart
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
19
|
Zhu Y, Hou J, Liu J, Huo P, Yang L, Zheng M, Wei W, Ni BJ, Chen X. Model-based development of strategies enabling effective enrichment and application of comammox bacteria in floccular sludge under mainstream conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165051. [PMID: 37391158 DOI: 10.1016/j.scitotenv.2023.165051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The discovery of complete ammonium oxidation (comammox) has redefined the perception of the nitrification process which plays a vital part in biological nitrogen removal (BNR) from wastewater. Despite the reported detection or cultivation of comammox bacteria in biofilm or granular sludge reactors, limited attempts have been made to enrich or assess comammox bacteria in floccular sludge reactors with suspended growth of microbes, which are most extensively applied at wastewater treatment plants. Therefore, through making use of a comammox-inclusive bioprocess model reliably evaluated using batch experimental data with joint contributions of different nitrifying guilds, this work probed into the proliferation and functioning of comammox bacteria in two commonly-used floccular sludge reactor configurations, i.e., continuous stirred tank reactor (CSTR) and sequencing batch reactor (SBR), under mainstream conditions. The results indicated that compared with the studied SBR, the CSTR was observed to favor the enrichment of comammox bacteria through maintaining a sufficient sludge retention time (40-100 d) while avoiding an extremely low DO level (e.g., 0.05 g-O2/m3), irrespective of the varied influent NH4+-N of 10-100 g-N/m3. Meanwhile, the inoculum sludge was found to greatly influence the start-up process of the studied CSTR. By inoculating the CSTR with a sufficient amount of sludge, finally enriched floccular sludge with a high abundance of comammox bacteria (up to 70.5 %) could be rapidly obtained. These results not only benefitted further investigation and application of comammox-inclusive sustainable BNR technologies but also explained, to some extent, the discrepancy in the reported presence and abundance of comammox bacteria at wastewater treatment plants adopting floccular sludge-based BNR technologies.
Collapse
Affiliation(s)
- Ying Zhu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiaying Hou
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jinzhong Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pengfei Huo
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
20
|
Krüger M, Chaudhari N, Thamdrup B, Overholt WA, Bristow LA, Taubert M, Küsel K, Jehmlich N, von Bergen M, Herrmann M. Differential contribution of nitrifying prokaryotes to groundwater nitrification. THE ISME JOURNAL 2023; 17:1601-1611. [PMID: 37422599 PMCID: PMC10504367 DOI: 10.1038/s41396-023-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
The ecophysiology of complete ammonia-oxidizing bacteria (CMX) of the genus Nitrospira and their widespread occurrence in groundwater suggests that CMX bacteria have a competitive advantage over ammonia-oxidizing bacteria (AOB) and archaea (AOA) in these environments. However, the specific contribution of their activity to nitrification processes has remained unclear. We aimed to disentangle the contribution of CMX, AOA and AOB to nitrification and to identify the environmental drivers of their niche differentiation at different levels of ammonium and oxygen in oligotrophic carbonate rock aquifers. CMX ammonia monooxygenase sub-unit A (amoA) genes accounted on average for 16 to 75% of the total groundwater amoA genes detected. Nitrification rates were positively correlated to CMX clade A associated phylotypes and AOB affiliated with Nitrosomonas ureae. Short-term incubations amended with the nitrification inhibitors allylthiourea and chlorate suggested that AOB contributed a large fraction to overall ammonia oxidation, while metaproteomics analysis confirmed an active role of CMX in both ammonia and nitrite oxidation. Ecophysiological niche differentiation of CMX clades A and B, AOB and AOA was linked to their requirements for ammonium, oxygen tolerance, and metabolic versatility. Our results demonstrate that despite numerical predominance of CMX, the first step of nitrification in oligotrophic groundwater appears to be primarily governed by AOB. Higher growth yields at lower ammonia turnover rates and energy derived from nitrite oxidation most likely enable CMX to maintain consistently high populations.
Collapse
Affiliation(s)
- Markus Krüger
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Narendrakumar Chaudhari
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Bo Thamdrup
- Department of Biology, Nordcee-University of Southern Denmark, Odense, Denmark
| | - Will A Overholt
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Laura A Bristow
- Department of Biology, Nordcee-University of Southern Denmark, Odense, Denmark
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
21
|
Lin Y, Tang KW, Ye G, Yang P, Hu HW, Tong C, Zheng Y, Feng M, Deng M, He ZY, He JZ. Community assembly of comammox Nitrospira in coastal wetlands across southeastern China. Appl Environ Microbiol 2023; 89:e0080723. [PMID: 37671870 PMCID: PMC10537594 DOI: 10.1128/aem.00807-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.
Collapse
Affiliation(s)
- Yongxin Lin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Kam W. Tang
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| | - Guiping Ye
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, Fujian, China
| | - Ping Yang
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, Fujian, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chuan Tong
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, Fujian, China
| | - Yong Zheng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Mengmeng Feng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Milin Deng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Zi-Yang He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Ji-Zheng He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Ishizaki Y, Kurisu F, Furumai H, Kasuga I. Autotrophic growth activity of complete ammonia oxidizers in an upflow biological contact filter for drinking water treatment. Lett Appl Microbiol 2023; 76:ovad105. [PMID: 37679291 DOI: 10.1093/lambio/ovad105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Biological filters effectively remove ammonium from drinking water via nitrification. In a pilot-scale upflow biological contact filter (U-BCF), complete ammonia oxidizers (comammox), which are capable of oxidizing ammonia to nitrate in one cell, were more abundant than ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, little information is available on the contribution of comammox to nitrification. In this study, we evaluated the autotrophic growth activity of comammox associated with biological activated carbon (BAC) in a U-BCF by DNA-stable isotope probing (DNA-SIP). BAC samples collected from the U-BCF were continuously fed mineral medium containing 0.14 mg N L-1 ammonium and 12C- or 13C-labeled bicarbonate for 20 days. DNA-SIP analysis revealed that comammox (clades A and B) as well as AOA assimilated bicarbonate after 10 days of incubation, proving that dominant comammox could contribute to nitrification. Contrarily, AOB remained inactive throughout the observation period. Amplicon sequencing of the 13C-labeled DNA fractions of comammox revealed that specific genotypes other than the most dominant genotype in the original sample were more enriched under the incubation condition for the DNA-SIP experiment. Thus, dominant genotypes of comammox in a U-BCF might utilize organic nitrogen to fuel nitrification in ammonia-limited environments.
Collapse
Affiliation(s)
- Yuta Ishizaki
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Hiroaki Furumai
- Research and Development Initiative, Chuo University, Bunkyo, Tokyo 112-8551, Japan
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
23
|
Haukelidsaeter S, Boersma AS, Kirwan L, Corbetta A, Gorres ID, Lenstra WK, Schoonenberg FK, Borger K, Vos L, van der Wielen PWJJ, van Kessel MAHJ, Lücker S, Slomp CP. Influence of filter age on Fe, Mn and NH 4+ removal in dual media rapid sand filters used for drinking water production. WATER RESEARCH 2023; 242:120184. [PMID: 37429136 DOI: 10.1016/j.watres.2023.120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 07/12/2023]
Abstract
Rapid sand filtration is a common method for removal of iron (Fe), manganese (Mn) and ammonium (NH4+) from anoxic groundwaters used for drinking water production. In this study, we combine geochemical and microbiological data to assess how filter age influences Fe, Mn and NH4+ removal in dual media filters, consisting of anthracite overlying quartz sand, that have been in operation for between ∼2 months and ∼11 years. We show that the depth where dissolved Fe and Mn removal occurs is reflected in the filter medium coatings, with ferrihydrite forming in the anthracite in the top of the filters (< 1 m), while birnessite-type Mn oxides are mostly formed in the sand (> 1 m). Removal of NH4+ occurs through nitrification in both the anthracite and sand and is the key driver of oxygen loss. Removal of Fe is independent of filter age and is always efficient (> 97% removal). In contrast, for Mn, the removal efficiency varies with filter age, ranging from 9 to 28% at ∼2-3 months after filter replacement to 100% after 8 months. After 11 years, removal reduces to 60-80%. The lack of Mn removal in the youngest filters (at 2-3 months) is likely the result of a relatively low abundance of mineral coatings that adsorb Mn2+ and provide surfaces for the establishment of a microbial community. 16S rRNA gene amplicon sequencing shows that Gallionella, which are known Fe2+ oxidizers, are present after 2 months, yet Fe2+ removal is mostly chemical. Efficient NH4+ removal (> 90%) establishes within 3 months of operation but leakage occurs upon high NH4+loading (> 160 µM). Two-step nitrification by Nitrosomonas and Candidatus Nitrotoga is likely the most important NH4+ removal mechanism in younger filters during ripening (2 months), after which complete ammonia oxidation by Nitrospira and canonical two-step nitrification occur simultaneously in older filters. Our results highlight the strong effect of filter age on especially Mn2+but also NH4+ removal. We show that ageing of filter medium leads to the development of thick coatings, which we hypothesize leads to preferential flow, and breakthrough of Mn2+. Use of age-specific flow rates may increase the contact time with the filter medium in older filters and improve Mn2+ and NH4+ removal.
