1
|
Fernandez-Flores A, Varela-Vazquez A, Mayan MD, Fonseca E. Connexin 43 in Dermatofibroma and Dermatofibrosarcoma Protuberans: Diagnostic, Pathogenic, and Therapeutic Implications. Am J Dermatopathol 2023; 45:812-815. [PMID: 37982464 DOI: 10.1097/dad.0000000000002562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
ABSTRACT Connexins play a crucial role in the formation of gap junctions that connect cells to each other, as well as cells to the surrounding environment. In recent years, connexin 43 has been extensively studied in various human tumors. In this study, we conducted an immunohistochemical analysis to evaluate the expression of connexin in 16 dermatofibromas (DFs) and 13 dermatofibrosarcoma protuberans (DFSP). Connexin was diffusely expressed in the cytoplasm of all DFs with moderate or strong intensity, whereas all DFSPs showed negative staining. In addition to its diagnostic implications, the loss of Cx43 may elucidate the invasive capacity of DFSP and offer a potential avenue for future therapeutic interventions.
Collapse
Affiliation(s)
- Angel Fernandez-Flores
- Department of Cellular Pathology, Hospital El Bierzo, Ponferrada, Spain
- Department of Cellular Pathology, Hospital de la Reina, Ponferrada, Spain
| | - Adrian Varela-Vazquez
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC), University of A Coruña (UDC), A Coruña, Spain; and
| | - Maria D Mayan
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC), University of A Coruña (UDC), A Coruña, Spain; and
| | - Eduardo Fonseca
- Department of Research, Institute for Biomedical Research of A Coruña (INIBIC), University of A Coruña (UDC), A Coruña, Spain; and
- Department of Dermatology, Universitary Hospital of A Coruña, A Coruña, Spain
| |
Collapse
|
2
|
Skieresz-Szewczyk K, Jackowiak H. Pattern Distribution of Connexins in the Ortho- and Parakeratinized Epithelium of the Lingual Mucosa in Birds. Cells 2023; 12:1776. [PMID: 37443811 PMCID: PMC10341081 DOI: 10.3390/cells12131776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Connexins are important proteins involved in cell-to-cell communication and cytodifferentiation during renewal and cornification of the multilayered epithelia. So far, there is a lack of reports on this subject in birds' structurally different ortho- and parakeratinized epithelium of the tongue. The study aims to describe the distribution and expression profiles of the α-connexins (Cx40 and 43) and β-connexins (Cx26, 30, and 31) in those epithelia in duck, goose, and domestic turkey. Research revealed the presence of the mentioned connexins and the occurrence of interspecies differences. Connexins form gap junctions in the cell membrane or are in the cytoplasm of keratinocytes. Differences in connexin expression were noted between the basal and intermediate layers, which may determine the proliferation of keratinocytes. Cx40, 43, and Cx30 in the gap junction of the keratinocytes of the intermediate layer are related to the synchronization of the cornification process. Because of the exfoliation of cornified plaques, a lack of connexins was observed in the cornified layer of orthokeratinized epithelium. However, in parakeratinized epithelium, connexins were present in the cell membrane of keratinocytes and thus maintained cellular integrity in gradually desquamating cells. The current studies will be useful in further comparative analyses of normal and pathological epithelia of the oral cavity in birds.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | | |
Collapse
|
3
|
Ling X, Dong S, Zhang L. Low dose TGF-β1 can improve vohwinkel syndrome by promoting the proliferation of keratinocytes. Acta Histochem 2023; 125:152010. [PMID: 36738515 DOI: 10.1016/j.acthis.2023.152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Vohwinkel syndrome (VS) is a very rare autosomal dominant disorder that can cause disability and deformity in severe cases. Mutations of the LOR (loricrin) and GJB2 (Cx26) genes have been found in VS so far. Many studies have indicated that the differentiation and growth of epidermal keratinocytes are regulated by mutant Cx26, and it may explain the pathogenesis of VS. It has been found that transforming growth factor β1 (TGF-β1) expression was lower in G130V (OE1) and D66H (OE2) mutant keratinocytes in the VS model with GJB2 mutation as compared to normal keratinocytes (NC). TGF-β is a cytokine involved in the regulation of processes like cell proliferation and differentiation in different types of cells. At present, many in vitro studies focus on TGF- β 1 inhibition of keratinocyte growth.However, the relationship between TGF-β1 and VS remains unknown. This study aimed at elucidating the role and potential pathogenic mechanism of TGF-β in VS. The results indicated that the down-regulation expression of TGF-β1 in VS was linked to cell proliferation inhibition through p-Smad3/c-myc. In contrast, low-dose TGF-β1 treatment of VS keratinocytes can improve their proliferation inhibition and up-regulate the expression Cyclin D1. This suggests that low doses of TGF-β1 can improve the proliferation of VS and provide new insights into its treatment.
Collapse
Affiliation(s)
- Xia Ling
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Shandong First Medical University, Jinan 250117, Shandong, China
| | - Shujing Dong
- Department of Dermatology, Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan 250012, Shandong, China
| | - Li Zhang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.
| |
Collapse
|
4
|
Connexin43 mutations linked to skin disease have augmented hemichannel activity. Sci Rep 2019; 9:19. [PMID: 30631135 PMCID: PMC6328547 DOI: 10.1038/s41598-018-37221-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations in the gene (GJA1) encoding connexin43 (Cx43) are responsible for several rare genetic disorders, including non-syndromic skin-limited diseases. Here we used two different functional expression systems to characterize three Cx43 mutations linked to palmoplantar keratoderma and congenital alopecia-1, erythrokeratodermia variabilis et progressiva, or inflammatory linear verrucous epidermal nevus. In HeLa cells and Xenopus oocytes, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D all formed functional gap junction channels with the same efficiency as wild-type Cx43, with normal voltage gating and a unitary conductance of ~110 pS. In HeLa cells, all three mutations also localized to regions of cell-cell contact and displayed a punctate staining pattern. In addition, we show that Cx43-G8V, Cx43-A44V and Cx43-E227D significantly increase membrane current flow through formation of active hemichannels, a novel activity that was not displayed by wild-type Cx43. The increased membrane current was inhibited by either 2 mM calcium, or 5 µM gadolinium, mediated by hemichannels with a unitary conductance of ~250 pS, and was not due to elevated mutant protein expression. The three Cx43 mutations all showed the same gain of function activity, suggesting that augmented hemichannel activity could play a role in skin-limited diseases caused by human Cx43 mutations.
