1
|
Chilenga C, Masamba K, Kasapila W, Ndhlovu B, Munkhuwa V, Rafoneke L, Machira K. Mycotoxin management in Sub-Saharan Africa: A comprehensive systematic review of policies and strategies in Malawi. Toxicol Rep 2025; 14:101871. [PMID: 39811817 PMCID: PMC11731241 DOI: 10.1016/j.toxrep.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Food safety challenges, such as mycotoxin contamination, pose severe threats to public health, agricultural productivity, and economic development across Sub-Saharan African countries and beyond. This study investigated whether government policies related to food safety adequately address these concerns, using Malawi as a case study. We systematically reviewed 29 government-authored policy documents related to food safety. These documents were categorized into six sectors: Agriculture, Environment, Nutrition, Health, Trade and Industry, and Education. Our analysis revealed critical gaps in addressing mycotoxin concerns in these policies, with only 4 of the 29 policy documents (14 %) addressing food safety and mycotoxin management. In contrast, 13 policy documents (45 %) did not address these issues at all, while 12 policy documents (41 %) focused solely on food safety management without addressing mycotoxin contamination. Notably, Malawi's long-term development blueprint, Malawi 2063 , does not include mycotoxin management, underscoring a critical policy gap and broader systemic challenges in integrating food safety and mycotoxin control into national frameworks. Furthermore, Malawi lacks a dedicated sector responsible for food safety and a comprehensive national food safety policy to coordinate efforts in mycotoxin control. While this study centers on Malawi, the findings resonate globally, particularly in Sub-Saharan Africa and other countries with similar agricultural and economic contexts. Addressing these systemic policy gaps is vital for developing integrated food safety frameworks that combat mycotoxin contamination, strengthen sustainable food systems, enhance public health, and foster economic resilience. These findings also provide a replicable model for policy analysis, contributing to international discourse by emphasizing the importance of aligning food safety governance with global development priorities, such as the Sustainable Development Goals.
Collapse
Affiliation(s)
- Chimwemwe Chilenga
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
- Department of Nutrition, HIV and AIDs, Ministry of Health, P/Bag B401, Lilongwe, Malawi
| | - Kingsley Masamba
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
| | - William Kasapila
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
| | - Brown Ndhlovu
- Browns Consulting Company PO Box 274, Rumphi, Malawi
| | - Victor Munkhuwa
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
- Ministry of Health, Lilongwe Health Office, PO Box 1274, Lilongwe, Malawi
| | - Lintle Rafoneke
- Browns Consulting Company PO Box 274, Rumphi, Malawi
- Department of Agricultural Economics, LUANAR, Africa Center of Excellence in Agriculture Policy Analysis (APA), P.O box 219, Lilongwe, Malawi
| | - Kennedy Machira
- Browns Consulting Company PO Box 274, Rumphi, Malawi
- Department of Agricultural Economics, LUANAR, Africa Center of Excellence in Agriculture Policy Analysis (APA), P.O box 219, Lilongwe, Malawi
| |
Collapse
|
2
|
Ojo O, Njanje I, Abdissa D, Swart T, Higgitt RL, Dorrington RA. Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:19. [PMID: 40097883 PMCID: PMC11914449 DOI: 10.1007/s13659-025-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The rapid emergence of drug-resistant microbial pathogens has posed challenges to global health in the twenty-first century. This development has significantly made most antibiotics ineffective in the treatment of infections they cause, resulting in increasing treatment costs and annual death rates. To address the challenge posed by these pathogens, we explore the potential of secondary metabolites from Aspergillus species as a source of new and effective therapeutic agents to treat drug-resistant infections. Terpenoids, a distinct group of natural products, are extensively distributed in plants and fungi, and have been attributed with significant antibacterial, anticancer, and antiviral activities. In this review, we present an overview of Aspergillus species, and review the novel terpenoids isolated from them from 2019 to April 2024, highlighting anti-infective activity against members of the ESKAPE pathogens. We further focus on the strategies through which the structural framework of these new terpenoids could be modified and/or optimized to feed a pipeline of new lead compounds targeting microbial pathogens. Overall, this review provides insight into the therapeutic applications of terpenoids sourced from Aspergillus species and the potential for the discovery of new compounds from these fungi to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Olusesan Ojo
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
- Department of Chemical Sciences, Lead City University, P.O. Box 30678, Ibadan, Oyo State, Nigeria.
| | - Idris Njanje
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Dele Abdissa
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O Box 378, Jimma, Ethiopia
| | - Tarryn Swart
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Roxanne L Higgitt
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
3
|
Zou F, Yang M, Wu J, Wang L, Wang H. The potential of plasma-activated water in safe and sustainable food production: a comprehensive review of recent advances and future trends. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 40089909 DOI: 10.1080/10408398.2025.2477799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Climate change and food security issues have increased the demand for effective and sustainable technologies in the food and agriculture sectors. Plasma-activated water (PAW), a novel cleaning and disinfecting agent enriched with reactive oxygen species and reactive nitrogen species, has attracted widespread attention due to its potential application in maintaining microbiological safety and other quality parameters of food products. Compared to traditional disinfection methods, PAW is rapid and effective for various products, unrestricted by the volume or shape of the treated sample, and is green and sustainable. This article reviews research progress on latest preparation methods, physicochemical properties, antimicrobial activities, potential antimicrobial mechanisms of PAW, and their applications in the food industry. In addition, current methods for preparing PAW suffer from low efficiency, poor antimicrobial stability, and a lack of technology validation and safety evaluation. To solve these challenges, the synergies between PAW and other technologies, the impact on food quality, and current methods for assessing the safety of PAW are highlighted. Technology readiness, energy consumption, international regulations, toxic intermediate products during PAW production, scalability, and important directions for future research on the commercialization of PAW are also presented. It provides the necessary theoretical basis for regulating the generation of high-throughput PAW and demonstrates the feasibility of PAW as a novel food cleaning and sanitizing agent. In summary, this review provides essential insights into PAW's safety, application potential, and sustainability for the food industry.
Collapse
Affiliation(s)
- Fanglei Zou
- College of Engineering, China Agricultural University, Beijing, China
| | - Miao Yang
- College of Engineering, China Agricultural University, Beijing, China
| | - Junhua Wu
- College of Engineering, China Agricultural University, Beijing, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing, China
| | - Hongying Wang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
5
|
Luo R, Wang B, Luo R. Zearalenone delays tissue regeneration by dysregulating neutrophil balance in zebrafish (Danio rerio) larvae. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110105. [PMID: 39701198 DOI: 10.1016/j.cbpc.2024.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Zearalenone (ZEA), a common mycotoxin, poses significant environmental and health risks. While its toxicological effects are well-studied, its impact on regeneration remains unclear. This study explored ZEA's effects on zebrafish (Danio rerio) larvae, focusing on developmental toxicity, immunotoxicity, and tissue regeneration. Embryos were exposed to 0, 0.5, 1, and 1.5 μM ZEA from 6 to 72 h post-fertilization (hpf). Although hatching and survival rates remained unaffected, malformations, including body axis bending and pericardial edema, increased dose-dependently, with 4.44 % abnormalities observed at 1.5 μM (p = 0.01). Heart rates also declined significantly at 1.5 μM (75.40 vs. 72.53 beats/30s, p = 0.0054). Immunotoxicity was assessed using Tg(mpx: eGFP) zebrafish to monitor neutrophil responses post-injury. ZEA exposure led to increased neutrophil counts (229.87 vs. 330.80, p < 0.0001) and chemotaxis (21.15 % vs. 34.57 %, p < 0.0001). RNA sequencing of 0 and 1.5 μM groups revealed disrupted redox balance and oxygen transport, with down-regulation of hbae1, hbbe2, and hbae3 and up-regulation of hif1a, indicating hypoxia involvement. Elevated reactive oxygen species (ROS), reduced antioxidant enzyme activity, and increased apoptosis were also observed. Tail fin regeneration assays showed delayed regeneration at 1 and 1.5 μM ZEA, linked to impaired immune function and oxidative stress. These findings highlight ZEA's adverse effects on developmental and regenerative processes, underscoring its environmental and health implications and the need for further research.