Collapse
Affiliation(s)
- Signe Haukelidsaeter
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O Box 80021, Utrecht 3508 TA, the Netherlands.
| | - Alje S Boersma
- Department of Microbiology, Faculty of Science, Radboud Institute of Biological and Environmental Science, Radboud University, P.O. Box 9010, Nijmegen 6500 GL, the Netherlands
| | - Liam Kirwan
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O Box 80021, Utrecht 3508 TA, the Netherlands
| | - Alessia Corbetta
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O Box 80021, Utrecht 3508 TA, the Netherlands
| | - Isaac D Gorres
- Department of Microbiology, Faculty of Science, Radboud Institute of Biological and Environmental Science, Radboud University, P.O. Box 9010, Nijmegen 6500 GL, the Netherlands
| | - Wytze K Lenstra
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O Box 80021, Utrecht 3508 TA, the Netherlands
| | | | - Karl Borger
- Vitens N.V., P.O. Box 1205, Zwolle 8001 BE, the Netherlands
| | - Luuk Vos
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherlands
| | - Paul W J J van der Wielen
- KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, Faculty of Science, Radboud Institute of Biological and Environmental Science, Radboud University, P.O. Box 9010, Nijmegen 6500 GL, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Faculty of Science, Radboud Institute of Biological and Environmental Science, Radboud University, P.O. Box 9010, Nijmegen 6500 GL, the Netherlands
| | - Caroline P Slomp
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O Box 80021, Utrecht 3508 TA, the Netherlands; Department of Microbiology, Faculty of Science, Radboud Institute of Biological and Environmental Science, Radboud University, P.O. Box 9010, Nijmegen 6500 GL, the Netherlands
| |
Collapse
|
24
|
Tan Q, Zhang G, Ding A, Bian Z, Wang X, Xing Y, Zheng L. Anthropogenic land-use activities within watersheds reduce comammox activity and diversity in rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117841. [PMID: 37003226 DOI: 10.1016/j.jenvman.2023.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen cycling plays a key role in maintaining river ecological functions which are threatened by anthropogenic activities. The newly discovered complete ammonia oxidation, comammox, provides novel insights into the ecological effects of nitrogen on that it oxidizes ammonia directly to nitrate without releasing nitrite as canonical ammonia oxidization conducted by AOA or AOB which is believed to play an important role in greenhouse gas generation. Theoretically, contribution of commamox, AOA and AOB to ammonia oxidization in rivers might be impacted by anthropogenic land-use activities through alterations in flow regime and nutrient input. While how land use pattern affects comammox and other canonical ammonia oxidizers remains elusive. In this study, we examined the ecological effects of land use practices on the activity and contribution of three distinctive groups of ammonia oxidizers (AOA, AOB, comammox) as well as the composition of comammox bacterial communities from 15 subbasins covering an area of 6166 km2 in North China. The results showed that comammox dominated nitrification (55.71%-81.21%) in less disturbed basins characterized by extensive forests and grassland, while AOB became the major player (53.83%-76.43%) in highly developed basins with drastic urban and agricultural development. In addition, increasing anthropogenic land use activities within the watershed lowered the alpha diversity of comammox communities and simplified the comammox network. Additionally, the alterations of NH4+-N, pH and C/N induced by land use change were found to be crucial drivers in determining the distribution and activity of AOB and comammox. Together, our findings cast a new light on aquatic-terrestrial linkages from the view of microorganism-mediated nitrogen cycling and can further be applied to target watershed land use management.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Guoyu Zhang
- Department of Environmental Engineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Zhaoyong Bian
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
25
|
Zhang Y, Liu T, Li MM, Hua ZS, Evans P, Qu Y, Tan S, Zheng M, Lu H, Jiao JY, Lücker S, Daims H, Li WJ, Guo J. Hot spring distribution and survival mechanisms of thermophilic comammox Nitrospira. THE ISME JOURNAL 2023; 17:993-1003. [PMID: 37069235 PMCID: PMC10284858 DOI: 10.1038/s41396-023-01409-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
The recent discovery of Nitrospira species capable of complete ammonia oxidation (comammox) in non-marine natural and engineered ecosystems under mesothermal conditions has changed our understanding of microbial nitrification. However, little is known about the occurrence of comammox bacteria or their ability to survive in moderately thermal and/or hyperthermal habitats. Here, we report the wide distribution of comammox Nitrospira in five terrestrial hot springs at temperatures ranging from 36 to 80°C and provide metagenome-assembled genomes of 11 new comammox strains. Interestingly, the identification of dissimilatory nitrate reduction to ammonium (DNRA) in thermophilic comammox Nitrospira lineages suggests that they have versatile ecological functions as both sinks and sources of ammonia, in contrast to the described mesophilic comammox lineages, which lack the DNRA pathway. Furthermore, the in situ expression of key genes associated with nitrogen metabolism, thermal adaptation, and oxidative stress confirmed their ability to survive in the studied hot springs and their contribution to nitrification in these environments. Additionally, the smaller genome size and higher GC content, less polar and more charged amino acids in usage profiles, and the expression of a large number of heat shock proteins compared to mesophilic comammox strains presumably confer tolerance to thermal stress. These novel insights into the occurrence, metabolic activity, and adaptation of comammox Nitrospira in thermal habitats further expand our understanding of the global distribution of comammox Nitrospira and have significant implications for how these unique microorganisms have evolved thermal tolerance strategies.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD, Australia
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Paul Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Yanni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD, Australia
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
26
|
Mei P, Wang Z, Guo W, Gao Y, A Vanrolleghem P, Li Y. The ASM2d model with two-step nitrification can better simulate biological nutrient removal systems enriched with complete ammonia oxidizing bacteria (comammox Nitrospira). CHEMOSPHERE 2023; 335:139169. [PMID: 37295682 DOI: 10.1016/j.chemosphere.2023.139169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The discovery of comammox Nitrospira, a complete ammonia-oxidizing microorganism belonging to the genus Nitrospira, has brought new insights into the nitrification process in wastewater treatment plants (WWTPs). The applicability of Activated Sludge Model No. 2 d with one-step nitrification (ASM2d-OSN) or two-step nitrification (ASM2d-TSN) for the simulation of the biological nutrient removal (BNR) processes of a full-scale WWTP in the presence of comammox Nitrospira was studied. Microbial analysis and kinetic parameter measurements showed comammox Nitrospira was enriched in the BNR system operated under low dissolved oxygen (DO) and long sludge retention time (SRT). The relative abundance of Nitrospira under the conditions of stage I (DO = 0.5 mg/L, SRT = 60 d) was about twice of that under stage II conditions (DO = 4.0 mg/L, SRT = 26 d), and the copy number of the comammox amoA gene for stage I was 33 times higher than that for stage II. Compared to the ASM2d-OSN model, the ASM2d-TSN model simulated the performance of the WWTP under stage I conditions better, and the Theil inequality coefficient values of all the tested water quality parameters were lower than using ASM2d-OSN. These results indicate that an ASM2d model with two-step nitrification is a better choice for the simulation of WWTPs with the presence of comammox.