Collapse
|
5
|
Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties. J Invest Dermatol 2016; 136:225-235. [PMID: 26763442 PMCID: PMC4731051 DOI: 10.1038/jid.2015.389] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Mutations in GJB2 (Cx26) cause either deafness, or deafness associated with skin diseases. That different disorders can be caused by distinct mutations within the same gene suggests that unique channel activities are influenced by each class of mutation. We have examined the functional characteristics of two human mutations, Cx26-H73R and Cx26-S183F, causing palmoplantar keratoderma (PPK) and deafness. Both failed to form gap junction channels or hemichannels when expressed alone. Co-expression of the mutants with wild-type Cx43 showed a trans-dominant inhibition of Cx43 gap junction channels, without reductions in Cx43 protein synthesis. In addition, the presence of mutant Cx26 shifted Cx43 channel gating and kinetics towards a more Cx26-like behavior. Co-immunoprecipitation showed Cx43 being pulled down more efficiently with mutant Cx26, than wild-type, confirming the enhanced formation of heteromeric connexons. Finally, the formation of heteromeric connexons resulted in significantly increased Cx43 hemichannel activity in the presence of Cx26 mutants. These findings suggest a common mechanism whereby Cx26 mutations causing PPK and deafness trans-dominantly influence multiple functions of wild-type Cx43. They also implicate a role for aberrant hemichannel activity in the pathogenesis of PPK, and further highlight an emerging role for Cx43 in genetic skin diseases.
Collapse
|
6
|
O'Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LFB, Green CR. The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol 2014; 1037:519-46. [PMID: 24029957 DOI: 10.1007/978-1-62703-505-7_31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in Connexin43 (Cx43) expression levels have been shown to play a role in inflammatory processes including skin wounding and neuroinflammation. Cx43 protein levels increase following a skin wound and can inhibit wound healing. Increased Cx43 has been observed following stroke, epilepsy, ischemia, optic nerve damage, and spinal cord injury with gap junctional communication and hemichannel opening leading to increased secondary damage via the inflammatory response. Connexin43 modulation has been identified as a potential target for protection and repair in neuroinflammation and skin wound repair. This review describes the use of a Cx43 specific antisense oligonucleotide (Cx43 AsODN) and peptide mimetics of the connexin extracellular loop domain to modulate Cx43 expression and/or function in inflammatory disorders of the skin and central nervous system. An overview of the role of connexin43 in inflammatory conditions, how antisense and peptide have allowed us to elucidate the role of Cx43 in these diseases, create models of diseases to test interventions and their potential for use clinically or in current clinical trials is presented. Antisense oligonucleotides are applied topically and have been used to improve wound healing following skin injury. They have also been used to develop ex vivo models of neuroinflammatory diseases that will allow testing of intervention strategies. The connexin mimetic peptides have shown potential in a number of neuroinflammatory disorders in ex vivo models as well as in vivo when delivered directly to the injury site or when delivered systemically.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
7
|
Churko JM, Laird DW. Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 2013; 28:190-8. [PMID: 23636264 DOI: 10.1152/physiol.00058.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present review, we provide an overview of connexin expression during skin development and remodeling in wound healing, and reflect on how loss- or gain-of-function connexin mutations may change cellular phenotypes and lead to diseases of the skin. We also consider the therapeutic value of targeting connexins in wound healing.
Collapse
Affiliation(s)
- Jared M Churko
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
8
|
Scott CA, Tattersall D, O'Toole EA, Kelsell DP. Connexins in epidermal homeostasis and skin disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1952-61. [DOI: 10.1016/j.bbamem.2011.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
|
9
|
Abstract
Cell-to-cell interactions via gap junctional communication and connexon hemichannels are involved in the pathogenesis of diabetes. Gap junctions are highly specialized transmembrane structures that are formed by connexon hemichannels, which are further assembled from proteins called “connexins.” In this paper, we discuss current knowledge about connexins in diabetes. We also discuss mechanisms of connexin influence and the role of individual connexins in various tissues and how these are affected in diabetes. Connexins may be a future target by both genetic and pharmacological approaches to develop treatments for the treatment of diabetes and its complications.
Collapse
|
10
|
Becker DL, Thrasivoulou C, Phillips ARJ. Connexins in wound healing; perspectives in diabetic patients. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2068-75. [PMID: 22155211 DOI: 10.1016/j.bbamem.2011.11.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/07/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022]
Abstract
Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- David L Becker
- Department of Cell and Developmental Biology, University College, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
11
|
Wang X, Ramirez A, Budunova I. Overexpression of connexin26 in the basal keratinocytes reduces sensitivity to tumor promoter TPA. Exp Dermatol 2009; 19:633-40. [DOI: 10.1111/j.1600-0625.2009.01013.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Muramatsu T, Uekusa T, Masaoka T, Saitoh M, Hashimoto S, Abiko Y, Jung HS, Shimono M. Differential expression and localization of connexins 26 and 43 in the rat gingival epithelium. ACTA ACUST UNITED AC 2009; 71:147-54. [PMID: 19194037 DOI: 10.1679/aohc.71.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the expression and localization of connexins (CX) 26 and 43 in the rat gingival epithelium. RT-PCR analysis revealed CX26 gene expression in both the upper and lower layers of the gingival epithelium and in the total epithelial layer, whereas CX43 gene expression was limited to the lower layer and the total epithelial layer. Immunoreactivity for CX43 was observed in the membranes of adjacent cells from the basal layer to the middle of the prickle cell layer, while immunoreactivity for CX26 was observed in the granular cell layer and lower part of the squamous cell layer. Merged images revealed the co-localization of CX26 and CX43 in the middle of the prickle cell layer. By immuno-electron microscopy, gap junctions appeared curved, hemi-circular, or annular within the cytoplasm, and gold particles indicating the presence of CX43 were localized at the outer edges of these cytoplasmic formations. These results suggest that CX43 is associated with the regulation of cell proliferation and that increased CX26 expression is associated with differentiation of keratinocytes. Thus, degradation of CX43 is considered to play an essential role in differentiation of the rat gingival epithelium.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Oral Health Science Center HRC7, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
A murine living skin equivalent amenable to live-cell imaging: analysis of the roles of connexins in the epidermis. J Invest Dermatol 2007; 128:1039-49. [PMID: 17960178 DOI: 10.1038/sj.jid.5701125] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three-dimensional (3D) organotypic models are increasingly used to study the aspects of epidermal organisation and cutaneous wound-healing events. However, these are largely dependent on laborious histological analysis and immunohistochemical approaches. Despite the large resource of transgenic and knockout mice harboring mutations relevant to skin disorders, few organotypic mouse skin models are available. We have developed a versatile in vitro 3D organotypic mouse skin equivalent that reflects epidermal organisation in vivo. The system is optically transparent and ideally suited to real-time analysis using a variety of integrated in situ imaging techniques. As a paradigm for coordination of cellular events, the epidermal gap junction network was investigated and the model displayed predominant connexin 43 (Cx43) expression in basal proliferating cells and Cx26 and Cx30 expression in differentiated keratinocytes. We show that attenuation of Cx43-mediated communication by a Cx mimetic peptide enhanced wound closure rates in keratinocyte monocultures and in the living skin equivalent system, emphasising the utility of the model to systematically unravel the molecular mechanisms underlying epidermal morphogenesis, assess promising therapeutic strategies, and reduce animal experimentation. Furthermore, we visualise epidermal regeneration following injury in real time, thereby facilitating avenues to explore distinctive modes of wound re-epithelialisation in a non-invasive manner.