Collapse
Affiliation(s)
- Rui Luo
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Wang
- Department of Medical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Luo
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Li Y, Chen B, Yang S, Jiao Z, Zhang M, Yang Y, Gao Y. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment. ENVIRONMENT INTERNATIONAL 2025; 197:109365. [PMID: 40101528 DOI: 10.1016/j.envint.2025.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Accurate detection and monitoring of environmental pollutants are of paramount importance for disease prevention and public health. In recent years, the ever-expanding human activities and industrial production have given rise to a sharp increase in the complexity and variety of these pollutants, which pose significant threats to human well - being. Environmental pollutants stem from multiple sources, such as heavy metals, persistent organic pollutants, inorganic non - metallic pollutants, emerging pollutants, and biological contaminants. Traditional detection technologies, though valuable for their sensitivity and accuracy, are constrained by complex sample preparation, poor selectivity, and the absence of standardized detection methods. On the other hand, emerging technologies, including nanotechnology, molecular detection methods, biosensors, Surface-Enhanced Raman Spectroscopy (SERS), multi-omics, and big data analysis, offer promising solutions for rapid and sensitive pollutant detection. The establishment of environmental monitoring networks and data - sharing platforms further enhances real - time pollutant monitoring and provides solid data support for public health initiatives. Nonetheless, challenges persist, including data integration, exposure assessment, and the development of cost-effective and portable detection solutions. Future progress in interdisciplinary approaches and technology integration will be crucial for advancing environmental pollutant detection and facilitating comprehensive disease prevention. This review systematically classifies environmental pollutants and showcases the latest advancements in detection technologies, offering critical insights for environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Heilongjiang 150081, PR China; Heilongjiang Eye Hospital, Harbin, 150001, PR China; Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University, Zhejiang, 310009, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Penttikaiterankatu 1, 90570, Oulu, Finland; Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150006, PR China.
| | - Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Shuaifei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Zhe Jiao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
7
|
Cova TF, Ferreira C, Nunes SCC, Pais AACC. Structural Similarity, Activity, and Toxicity of Mycotoxins: Combining Insights from Unsupervised and Supervised Machine Learning Algorithms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40013497 DOI: 10.1021/acs.jafc.4c08527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compounds. This work addresses a fundamental question: Can we assess molecular similarity and predict the toxicity of mycotoxins in silico using a defined set of molecular descriptors? We propose a rapid nontarget screening approach for multiple classes of mycotoxins, integrating both unsupervised and supervised machine learning models, alongside molecular and physicochemical descriptors to enhance the understanding of structural similarity, activity, and toxicity. Clustering analyses identify natural clusters corresponding to the known mycotoxin families, indicating that mycotoxins belonging to the same cluster share similar molecular properties. However, topological descriptors play a significant role in distinguishing between acutely toxic and nonacutely toxic compounds. Random forest (RF) and neural networks (NN), combined with molecular descriptors, contribute to improved knowledge and predictive capability regarding mycotoxin toxicity profiles. RF allows the prediction of toxicity using data reflecting mainly structural features and performs well in the presence of descriptors reflecting biological activity. NN models prove to be more sensitive to biological activity descriptors than RF. The use of descriptors encompassing structural complexity and diversity, chirality and symmetry, connectivity, atomic charge, and polarizability, together with descriptors representing lipophilicity, absorption, and permeation of molecules, is crucial for predicting toxicity, facilitating broader toxicological evaluations.
Collapse
Affiliation(s)
- Tânia F Cova
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Sandra C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| |
Collapse
|
8
|
Tang K, Tian J, Xu Y, Shang G, Peng X, Yue P, Wang Y, Chen S, Hu Z. Aflatoxin B1 Exposure Suppresses the Migration of Dendritic Cells by Reshaping the Cytoskeleton. Int J Mol Sci 2025; 26:1725. [PMID: 40004187 PMCID: PMC11854954 DOI: 10.3390/ijms26041725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Exposure to Aflatoxin B1 (AFB1) is considered a significant risk factor for human diseases, including the immune function impairment of immune cells. Dendritic cells (DCs), as essential antigen-presenting cells, play a pivotal role in bridging innate and adaptive immunity. However, the impact of AFB1 exposure on DCs has not been fully elucidated. In this study, we investigated the effects of AFB1 exposure on the migration ability of DCs and its underlying action model. Initially, we observed that AFB1 exposure inhibited the survival of DCs and altered their cellular morphology. Further investigation revealed that AFB1 promotes cell adhesion and inhibits DC migration by modulating the expression of cell adhesion molecules. Additionally, our findings indicated that cytoskeletal remodeling plays a crucial role in these processes. Experimental techniques such as immunofluorescence and RNA sequencing confirmed that AFB1 exposure regulates the expression of cytoskeleton-related genes. Moreover, we found that the perturbation of the gene expression profile through AFB1 exposure is associated with cell communication. Collectively, our study findings demonstrate that AFB1 can disrupt the expression of cytoskeleton- and adhesion-related molecules in DCs, thereby altering cell morphology and migration. These insights could provide new perspectives for further understanding the immunosuppressive effects of AFB1 and developing therapeutic strategies for diseases associated with AFB1 exposure.
Collapse
Affiliation(s)
- Kaiyi Tang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Jiaxiong Tian
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Yujun Xu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
| | - Guofu Shang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
| | - Xiaoyan Peng
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
| | - Ping Yue
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Yun Wang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Sen Chen
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; (K.T.); (J.T.); (Y.X.); (G.S.); (P.Y.); (Y.W.)
- Key Laboratory of Infectious Immune and Antibody Engineering in University of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China;
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
9
|
Tebbi CK, Sahakian E, Shah B, Yan J, Mediavilla-Varela M, Patel S. Aspergillus flavus with Mycovirus as an Etiologic Factor for Acute Leukemias in Susceptible Individuals: Evidence and Discussion. Biomedicines 2025; 13:488. [PMID: 40002901 PMCID: PMC11853382 DOI: 10.3390/biomedicines13020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Several etiologic factors for the development of acute leukemias have been suggested; however, none is applicable to all cases. We isolated a certain mycovirus-containing Aspergillus flavus (MCAF) from the home of a patient with acute lymphoblastic leukemia. Repeated electron microscopic evaluations proved the existence of mycovirus in this organism. According to chemical analysis, this organism does not produce any aflatoxin, possibly due to its infestation with mycoviruses. We reported that using the ELISA technique, forty pediatric patients with acute lymphoblastic leukemia (ALL) uniformly had antibodies to the products of MCAF. In contrast, three separate groups of controls, consisting of normal blood donors, individuals with solid tumors, and patients with sickle cell disease, were negative. In vitro exposure of mononuclear blood cells from patients with ALL, in full remission, to the products of MCAF induced redevelopment of cell surface phenotypes and genetic markers characteristic of ALL. The controls were negative. The incubation of normal and ALL cell lines with the products of MCAF resulted in significant cellular apoptosis, changes in the cell cycle, and the downregulation of transcription factors, including PAX-5 and Ikaros (75 and 55 kDa). Fungi are widespread in nature, and many contain mycoviruses. Normally, an individual inhales 1 to 10 fungal spores per minute, while farmers can inhale up to 75,000 spores per minute. It is known that farmers and foresters, who are more exposed to fungi, have a higher rate of acute leukemia. In contrast, asthmatics, most of whom are allergic to fungal agents, and individuals working in office settings have a lower rate. One of the theories for the development of acute leukemia suggests a genetic predisposition followed by exposure to an infectious agent. With the above findings, we propose that mycovirus-containing Aspergillus flavus may have an etiological role in leukemogenesis in immune-depressed and genetically susceptible individuals.
Collapse
Affiliation(s)
- Cameron K. Tebbi
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA;
| | - Eva Sahakian
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (B.S.); (M.M.-V.)
| | - Bijal Shah
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (B.S.); (M.M.-V.)
| | - Jiyu Yan
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA;
| | | | | |
Collapse
|
10
|
Crosta M, Croci M, Dall’Asta C, Pisante M, Battilani P. First Report of Safe Italian Peanut Production Regarding Aflatoxin. Toxins (Basel) 2025; 17:90. [PMID: 39998107 PMCID: PMC11860490 DOI: 10.3390/toxins17020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
The growing interest in peanut production in Italy represents a significant opportunity from both an agronomic and economic standpoint. Aflatoxin B1 (AFB1) contamination is a major concern with imported peanuts; developing an Italian peanut supply chain can ensure a well-managed local product, with special care for food safety. This study aimed to provide a first overview of Italian peanut production, focusing on the Aspergillus section Flavi and AFB1 occurrence in the raw product. During 2022 and 2023, 18 peanut fields were sampled at complete maturity across the Italian production areas, considering three varieties: Lotos, SIS-AR_01, and IPG914. The results showed the occurrence of Aspergillus sec. Flavi in peanut pods, even though AFB1 was always absent or in traces, well below the European legal limits. These findings confirmed the quality of Italian peanut production, even though further research is requested to confirm the positive results of this first report.
Collapse
Affiliation(s)
- Matteo Crosta
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.C.); (M.C.)
| | - Michele Croci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.C.); (M.C.)
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| | - Michele Pisante
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.C.); (M.C.)
| |
Collapse
|
11
|
Mehta R, Wenndt AJ. Mycotoxins and bone growth: a review of the literature on associations between xenobiotic exposure and bone growth and development. Nutr Rev 2025; 83:e493-e505. [PMID: 38578611 DOI: 10.1093/nutrit/nuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Mycotoxins are secondary metabolites of fungi that are known to be associated with linear growth faltering because of their impact on inflammation, intestinal damage, inhibition of protein synthesis, and micronutrient absorption. In this narrative review, we aim to extend this analysis to further explore associations between mycotoxins (aflatoxins, ochratoxins, trichothecenes including deoxynivalenol, T-2 toxin, and fumonisins) and long-bone growth, particularly during the saltatory periods of development. Linear growth is a direct function of skeletal development and long-bone growth. We therefore explored biological pathways and mechanisms of impact of these toxins in both animal and human studies, in addition to the epidemiology literature (post-2020). Given what is known of the effects of individual and combinations of mycotoxins based on the animal literature, we have identified a need for further research and examination of how these toxins and exposures may be studied in humans to elucidate the downstream impact on bone-related biomarkers and anthropometric indices used to identify and predict stunting in population-based studies.