Collapse
Affiliation(s)
- Peng Mei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhiqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuan Gao
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd, Shanghai, 200001, PR China
| | | | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
27
|
Meng S, Liang X, Peng T, Liu Y, Wang H, Huang T, Gu JD, Hu Z. Ecological distribution and function of comammox Nitrospira in the environment. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12557-6. [PMID: 37195422 DOI: 10.1007/s00253-023-12557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Complete ammonia oxidizers (Comammox) are of great significance for studying nitrification and expanding the understanding of the nitrogen cycle. Moreover, Comammox bacteria are also crucial in natural and engineered environments due to their role in wastewater treatment and maintaining the flux of greenhouse gases to the atmosphere. However, only few studies are there regarding the Comammox bacteria and their role in ammonia and nitrite oxidation in the environment. This review mainly focuses on summarizing the genomes of Nitrospira in the NCBI database. Ecological distribution of Nitrospira was also reviewed and the influence of environmental parameters on genus Nitrospira in different environments has been summarized. Furthermore, the role of Nitrospira in carbon cycle, nitrogen cycle, and sulfur cycle were discussed, especially the comammox Nitrospira. In addition, the overviews of current research and development regarding comammox Nitrospira, were summarized along with the scope of future research. KEY POINTS: • Most of Comammox Nitrospira are widely distributed in both aquatic and terrestrial ecosystems, but it has been studied less frequently in the extreme environments. • Comammox Nitrospira can be involved in different nitrogen transformation process, but rarely involved in nitrogen fixation. • The stable isotope and transcriptome techniques are important methods to study the metabolic function of comammox Nitrospira.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Xueji Liang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
28
|
Ding H, Zhang J, Wang Y, Hu M, Wen J, Li S, Bao Y, Zhao J. Community composition and abundance of complete ammonia oxidation (comammox) bacteria in the Lancang River cascade reservoir. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114907. [PMID: 37059014 DOI: 10.1016/j.ecoenv.2023.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The construction of the reservoir has changed the nitrogen migration and transformation processes in the river, and a large amount of sediment deposition in the reservoir may also lead to the spatial differentiation of complete ammonia oxidation (comammox) bacteria. The study investigated the abundance and diversity of comammox bacteria in the sediments of three cascade reservoirs, namely, Xiaowan, Manwan, and Nuozhadu on the Lancang River in China. In these reservoirs, the average amoA gene abundance of clade A and clade B of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) was 4.16 ± 0.85 × 105, 1.15 ± 0.33 × 105, 7.39 ± 2.31 × 104, and 3.28 ± 0.99 × 105 copies g-1, respectively. The abundance of clade A was higher than that of other ammonia oxidizing microorganisms. The spatial variation of comammox bacteria abundance differed among different reservoirs, but the spatial variation trends of the two clades of comammox bacteria in the same reservoir were similar. At each sampling point, clade A1, clade A2, and clade B coexisted, and clade A2 was usually the dominant species. The connection between comammox bacteria in the pre-dam sediments was looser than that in non-pre-dam sediments, and comammox bacteria in pre-dam sediments exhibited a simpler network structure. The main factor affecting comammox bacteria abundance was NH4+-N, while altitude, temperature, and conductivity of overlying water were the main factors affecting comammox bacteria diversity. Environmental changes caused by differences in the spatial distribution of these cascade reservoirs may be the main driver of the changes of community composition and abundance of comammox bacteria. This study confirms that the construction of cascade reservoirs results in niche spatial differentiation of comammox bacteria.
Collapse
Affiliation(s)
- Hang Ding
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahui Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Mingming Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Jie Wen
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Shanze Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yufei Bao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Corbera-Rubio F, Laureni M, Koudijs N, Müller S, van Alen T, Schoonenberg F, Lücker S, Pabst M, van Loosdrecht MCM, van Halem D. Meta-omics profiling of full-scale groundwater rapid sand filters explains stratification of iron, ammonium and manganese removals. WATER RESEARCH 2023; 233:119805. [PMID: 36868119 DOI: 10.1016/j.watres.2023.119805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.
Collapse
Affiliation(s)
| | - Michele Laureni
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands.
| | - Nienke Koudijs
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | - Simon Müller
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | - Theo van Alen
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, AJ Nijmegen 6525, The Netherlands
| | | | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, AJ Nijmegen 6525, The Netherlands
| | - Martin Pabst
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| | | | - Doris van Halem
- Delft University of Technology, van der Maasweg 9, HZ Delft 2629, The Netherlands
| |
Collapse
|
30
|
Fowler SJ, Torresi E, Dechesne A, Smets BF. Biofilm thickness controls the relative importance of stochastic and deterministic processes in microbial community assembly in moving bed biofilm reactors. Interface Focus 2023; 13:20220069. [PMID: 36793505 PMCID: PMC9912012 DOI: 10.1098/rsfs.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023] Open
Abstract
Deterministic and stochastic processes are believed to play a combined role in microbial community assembly, though little is known about the factors determining their relative importance. We investigated the effect of biofilm thickness on community assembly in nitrifying moving bed biofilm reactors using biofilm carriers where maximum biofilm thickness is controlled. We examined the contribution of stochastic and deterministic processes to biofilm assembly in a steady state system using neutral community modelling and community diversity analysis with a null-modelling approach. Our results indicate that the formation of biofilms results in habitat filtration, causing selection for phylogenetically closely related community members, resulting in a substantial enrichment of Nitrospira spp. in the biofilm communities. Stochastic assembly processes were more prevalent in biofilms of 200 µm and thicker, while stronger selection in thinner (50 µm) biofilms could be driven by hydrodynamic and shear forces at the biofilm surface. Thicker biofilms exhibited greater phylogenetic beta-diversity, which may be driven by a variable selection regime caused by variation in environmental conditions between replicate carrier communities, or by drift combined with low migration rates resulting in stochastic historical contingency during community establishment. Our results indicate that assembly processes vary with biofilm thickness, contributing to our understanding of biofilm ecology and potentially paving the way towards strategies for microbial community management in biofilm systems.
Collapse
Affiliation(s)
- S. Jane Fowler
- Department of Biological Sciences, Simon Fraser University, BC V5A 1S6, Canada
| | | | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Barth F. Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
31
|
Zhao W, Bi X, Bai M, Wang Y. Research advances of ammonia oxidation microorganisms in wastewater: metabolic characteristics, microbial community, influencing factors and process applications. Bioprocess Biosyst Eng 2023; 46:621-633. [PMID: 36988685 DOI: 10.1007/s00449-023-02866-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Ammonia oxidation carried out by ammonia-oxidizing microorganisms (AOMs) is a central step in the global nitrogen cycle. Aerobic AOMs comprise conventional ammonia-oxidizing bacteria (AOB), novel ammonia-oxidizing archaea (AOA), which could exist in complex and extreme conditions, and complete ammonia oxidizers (comammox), which directly oxidize ammonia to nitrate within a single cell. Anaerobic AOMs mainly comprise anaerobic ammonia-oxidizing bacteria (AnAOB), which can transform NH4+-N and NO2--N into N2 under anaerobic conditions. In this review, the unique metabolic characteristics, microbial community of AOMs and the influencing factors are discussed. Process applications of nitrification/denitrification, nitritation/denitrification, nitritation/anammox and partial denitrification/anammox in wastewater treatment systems are emphasized. The future development of nitrogen removal processes using AOMs is expected, enrichment of comammox facilitates the complete nitrification performance, inhibiting the activity of comammox and NOB could achieve stable nitritation, and additionally, AnAOB conducting the anammox process in municipal wastewater is a promising development direction.