Collapse
|
14
|
Zheng-Fischhöfer Q, Kibschull M, Schnichels M, Kretz M, Petrasch-Parwez E, Strotmann J, Reucher H, Lynn BD, Nagy JI, Lye SJ, Winterhager E, Willecke K. Characterization of connexin31.1-deficient mice reveals impaired placental development. Dev Biol 2007; 312:258-71. [PMID: 17961533 DOI: 10.1016/j.ydbio.2007.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/27/2007] [Accepted: 09/14/2007] [Indexed: 12/31/2022]
Abstract
The gap junction gene Connexin31.1 has been reported to be expressed predominantly in the epidermis of murine skin. To study the function of this gene, we generated mice in which the coding DNA of the Connexin31.1 gene was replaced by lacZ reporter coding DNA. Using beta-galactosidase staining, we have shown that lacZ/Connexin31.1 was expressed in the spinous and granular layers of the epidermis, in cells of olfactory epithelium and in the vomeronasal organ. During embryogenesis, Connexin31.1 was co-expressed with another isoform, Connexin31, in the post-implantation trophoblast cell lineage and, later in gestation, in placental glycogen cells. Although homozygous Connexin31.1-deficient mice were fertile and showed no morphological or functional defects in adult organs expressing this gene, 30% of the offspring expected according to Mendelian inheritance were lost between embryonic days 11.5 and 14.5 and surviving embryos were significantly reduced in weight near the end of pregnancy. Placentas of Connexin31.1-deficient embryos were reduced in weight and showed altered morphology of the spongiotrophoblast and labyrinth layer. The spongiotrophoblast formed a compact barrier at the decidual border that might restrict the maternal blood supply. We conclude that Connexin31.1 is critical for normal placental development but appears to be functionally compensated by other connexin isoforms in the embryo proper and adult mouse.
Collapse
|
15
|
Zheng-Fischhöfer Q, Schnichels M, Dere E, Strotmann J, Loscher N, McCulloch F, Kretz M, Degen J, Reucher H, Nagy JI, Peti-Peterdi J, Huston JP, Breer H, Willecke K. Characterization of connexin30.3-deficient mice suggests a possible role of connexin30.3 in olfaction. Eur J Cell Biol 2007; 86:683-700. [PMID: 17728008 DOI: 10.1016/j.ejcb.2007.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 12/31/2022] Open
Abstract
We have generated connexin30.3-deficient mice in which the coding region of the connexin30.3 gene was replaced by the lacZ reporter gene. The expression pattern of this connexin was characterized using beta-galactosidase staining and immunoblot analyses. In skin, beta-galactosidase/connexin30.3 protein was expressed in the spinous and granulous layers of the epidermis. Specific beta-galactosidase/connexin30.3 expression was also detected in the thin ascending limb of Henle's loop in the kidney. In addition, we found beta-galactosidase/connexin30.3 in progenitor cells of the olfactory epithelium and in a subpopulation of cells in the apical layer of the vomeronasal organ. Connexin30.3-deficient mice were fertile and displayed no abnormalities in the skin or in the chemosensory systems. Furthermore, they showed normal auditory thresholds as measured by brain stem evoked potentials. These mice did, however, exhibit reduced behavioural responses to a vanilla scent.
Collapse
|
16
|
Thomas T, Shao Q, Laird DW. Differentiation of Organotypic Epidermis in the Presence of Skin Disease-Linked Dominant-Negative Cx26 Mutants and Knockdown Cx26. J Membr Biol 2007; 217:93-104. [PMID: 17638039 DOI: 10.1007/s00232-007-9036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
In this study, we chose a differentiation-competent rat epidermal keratinocyte (REK) cell line to examine the role of Cx26 and disease-linked Cx26 mutants in organotypic epidermal differentiation. First, we generated stable REK cell lines expressing three skin disease-linked mutants (G59A, D66H and R75W). Second, we used an RNAi approach to knock down the expression of Cx26 in REKs. Interestingly, the three-dimensional (3D) architecture of the organotypic epidermis altered the intracellular spatial distribution of the mutants in comparison to 2D cultured REKs, highlighting the importance of using organotypic cultures. Unexpectedly, the presence of disease-linked mutants or the overexpression of wild-type Cx26 had little effect on the differentiation of the organotypic epidermis as determined by the architecture of the epidermis, expression of molecular markers indicative of epidermis differentiation (keratin 10, keratin 14, involucrin, loricrin) and stratification/cornification of the epidermis. Likewise, organotypic epidermis continued to differentiate normally upon Cx26 knockdown. While Cx26 has been reported to be upregulated during wound healing, no reduction in wound closure was observed in 2D REK cultures that expressed loss-of-function, dominant Cx26 mutants. In conclusion, we demonstrate that gain or loss of Cx26 function does not disrupt organotypic epidermal differentiation and offer insights into why patients harboring Cx26 mutations do not frequently present with more severe disease that encompasses thin skin.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
17
|
Maher AC, Thomas T, Riley JL, Veitch G, Shao Q, Laird DW. Rat epidermal keratinocytes as an organotypic model for examining the role of Cx43 and Cx26 in skin differentiation. ACTA ACUST UNITED AC 2007; 12:219-30. [PMID: 16531317 DOI: 10.1080/15419060500511818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.