Collapse
Affiliation(s)
- Rukshan Mehta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
12
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Li A, Er JC, Khor WC, Liu MH, Sin V, Chan SH, Aung KT. Integration of National Chemical Hazards Monitoring, Total Diet Study, and Human Biomonitoring Programmes for Food Safety Exposure Assessment in Singapore. J Food Prot 2025; 88:100414. [PMID: 39577808 DOI: 10.1016/j.jfp.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Food safety and food security can impact the quality of human life, and these two aspects are interrelated alongside many influencing external factors. Global stressors such as climate change, recent pandemic, and geopolitical tensions have demonstrated tangible impacts on food security and safety. Food and food system innovation is a key strategy towards feeding the world in a more sustainable and climate-resilient manner. This paper highlights the use of a science-based risk assessment and management in Singapore's food safety system, specifically in the integration of exposure assessment approaches to support evidence-based food safety risk analysis and decision-making. The use of complementary top-down and bottom-up exposure assessment approaches through the market monitoring programme, total diet study and human biomonitoring forms a comprehensive integrated exposure assessment strategy which can ultimately inform policy and measures in ensuring and securing a supply of safe food. The discussion on such application for chemical food safety in Singapore offers additional insights into the synergistic inter-relationships contributing to the exposure assessment associated with chemicals in food.
Collapse
Affiliation(s)
- Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Mei Hui Liu
- Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Valerie Sin
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; Department of Food Science & Technology, National University of Singapore, 2 Science Drive 2, Faculty of Science, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
14
|
Mulisa G, Pero-Gascon R, McCormack V, Bisanz JE, Talukdar FR, Abebe T, De Boevre M, De Saeger S. Multiple mycotoxin exposure assessment through human biomonitoring in an esophageal cancer case-control study in the Arsi-Bale districts of Oromia region of Ethiopia. Int J Hyg Environ Health 2025; 263:114466. [PMID: 39306897 PMCID: PMC11635094 DOI: 10.1016/j.ijheh.2024.114466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Esophageal cancer (EC) is a malignancy with a poor prognosis and a five-year survival rate of less than 20%. It is the ninth most frequent cancer globally and the sixth leading cause of cancer-related deaths. The incidence of EC has been found to vary significantly by geography, indicating the importance of environmental and lifestyle factors along with genetic factors in the onset of the disease. In this work, we investigated mycotoxin exposure in a case-control study from the Arsi-Bale districts of Oromia regional state in Ethiopia, where there is a high incidence of EC while alcohol and tobacco use - two established risk factors for EC - are very rare. METHODS Internal exposure to 39 mycotoxins and metabolites was assessed by liquid chromatography-tandem mass spectrometry in plasma samples of EC cases (n = 166) and location-matched healthy controls (n = 166) who shared similar dietary sources. Demographic and lifestyle data were collected using structured questionnaires. Principal Component Analysis and machine learning models were used to identify the most relevant demographic, lifestyle, and mycotoxin (co-)exposure variables associated with EC. Multivariate binary logistic regression analysis was used to assess EC risk. RESULT Evidence of mycotoxin exposure was observed in all plasma samples, with 10 different mycotoxins being detected in samples from EC cases, while only 6 different mycotoxins were detected in samples from healthy controls. Ochratoxin A was detected in plasma from all cases and controls, while tenuazonic acid was detected in plasma of 145 (87.3%) cases and 71 (42.8%) controls. Using multivariable logistic regression analysis, exposure to tenuazonic acid (AOR = 1.88 [95% CI: 1.68-2.11]) and to multiple mycotoxins (AOR = 2.54 [95% CI: 2.10-3.07]) were positively associated with EC. CONCLUSION All cases and controls were exposed to at least one mycotoxin. Cases were exposed to a statistically significantly higher number of mycotoxins than controls. Exposure to tenuazonic acid and to multiple mycotoxins were associated with increased risk of EC in the study population. Although aflatoxin B1-lysine and the ratio of sphinganine to sphingosine (as a biomarker of effect to fumonisin exposure) were not assessed in this study, our result emphasizes the need to characterize the effect of mycotoxin co-exposure as part of the exposome and include it in risk assessment, since the current mycotoxin safety levels do not consider the additive or synergistic effects of mycotoxin co-exposure. Moreover, a prospective study design with regular sampling should be considered in this high incidence area of EC in Ethiopia to obtain conclusive results on the role of mycotoxin exposure in the onset and development of the disease.
Collapse
Affiliation(s)
- Girma Mulisa
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia; Department of Biomedical Sciences, Adama Hospital Medical College, Adama, Ethiopia
| | - Roger Pero-Gascon
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Belgium.
| | | | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, USA
| | - Fazlur Rahman Talukdar
- International Agency for Research on Cancer, Lyon, France; Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, South Africa.
| |
Collapse
|
15
|
Lu Z, Zhang R, Wu P, Zhao D, Chen J, Pan X, Wang J, Zhang H, Qi X, Weng Q, Ye S, Zhou B. Occurrence and Exposure Assessment of Zearalenone in the Zhejiang Province, China. Toxins (Basel) 2024; 17:9. [PMID: 39852962 PMCID: PMC11769038 DOI: 10.3390/toxins17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
This study aims to examine the hazards of zearalenone (ZEN) to humans and assess the risk of dietary exposure to ZEN, particularly in relation to precocious puberty in children from the Zhejiang Province. The test results from five types of food from the Zhejiang Province show that corn oil has the highest detection rate of 87.82%. The levels of ZEN do not exceed the existing safety standards in any sample investigated in this study. According to the data from the Food Consumption Survey of Zhejiang Province residents, rice is the primary source of ZEN exposure, accounting for 55.85% of total exposure among all age groups. Based on the 50th exposure percentile, it would take 6.25 years of rice consumption to reach 1 year of safe ZEN exposure. Overall, the majority of the residents in the Zhejiang Province have a low risk of exposure to ZEN. In an extreme case (based on the 95th exposure percentile), the total ZEN exposure from the studied foods with respect to children aged ≤6 years and 7-12 years is 0.38 μg/kg b.w. and 0.26 μg/kg b.w., respectively-both exceeding the safety limit of 0.25 μg/kg b.w. set by the European Food Safety Authority, indicating a potential risk of exposure. Precocious puberty assessments show that ZEN exposure levels in children in the Zhejiang Province are significantly lower than those associated with precocious puberty; thus, precocious puberty is unlikely to occur in this area. Given ZEN's estrogenic effect, it is necessary to monitor the level of ZEN in different food items, revise the relevant standards as needed, and focus on exposure to ZEN in younger age groups.
Collapse
Affiliation(s)
- Zijie Lu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Pinggu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Dong Zhao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaodong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Jikai Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Hexiang Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Qin Weng
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (Z.L.); (Q.W.)
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| | - Shufeng Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - Biao Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (R.Z.); (P.W.); (D.Z.); (J.C.); (X.P.); (J.W.); (H.Z.); (X.Q.); (S.Y.)
| |
Collapse
|
16
|
Guo Z, Zhang M, Zhang H, Ren X, Xiao Y, Sun W, Wang Y, Liu S, Huang J. Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching. Mikrochim Acta 2024; 192:33. [PMID: 39725729 DOI: 10.1007/s00604-024-06883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB2+), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg2+-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy. The presence of OTA triggers CHA and signaling responses along with the formation of G-quadruplex-hemin DNAzyme, which promotes the oxidation of TMB with H2O2, leading to the etching of AuNRs and a reduction in their aspect ratio. AuNRs experienced a blue shift in the longitudinal localized surface plasmon resonance peak, resulting in a color change. The technique has been shown to detect OTA with a low detection limit of 0.309 pg/mL, demonstrating high sensitivity and specificity. The detection technique offers versatility by enabling the detection of other pollutants through a simple replacement of the aptamer, expanding the range of detection platforms available for pollutant determinations.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mingshuo Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Haiping Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xinru Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yijing Xiao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Weiqing Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China.
| |
Collapse
|
17
|
Huybrechts I, Jacobs I, Biessy C, Aglago EK, Jenab M, Claeys L, Zavadil J, Casagrande C, Nicolas G, Scelo G, Altieri A, Fervers B, Oswald IP, Vignard J, Chimera B, de Magistris MS, Masala G, Palli D, Padroni L, Castilla J, Jiménez-Zabala A, Frenoy P, Mancini FR, Ren X, Sonestedt E, Vineis P, Heath A, Werner M, Molina-Montes E, Dahm CC, Langmann F, Huerta JM, Brustad M, Skeie G, Schulze MB, Agudo A, Sieri S, Korenjak M, Gunter MJ, De Saeger S, De Boevre M. Associations between dietary mycotoxins exposures and risk of hepatocellular carcinoma in a European cohort. PLoS One 2024; 19:e0315561. [PMID: 39680546 PMCID: PMC11649147 DOI: 10.1371/journal.pone.0315561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mycotoxins have been hypothesized to contribute to a diversity of adverse health effects in humans, even at low concentrations. Certain mycotoxins are established human carcinogens, whereas for others research suggests potential carcinogenic effects. The aim of this study was to determine the association between dietary exposure to mycotoxins and hepatobiliary cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. EPIC questionnaire data were matched to mycotoxin food occurrence data compiled by the European Food Safety Authority to assess long-term dietary mycotoxin exposure (expressed as μg/kg body weight/day) and then relate them to the risk of hepatocellular carcinoma (HCC) (n = 255) and biliary tract cancers (n = 273). Analyses were conducted using multivariable Cox proportional hazards regression models to compute hazard ratios (HR) and 95% confidence intervals (95% CI). Key food groups contributing to mycotoxin exposure were cereals and cereal-based products, vegetables, non-alcoholic beverages (including fruit juices) and fruits. Estimated intake of deoxynivalenol (DON) and its derivatives was positively associated with HCC risk (HRT3vsT1: 1.90, 95% CI: 1.18-3.05, p-trend <0.01). No statistically significant associations were found for the other mycotoxins. Further research to confirm our observations and investigate potential underlying mechanisms of these compounds is warranted. These data may provide evidence of HCC risks associated with higher dietary intake levels of DON, which has not yet been classified as a human carcinogen.