Collapse
Affiliation(s)
- Weihua Zhao
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
- Qingdao University of Technology, Huangdao District, Qingdao, 266525, People's Republic of China.
| | - Xuejun Bi
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Meng Bai
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yanyan Wang
- State and Local Joint Engineering Research Center of Municipal Wastewater Treatment and Resource Recycling, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| |
Collapse
|
32
|
Vilardi K, Cotto I, Bachmann M, Parsons M, Klaus S, Wilson C, Bott CB, Pieper KJ, Pinto AJ. Co-Occurrence and Cooperation between Comammox and Anammox Bacteria in a Full-Scale Attached Growth Municipal Wastewater Treatment Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5013-5023. [PMID: 36913533 PMCID: PMC10061930 DOI: 10.1021/acs.est.2c09223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Cooperation between comammox and anammox bacteria for nitrogen removal has been recently reported in laboratory-scale systems, including synthetic community constructs; however, there are no reports of full-scale municipal wastewater treatment systems with such cooperation. Here, we report intrinsic and extant kinetics as well as genome-resolved community characterization of a full-scale integrated fixed film activated sludge (IFAS) system where comammox and anammox bacteria co-occur and appear to drive nitrogen loss. Intrinsic batch kinetic assays indicated that majority of the aerobic ammonia oxidation was driven by comammox bacteria (1.75 ± 0.08 mg-N/g TS-h) in the attached growth phase, with minimal contribution by ammonia-oxidizing bacteria. Interestingly, a portion of total inorganic nitrogen (∼8%) was consistently lost during these aerobic assays. Aerobic nitrite oxidation assays eliminated the possibility of denitrification as a cause of nitrogen loss, while anaerobic ammonia oxidation assays resulted in rates consistent with anammox stoichiometry. Full-scale experiments at different dissolved oxygen (DO = 2 - 6 mg/L) setpoints indicated persistent nitrogen loss that was partly sensitive to DO concentrations. Genome-resolved metagenomics confirmed the high abundance (relative abundance 6.53 ± 0.34%) of two Brocadia-like anammox populations, while comammox bacteria within the Ca. Nitrospira nitrosa cluster were lower in abundance (0.37 ± 0.03%) and Nitrosomonas-like ammonia oxidizers were even lower (0.12 ± 0.02%). Collectively, our study reports for the first time the co-occurrence and cooperation of comammox and anammox bacteria in a full-scale municipal wastewater treatment system.
Collapse
Affiliation(s)
- Katherine Vilardi
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Irmarie Cotto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| | - Megan Bachmann
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Mike Parsons
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Stephanie Klaus
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Christopher Wilson
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Charles B. Bott
- Hampton
Roads Sanitation District, 1434 Air Rail Avenue, Virginia
Beach, Virginia 23455, United States
| | - Kelsey J. Pieper
- Department
of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30318, United States
| |
Collapse
|
33
|
Wang Y, Zhang S, Jin H, Chen J, Zhou K, Chen J, Chen J, Zhu G. Effects of dam building on the occurrence and activity of comammox bacteria in river sediments and their contribution to nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161167. [PMID: 36572300 DOI: 10.1016/j.scitotenv.2022.161167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The recent discovery of complete ammonia oxidizers (comammox) has fundamentally changed our understanding of nitrification. However, studies on the occurrence and activity of comammox bacteria and their contribution to nitrification remain unclear. Here, we investigated the abundance, activity, and diversity of comammox bacteria and their contribution to nitrification in sediments from dammed rivers in winter and summer. Our results indicated that comammox clade A was ubiquitous in all sediment samples and the community structure in comammox varied between the upper and lower reaches, but not on the time scale (winter and summer). Comammox activity in the dammed river sediments in summer was prominently higher than in winter (summer: 1.08 ± 0.52; winter: 0.197 ± 0.148 mg N kg-1 day-1). Furthermore, the activity of comammox bacteria in summer appeared higher in the vicinity of the dammed river and in the Sanjiang estuary, which is located downstream of the dammed river. The activity of ammonia-oxidizing bacteria (AOB) (0.77 ± 0.478 mg N kg-1 day-1) was higher compared to comammox (0.639 ± 0.588 mg N kg-1 day-1) and ammonia-oxidizing archaea (AOA) (0.026 ± 0.022 mg N kg-1 day-1) in both winter and summer. In terms of contribution to the nitrification process, AOB (winter: 67.13 ± 12.21 %; summer: 50.57 ± 16.14 %) outperformed comammox (winter: 28.59 ± 12.51 %; summer: 48.38 ± 16.62 %) and AOA (winter: <7.39 %; summer: <2.09 %). These findings indicated that the nitrification process in dammed river sediments was mainly dominated by AOB. Additionally, comammox activity was significantly affected by temperature and NH4+, suggesting that these variables were key determinants of the niche partitioning of comammox. Collectively, our findings provide novel perspectives into the widespread distribution and contribution of comammox to nitrification in dammed river ecosystems, thus broadening our understanding of the nitrification processes.
Collapse
Affiliation(s)
- Yuantao Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China; CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315100, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China.
| | - Huixia Jin
- NingboTech University, Ningbo 315100, China
| | - Jiwei Chen
- Ningbo River Management Center, Ningbo 315100, China
| | - Ketao Zhou
- Ningbo River Management Center, Ningbo 315100, China
| | - Jinxi Chen
- NingboTech University, Ningbo 315100, China
| | - Jinfang Chen
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
34
|
Ma B, LaPara TM, Kim T, Hozalski RM. Multi-scale Investigation of Ammonia-Oxidizing Microorganisms in Biofilters Used for Drinking Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3833-3842. [PMID: 36811531 DOI: 10.1021/acs.est.2c06858] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ammonia-oxidizing microorganisms (AOMs) include ammonia-oxidizing bacteria (AOB), archaea (AOA), and Nitrospira spp. sublineage II capable of complete ammonia oxidation (comammox). These organisms can affect water quality not only by oxidizing ammonia to nitrite (or nitrate) but also by cometabolically degrading trace organic contaminants. In this study, the abundance and composition of AOM communities were investigated in full-scale biofilters at 14 facilities across North America and in pilot-scale biofilters operated for 18 months at a full-scale water treatment plant. In general, the relative abundance of AOM in most full-scale biofilters and in the pilot-scale biofilters was as follows: AOB > comammox Nitrospira > AOA. The abundance of AOB in the pilot-scale biofilters increased with increasing influent ammonia concentration and decreasing temperature, whereas AOA and comammox Nitrospira exhibited no correlations with these parameters. The biofilters affected AOM abundance in the water passing through the filters via collecting and shedding but exhibited a minor influence on the composition of AOB and Nitrospira sublineage II communities in the filtrate. Overall, this study highlights the relative importance of AOB and comammox Nitrospira compared to AOA in biofilters and the influence of filter influent water quality on AOM in biofilters and their release into the filtrate.