Collapse
Affiliation(s)
- Amy C Maher
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Evaluation of the human genome suggests that all members of the connexin family of gap-junction proteins have now been successfully identified. This large and diverse family of proteins facilitates a number of vital cellular functions coupled with their roles, which range from the intercellular propagation of electrical signals to the selective intercellular passage of small regulatory molecules. Importantly, the extent of gap-junctional intercellular communication is under the direct control of regulatory events associated with channel assembly and turnover, as the vast majority of connexins have remarkably short half-lives of only a few hours. Since most cell types express multiple members of the connexin family, compensatory mechanisms exist to salvage tissue function in cases when one connexin is mutated or lost. However, numerous studies of the last decade have revealed that mutations in connexin genes can also lead to severe and debilitating diseases. In many cases, single point mutations lead to dramatic effects on connexin trafficking, assembly and channel function. This review will assess the current understanding of wild-type and selected disease-linked mutant connexin transport through the secretory pathway, gap-junction assembly at the cell surface, internalization and degradation.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
19
|
Lee MJ, Kim JY, Lee SI, Sasaki H, Lunny DP, Lane EB, Jung HS. Association of Shh and Ptc with keratin localization in the initiation of the formation of circumvallate papilla and von Ebner's gland. Cell Tissue Res 2006; 325:253-61. [PMID: 16552524 DOI: 10.1007/s00441-006-0160-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 01/04/2006] [Indexed: 12/28/2022]
Abstract
The development of gustatory papillae in mammalian embryos requires the coordination of a series of morphological events, such as proliferation, differentiation and innervation. In mice, the circumvallate papilla (CVP) is a specialized structure that develops in a characteristic spatial and temporal pattern in the posterior region of the tongue dorsal surface. The distinct expression patterns of Shh and Ptc, which play important roles in the development of other epithelial appendages, have been localized in the trench wall that gives rise to von Ebner's gland (VEG). To define the cellular mechanisms responsible for morphogenesis and differentiation during early development of CVP and VEG, the localization patterns of keratins (cytokeratins) K7, K8, K18, K19, K14 and connexin-43, which are dependent on Shh expression in other developmental systems, have been examined in detail. The distinct localization of keratins K7, K8, K18, K19, K14 and connexin-43 in the epithelium giving rise to the CVP and VEG suggests that cytodifferentiation is established prior to morphological changes. Interestingly, the localization of proliferating cell nuclear antigen, a marker for cell proliferation, is similar to that of Shh. An understanding of the regulatory roles of cell-cell interactions and signalling molecules in orchestrating a mutual network will bring us nearer to defining the molecular and cellular mechanisms underlying morphogenesis in mammalian taste bud development.
Collapse
Affiliation(s)
- Min-Jung Lee
- Division in Anatomy, Developmental Biology, Research Center for Orofacial Hard Tissue Regeneration, Oral Science Research Center, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL. Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 2004; 13:1697-703. [PMID: 14521835 DOI: 10.1016/j.cub.2003.09.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The repair of tissue damage is a key survival process in all organisms and involves the coordinated activation of several cell types. Cell-cell communication is clearly fundamental to this process, and a great deal is known about extracellular communication within the wound site via cytokines. Here we show that direct cell-cell communication through connexin 43 (Cx43) gap junction channels also plays a major role in the wound healing process. In two different wound healing models, incisional and excisional skin lesions, we show that a single topical application of Cx43 antisense gel brings about a transient downregulation of Cx43 protein levels, and this results in a dramatic increase in the rate of wound closure. Cx43 knockdown reduces inflammation, seen both macroscopically, as a reduction in swelling, redness, and wound gape, and microscopically, as a significant decrease in neutrophil numbers in the tissue around the wound. One long-term consequence of the improved rate of healing is a significant reduction in the extent of granulation tissue deposition and the subsequent formation of a smaller, less distorted, scar. This approach is likely to have widespread therapeutic applications in other injured tissues and opens up new avenues of research into improving the wound healing process.
Collapse
Affiliation(s)
- Cindy Qiu
- Department of Anatomy and Developmental Biology, University College London, Gower St., WC1E 6BT London, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kretz M, Euwens C, Hombach S, Eckardt D, Teubner B, Traub O, Willecke K, Ott T. Altered connexin expression and wound healing in the epidermis of connexin-deficient mice. J Cell Sci 2003; 116:3443-52. [PMID: 12840073 DOI: 10.1242/jcs.00638] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To analyze the effect of connexin loss on the repair of wounded tail skin, we have studied the following transgenic mouse mutants: connexin30-/-, connexin31-/- and connexin43Cre-ER(T)/fl (for inducible deletion of the connexin43 coding region). Connexin43 and connexin31 are expressed in the basal and spinous layers of wild-type epidermis, whereas connexin31 and small amounts of connexin30, as well as connexin26 proteins, were found in the granulous layer. Connexin43 was downregulated in connexin31-deficient mice, whereas mice with reduced connexin43 exhibited an upregulation of connexin30. During wound healing, connexin30 and connexin26 proteins were upregulated in all epidermal layers, whereas connexin43 and connexin31 protein expression were downregulated. In connexin31-/- mice, reduced levels of connexin30 protein were observed on days 1 and 2 after wounding. The closure of epidermal wounds in mice with decreased amounts of connexin43 protein occurred one day earlier. Under these conditions the expression profiles of connexin30 and connexin31 were also temporarily shifted by one day. Furthermore, dye transfer between keratinocytes in skin sections from connexin43-deficient mice was decreased by 40%. These results suggest that downregulation of connexin43 appears to be a prerequisite for the coordinated proliferation and mobilization of keratinocytes during wound healing.
Collapse
Affiliation(s)
- Markus Kretz
- Institut für Genetik, Abteilung Molekulargenetik; Römerstrasse 164, 53117 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Saga K. Structure and function of human sweat glands studied with histochemistry and cytochemistry. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2003; 37:323-86. [PMID: 12365351 DOI: 10.1016/s0079-6336(02)80005-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The basic structure and the physiological function of human sweat glands were reviewed. Histochemical and cytochemical techniques greatly contributed the elucidation of the ionic mechanism of sweat secretion. X-ray microanalysis using freeze-dried cryosections clarified the level of Na, K, and Cl in each secretory cell of the human sweat gland. Enzyme cytochemistry, immunohistochemistry and autoradiography elucidated the localization of Na,K-ATPase. These data supported the idea that human eccrine sweat is produced by the model of N-K-2Cl cotransport. Cationic colloidal gold localizes anionic sites on histological sections. Human eccrine and apocrine sweat glands showed completely different localization and enzyme sensitivity of anionic sites studied with cationic gold. Human sweat glands have many immunohistochemical markers. Some of them are specific to apocrine sweat glands, although many of them stain both eccrine and apocrine sweat glands. Histochemical techniques, especially immunohistochemistry using a confocal laser scanning microscope and in situ hybridization, will further clarify the relationship of the structure and function in human sweat glands.