Collapse
Affiliation(s)
- Inge Huybrechts
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Inarie Jacobs
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Elom K. Aglago
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Liesel Claeys
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Corinne Casagrande
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Genevieve Nicolas
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | | | | | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Bernadette Chimera
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | | | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra–IdiSNA, Pamplona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Jiménez-Zabala
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Pauline Frenoy
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Francesca Romana Mancini
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xuan Ren
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Paolo Vineis
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Alicia Heath
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Mårten Werner
- Department of Public Health and Clinikal Medicine, Umeå University, Umeå, Sweden
| | - Esther Molina-Montes
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Granada, Spain
| | | | - Fie Langmann
- Dept. of Public Health, Aarhus University, Aarhus, Denmark
| | - José María Huerta
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council-IMIB, Murcia, Spain
| | - Magritt Brustad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology ‐ ICO, L’Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group, Bellvitge Biomedical Research Institute ‐ IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michael Korenjak
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Marc J. Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Sarah De Saeger
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
| | - Marthe De Boevre
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Namorado S, Martins C, Ogura J, Assunção R, Vasco E, Appenzeller B, I Halldorsson T, Janasik B, Kolossa-Gehring M, Van Nieuwenhuyse A, Ólafsdóttir K, Rambaud L, Riou M, Silva S, Wasowicz W, Weber T, Esteban-López M, Castaño A, Gilles L, Rodríguez Martin L, Govarts E, Schoeters G, Viegas S, Silva MJ, Alvito P. Exposure assessment of the European adult population to deoxynivalenol - Results from the HBM4EU Aligned Studies. Food Res Int 2024; 198:115281. [PMID: 39643334 DOI: 10.1016/j.foodres.2024.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Mycotoxins are natural toxins produced by fungi that may cause adverse health effects thus constituting a public health concern. Deoxynivalenol (DON), a mycotoxin affecting the immune system and causing intestinal disorders, was selected as a priority under the European Human Biomonitoring Initiative (HBM4EU). Urinary total DON levels (tDON) of 1270 participants from six countries were used to characterize the internal exposure of the adult European population and identify the most relevant determinants of exposure. tDON concentrations' P50 and P95 were in the range of 0.41-10.16 µg/L (0.39-9.05 µg/g crt) and 3.25-46.58 µg/L (2.12-33.50 µg/g crt) respectively. Higher tDON levels were observed for (i) male participants from France and Germany, (ii) samples collected in spring and summer, (iii) participants with a lower educational level, (iv) participants living in rural areas, (v) individuals without a job in France and Luxembourg, while in Portugal higher exposure was observed in working individuals, (vi) individuals with higher consumption of cereals and bread. The proportion of individuals with exposure levels exceeding the HBM-GV of 23 µg/L was 12.3 %, ranging from 0.8 % to 20.7 % in the individual countries. This study on mycotoxins exposure has used post harmonized questionnaire data and validated analytical methodologies for analysis and covered countries representing the four geographical regions of Europe, having produced much needed knowledge on the exposure of the European adult population to deoxynivalenol.
Collapse
Affiliation(s)
- Sónia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal.
| | - Carla Martins
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Joana Ogura
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ricardo Assunção
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Elsa Vasco
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | | | - Thorhallur I Halldorsson
- Department of Food and Nutrition, University of Iceland, Reykjavik, Iceland; Department of Pharmacology and Toxicology, University of Iceland, Reykjavik, Iceland
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | | | - An Van Nieuwenhuyse
- Department of Health Protection, Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg
| | | | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Susana Silva
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | - Till Weber
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Susana Viegas
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Maria João Silva
- Department of Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula Alvito
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Mouchtaris Michailidis T, De Saeger S, Khoueiry R, Odongo GA, Bader Y, Dhaenens M, Herceg Z, De Boevre M. The interplay of dietary mycotoxins and oncogenic viruses toward human carcinogenesis: a scoping review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39422902 DOI: 10.1080/10408398.2024.2414828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mycotoxins, fungal metabolites prevalent in many foods, are recognized for their role in carcinogenesis, especially when interacting with oncogenic viruses. OBJECTIVES This scoping review synthesizes current evidence on the human cancer risk associated with mycotoxin exposure and oncogenic virus infections. METHODS Searches were conducted on PubMed, Embase, and Web of Science. Studies were selected based on the PECOS framework. Data extraction involved narrative and qualitative presentation of findings, with meta-analysis where feasible. Risk of bias and outcome quality were assessed using the OHAT tool and GRADE approach. RESULTS From 25 included studies, 18 focused on aflatoxins and hepatitis viruses in hepatocellular carcinoma (HCC). Four studies examined aflatoxin B1 (AFB1) and human papilloma virus (HPV) in cervical cancer, while three investigated AFB1 with Epstein-Barr virus (EBV) in lymphomagenesis. The review highlights a significant synergistic effect between AFB1 and hepatitis B and C viruses in HCC development. Significant interactions between AFB1 and HPV, as well as AFB1 and EBV, were observed, but further research is needed. CONCLUSIONS The synergistic impact of mycotoxins and oncogenic viruses is a critical public health concern. Future research, especially prospective cohort studies and investigations into molecular mechanisms, is essential to address this complex issue.
Collapse
Affiliation(s)
- Thanos Mouchtaris Michailidis
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Grace A Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Institute of Cancer Research and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Yasmine Bader
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Marthe De Boevre
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
20
|
Peach JT, Puntscher H, Höger H, Marko D, Warth B. Rats exposed to Alternaria toxins in vivo exhibit altered liver activity highlighted by disruptions in riboflavin and acylcarnitine metabolism. Arch Toxicol 2024; 98:3477-3489. [PMID: 38951189 PMCID: PMC11402861 DOI: 10.1007/s00204-024-03810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Natural toxins produced by Alternaria fungi include the mycotoxins alternariol, tenuazonic acid and altertoxins I and II. Several of these toxins have shown high toxicity even at low levels including genotoxic, mutagenic, and estrogenic effects. However, the metabolic effects of toxin exposure from Alternaria are understudied, especially in the liver as a key target. To gain insight into the impact of Alternaria toxin exposure on the liver metabolome, rats (n = 21) were exposed to either (1) a complex culture extract with defined toxin profiles from Alternaria alternata (50 mg/kg body weight), (2) the isolated, highly genotoxic altertoxin-II (ATX-II) (0.7 mg/kg of body weight) or (3) a solvent control. The complex mixture contained a spectrum of Alternaria toxins including a controlled dose of ATX-II, matching the concentration of the isolated ATX-II. Liver samples were collected after 24 h and analyzed via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Authentic reference standards (> 100) were used to identify endogenous metabolites and exogenous compounds from the administered exposures in tandem with SWATH-acquired MS/MS data which was used for non-targeted analysis/screening. Screening for metabolites produced by Alternaria revealed several compounds solely isolated in the liver of rats exposed to the complex culture, confirming results from a previously performed targeted biomonitoring study. This included the altersetin and altercrasin A that were tentatively identified. An untargeted metabolomics analysis found upregulation of acylcarnitines in rats receiving the complex Alternaria extract as well as downregulation of riboflavin in rats exposed to both ATX-II and the complex mixture. Taken together, this work provides a mechanistic view of Alternari toxin exposure and new suspect screening insights into hardly characterized Alternaria toxins.
Collapse
Affiliation(s)
- Jesse T Peach
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Harald Höger
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
21
|
Zademohammadi F, Sasanfar B, Toorang F, Mozafarinia M, Salehi-Abargouei A, Zendehdel K. Dietary soluble, insoluble, and total fiber intake and their dietary sources in association with breast cancer. BMC Public Health 2024; 24:2560. [PMID: 39300417 PMCID: PMC11414166 DOI: 10.1186/s12889-024-19861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND A few studies have examined the association between different types of dietary fiber as well as their sources and the risk of breast cancer (BC) and the present study aimed to investigate these associations in a case-control study among Iranian women. METHODS A total of 464 women with pathologically confirmed breast cancer within the past year and 498 age-matched healthy controls were included. Dietary intakes were assessed using a 168-item food frequency questionnaire. The association between dietary soluble, insoluble, total dietary fiber, as well as, fiber from fruits, vegetables, legumes, cereals, and nuts intake with odds of breast cancer was assessed using multivariate logistic regression analysis. RESULTS Mean total dietary fiber intake of patients with and without cancer were 33.1 ± 15.3 g per day (g/d) and 34.2 ± 16.5 (g/d), respectively. Dietary total fiber (OR = 0.65; 95%CI: 0.47-0.90, Ptrend = 0.01), insoluble fiber (OR = 0.68; 95%CI: 0.49-0.93, Ptrend = 0.01), fruits' fiber (OR = 0.68; 95%CI: 0.49-0.94, Ptrend = 0.02), and vegetables' fiber (OR = 0.66; 95%CI: 0.48-0.91, Ptrend = 0.01) were significantly associated with reduced likelihood of developing breast cancer in all participants. Furthermore, dietary total and insoluble fiber, as well as, fiber from fruits were significantly associated with lower odds of breast cancer in premenopausal women (P < 0.05). In contrast, cereals' fiber significantly increased the risk of breast cancer by 84% in premenopausal women (OR = 1.84; 95%CI: 1.18-2.86, Ptrend = 0.009). In postmenopausal women, cereals' fiber had a significant inverse association with odds of breast cancer (OR = 0.56; 95%CI: 0.31-1.03, Ptrend = 0.04). Also, fiber from vegetables was significantly associated with a lower risk of breast cancer in postmenopausal women (OR = 0.53; 95%CI: 0.30-0.94, Ptrend = 0.03). CONCLUSION Dietary fiber intake and more specifically insoluble, fruits', and vegetables' fiber intake might be associated with a reduced breast cancer risk, particularly in premenopausal women. Future prospective investigations are needed to confirm these findings.