Collapse
Affiliation(s)
- Ben Ma
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| | - Taegyu Kim
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
35
|
Gu Q, Ma J, Zhang J, Guo W, Wu H, Sun M, Wang J, Wei X, Zhang Y, Chen M, Xue L, Ding Y, Wu Q. Nitrogen-metabolising microorganism analysis in rapid sand filters from drinking water treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29458-29475. [PMID: 36417065 DOI: 10.1007/s11356-022-23963-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Sand filters (SFs) are common treatment processes for nitrogen pollutant removal in drinking water treatment plants (DWTPs). However, the mechanisms on the nitrogen-cycling role of SFs are still unclear. In this study, 16S rRNA gene amplicon sequencing was used to characterise the diversity and composition of the bacterial community in SFs from DWTPs. Additionally, metagenomics approach was used to determine the functional microorganisms involved in nitrogen cycle in SFs. Our results showed that Pseudomonadota, Acidobacteria, Nitrospirae and Chloroflexi dominated in SFs. Subsequently, 85 high-quality metagenome-assembled genomes (MAGs) were retrieved from metagenome datasets of selected SFs involving nitrification, assimilatory nitrogen reduction, denitrification and anaerobic ammonia oxidation (anammox) processes. Read mapping to reference genomes of Nitrospira and the phylogenetic tree of the ammonia monooxygenase subunit A gene, amoA, suggested that Nitrospira is abundantly found in SFs. Furthermore, according to their genetic content, a nitrogen metabolic model in SFs was proposed using representative MAGs and pure culture isolate. Quantitative real-time polymerase chain reaction (qPCR) showed that ammonia-oxidising bacteria (AOB) and archaea (AOA), and complete ammonia oxidisers (comammox) were ubiquitous in the SFs, with the abundance of comammox being higher than that of AOA and AOB. Moreover, we identified a bacterial strain with a high NO3-N removal rate as Pseudomonas sp. DW-5, which could be applied in the bioremediation of micro-polluted drinking water sources. Our study provides insights into functional nitrogen-metabolising microbes in SFs of DWTPs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Weipeng Guo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Huiqing Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Ming Sun
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510640, People's Republic of China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Montong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Huangpu Ave. 601, Guangzhou, 510632, People's Republic of China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| |
Collapse
|
36
|
Liu X, Zhang Q, Yang X, Wu D, Li Y, Di H. Isolation and characteristics of two heterotrophic nitrifying and aerobic denitrifying bacteria, Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6. ENVIRONMENTAL RESEARCH 2023; 220:115240. [PMID: 36621544 DOI: 10.1016/j.envres.2023.115240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In order to solve nitrogen pollution in environmental water, two heterotrophic nitrifying and aerobic denitrifying strains isolated from acid paddy soil were identified as Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6 respectively. Strain HNDS-1 and strain HNDS-6 exhibited amazing ability to nitrogen removal. When (NH4)2SO4, KNO3, NaNO2 were used as nitrogen resource respectively, the NH4+-N, NO3--N, NO2--N removal efficiencies of strain HNDS-1 were 93.31%, 89.47%, and 100% respectively, while those of strain HNDS-6 were 82.39%, 96.92%, and 100%. And both of them could remove mixed nitrogen effectively in low C/N (C/N = 5). Strain HNDS-1 could remove 76.86% NH4+-N and 75.13% NO3--N. And strain HNDS-6 can remove 65.07% NH4+-N and 78.21% NO3--N. A putative ammonia monooxygenase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein and nitric oxide reductase of strain HNDS-1, while hydroxylamine reductase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein, and nitric oxide reductase of strain HNDS-6 were identified by genomic analysis. DNA-SIP analysis showed that genes Nxr, narG, nirK, norB, nosZ were involved in nitrogen removal pathway, which indicates that the denitrification pathway of strain HNDS-1 and strain HNDS-6 was NO3-→NO2-→NO→N2O→N2 during NH4+-N removal process. And the nitrification pathway of strain HNDS-1 and strain HNDS-6 was NO2-→NO3-, but the nitrification pathway of NH4+→ NO2- needs further studies.
Collapse
Affiliation(s)
- Xiaoting Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaoyu Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Dan Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
37
|
Ecophysiological and Genomic Characterization of the Freshwater Complete Ammonia Oxidizer Nitrospira sp. Strain BO4. Appl Environ Microbiol 2023; 89:e0196522. [PMID: 36719237 PMCID: PMC9973019 DOI: 10.1128/aem.01965-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Complete ammonia oxidizers (comammox) are a group of ubiquitous chemolithoautotrophic bacteria capable of deriving energy from the oxidation of ammonia to nitrate via nitrite. Here, we present a study characterizing the comammox strain Nitrospira sp. BO4 using a combination of cultivation-dependent and molecular methods. The enrichment culture BO4 was obtained from the sediment of Lake Burr Oak, a mesotrophic lake in eastern Ohio. The metagenome of the enrichment culture was sequenced, and a metagenome-assembled genome (MAG) was constructed for Nitrospira sp. BO4. The closest characterized relative of Nitrospira sp. BO4 was "Candidatus Nitrospira kreftii." All genes for ammonia and nitrite oxidation, reductive tricarboxylic acid (TCA) cycle, and other pathways of the central metabolism were detected. Nitrospira sp. BO4 used ammonia and oxidized it to nitrate with nitrite as the intermediate. The culture grew on initial ammonium concentrations between 0.01 and 3 mM with the highest rates observed at the lowest ammonium concentrations. Blue light completely inhibited the growth of Nitrospira sp. BO4, while white light reduced the growth and red light had no effect on the growth. Nitrospira sp. BO4 did not grow on nitrite as its sole substrate. When supplied with ammonium and nitrite, the culture utilized nitrite after most of the ammonium was consumed. In summary, the genomic information of Nitrospira sp. BO4 coupled with the growth experiments shows that Nitrospira sp. BO4 is a freshwater comammox species. Future research will focus on further characterization of the niches of comammox in freshwater environments. IMPORTANCE Nitrification is a key process in the global nitrogen cycle. Complete ammonia oxidizers (comammox) were discovered recently, and only three enrichment cultures and one pure culture have been characterized with respect to activity and growth under different conditions. The cultivated comammox strains were obtained from engineered systems such as a recirculating aquaculture system and hot water pipes. Here, we present the first study characterizing a comammox strain obtained from a mesotrophic freshwater lake. In freshwater environments, comammox coexist with ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results will help elucidate physiological characteristics of comammox and the distribution and niche differentiation of different ammonia oxidizers in freshwater environments.
Collapse
|
38
|
Jeon Y, Baranwal P, Li L, Piezer K, Seo Y. Review: Current understanding on biological filtration for the removal of microcystins. CHEMOSPHERE 2023; 313:137160. [PMID: 36356807 DOI: 10.1016/j.chemosphere.2022.137160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms (HABs) have become a global problem not only in aquatic habitats but also in public health and safety due to the production of cyanotoxins as their secondary metabolites. Among the various identified cyanotoxin groups, microcystins (MCs) are one of the most prevalent cyanotoxin detected during HABs. Different strategies including advanced physical and chemical treatment processes have been developed to mitigate the threat of cyanotoxins in water utilities, but these have revealed certain limitations in terms of high operational costs, low removal efficacy, and harmful by-products formation. Recently, biological filtration systems (BFS) have gained attention for safe drinking water production as they can treat various natural organic matter (NOM) and emerging contaminants through a highly efficient and environmentally sustainable process. However, limited attention has been given to understand the current research progress, research challenges, and knowledge gaps for the successful implementation of BFS for MC removal. Therefore, in this review, currently identified MC biodegradation pathways and MC-degrading microorganisms with their degradation rates are summarized, which may be pivotal for studying bioaugmented BFS to enhance the MC removal during HABs. Moreover, both laboratory and field studies on BFS for MC removal are reviewed, followed by a discussion of current challenges and future research needs for the practical application of BFS.