Collapse
Affiliation(s)
- Kenji Saga
- Department of Dermatology, Sapporo Medical University School of Medicine, Minami 1 Nishi 16, Chyuo-ku, Sapporo 060-8543, Japan.
| |
Collapse
|
23
|
Ehmann UK, Calderwood SK, Stevenson MA. Gap-junctional communication between feeder cells and recipient normal epithelial cells correlates with growth stimulation. In Vitro Cell Dev Biol Anim 2001; 37:100-10. [PMID: 11332735 DOI: 10.1290/1071-2690(2001)037<0100:gjcbfc>2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
LA7 rat mammary tumor cells stimulate the proliferation, in culture, of three normal epithelial cell types, namely mouse mammary, rat mammary, and mouse thymic cells. Gap-junctional communication between LA7 feeders and mouse mammary cells was demonstrated by microinjection of lucifer yellow, which traveled from LA7 to the surrounding mouse mammary cells. The amount of 3H-uridine exchange between feeder and recipient mouse mammary, rat mammary, and mouse thymus cells correlated with the growth rate induced by the feeders. Cells of the Madin Darby canine kidney (MDCK) line, which do not appreciably stimulate mouse mammary cell growth when used as feeder cells, also exchange little 3H-uridine with them. Expression of connexins Cx43, 32, and 26 was studied in all these cell lines and strains by immunocytochemistry. Mouse mammary cells expressed Cx26, and a few mouse thymic cells expressed Cx32. LA7, mouse mammary, mouse thymic, and rat mammary cells all expressed easily detectable amounts of the gap-junction protein Cx43, in contrast to MDCK cells, which expressed only a hint of the protein. These results suggest that gap junctions composed of Cx43 are those by which the normal epithelial cells communicate with the LA feeders. Thus, the ability of feeder cells to stimulate proliferation in recipients correlates with the expression of Cx43 in both members of the feeder/recipient pair and the capacity to form functional gap junctions between these cells.
Collapse
Affiliation(s)
- U K Ehmann
- Department of Pathology and Laboratory Services, Veterans Affairs Palo Alto Health Care System, California 94304, USA.
| | | | | |
Collapse
|
24
|
Lucke T, Choudhry R, Thom R, Selmer IS, Burden AD, Hodgins MB. Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol 1999; 112:354-61. [PMID: 10084314 DOI: 10.1046/j.1523-1747.1999.00512.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In epidermis, it has been suggested, intercellular communication through gap junctions is important in coordinating cell behavior. The connexins, may facilitate selective assembly or permeability of gap junctions, influencing the distribution of metabolites between cells. Using immunohistochemistry, we have compared the distribution of connexins 26 and 43 with that of proliferating cells (Ki67 labeling) in normal epidermis, hyperplastic epidermis (tape-stripped epidermis, psoriatic lesions, and viral warts), and vaginal and buccal epithelia. Connexin 43 was abundant in spinous layers of all epidermal specimens and in vaginal and buccal epithelia. Connexin 26 was absent from the interfollicular and interductal epidermis of normal hair-bearing skin, and nonlesional psoriatic epidermis but present at very low levels in plantar epidermis. Connexin 26 was prominent in lesional psoriatic epidermis and viral warts and in vaginal and buccal epithelia. In three independent experiments connexin 26 appeared in a patchy intercellular distribution in the basal epidermis within 24 h of tape stripping, proceeding to more extensive distribution in basal and suprabasal layers by 48 h. The increase in connexin 26 preceded that in cell proliferation. In vaginal epithelium, buccal epithelium, and viral warts connexin 26 was restricted mainly to suprabasal, nonproliferating cells. In psoriatic lesional epidermis connexin 26 was also located mainly in suprabasal, nonproliferating cells. Connexin 26 was present in a patchy distribution in the basal layer of psoriatic lesional epidermis, but double labeling for connexin 26 and Ki67 showed that many connexin 26 positive basal cells were nonproliferative, suggesting that connexin 26 may be related to differentiation rather than to proliferation. These observations would be consistent with a role for connexin 26 containing gap junctions during both early and later stages of keratinocyte differentiation in hyperplastic epidermis and in vaginal and buccal epithelia.
Collapse
Affiliation(s)
- T Lucke
- Department of Dermatology, University of Glasgow, Scotland, UK
| | | | | | | | | | | |
Collapse
|
25
|
Risek B, Pozzi A, Gilula NB. Modulation of gap junction expression during transient hyperplasia of rat epidermis. J Cell Sci 1998; 111 ( Pt 10):1395-404. [PMID: 9570757 DOI: 10.1242/jcs.111.10.1395] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoids and phorbol esters have profound effects on proliferation and differentiation of epidermal keratinocytes when applied topically on rodent skin. Since both agents also modulate gap junction (GJ)-mediated cell-cell communication, we have examined the effects of all-trans retinoic acid (RA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the expression of alpha1 (Cx43) and beta2 (Cx26) connexins, the two major gap junction gene products in mature rat epidermis. In fully differentiated, mature epidermis, alpha1 is expressed in the lower, less differentiated portion, while beta2 is localized in upper, more differentiated layers. Dorsal skin of 21-day old rats was treated topically with a single dose of RA, TPA or vehicle alone and used for histological and molecular analyses at different time points. Keratinocytes in interfollicular epidermis were examined for proliferation and differentiation using specific antibodies for keratins (K10, K14) and proliferating cell nuclear antigen (PCNA). An increase in epidermal thickness was noticed within 4 hours after the application of RA or TPA. This increase, however, appeared to be primarily due to hypertrophy, since no substantial changes were observed in the proliferative index of epidermal keratinocytes. PCNA immunoreactivity significantly increased after 8 hours treatment of RA or TPA, suggesting a hyperproliferative growth response. Epidermal hyperplasia was confirmed by monitoring the expression patterns of K10 and K14 in RA- or TPA-treated skin. RA-induced hyperplasia lasted longer as compared to TPA induction. Changes in keratin phenotypes were paralleled by an increase in alpha1 and beta2 connexin expression as well as their colocalization in same epidermal layers. Differences in hyperplastic growth response kinetics were also confirmed at the connexin level, with beta2 antigen sustained for longer and at higher levels in suprabasal layers of RA-treated skin. Overall, this type of connexin expression resembled that observed in the non-differentiated rat epidermis during embryonic development. An increase in alpha1 and beta2 connexin abundance was also observed at the protein and RNA levels. At 96 hours after RA or TPA treatment, expression of both connexins was similar to that of the control epidermis. Taken together, these findings suggest that a higher level of GJ-mediated cell-cell communication, is required for the maintenance of homeostasis during periods of rapid epidermal growth and differentiation.
Collapse
Affiliation(s)
- B Risek
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
26
|
Masgrau-Peya E, Salomon D, Saurat JH, Meda P. In vivo modulation of connexins 43 and 26 of human epidermis by topical retinoic acid treatment. J Histochem Cytochem 1997; 45:1207-15. [PMID: 9283608 DOI: 10.1177/002215549704500904] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
After 14 weeks of topical application of 0.1% all-trans-retinoic acid to the napes of volunteers, we observed a 2.5-fold increase in the thickness of epidermis, owing to an increase (p < 0.001) in the number and size of keratinocytes and the induction of keratin 6. These changes in the differentiation of epidermal keratinocytes were paralleled by an increase in the amount of Cx43, a connexin that is normally expressed in human epidermis, and by the massive induction of Cx26, which is barely detectable in normal interfollicular epidermis, as judged at both the transcript (Northern blotting) and the protein level (immunolabeling). In contrast, retinoic acid treatment did not alter the morphology and connexin pattern of hair follicles or of sebaceous and sweat glands, and did not induce the expression of other connexins (C32, Cx37, Cx40) in either skin adnexae or epidermis. These observations suggest that the expression of two distinct connexins by interfollicular keratinocytes is related to selective changes in the differentiation program of epidermis that are induced by retinoic acid.