Collapse
Affiliation(s)
- Faezeh Zademohammadi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, P. O. Box 8915173160, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bahareh Sasanfar
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, P. O. Box 8915173160, Yazd, Iran
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Toorang
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, P. O. Box 13145158, Tehran, Iran
- Departments of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maedeh Mozafarinia
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, P. O. Box 13145158, Tehran, Iran
| | - Amin Salehi-Abargouei
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, P. O. Box 8915173160, Yazd, Iran.
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, P. O. Box 13145158, Tehran, Iran.
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Diseases Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
23
|
Wang Q, Li A, Yu H, Wang C, Wang T, Zhang J. Evaluation of Cross-Talk and Alleviate Potential of Cytotoxic Factors Induced by Deoxynivalenol in IPEC-J2 Cells Interference with Curcumin. Int J Mol Sci 2024; 25:6984. [PMID: 39000093 PMCID: PMC11241398 DOI: 10.3390/ijms25136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.
Collapse
Affiliation(s)
- Qiyuan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ting Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jing Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
24
|
Wang Y, Su B, Yan X, Geng C, Lian T, Li X, Xu Y, Li Y. Studies of Mycotoxins in Medicinal Plants Conducted Worldwide over the Last Decade: A Systematic Review, Meta-Analysis, and Exposure Risk Assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155367. [PMID: 38493720 DOI: 10.1016/j.phymed.2024.155367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Mycotoxins have been reported to be present in medicinal plants. With the growing usage of medicinal plants, contamination of mycotoxins has emerged as one of the biggest threats to global food hygiene and ecological environment, posing a severe threat to human health. PURPOSE This study aimed to determine the mycotoxin prevalence and levels in medicinal plants and conduct a risk assessment by conducting a systematic review and meta-analysis. METHODS A thorough search on Web of Science and PubMed was conducted for the last decade, resulting in 54 studies (meeting the inclusion criteria) with 2829 data items that were included in the meta-analysis. RESULTS The combined prevalence of mycotoxins in medicinal plants was 1.7% (95% confidence interval, CI = 1.1% - 2.4%), with a mean mycotoxin concentration in medicinal plants of 3.551 µg/kg (95% CI = 3.461 - 3.641 µg/kg). Risk assessment results indicated that aflatoxins and ochratoxin A found in several medicinal plants posed a health risk to humans; additionally, emerging enniatins exhibited possible health risks. CONCLUSION Therefore, the study underlines the need for establishing stringent control measures to reduce the severity of mycotoxin contamination in medicinal plants.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Buda Su
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenlei Geng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Lian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaomeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yubo Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
25
|
Conceição RRP, Queiroz VAV, Medeiros EP, Araújo JB, Araújo DDS, Miguel RA, Stoianoff MAR, Simeone MLF. Determination of fumonisin content in maize using near-infrared hyperspectral imaging (NIR-HSI) technology and chemometric methods. BRAZ J BIOL 2024; 84:e277974. [PMID: 38808784 DOI: 10.1590/1519-6984.277974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/11/2024] [Indexed: 05/30/2024] Open
Abstract
Maize (Zea mays L.) is of socioeconomic importance as an essential food for human and animal nutrition. However, cereals are susceptible to attack by mycotoxin-producing fungi, which can damage health. The methods most commonly used to detect and quantify mycotoxins are expensive and time-consuming. Therefore, alternative non-destructive methods are required urgently. The present study aimed to use near-infrared spectroscopy with hyperspectral imaging (NIR-HSI) and multivariate image analysis to develop a rapid and accurate method for quantifying fumonisins in whole grains of six naturally contaminated maize cultivars. Fifty-eight samples, each containing 40 grains, were subjected to NIR-HSI. These were subsequently divided into calibration (38 samples) and prediction sets (20 samples) based on the multispectral data obtained. The averaged spectra were subjected to various pre-processing techniques (standard normal variate (SNV), first derivative, or second derivative). The most effective pre-treatment performed on the spectra was SNV. Partial least squares (PLS) models were developed to quantify the fumonisin content. The final model presented a correlation coefficient (R2) of 0.98 and root mean square error of calibration (RMSEC) of 508 µg.kg-1 for the calibration set, an R2 of 0.95 and root mean square error of prediction (RMSEP) of 508 µg.kg-1 for the test validation set and a ratio of performance to deviation of 4.7. It was concluded that NIR-HSI with partial least square regression is a rapid, effective, and non-destructive method to determine the fumonisin content in whole maize grains.
Collapse
Affiliation(s)
- R R P Conceição
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brasil
| | | | | | - J B Araújo
- Embrapa Algodão, Campina Grande, PB, Brasil
| | | | - R A Miguel
- Embrapa Milho e Sorgo, Sete Lagoas, MG, Brasil
| | - M A R Stoianoff
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
26
|
Wu T, Kang K, Xia Y, Deng H, Han B, Han X, Xie Y, Li C, Zhan J, Huang W, You Y. Development and validation of a liquid chromatography tandem mass spectrometry method for the determination of 10 mycotoxins in beer of the Chinese market and exposure estimate. Food Res Int 2024; 184:114256. [PMID: 38609234 DOI: 10.1016/j.foodres.2024.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins are important risk factors in beer. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine 10 mycotoxins in beer within 6 min. The method is fast, efficient, and has a simple and quick sample preparation. Validation was conducted based on the performance standards specified in Commission Decision 657/2002/EC, and the results demonstrated excellent linearity (R2 > 0.99), repeatability (RSD < 5 %), quantification limits (0.005-20.246 µg/L), and recovery rates (77 %-118 %). The prevalence of the 10 mycotoxins in 96 beers purchased from the Chinese market was analyzed, and the exposure of the Chinese population to mycotoxins through beer consumption was assessed. Deoxynivalenol (DON) was detected in 93.75 % of the beers, and the incidence of fumonisins (FBs) and zearalenone (ZEN) exceeded 50 %. Beer intake contributed significantly to the exposure of aflatoxins (AFs) and DON, especially in males. Correlation analysis between mycotoxin content in beer, raw materials, and the brewing process revealed that the brewing process significantly affected the content of DON (P < 0.001), while auxiliary materials also had a significant impact on the content of FBs and DON (P < 0.001). This study holds great significance in producing higher quality and safer beer.
Collapse
Affiliation(s)
- Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Kun Kang
- Anheuser-Busch Inbeve (Foshan) Brewery Co., Ltd., No.1 Baiwei Avenue, Sanshui District, Foshan City, Guangdong Province 528100, China.
| | - Ying Xia
- Anheuser-Busch Inbev (Wuhan) Beer Co., Ltd Craft Brewery, Qingduankou, Hanyang District, Wuhan City 430050, China.
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Yiding Xie
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China.
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, Jiangsu, China.
| |
Collapse
|
27
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
28
|
Sun Z, You Y, Xu H, You Y, He W, Wang Z, Li A, Xia Y. Food-Grade Expression of Two Laccases in Pichia pastoris and Study on Their Enzymatic Degradation Characteristics for Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600054 DOI: 10.1021/acs.jafc.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Mycotoxin contamination poses substantial health risks to humans and animals. In this study, the two laccases PpLac1 and AoLac2 from Pleurotus pulmonarius and Aspergillus oryzae were selected and heterologously expressed in Pichia pastoris in a food-grade manner to detoxify aflatoxin B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). Both laccases exhibited degradation activity toward these three mycotoxins, while the efficiency of these for DON was relatively low. Therefore, molecular docking between these laccases and DON was conducted to analyze their potential interaction mechanisms. Furthermore, the degradation conditions of AFB1 and ZEN by the two laccases were optimized, and the optimal degradation rates for AFB1 and ZEN by PpLac1 reached 78.51 and 78.90%, while those for AFB1 and ZEN by AoLac2 reached 72.27 and 80.60%, respectively. The laccases PpLac1 and AoLac2 successfully transformed AFB1 and ZEN into the compounds AFQ1 and 15-OH-ZEN, which were 90 and 98% less toxic than the original compounds, respectively. Moreover, the culture supernatants demonstrated effective mycotoxin degradation results for AFB1 and ZEN in contaminated feed samples. The residual levels of AFB1 and ZEN in all samples ranged from 6.61 to 8.72 μg/kg and 3.44 to 98.15 μg/kg, respectively, and these levels were below the limit set by the European Union standards. All of the results in this study indicated that the two laccases have excellent application potential in the feed industry.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingxin You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huidong Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenjing He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aitao Li
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Marín-Sáez J, Hernández-Mesa M, Gallardo-Ramos JA, Gámiz-Gracia L, García-Campaña AM. Assessing human exposure to pesticides and mycotoxins: optimization and validation of a method for multianalyte determination in urine samples. Anal Bioanal Chem 2024; 416:1935-1949. [PMID: 38321180 PMCID: PMC10901940 DOI: 10.1007/s00216-024-05191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Humans are exposed to an increasing number of contaminants, with diet being one of the most important exposure routes. In this framework, human biomonitoring is considered the gold standard for evaluating human exposure to chemicals. Pesticides and mycotoxins are chemicals of special concern due to their health implications. They constitute the predominant border rejection notifications for food and feed in Europe and the USA. However, current biomonitoring studies are focused on a limited number of compounds and do not evaluate mycotoxins and pesticides together. In this study, an analytical method has been developed for the determination of 30 pesticides and 23 mycotoxins of concern in urine samples. A salting-out liquid-liquid extraction (SALLE) procedure was optimized achieving recoveries between 70 and 120% for almost all the compounds and limits as lower as when QuEChERS was applied. The compounds were then determined by liquid chromatography coupled to triple quadrupole mass spectrometry. Different chromatographic conditions and analytical columns were tested, selecting a Hypersild gold aQ column as the best option. Finally, the method was applied to the analysis of 45 urine samples, in which organophosphate and pyrethroid pesticides (detection rates (DR) of 82% and 42%, respectively) and ochratoxin A and deoxynivalenol (DR of 51% and 33%, respectively) were the most detected compounds. The proposed analytical method involves the simultaneous determination of a diverse set of pesticides and mycotoxins, including their most relevant metabolites, in human urine. It serves as an essential tool for biomonitoring the presence of highly prevalent contaminants in modern society.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain.