Collapse
Affiliation(s)
- Youchul Jeon
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States
| | - Parul Baranwal
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States
| | - Lei Li
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States
| | - Kayla Piezer
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH, 43606, United States
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH, 43606, United States; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH, 43606, United States.
| |
Collapse
|
39
|
Ohbayashi T, Wang Y, Aoyagi LN, Hara S, Tago K, Hayatsu M. Diversity of the Hydroxylamine Oxidoreductase (HAO) Gene and Its Enzyme Active Site in Agricultural Field Soils. Microbes Environ 2023; 38:ME23068. [PMID: 38092410 PMCID: PMC10728637 DOI: 10.1264/jsme2.me23068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023] Open
Abstract
Nitrification is a key process in the biogeochemical nitrogen cycle and a major emission source of the greenhouse gas nitrous oxide (N2O). The periplasmic enzyme hydroxylamine oxidoreductase (HAO) is involved in the oxidation of hydroxylamine to nitric oxide in the second step of nitrification, producing N2O as a byproduct. Its three-dimensional structure demonstrates that slight differences in HAO active site residues have inhibitor effects. Therefore, a more detailed understanding of the diversity of HAO active site residues in soil microorganisms is important for the development of novel nitrification inhibitors using structure-guided drug design. However, this has not yet been examined. In the present study, we investigated hao gene diversity in beta-proteobacterial ammonia-oxidizing bacteria (β-AOB) and complete ammonia-oxidizing (comammox; Nitrospira spp.) bacteria in agricultural fields using a clone library ana-lysis. A total of 1,949 hao gene sequences revealed that hao gene diversity in β-AOB and comammox bacteria was affected by the fertilizer treatment and field type, respectively. Moreover, hao sequences showed the almost complete conservation of the six HAO active site residues in both β-AOB and comammox bacteria. The diversity of nitrifying bacteria showed similarity between hao and amoA genes. The nxrB amplicon sequence revealed the dominance of Nitrospira cluster II in tea field soils. The present study is the first to reveal hao gene diversity in agricultural soils, which will accelerate the efficient screening of HAO inhibitors and evaluations of their suppressive effects on nitrification in agricultural soils.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Yong Wang
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Luciano Nobuhiro Aoyagi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Shintaro Hara
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 305–8604, Tsukuba, Japan
| |
Collapse
|
40
|
Moghadam SV, Jafarzadeh A, Matta A, Dessouky S, Hutchinson J, Kapoor V. Evaluation of nitrogen removal, functional gene abundance and microbial community structure in a stormwater detention basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116669. [PMID: 36335700 DOI: 10.1016/j.jenvman.2022.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Stormwater control measures such as detention basins are used to mitigate the negative effects of urban stormwater resulting from watershed development. In this study, the performance of a detention basin in mitigating nitrogen pollution was examined and the abundance of N-cycling genes (amoA, nirK, nosZ, hzsB and Ntsp-amoA) present in the soil media of the basin was measured using quantitative PCR. Results showed a net export of nitrogen from the basin, however, differences between in- and outflow concentrations were not significant. Furthermore, the quantitative PCR showed that nirK (denitrification gene) was more abundant in the winter season, whereas amoA (nitrification gene) was more abundant in the summer season. The abundance of nirK, Ntsp-amoA and hzsB genes also varied with the sampling depth of soil and based on 16S rRNA gene sequencing of soil samples, Actinobacteria and Proteobacteria were the most dominant phyla. Species diversity appeared higher in summer, while the top and bottom layer of soil clustered separately based on the bacterial community structure. These results underline the importance of understanding nitrogen dynamics and microbial processes within stormwater control measures to enhance their design and performance.
Collapse
Affiliation(s)
- Sina V Moghadam
- School of Civil & Environmental Engineering, And Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, And Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Akanksha Matta
- School of Civil & Environmental Engineering, And Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA; Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Samer Dessouky
- School of Civil & Environmental Engineering, And Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jeffrey Hutchinson
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, And Construction Management, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
41
|
Gottshall EY, Godfrey B, Li B, Abrahamson B, Qin W, Winkler M. Photoinhibition of comammox reaction in Nitrospira inopinata in a dose- and wavelength-dependent manner. Front Microbiol 2022; 13:1022899. [PMID: 36590435 PMCID: PMC9797979 DOI: 10.3389/fmicb.2022.1022899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Apparent contribution of complete ammonia-oxidizing organisms (comammox) to the global nitrogen cycle highlights the necessity for understanding niche differentiation of comammox bacteria among other ammonia oxidizers. While the high affinity for ammonia of the comammox species Nitrospira inopinata suggests their niche partitioning is expected to be centered in oligotrophic environments, their absence in nutrient-depleted environments (such as the oceans) suggests that other (abiotic) factors might control their distribution and spatial localization within microbial communities. Many ammonia- and nitrite-oxidizing organisms are sensitive to light; however, the photosensitivity of comammox has not been explored. Since comammox bacteria encode enzymatic machinery homologous to canonical ammonia-and nitrite-oxidizers, we hypothesized that comammox N. inopinata, the only available pure culture of this group of microorganisms, may be inhibited by illumination in a similar manner. We evaluated the impact of light intensity, wavelength, and duration on the degree of photoinhibition for cultures of the comammox species N. inopinata and the soil ammonia-oxidizing archaea Nitrososphaera viennensis. Both species were highly sensitive to light. Interestingly, mimicking diurnal light exposure caused an uncoupling of ammonia and nitrite oxidation in N. inopinata, indicating nitrite oxidation might be more sensitive to light exposure than ammonia oxidation. It is likely that light influences comammox spatial distribution in natural environments such as surface fresh waters according to diurnal cycles, light attenuation coefficients, and the light penetration depths. Our findings therefore provide ecophysiological insights for further studies on comammox both in field and laboratory settings.
Collapse
Affiliation(s)
- Ekaterina Y. Gottshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States,*Correspondence: Ekaterina Y. Gottshall,
| | - Bruce Godfrey
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Britt Abrahamson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Wei Qin
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
42
|
Hsu PC(L, Di HJ, Cameron K, Podolyan A, Chau H, Luo J, Miller B, Carrick S, Johnstone P, Ferguson S, Wei W, Shen J, Zhang L, Liu H, Zhao T, Wei W, Ding W, Pan H, Liu Y, Li B. Comammox Nitrospira Clade B is the most abundant complete ammonia oxidizer in a dairy pasture soil and inhibited by dicyandiamide and high ammonium concentrations. Front Microbiol 2022; 13:1048735. [PMID: 36578577 PMCID: PMC9791190 DOI: 10.3389/fmicb.2022.1048735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
The recent discovery of comammox Nitrospira, a complete ammonia oxidizer, capable of completing the nitrification on their own has presented tremendous challenges to our understanding of the nitrification process. There are two divergent clades of comammox Nitrospira, Clade A and B. However, their population abundance, community structure and role in ammonia and nitrite oxidation are poorly understood. We conducted a 94-day microcosm study using a grazed dairy pasture soil amended with urea fertilizers, synthetic cow urine, and the nitrification inhibitor, dicyandiamide (DCD), to investigate the growth and community structure of comammox Nitrospira spp. We discovered that comammox Nitrospira Clade B was two orders of magnitude more abundant than Clade A in this fertile dairy pasture soil and the most abundant subcluster was a distinctive phylogenetic uncultured subcluster Clade B2. We found that comammox Nitrospira Clade B might not play a major role in nitrite oxidation compared to the role of canonical Nitrospira nitrite-oxidizers, however, comammox Nitrospira Clade B is active in nitrification and the growth of comammox Nitrospira Clade B was inhibited by a high ammonium concentration (700 kg synthetic urine-N ha-1) and the nitrification inhibitor DCD. We concluded that comammox Nitrospira Clade B: (1) was the most abundant comammox in the dairy pasture soil; (2) had a low tolerance to ammonium and can be inhibited by DCD; and (3) was not the dominant nitrite-oxidizer in the soil. This is the first study discovering a new subcluster of comammox Nitrospira Clade B2 from an agricultural soil.