Collapse
Affiliation(s)
- E Masgrau-Peya
- Department of Dermatology, University of Geneva, Switzerland
| | | | | | | |
Collapse
|
27
|
Rundhaug JE, Gimenez-Conti I, Stern MC, Budunova IV, Kiguchi K, Bol DK, Coghlan LG, Conti CJ, DiGiovanni J, Fischer SM, Winberg LD, Slaga TJ. Changes in protein expression during multistage mouse skin carcinogenesis. Mol Carcinog 1997. [DOI: 10.1002/(sici)1098-2744(199709)20:1<125::aid-mc14>3.0.co;2-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Matic M, Petrov IN, Chen S, Wang C, Dimitrijevich SD, Wolosin JM. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation 1997; 61:251-60. [PMID: 9203348 DOI: 10.1046/j.1432-0436.1997.6140251.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stem cells of the corneal epithelial lineage are confined to the basal cell layer of the limbus, a vascularized outer corneal rim. These slow cycling cells of great proliferative potential maintain the corneal epithelial mass. Since cell-cell communication plays an important role in development and differentiation, we conducted a comparative examination of the expression of two corneal connexins, C x 43 and C x 50, and the tracer transfer capacity of the limbal and corneal epithelia using the scrape loading technique. C x 43 is abundantly expressed in the basal cell layer of the epithelium covering the cornea, but is essentially absent from the mouse, human, neonatal rabbit, and chicken limbal epithelium. In the adult rabbit the limbal epithelium displays an overall weak C x 43 immunoreactivity, but C x 43-free isolated basal cells can be distinguished. C x 50 is expressed throughout the corneal epithelium of the three mammalian corneas, but is not detectable in the limbus. Scrape loading experiments in the rabbit yielded results which were consistent with the immunohistological findings; limbal epithelium lacked tracer (lucifer yellow) transfer capacity, strongly suggesting the absence of functional gap junctions. Altogether, our results demonstrate the incompetence of stem cells for gap junction-mediated cell-to-cell communication. This property may reflect the need of these unique cells to maintain a distinct intracellular environment.
Collapse
Affiliation(s)
- M Matic
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
29
|
Xie H, Laird DW, Chang TH, Hu VW. A mitosis-specific phosphorylation of the gap junction protein connexin43 in human vascular cells: biochemical characterization and localization. J Cell Biol 1997; 137:203-10. [PMID: 9105048 PMCID: PMC2139857 DOI: 10.1083/jcb.137.1.203] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Western blotting studies revealed that connexin43 (Cx43), one of the major gap junction proteins in human vascular endothelial cells, is posttranslationally modified during mitosis. This mitosis-specific modification results in a Cx43 species that migrates as a single protein band and was designated Cx43(m). Cx43(m) was shown to be the result of additional Ser/Thr phosphorylation as indicated by: (a) the increased gel mobility induced by both alkaline phosphatase and the Ser/ Thr-specific protein phosphatase-2A (PP2A) and (b) the removal of virtually all (32)P(i) from Cx43(m) by PP2A. Immunofluorescent confocal microscopy of mitotic cells revealed that Cx43 is intracellularly located, while in nonmitotic cells Cx43 is located at regions of cell-cell contact. Dye coupling studies revealed that mitotic endothelial cells were uncoupled from each other and from nonmitotic cells. After cytokinesis, sister cells resumed cell coupling independent of de novo protein synthesis. The mitosis-specific phosphorylation of Cx43 correlates with the transient loss of gap junction intercellular communication and redistribution of Cx43, suggesting that a protein kinase that regulates gap junctions is active in M-phase.
Collapse
MESH Headings
- Animals
- Cell Division/physiology
- Cells, Cultured/chemistry
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Connexin 43/analysis
- Connexin 43/chemistry
- Connexin 43/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Gap Junctions/chemistry
- Humans
- Mitosis/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation
- Rats
- Serine/metabolism
- Threonine/metabolism
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- H Xie
- Department of Biochemistry and Molecular Biology, The George Washington University, DC 20037, USA
| | | | | | | |
Collapse
|
30
|
Winterhager E, Reuss B, Hellmann P, Spray DC, Gruemmer R. Gap junction and tissue invasion: a comparison of tumorigenesis and pregnancy. Clin Exp Pharmacol Physiol 1996; 23:1058-61. [PMID: 8977160 DOI: 10.1111/j.1440-1681.1996.tb01169.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. Trophoblast invasion during embryo implantation in some aspects resembles tumour cell invasion but, unlike tumour cells, trophoblast cells are able to differentiate and establish a placenta. Because direct cell-cell communication is believed to be involved in growth control and differentiation, we have investigated connexin (cx) gene expression during trophoblast development. 2. Pre-implantation embryos expressed cx43 as well as cx31 proteins from the 8-cell stage onwards. Following implantation, compartmentalization of both connexins occurred: cx31 expression was restricted to the invasive trophoblast cell population, whereas the embryo proper was characterized by cx43. Trophoblast differentiation was indicated by induction of cx26 in the labyrinth and cx43 in the spongiotrophoblast accompanied by a disappearance of cx31. Comparison with trophoblast cell lines revealed that rat trophoblast HRP-1 cells express connexin43, while malignant choriocarcinoma cells express cx31. Treatment with retinoic acid led to a disappearance of cx31 in the choriocarcinoma. Both cell lines reduced their invasion properties after retinoic acid treatment, but growth retardation was only observed in the malignant trophoblast. 3. It seems that the cx31 channel is needed for trophoblast cell populations to maintain the highly proliferative properties but does not alter their invasion properties.