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, 04120, Almeria, Spain.
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain
| | - Jose A Gallardo-Ramos
- Department of Food Technology, Engineering and Science, Applied Mycology Group, AGROTECNIO-CERCA Center, University of Lleida, 25198, Lleida, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva S/N, 18071, Granada, Spain.
| |
Collapse
|
30
|
Dong F, Ni T, Chen Y, Sun Y, Zheng Z, Li Y, Gong C, Ren L, Yan X, Wang G. Foodborne Disease Outbreaks Caused by Biotoxins in Yantai City: A 10-Year Spatiotemporal Monitoring Study. Foodborne Pathog Dis 2024; 21:194-202. [PMID: 38112728 DOI: 10.1089/fpd.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Unsafe food causes 600 million cases of foodborne diseases and 420,000 deaths every year. Meanwhile, biological toxins such as poisonous mushrooms, saponins, and aflatoxin can cause significant damage to humans. Therefore, it is particularly important to study foodborne disease outbreaks caused by biotoxins (FDOB). We collected FDOB in Yantai City from 2013 to 2022 and further established a corresponding database. Statistical analysis was carried out according to time, place, pathogen, and contamination of pathogenic factors. There were 128 FDOB, resulting in 417 patients and 6 deaths. The third quarter was a high season for foodborne disease outbreaks, the number of events, patients and deaths accounted for 65.63% (84/128), 55.88% (233/417), and 100% (6/6) of the total number, respectively. The highest number of outbreaks per 10,000 persons was Qixia (0.41), followed by Zhifu (0.36) and Laiyang (0.33). The top three causes of outbreaks were poisonous mushroom toxin, saponins and hemagglutinin, and Lagenaria siceraria (Molina) Standl. Sixty-five (50.78%) outbreaks were attributed to poisonous mushroom toxin, 18 (14.06%) outbreaks to saponin and hemagglutinin, and 12 (9.38%) outbreaks to L. siceraria (Molina) Standl. The largest number of outbreaks, patients and deaths all occurred in families, accounting for 82.81% (106/128) outbreaks, 66.19% (276/417) patients, and 100% (6/6) deaths, respectively. Followed by catering service establishments, accounting for 14.84% (19/128), 30.22% (126/417), and 0% (0/6), respectively. The main poisoning link of outbreaks was ingestion and misuse, accounting for 72.66% (93/128), followed by improper processing, accounting for 20.31% (26/128). It is necessary to carry out targeted family publicity and education, strengthen the integration of medical and prevention, explore innovative monitoring and early warning mechanisms for foodborne diseases, and reduce the occurrence of underreporting of foodborne disease outbreaks.
Collapse
Affiliation(s)
- Fengguang Dong
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Tieying Ni
- Yantai City 120 Emergency Command Center, Yantai, China
| | - Youxia Chen
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yuelin Sun
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Zhong Zheng
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, China
| | - Chunbo Gong
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Lili Ren
- School Office, Yantai Nurses School of Shandong, Yantai, China
| | - Xige Yan
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| | - Guiqiang Wang
- Department of Nutrition and Food Hygiene, Yantai Center for Disease Control and Prevention, Yantai, China
| |
Collapse
|
31
|
Ruan H, Zhang J, Wang Y, Huang Y, Wu J, He C, Ke T, Luo J, Yang M. 27-Hydroxycholesterol/liver X receptor/apolipoprotein E mediates zearalenone-induced intestinal immunosuppression: A key target potentially linking zearalenone and cancer. J Pharm Anal 2024; 14:371-388. [PMID: 38618245 PMCID: PMC11010457 DOI: 10.1016/j.jpha.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 04/16/2024] Open
Abstract
Zearalenone (ZEN) is a mycotoxin that extensively contaminates food and feed, posing a significant threat to public health. However, the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear. In this study, Sprague-Dawley (SD) rats were exposed to ZEN at a dosage of 5 mg/kg/day b.w. for a duration of 14 days. The results demonstrated that ZEN exposure led to notable pathological alterations and immunosuppression within the intestine. Furthermore, ZEN exposure caused a significant reduction in the levels of apolipoprotein E (ApoE) and liver X receptor (LXR) (P < 0.05). Conversely, it upregulated the levels of myeloid-derived suppressor cells (MDSCs) markers (P < 0.05) and decreased the presence of 27-hydroxycholesterol (27-HC) in the intestine (P < 0.05). It was observed that ApoE or LXR agonists were able to mitigate the immunosuppressive effects induced by ZEN. Additionally, a bioinformatics analysis highlighted that the downregulation of ApoE might elevate the susceptibility to colorectal, breast, and lung cancers. These findings underscore the crucial role of the 27-HC/LXR/ApoE axis disruption in ZEN-induced MDSCs proliferation and subsequent inhibition of T lymphocyte activation within the rat intestine. Notably, ApoE may emerge as a pivotal target linking ZEN exposure to cancer development.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunjiao He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
32
|
Jacobson T, Bae Y, Kler JS, Iyer R, Zhang R, Montgomery ND, Nunes D, Pleil JD, Funk WE. Advancing Global Health Surveillance of Mycotoxin Exposures using Minimally Invasive Sampling Techniques: A State-of-the-Science Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3580-3594. [PMID: 38354120 PMCID: PMC10903514 DOI: 10.1021/acs.est.3c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Mycotoxins are a heterogeneous group of toxins produced by fungi that can grow in staple crops (e.g., maize, cereals), resulting in health risks due to widespread exposure from human consumption and inhalation. Dried blood spot (DBS), dried serum spot (DSS), and volumetric tip microsampling (VTS) assays were developed and validated for several important mycotoxins. This review summarizes studies that have developed these assays to monitor mycotoxin exposures in human biological samples and highlights future directions to facilitate minimally invasive sampling techniques as global public health tools. A systematic search of PubMed (MEDLINE), Embase (Elsevier), and CINAHL (EBSCO) was conducted. Key assay performance metrics were extracted to provide a critical review of the available methods. This search identified 11 published reports related to measuring mycotoxins (ochratoxins, aflatoxins, and fumonisins) using DBS/DSS and VTS assays. Multimycotoxin assays adapted for DBS/DSS and VTS have undergone sufficient laboratory validation for applications in large-scale population health and human biomonitoring studies. Future work should expand the number of mycotoxins that can be measured in multimycotoxin assays, continue to improve multimycotoxin assay sensitivities of several biomarkers with low detection rates, and validate multimycotoxin assays across diverse populations with varying exposure levels. Validated low-cost and ultrasensitive minimally invasive sampling methods should be deployed in human biomonitoring and public health surveillance studies to guide policy interventions to reduce inequities in global mycotoxin exposures.
Collapse
Affiliation(s)
- Tyler
A. Jacobson
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yeunook Bae
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jasdeep S. Kler
- University
of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ramsunder Iyer
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Runze Zhang
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan D. Montgomery
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Denise Nunes
- Galter
Health Sciences Library, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Joachim D. Pleil
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - William E. Funk
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
33
|
Sánchez-Arroyo A, Plaza-Vinuesa L, Abeijón-Mukdsi MC, de Las Rivas B, Mancheño JM, Muñoz R. A new and promiscuous α/β hydrolase from Acinetobacter tandoii DSM 14970 T inactivates the mycotoxin ochratoxin A. Appl Microbiol Biotechnol 2024; 108:230. [PMID: 38393350 PMCID: PMC10891195 DOI: 10.1007/s00253-024-13073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the Acinetobacter genus hydrolyse the amide bond of OTA yielding non-toxic OTα and L-β-phenylalanine; in particular, the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from Acinetobacter tandoii DSM 14970 T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/β hydrolase (ABH), with close homologs highly distributed within the Acinetobacter genus. ABH from A. tandoii (AtABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of AtABH reveals an α/β hydrolase core composed of a parallel, six-stranded β-sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of AtABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/β hydrolases based on our results. KEY POINTS: • AtABH is a promiscuous αβ hydrolase with both esterase and amidohydrolase activities • AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTα • Promiscuous αβ hydrolases are a possible source of new OTA-degrading enzymes.