Collapse
Affiliation(s)
- Pei-Chun (Lisa) Hsu
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Hong J. Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Keith Cameron
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Andriy Podolyan
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Henry Chau
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | | | - Blair Miller
- Lincoln Agritech Ltd, Lincoln University, Lincoln, New Zealand
| | - Sam Carrick
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Paul Johnstone
- The New Zealand Institute for Plant and Food Research, Havelock North, New Zealand
| | - Scott Ferguson
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | - Wenhua Wei
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Limei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongke Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenxue Wei
- Institute of Subtropical Agricultural Ecology, Chinese Academy of Sciences, Changsha, China
| | - Weixin Ding
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hong Pan
- College of Natural Resources and Environment, Shandong Agricultural University, Taian, China
| | - Yimeng Liu
- Centre for Innovation and Development, Beijing Normal University, Zhuhai, China
| | - Bowen Li
- College of Natural Resources and Environment, Hebei Agricultural University, Baoding, China
| |
Collapse
|
43
|
Palomo A, Dechesne A, Pedersen AG, Smets BF. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. MICROBIOME 2022; 10:204. [PMID: 36451244 PMCID: PMC9714041 DOI: 10.1186/s40168-022-01411-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/03/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND The discovery of microorganisms capable of complete ammonia oxidation to nitrate (comammox) has prompted a paradigm shift in our understanding of nitrification, an essential process in N cycling, hitherto considered to require both ammonia oxidizing and nitrite oxidizing microorganisms. This intriguing metabolism is unique to the genus Nitrospira, a diverse taxon previously known to only contain canonical nitrite oxidizers. Comammox Nitrospira have been detected in diverse environments; however, a global view of the distribution, abundance, and diversity of Nitrospira species is still incomplete. RESULTS In this study, we retrieved 55 metagenome-assembled Nitrospira genomes (MAGs) from newly obtained and publicly available metagenomes. Combined with publicly available MAGs, this constitutes the largest Nitrospira genome database to date with 205 MAGs, representing 132 putative species, most without cultivated representatives. Mapping of metagenomic sequencing reads from various environments against this database enabled an analysis of the distribution and habitat preferences of Nitrospira species. Comammox Nitrospira's ecological success is evident as they outnumber and present higher species-level richness than canonical Nitrospira in all environments examined, except for marine and wastewaters samples. The type of environment governs Nitrospira species distribution, without large-scale biogeographical signal. We found that closely related Nitrospira species tend to occupy the same habitats, and that this phylogenetic signal in habitat preference is stronger for canonical Nitrospira species. Comammox Nitrospira eco-evolutionary history is more complex, with subclades achieving rapid niche divergence via horizontal transfer of genes, including the gene encoding hydroxylamine oxidoreductase, a key enzyme in nitrification. CONCLUSIONS Our study expands the genomic inventory of the Nitrospira genus, exposes the ecological success of complete ammonia oxidizers within a wide range of habitats, identifies the habitat preferences of (sub)lineages of canonical and comammox Nitrospira species, and proposes that horizontal transfer of genes involved in nitrification is linked to niche separation within a sublineage of comammox Nitrospira. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Palomo
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Anders G. Pedersen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Barth F. Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
44
|
Zhao J, Fang S, Liu G, Qi W, Bai Y, Liu H, Qu J. Role of ammonia-oxidizing microorganisms in the removal of organic micropollutants during simulated riverbank filtration. WATER RESEARCH 2022; 226:119250. [PMID: 36274354 DOI: 10.1016/j.watres.2022.119250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biodegradation plays an important role in the removal of organic micropollutants (OMPs) during riverbank filtration (RBF) for drinking water production. The ability of ammonia-oxidizing microorganisms (AOM) to remove OMPs has attracted increasing attention. However, the distribution of AOM in RBF and its role in the degradation of OMPs remains unknown. In this study, the behavior of 128 selected OMPs and the distribution of AOM and their roles in the degradation of OMPs in RBF were explored by column and batch experiments simulating the first meter of the riverbank. The results showed that the selected OMPs were effectively removed (82/128 OMPs, >70% removal) primarily by biodegradation and partly by adsorption. Inefficiently removed OMPs tended to have low molecular weights, low log P, and contain secondary amides, secondary sulfonamides, secondary ketimines, and benzyls. In terms of the microbial communities, the relative abundance of AOM increased from 0.1%-0.2% (inlet-sand) to 5.3%-5.9% (outlet-sand), which was dominated by ammonia-oxidizing archaea whose relative abundance increased from 23%-72% (inlet-sand) to 97% (outlet-sand). Comammox accounted for 23%-64% in the inlet-sand and 1% in the outlet-sand. The abundances of AOM amoA genes kept stable in the inlet-sand of control columns, while decreased by 78% in the treatment columns, suggesting the inhibition effect of allylthiourea (ATU) on AOM. It is observed that AOM played an important role in the degradation of OMPs, where its inhibition led to the corresponding inhibition of 32 OMPs (5/32 were completely suppressed). In particular, OMPs with low molecular weights and containing primary amides, secondary amides, benzyls, and secondary sulfonamides were more likely to be removed by AOM. This study reveals the vital role of AOM in the removal of OMPs, deepens our understanding of the degradation of OMPs in RBF, and offers valuable insights into the physiochemical properties of OMPs and their AOM co-metabolic potential.
Collapse
Affiliation(s)
- Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Liu S, Cai H, Zhao X, Wu Z, Chen Q, Xu X, Zhong S, Sun W, Ni J. Comammox biogeography subject to anthropogenic interferences along a high-altitude river. WATER RESEARCH 2022; 226:119225. [PMID: 36272199 DOI: 10.1016/j.watres.2022.119225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The recent discovery of comammox Nitrospira performing complete ammonia oxidation to nitrate has overturned the long-held dogma of two-step nitrification on Earth, yet little is known about the effect of urbanization interference on their distribution. Using gene-centric metagenomics, we provided the first blueprints about comammox community, biogeography, and environmental drivers along a high-elevation (> 2000 m) river flowing through the largest city on the vulnerable Qinghai-Tibetan Plateau. Our study confirmed a wide presence and diversity of yet-uncultured comammox clade B across wet and dry seasons, with average 3.0 and 2.0 times as abundant as clade-A amoA genes in water and sediments, respectively. Species identified from freshwater and drinking water treatment plants dominated the comammox guilds (58∼100%), suggesting this plateau river shared a similar comammox assemblage with the above habitat types. Compared with the urban area harboring more abundant canonical Nitrospira identified in wastewater (average 24%), the upstream suburban reach had a smaller human population but larger proportions of comammox in ammonia-oxidizing prokaryotes (24∼72% of abundances) and Nitrospira sublineages I/II. Higher contents of nitrate and nitrite in water, and antibiotics in water and sediments, may restrain comammox niches in nitrifiers over the urban area. Further random forest analysis revealed that lincosamides and quinolones were the most important antibiotic predictors for the niche differentiations between comammox and canonical nitrifiers in water, while macrolides for those in sediments. Finally, by incubation experiments, we demonstrated higher activity contributions of benthic comammox in the suburban area (36.2∼92.8% of potential ammonia-oxidation rates) than in the urban reach, and that the contribution variation had significant negative relations with macrolides and their major components. Overall, this study highlighted that anthropogenic activities hampered the advantage of riverine complete nitrifiers over the canonical two-step ones.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; College of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an, China
| | - Zongzhi Wu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Sining Zhong
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University; Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
46
|
Zhang H, Cheng F, Sun S, Li Z. Diversity distribution and characteristics of comammox in different ecosystems. ENVIRONMENTAL RESEARCH 2022; 214:113900. [PMID: 35839911 DOI: 10.1016/j.envres.2022.113900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The discovery of complete ammonia oxidizers (comammox), which can oxidize ammonia into nitrate, has recently changed the concept of traditional nitrification. However, comparative studies on the analysis of comammox microbial community in different ecosystems are still scarce. In this study, the distribution and diversity of the comammox microbial community in farmlands, riparian zones, and river sediments in summer and winter were investigated by high-throughput sequencing. And the relative abundance of ammonia-oxidizing microorganisms was measured via their amoA genes of real-time quantitative polymerase chain reaction (qPCR). The relationships between ammonia oxidation microorganisms and the environmental factors were further analyzed. The abundance of comammox clade A was one order of magnitude lower than that of ammonia-oxidizing archaea (AOA) but higher than that of ammonia-oxidizing bacteria (AOB). The abundance of comammox was higher in summer than in winter and higher in farmland soils (1.81 ± 0.95 × 107 copies g-1) than in riparian zones and river sediments. Meanwhile, Candidatus Nitrospira nitrosa were the most widespread comammox in most samples (up to 86.31%), followed by Candidatus Nitrospira nitrificans, with a low abundance of Candidatus Nitrospira inopinata (lower than 0.61%). Furthermore, the abundance of comammox clade A had a significantly negative correlation with pH and NH4+ concentration (P < 0.05). The study revealed the potential advantages of comammox in farmlands and may be conducive to further research on comammox in microbial nitrogen cycling.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fan Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
47
|
Wang D, Wang Y, Liu L, Chen Y, Wang C, Xu X, Yang Y, Wang Y, Zhang T. Niche differentiation and symbiotic association among ammonia/nitrite oxidizers in a full-scale rotating biological contactor. WATER RESEARCH 2022; 225:119137. [PMID: 36198208 DOI: 10.1016/j.watres.2022.119137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Although the distribution of ammonia/nitrite oxidizers had been profiled in different habitats, current understanding is still limited regarding their niche differentiation in the integrated biofilm reactors, the symbiotic associations of ammonia/nitrite oxidizers, as well as the parasitic interaction between viruses and those functional organisms involved in the nitrogen cycle. Here, the integrated metagenomics and metatranscriptomics are applied to profile the ammonia/nitrite oxidizers communities and transcriptional activities changes along the flowpath of a concatenated full-scale rotating biological contactor (RBC) (frontend Stage-A and backend Stage-B). 19 metagenome-assembled genomes (MAGs) of ammonia/nitrite oxidizers were recovered by using a hybrid assembly approach, including four ammonia-oxidizing bacteria (AOB), two ammonia-oxidizing archaea (AOA), two complete ammonia oxidation bacteria (comammox), eight nitrite-oxidizing bacteria (NOB), and three anaerobic ammonium oxidation bacteria (anammox). Diverse AOB and anammox dominated Stage-A and collectively contributed to nitrogen conversion. With the decline of ammonia concentration along the flowpath, comammox and AOA appeared and increased in relative abundance in Stage-B, accounting for 8.8% of the entire community at the end of this reactor, and their dominating role in nitrogen turnover was indicated by the high transcription activity of their corresponding function genes. Moreover, the variation in the abundance of viruses infecting ammonia and nitrite oxidizers suggests that viruses likely act as a biotic factor mediating ammonia/nitrite oxidizer populations. This study demonstrates that complex factors shaped niche differentiation and symbiotic associations of ammonia/nitrite oxidizers in the RBC and highlights the importance of RBCs as model systems for the investigation of biotic and abiotic factors affecting the composition of microbiomes.