Collapse
|
31
|
Sawey MJ, Goldschmidt MH, Risek B, Gilula NB, Lo CW. Perturbation in connexin 43 and connexin 26 gap-junction expression in mouse skin hyperplasia and neoplasia. Mol Carcinog 1996; 17:49-61. [PMID: 8890953 DOI: 10.1002/(sici)1098-2744(199610)17:2<49::aid-mc1>3.0.co;2-o] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To examine the possible role of gap junctions in mouse skin tumor progression, we generated a panel of mouse skin tissue samples exhibiting normal, hyperplastic, or neoplastic changes and characterized the expression of the gap-junction genes connexin 43 (Cx43) and connexin 26 (Cx26) by in situ hybridization and immunohistochemical analyses. In normal skin, these two gap junction genes were differentially expressed; Cx43 was found predominantly in the less differentiated lower spinous layers, whereas Cx26 was found in terminally differentiating upper spinous and granular layers. In hyperplastic epidermis exhibiting an expansion of the differentiated upper layer, i.e., epidermis with a thickened granular layer or in which the granular layer was replaced with keratinocytes exhibiting tricholemmal differentiation, expression of Cx43 and Cx26 remained segregated in the lower and upper spinous layers, respectively. However, in papillomas, Cx26 was localized in the lower but not upper spinous layer, an expression pattern identical to that of Cx43. In addition, the overall expression levels of both Cx43 and Cx26 appeared to be greatly elevated in the papillomas. It is interesting that such marked alteration in the pattern of Cx26 expression occurred within the context of hyperplastic changes histologically identical to those seen in the nonpapillomous hyperplasias. Interestingly, in neoplastic skin lesions containing a squamous cell carcinoma, Cx43 and Cx26 expression was extinguished. Moreover, expression of Cx43 was also significantly reduced in adjacent apparently nonneoplastic tissues. Overall, these observations show that perturbations in gap-junction gene expression are associated with skin hyperplasia and neoplasia. Such findings suggest a possible role for gap junctions in the malignant conversion of mouse epidermal cells.
Collapse
Affiliation(s)
- M J Sawey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia 19104-6017, USA
| | | | | | | | | |
Collapse
|
32
|
Budunova IV, Carbajal S, Slaga TJ. Effect of diverse tumor promoters on the expression of gap-junctional proteins connexin (Cx)26, Cx31.1, and Cx43 in SENCAR mouse epidermis. Mol Carcinog 1996; 15:202-14. [PMID: 8597533 DOI: 10.1002/(sici)1098-2744(199603)15:3<202::aid-mc6>3.0.co;2-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inhibition of gap-junctional intercellular communication (GJIC) between initiated and surrounding normal cells by tumor promoters is believed to be important in the promotion stage of carcinogenesis. Therefore, we examined the effect of skin-tumor promoters on the expression of the gap-junctional proteins connexin (Cx) 26, Cx43, and Cx31.1 in SENCAR mouse skin. Animals were treated with 12-0-tetradecanoylphorbol-13-acetate (TPA) (8.3 nmol), okadaic acid (OA) (2.5 nmol), chrysarobin (220 nmol), or benzoyl peroxide (BzPo) (83 micromol). Northern blot and immunofluorescence analyses revealed that keratinocytes in adult mouse skin expressed Cx31.1 and Cx43 but not Cx26. All four of the skin-tumor promoters switched on the Cx26 gene, transiently increased expression of Cx43, and significantly inhibited the expression of Cx31.1. The time courses for changes in Cx26, Cx3l. 1, and Cx43 mRNA levels coincided in most cases and in general corresponded well to the time-response curves for hyperplastic changes in mouse skin. The peaks of Cx26 and Cx43 expression and Cx31.1 inhibition appeared 12 h after TPA application and 24 h after OA and chrysarobin application. BzPo elevated the levels of Cx26 and Cx43 transcripts later (peak at 2-4 d). In tumor promoter-treated skin, Cx26 and Cx43 plaques were on the plasma membrane of most keratinocytes. Cx31.1 staining was much weaker than in untreated epidermis. Thus, tumor promoters induce a large change in the expression of several Cxs, which in turn may affect both the level of GJIC and the sensitivity of GJlC to regulatory factors.
Collapse
Affiliation(s)
- I V Budunova
- Department of Carcinogenesis, University of Texas Cancer Center, Smithville 78957, USA
| | | | | |
Collapse
|
33
|
Abstract
Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.
Collapse
Affiliation(s)
- I V Budunova
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Smithville 78957, USA
| | | | | | | |
Collapse
|
34
|
Reuss B, Hellmann P, Dahl E, Traub O, Butterweck A, Grümmer R, Winterhager E. Connexins and E-cadherin are differentially expressed during trophoblast invasion and placenta differentiation in the rat. Dev Dyn 1996; 205:172-82. [PMID: 8834477 DOI: 10.1002/(sici)1097-0177(199602)205:2<172::aid-aja8>3.0.co;2-f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have characterized the spatial and temporal expression pattern of six different connexin genes and E-cadherin during trophectoderm development in the rat. During the initial phase of trophoblast invasion at 6 days postcoitum (dpc), the trophoblast expressed E-cadherin but no connexin expression could be observed. With progressing invasion of the polar trophoblast into the maternal decidua, from 7 dpc onwards E-cadherin expression in the ectoplacental cone cells was lost and was now restricted to the extraembryonic ectoderm. In the ectoplacental cone and extraembryonic ectoderm instead connexin31 mRNA and protein could be found. This pattern was maintained up to day 10 postcoitum. The start of labyrinthine trophoblast differentiation from day 11 postcoitum onwards was characterized by persisting expression of E-cadherin in the extraembryonic ectoderm and its derivative, the chorionic plate. In addition to E-cadherin, from 10 dpc onwards, connexin26 started to be expressed in the chorionic plate, and both molecules remained coexpressed in the labyrinthine trophoblast of the mature placenta. During this differentiation process connexin31 remained expressed mainly in the proliferating spongiotrophoblast. From day 14 postcoitum onwards, the expression of connexin31 in the spongiotrophoblastic cells decreased, and in parallel they started to express connexin43. The trophoblastic giant cells, first characterized by connexin31, lost all of the investigated connexins during midgestation on day 12 postcoitum but started to express connexin43 from day 18 postcoitum onwards. Our studies suggest that loss of E-cadherin and induction of connexin31 expression is correlated with the proliferative and invasive stages of the ectoplacental cone, whereas appearance of connexin26, E-cadherin and connexin43 reflects the switch to the differentiated phenotypes of the mature placenta.
Collapse
Affiliation(s)
- B Reuss
- Institut für Anatomie, Universität-GH Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Goliger JA, Paul DL. Wounding alters epidermal connexin expression and gap junction-mediated intercellular communication. Mol Biol Cell 1995; 6:1491-501. [PMID: 8589451 PMCID: PMC301306 DOI: 10.1091/mbc.6.11.1491] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We show that connexin expression and in vivo patterns of communication were dramatically altered in response to epidermal wounding. Six hours after injury, Cx26 was up-regulated in the differentiated cells proximal to the wound, but was down-regulated in cells located at the wound edge. In contrast, Cx31.1 and Cx43 were down-regulated in cells both peripheral to and at the wounded edge. These patterns of altered connexin expression were detectable as early as 2 h after wounding and were most pronounced in 24-h old wounds. Increased expression of Cx26 was still evident in the hyperproliferative epidermis of 6-day old wounds. In vivo dye transfer experiments with Lucifer yellow and neurobiotin confirmed that junctional communication patterns were altered in ways consistent with changes in connexin expression. The data thus suggest that intercellular communication is intimately involved in regulating epidermal wound repair.