Collapse
Affiliation(s)
- Ana Sánchez-Arroyo
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - Laura Plaza-Vinuesa
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - María Claudia Abeijón-Mukdsi
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - Blanca de Las Rivas
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain.
| | - Rosario Muñoz
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain.
| |
Collapse
|
34
|
Wang TW, Wilson AG, Peck GM, Gibney PA, Hodge KT. Patulin contamination of hard apple cider by Paecilomyces niveus and other postharvest apple pathogens: Assessing risk factors. Int J Food Microbiol 2024; 412:110545. [PMID: 38237417 DOI: 10.1016/j.ijfoodmicro.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/21/2023] [Accepted: 12/16/2023] [Indexed: 01/28/2024]
Abstract
Hard apple cider is considered to be a low-risk product for food spoilage and mycotoxin contamination due to its alcoholic nature and associated food sanitation measures. However, the thermotolerant mycotoxin-producing fungus Paecilomyces niveus may pose a significant threat to hard cider producers. P. niveus is known to infect apples (Malus xdomestica), and previous research indicates that it can survive thermal processing and contaminate finished apple juice with the mycotoxin patulin. To determine if hard apple cider is susceptible to a similar spoilage phenomenon, cider apples were infected with P. niveus or one of three patulin-producing Penicillium species and the infected fruits underwent benchtop fermentation. Cider was made with lab inoculated Dabinett and Medaille d'Or apple cultivars, and patulin was quantified before and after fermentation. Results show that all four fungi can infect cider apples and produce patulin, some of which is lost during fermentation. Only P. niveus was able to actively grow throughout the fermentation process. To determine if apple cider can be treated to hinder P. niveus growth, selected industry-grade sanitation measures were tested, including chemical preservatives and pasteurization. High concentrations of preservatives inhibited P. niveus growth, but apple cider flash pasteurization was not found to significantly impact spore germination. This study confirms that hard apple cider is susceptible to fungal-mediated spoilage and patulin contamination. P. niveus is an important concern for hard apple cider producers due to its demonstrated thermotolerance, survival in fermentative environments, and resistance to sanitation measures.
Collapse
Affiliation(s)
- Tristan W Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA.
| | - Amanda G Wilson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA
| | - Gregory M Peck
- Horticulture Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA
| | - Kathie T Hodge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Zheng Y, Gao B, Wu J, Wang X, Han B, Tao H, Liu J, Wang Z, Wang J. Degradation of deoxynivalenol by a microbial consortia C1 from duck intestine. Mycotoxin Res 2024; 40:147-158. [PMID: 38064000 DOI: 10.1007/s12550-023-00511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/02/2024]
Abstract
Deoxynivalenol (DON), one of the most widespread mycotoxins in food and feed, poses a persistent health threat to humans and farm animals, and is difficult to eliminate. The utilization of the biotransformation mechanism by microorganisms to detoxify DON is a promising strategy. Although individual strains are capable of DON degradation, their isolation and purification are challenging and time-consuming. Recently, the microbial consortia concept has been proposed, owing to their ability to perform more complex tasks and are more tolerant to environmental changes than individual strains or species. In this study, the novel microbial consortia C1 that could efficiently convert DON to de-epoxy DON (DOM-1) was screened from the cecum contents of ducks. After 24 h anaerobic incubation, 100 μg/ml DON was completely degraded by C1. In vitro, C1 can effectively degrade DON in corn steep liquor (CSL) with an efficiency of 49.44% within 14 days. Furthermore, C1 effectively alleviated the DON poisoning in mice. After C1 treatment, the serum DON level decreased by 40.39%, and the reduction in serum total protein and albumin levels were mitigated. Additionally, C1 is effective in protecting the mouse liver against 5 mg/kg DON. These findings suggest that C1 could be a promising DON biological detoxifier and provide novel microbial resources for preventing DON contamination.
Collapse
Affiliation(s)
- Yunduo Zheng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Boquan Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jianwen Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
36
|
Dasí-Navarro N, Lozano M, Llop S, Vioque J, Peiró J, Esplugues A, Manyes L, Vila-Donat P. Associated factors with mycotoxin exposure in Spanish population. ENVIRONMENTAL RESEARCH 2024; 242:117618. [PMID: 37967699 DOI: 10.1016/j.envres.2023.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Human exposure to mycotoxins is a global concern since filamentous fungi can contaminate food and feed from crops to ready-to-eat meals. Human urine biomonitoring is a widely used technique to evaluate mycotoxins exposure, as an alternative to food correlation studies. The aim of this study is to describe human exposure to mycotoxins and to investigate the associated sociodemographic, lifestyle and dietary variables. Participants were 540 women from the Valencia (Spain) cohort of the Spanish Childhood and Environment Project (INMA). A validated multi-mycotoxin method using HPLC-Q-TOF-MS was applied to determine the concentration of ten selected mycotoxins: Enniatin A, Enniatin B, Enniatin A1, Enniatin B1, Beauvericine, Aflatoxin B1, Aflatoxin B2, Aflatoxin G1, Aflatoxin G2 and Ochratoxin A. A simultaneous untargeted screening of mycotoxins and their metabolites has been performed. Mycotoxins associations were assessed by bivariate and multivariate regression models using participants' sociodemographic, lifestyle and dietary data collected through questionnaires. Mycotoxins were detected in 81% of urine samples. The method quantified mycotoxins concentrations in up to 151 samples. Most quantified mycotoxins were: Enniatin B [% of detection (concentration range)] = 26% (1.0-39.7 ng/mg) and Enniatin B1 = 7% (0.5-14.4 ng/mg). Besides the ten-targeted mycotoxins, other mycotoxins and metabolites were studied, and higher incidence was observed for Deepoxy-deoxynivalenol (45%), Ochratoxin B (18%) and Ochratoxin α (17%). Higher mycotoxins concentrations were associated with rural areas as well as with participants belonged to lower social class, beer, light sodas and fruit juice consumers. On the contrary, higher processed meat intake was related to lower mycotoxins' levels. Studies are required to better evaluate the exposure to mycotoxins from food and their environmental relationships.
Collapse
Affiliation(s)
- Nuria Dasí-Navarro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, València, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Jesus Vioque
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Alicante Institute of Health and Biomedical Research, University Miguel Hernandez (ISABIAL-UMH), Alacant, Spain
| | - Juanjo Peiró
- Department of Statistics and Operations Research, University of Valencia, València, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, València, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Spain.
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Spain
| |
Collapse
|
37
|
Goessens T, Mouchtaris-Michailidis T, Tesfamariam K, Truong NN, Vertriest F, Bader Y, De Saeger S, Lachat C, De Boevre M. Dietary mycotoxin exposure and human health risks: A protocol for a systematic review. ENVIRONMENT INTERNATIONAL 2024; 184:108456. [PMID: 38277998 PMCID: PMC10895515 DOI: 10.1016/j.envint.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Mycotoxins are toxic fungal secondary metabolites that contaminate a wide spectrum of essential foods worldwide, such as grain-based products, nuts and spices, causing adverse health effects pertaining to their carcinogenic, nephrotoxic and hepatotoxic nature, among others. AIM The aim of this systematic review (SR) is to systematically search for, appraise and synthesize primary research evidence to identify what is known about dietary mycotoxin-related health effects and what remains unknown, as well as the uncertainty around findings and the recommendations for the future. SEARCH STRATEGY AND ELIGIBILITY CRITERIA Search strategies, as well as eligibility criteria were structured according to a predefined PECO (population, exposure, comparison, and outcome) research question and developed in an iterative scoping process. Several bibliographic databases, including Embase, Cochrane Library, Pubmed, Web of Science Core Collection and Scopus, will be searched. Primary research on any measured or modelled dietary exposure to a single or multiple mycotoxins, and adverse human health outcomes (i.e. cancer, non-carcinogenic diseases, and reproductive & developmental adverse outcomes) will be included, and references will be imported into Covidence. In vitro, ex vivo, in silico, animal and review studies, as well as expert's opinions, secondary literature, conference abstracts, presentations, posters, book chapters, dissertations and studies involving non-dietary mycotoxin exposure, will be excluded. STUDY SELECTION Two independent reviewers will screen titles and abstracts, and review full-texts. Any disagreements will be resolved by a third reviewer based on two-third majority. DATA EXTRACTION Data from retained eligible studies will be extracted by the principal reviewer, and peer-checked by a second reviewer. STUDY QUALITY ASSESSMENT Eligible studies will be evaluated for risk of bias (Overall High-Quality Assessment Tool, OHAT) and certainty of evidence (Grading of Recommendations Assessment, Development and Evaluation, GRADE). EVIDENCE SYNTHESIS A detailed summary of the included studies will be provided within a tabular format and narratively discussed. Heat maps will be constructed to provide information on available knowledge (gaps), and a meta-analysis may be performed based on the variability in predefined PECO elements and depending on the heterogeneity of studies. CONCLUSION This protocol describes the methodology for the conduct of a SR on mycotoxin-related human health risks, that could guide future research and inform regulatory decisions, as emphasized by the European Commission within the field of regulatory risk assessment for emerging chemicals.