Collapse
Affiliation(s)
- Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Yiqiang Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
48
|
Li X, Wang G, Chen J, Zhou X, Liu Y. Deciphering the concurrence of comammox, partial denitrification and anammox in a single low-oxygen mainstream nitrogen removal reactor. CHEMOSPHERE 2022; 305:135409. [PMID: 35728663 DOI: 10.1016/j.chemosphere.2022.135409] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
One-stage anammox-based autotrophic nitrogen removal technology has attracted increasing interest to sustainable biological nitrogen removal for future wastewater treatment. However, its application in mainstream municipal wastewater treatment is still challenging due to low nitrogen and high organics of raw wastewater. Herein, a novel Simultaneous Carbon Oxidation, partial Comammox, Denitratation and Anammox (SCOCDA) was firstly developed in a single sequencing batch biofilm reactor operated at a dissolved oxygen concentration of ∼0.5 mg/L for treating synthetic municipal wastewater (50 mg/L NH4+-N and 100-250 mg/L COD). The long-term operation showed that almost complete COD and nitrogen removal performance could be achieved at a carbon/nitrogen ratio (COD/NH4+-N) of 3-5 with the corresponding effluent total nitrogen (TN)<5 mg/L. Microbial community and amoA-targeting amplicon sequencing analysis further verified that comammox Nitrospira spp., denitrifier Thauera and other aerobic/facultative heterotrophs could work synergistically with anammox bacteria, Candidatus Kuenenia. Moreover, nitrogen metabolic and inorganic carbon fixation pathways through the interaction between comammox and anammox were also revealed with the aid of Kyoto Encyclopedia of Genes and Genomes (KEGG). Lastly, potential application of proposed SCOCDA process was illustrated. This research sheds new light on advanced nitrogen removal towards limit of technology via the synergy of comammox and anammox.
Collapse
Affiliation(s)
- Xu Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Gonglei Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Jiabo Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 637819, Singapore; Advanced Environmental Biotechnology Centre, NEWRI, Nanyang Technological University, 637141, Singapore
| |
Collapse
|
49
|
Yang X, Yu X, He Q, Deng T, Guan X, Lian Y, Xu K, Shu L, Wang C, Yan Q, Yang Y, Wu B, He Z. Niche differentiation among comammox ( Nitrospira inopinata) and other metabolically distinct nitrifiers. Front Microbiol 2022; 13:956860. [PMID: 36187961 PMCID: PMC9515657 DOI: 10.3389/fmicb.2022.956860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Due to global change, increasing nutrient input to ecosystems dramatically affects the nitrogen cycle, especially the nitrification process. Nitrifiers including ammonia-oxidizing archaea (AOAs), ammonia-oxidizing bacteria (AOBs), nitrite-oxidizing bacteria (NOBs), and recently discovered complete ammonia oxidizers (comammoxs) perform nitrification individually or in a community. However, much remains to be learned about their niche differentiation, coexistence, and interactions among those metabolically distinct nitrifiers. Here, we used synthetic microbial ecology approaches to construct synthetic nitrifying communities (SNCs) with different combinations of Nitrospira inopinata as comammox, Nitrososphaera gargensis as AOA, Nitrosomonas communis as AOB, and Nitrospira moscoviensis as NOB. Our results showed that niche differentiation and potential interactions among those metabolically distinct nitrifiers were determined by their kinetic characteristics. The dominant species shifted from N. inopinata to N. communis in the N4 community (with all four types of nitrifiers) as ammonium concentrations increased, which could be well explained by the kinetic difference in ammonia affinity, specific growth rate, and substrate tolerance of nitrifiers in the SNCs. In addition, a conceptual model was developed to infer niche differentiation and possible interactions among the four types of nitrifiers. This study advances our understanding of niche differentiation and provides new strategies to further study their interactions among the four types of nitrifiers.
Collapse
Affiliation(s)
- Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, United States
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
50
|
Huang T, Xia J, Liu T, Su Z, Guan Y, Guo J, Wang C, Zheng M. Comammox Nitrospira Bacteria Are Dominant Ammonia Oxidizers in Mainstream Nitrification Bioreactors Emended with Sponge Carriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12584-12591. [PMID: 35973026 DOI: 10.1021/acs.est.2c03641] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Complete ammonia oxidation (i.e., comammox) is a newly discovered microbial process performed by a subset of the Nitrospira genus, and this unique microbial process has been ubiquitously detected in various wastewater treatment units. However, the operational conditions favoring comammox prevalence remain unclear. In this study, the dominance of comammox Nitrospira in four sponge biofilm reactors fed with low-strength ammonium (NH4+ = 23 ± 3 mg N/L) wastewater was proved by coupling 16S rRNA gene amplicon sequencing, quantitative polymerase chain reaction (qPCR), and metagenomic sequencing. The results showed that comammox Nitrospira dominated in the nitrifying guild over canonical ammonia-oxidizing bacteria (AOB) constantly, despite the significant variation in the residual ammonium concentration (0.01-15 mg N/L) under different sets of operating conditions. This result indicates that sponge biofilms greatly favor retaining comammox Nitrospira in wastewater treatment and highlights an essential role of biomass retention in the comammox prevalence. Moreover, analyses of the assembled metagenomic sequences revealed that the retrieved amoA gene sequences affiliated with comammox Nitrospira (53.9-66.0% read counts of total amoA gene reads) were always higher than those (28.4-43.4%) related to β-proteobacterial AOB taxa. The comammox Nitrospira bacteria detected in the present biofilm systems were close to clade A Candidatus Nitrospira nitrosa.
Collapse
Affiliation(s)
- Tuo Huang
- School of Environment, Tsinghua University, Beijing 100084, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jun Xia
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zicheng Su
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yuntao Guan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|