Collapse
Affiliation(s)
- J A Goliger
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
36
|
Oelze I, Kartenbeck J, Crusius K, Alonso A. Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line. J Virol 1995; 69:4489-94. [PMID: 7769709 PMCID: PMC189191 DOI: 10.1128/jvi.69.7.4489-4494.1995] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human papillomavirus type 16 (HPV16) E5 protein is considered to have weak oncogenic properties, and its function in infected human keratinocytes is unknown. HPV16 E5 protein has been found to localize to the Golgi apparatus and the plasma membrane. To analyze the effect of E5 on plasma membrane properties, cells from the human keratinocyte cell line HaCaT were transfected with the HPV16 E5 open reading frame under the control of an inducible promoter. The gap junction-mediated cell-cell communication of E5- and vector-transfected cells was analyzed by microinjection of Lucifer yellow to measure dye coupling of the cells. A strong impairment of dye transfer in E5-transfected cells but not in vector-transfected cells was observed, with more than 80% dye transfer inhibition 40 min after injection. This impairment correlated with dephosphorylation of connexin 43, the major gap junctional protein in HaCaT cells. Furthermore, the dye coupling inhibition was not the result of differentiation of the E5-expressing cells, since no overexpression of cytokeratin 1 or filaggrin, markers of HaCaT cell differentiation, could be observed. These results therefore strongly suggest a correlation between expression of the HPV16 E5 open reading frame, impairment of gap junction-mediated dye coupling, and dephosphorylation of connexin 43.
Collapse
Affiliation(s)
- I Oelze
- Forschungsschwerpunkt Angewandte Tumorvirologie, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
37
|
Guerrier A, Fonlupt P, Morand I, Rabilloud R, Audebet C, Krutovskikh V, Gros D, Rousset B, Munari-Silem Y. Gap junctions and cell polarity: connexin32 and connexin43 expressed in polarized thyroid epithelial cells assemble into separate gap junctions, which are located in distinct regions of the lateral plasma membrane domain. J Cell Sci 1995; 108 ( Pt 7):2609-17. [PMID: 7593302 DOI: 10.1242/jcs.108.7.2609] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Epithelial cells of the thyroid gland present an uncommon connexin expression pattern, they coexpress connexin32 and connexin43. In the present work, we have analyzed the membrane distribution of these two connexins to determine: (i) whether they co-assemble in the same gap junctions or form separate gap junctions; and (ii) whether their location is somehow related to the thyroid cell polarity. Immunofluorescence analyses of the localization of the two connexins in thyroid tissue sections revealed that connexin32 and connexin43 are located in different regions of the plasma membrane. We further analyzed the location of each of the two connexins with regard to that of the tight junction-associated protein, ZO1. Laser scanning confocal microscope observations of connexin32 or connexin43 and ZO1 double-immunolabelled thyroid cells, gave evidence for a separate localization of gap junctions made of each of these two connexins. Connexin32 gap junctions appeared as fluorescent spots scattered over the lateral membrane domain, while connexin43 gap junctions formed a meshed network superimposable with that of tight junctions in the subapical region of the cells. Western blot analyses of the distribution of connexins in thyroid plasma membrane subfractions obtained by ultracentrifugation on a sucrose gradient led to the identification of membrane sub-populations enriched in either connexin32 gap junctions or connexin43 gap junctions. Connexin32 gap junctions and connexin43 gap junctions were found to differ in their resistance to solubilization by N-lauroylsarcosine. Increasing concentrations of this detergent from 0.12% to 0.42% caused a progressive solubilization of connexin43 while connexin32 remained membrane-bound.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Guerrier
- Institut National de la Santé et de la Recherche Médicale U369, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. ANATOMY AND EMBRYOLOGY 1995; 191:101-18. [PMID: 7726389 DOI: 10.1007/bf00186783] [Citation(s) in RCA: 421] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gap junctions in the rat cochlea were investigated using immunostaining for connexin26 and transmission electron microscopy. Electron microscopy of normal and pre-embedded immunostained material showed that there were gap junctions between and among all cells that light microscopy showed to have immunostained appositions. Light microscopy showed immunostaining between and among cell types that electron microscopy showed to be joined by gap junctions. Immunostaining for connexin26 was therefore taken as providing a reasonable approximation of the locations of gap junctions throughout the cochlea and was used to provide an overview of the extent of those locations. Cells interconnected via gap junctions fell into one of two groups. The first group consists of nonsensory epithelial cells and includes interdental cells of the spiral limbus, inner sulcus cells, organ of Corti supporting cells, outer sulcus cells, and cells within the root processes of the spiral ligament. The second group consists of connective tissue cells and includes various fibrocyte types of the spiral limbus and spiral ligament, basal and intermediate cells of the stria vascularis, and mesenchymal cells which line the scala vestibuli. The present work represents a first attempt towards a description of how serial gap junctions among cochlear cells reflect a level of organization of the tissue. The organization described here, together with a great deal of information from previous investigators, suggest that serially arranged gap junctions of both epithelial and connective tissue cells serve as the structural basis for recycling endolymphatic potassium ions that pass through the sensory cells during the transduction process.
Collapse
Affiliation(s)
- T Kikuchi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
39
|
Brissette JL, Kumar NM, Gilula NB, Hall JE, Dotto GP. Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci U S A 1994; 91:6453-7. [PMID: 8022804 PMCID: PMC44220 DOI: 10.1073/pnas.91.14.6453] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gap junctional communication provides a mechanism for regulating multicellular activities by allowing the exchange of small diffusible molecules between neighboring cells. The diversity of gap junction proteins may exist to form channels that have different permeability properties. We report here that induction of terminal differentiation in mouse primary keratinocytes by calcium results in a specific switch in gap junction protein expression. Expression of alpha 1 (connexin 43) and beta 2 (connexin 26) gap junction proteins is down-modulated, whereas that of beta 3 (connexin 31) and beta 4 (connexin 31.1) proteins is induced. Although both proliferating and differentiating keratinocytes are electrically coupled, there are significant changes in the permeability properties of the junctions to small molecules. In parallel with the changes in gap junction protein expression during differentiation, the intercellular transfer of the small dyes neurobiotin, carboxyfluorescein, and Lucifer yellow is significantly reduced, whereas that of small metabolites, such as nucleotides and amino acids, proceeds unimpeded. Thus, a switch in gap junction protein expression in differentiating keratinocytes is accompanied by selective changes in junctional permeability that may play an important role in the coordinate control of the differentiation process.
Collapse
Affiliation(s)
- J L Brissette
- Department of Dermatology, Harvard Medical School, Charlestown, MA 02129
| | | | | | | | | |
Collapse
|