Collapse
Affiliation(s)
- T Goessens
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - T Mouchtaris-Michailidis
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - K Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - N N Truong
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - F Vertriest
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Ghent University, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent, Belgium.
| | - Y Bader
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - S De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - C Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - M De Boevre
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
38
|
Wei G, Liang Y, Zhang G, Zhang Z, Zhang Y, Chen S, Dong L. Influence of sampling location and processing on the assembly and network of Polygoni Multiflori Radix surface microbiome. Int J Food Microbiol 2024; 410:110442. [PMID: 37984213 DOI: 10.1016/j.ijfoodmicro.2023.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/24/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
The raw and processed roots of Polygonum multiflorum Thunb is a popular traditional Chinese medicine. However, Polygoni Multiflori Radix is easily contaminated by toxigenic fungi and mycotoxins during harvesting, processing, and transportation, thereby posing a health risk for consumers. This study aims to investigate the presence of fungi on the surface of raw and processed Polygoni Multiflori Radix collected from four producing areas using high-throughput sequencing. Results showed that the phyla Ascomycota and Basidiomycota, the genera Xeromyces, Cystofilobasidium, Eurotium, and Aspergillus were the dominant fungus, and significant differences are presented in four areas and two processed products. Three potential mycotoxin-producing fungi were detected, namely Trichosporon cutaneum, Aspergillus restrictus, and Fusarium oxysporum. The α-diversity and network complexity showed significant differences in four areas. Chao 1 and Shannon were highest in Yunnan (YN), then incrementally decreased from SC (Sichuan) to AH (Anhui) and GD (Guangdong) areas. Meanwhile, α-diversity was also strongly influenced by processing. Chao 1 and Shannon indices were higher in the raw group, however, the network complexity and connectivity were higher in the processed group. In conclusion, the assembly and network of the surface microbiome on Polygoni Multiflori Radix were influenced by sampling location and processing. This work provides details on the surface microbiome of Polygoni Multiflori Radix samples, which could ensure the drug and consumers' safety.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yichuan Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhaoyu Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
39
|
Boshra MH, El-Housseiny GS, Farag MMS, Aboshanab KM. Innovative approaches for mycotoxin detection in various food categories. AMB Express 2024; 14:7. [PMID: 38216801 PMCID: PMC10786816 DOI: 10.1186/s13568-024-01662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
Mycotoxins (MTs), produced by filamentous fungi, represent a severe hazard to the health of humans and food safety, affecting the quality of various agricultural products. They can contaminate a wide range of foods, during any processing phase before or after harvest. Animals and humans who consume MTs-contaminated food or feed may experience acute or chronic poisoning, which may result in serious pathological consequences. Accordingly, developing rapid, easy, and accurate methods of MTs detection in food becomes highly urgent and critical as a quality control and to guarantee food safety and lower health hazards. In this review, we highlighted and discussed innovative approaches like biosensors, fluorescent polarization, capillary electrophoresis, infrared spectroscopy, and electronic noses for MT identification pointing out current challenges and future directions. The limitations, current challenges, and future directions of conventional detection methods versus innovative methods have also been highlighted and discussed.
Collapse
Affiliation(s)
- Marina H Boshra
- Department of Mycotoxins, Central Public Health Laboratories (CPHL), Ministry of Health, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt
| | - Mohammed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt.
| |
Collapse
|
40
|
Perugino F, Pedroni L, Galaverna G, Dall'Asta C, Dellafiora L. A mechanistic toxicology study to grasp the mechanics of zearalenone estrogenicity: Spotlighting aromatase and the effects of its genetic variability. Toxicology 2024; 501:153686. [PMID: 38036094 DOI: 10.1016/j.tox.2023.153686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Zearalenone (ZEN) is a mycoestrogen produced by Fusarium fungi contaminating cereals and in grain-based products threatening human and animal health due to its endocrine disrupting effects. Germane to the mechanisms of action, ZEN may activate the estrogen receptors and inhibit the estrogens-producing enzyme aromatase (CYP19A1). Both show single nucleotide variants (SNVs) among humans associated with a diverse susceptibility of being activated or inhibited. These variations might modify the endocrine disrupting action of ZEN, requiring dedicated studies to improve its toxicological understanding. This work focused on human aromatase investigating via 3D molecular modelling whether some of the SNVs reported so far (n = 434) may affect the inhibitory potential of ZEN. It has been also calculated the inhibition capability of α-zearalenol, the most prominent and estrogenically potent phase I metabolite of ZEN, toward those aromatase variants with an expected diverse sensitivity of being inhibited by ZEN. The study: i) described SNVs likely associated with a different susceptibility to ZEN and α-zearalenol inhibition - like T310S that is likely more susceptible to inhibition, or D309G and S478F that are possibly inactive variants; ii) proofed the possible existence of inter-individual susceptibility to ZEN; iii) prioritized aromatase variants for future investigations toward a better comprehension of ZEN xenoestrogenicity at an individual level.
Collapse
Affiliation(s)
- Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
41
|
Yang Y, Lv L, Shi S, Cai G, Yu L, Xu S, Zhu T, Su X, Mao N, Zhang Y, Peng S, He J, Liu Z, Wang D. Polysaccharide from walnut green husk alleviates liver inflammation and gluconeogenesis dysfunction by altering gut microbiota in ochratoxin A-induced mice. Carbohydr Polym 2023; 322:121362. [PMID: 37839834 DOI: 10.1016/j.carbpol.2023.121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Walnut green husk polysaccharides (WGP) are isolated from the walnut green husk with a mean molecular weight of 12.77 kDa. The structural characterization revealed by methylation and NMR analysis indicated that WGP might consist of →4-α-D-Galp-(1→, α-D-Galp (1→, and →2)-α-L-Rhap-(1→. Previous studies have been demonstrated that WGP effectively prevented liver injury and modulated gut microbiota in high fructose-treated mice and high fat diet-treated rats. In this study, we found for the first time that WGP presenting outstanding protective effects on liver inflammation and gluconeogenesis dysfunction induced by ochratoxin A (OTA) in mice. Firstly, WGP decreased oxidative stress, down-regulated the expression of inflammatory factors and inhibited the TLR4/p65/IκBα pathway in the liver. Then, WGP reversed OTA-induced lower phosphoenolpyruvate carboxyl kinase (PEPCK), and glucose 6-phosphatase (G6PC) activities in the liver. Furthermore, WGP increased the diversity of gut microbiota and the abundance of beneficial bacteria, especially Lactobacillus and Akkermansia. Importantly, the results of fecal microbiota transplantation (FMT) experiment further confirmed that gut microbiota involved in the protective effects of WGP on liver damage induced by OTA. Our results indicated that the protective effect of WGP on liver inflammation and gluconeogenesis dysfunction caused by OTA may be due to the regulation of gut microbiota.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linjie Lv
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shanshan Shi
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyue Su
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
42
|
Zhai W, Wei D, Cao M, Wang Z, Wang M. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review. Food Chem 2023; 429:136944. [PMID: 37487389 DOI: 10.1016/j.foodchem.2023.136944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied. By comparison with monocomponent NPs, core-shell nanostructures exhibit unique optical, electric, magnetic, plasmonic, and catalytic properties due to the combination of functionalities and synergistic effects, resulting in significant improvement of sensing capacities in various platforms, such as surface-enhanced Raman spectroscopy, fluorescence, lateral flow immunoassay and electrochemical sensors. This review focused on the development of core-shell NPs based biosensors for the sensitive and accurate detection of mycotoxins in food samples. Recent developments were categorised and summarised, along with detailed discussion of advantages and shortcomings. The future potential of utilising core-shell NPs in food safety testing was also highlighted.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenyu Wang
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
43
|
Conway E, Wu H, Tian L. Overview of Risk Factors for Esophageal Squamous Cell Carcinoma in China. Cancers (Basel) 2023; 15:5604. [PMID: 38067307 PMCID: PMC10705141 DOI: 10.3390/cancers15235604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 05/27/2024] Open
Abstract
(1) Background: China has the highest esophageal squamous cell carcinoma (ESCC) incidence areas in the world, with some areas of incidence over 100 per 100,000. Despite extensive public health efforts, its etiology is still poorly understood. This study aims to review and summarize past research into potential etiologic factors for ESCC in China. (2) Methods: Relevant observational and intervention studies were systematically extracted from four databases using key terms, reviewed using Rayyan software, and summarized into Excel tables. (3) Results: Among the 207 studies included in this review, 129 studies were focused on genetic etiologic factors, followed by 22 studies focused on dietary-related factors, 19 studies focused on HPV-related factors, and 37 studies focused on other factors. (4) Conclusions: ESCC in China involves a variety of factors including genetic variations, gene-environment interactions, dietary factors like alcohol, tobacco use, pickled vegetables, and salted meat, dietary behavior such as hot food/drink consumption, infections like HPV, poor oral health, gastric atrophy, and socioeconomic factors. Public health measures should prioritize genetic screening for relevant polymorphisms, conduct comprehensive investigations into environmental, dietary, and HPV influences, enhance oral health education, and consider socioeconomic factors overall as integral strategies to reduce ESCC in high-risk areas of China.
Collapse
Affiliation(s)
| | | | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Hong Kong SAR, China; (E.C.); (H.W.)
| |
Collapse
|
44
|
Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023; 11:1285393. [PMID: 38074709 PMCID: PMC10701447 DOI: 10.3389/fpubh.2023.1285393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
The quality of the indoor environment significantly impacts human health and productivity, especially given the amount of time individuals spend indoors globally. While chemical pollutants have been a focus of indoor air quality research, microbial contaminants also have a significant bearing on indoor air quality. This review provides a comprehensive overview of microbial contamination in built environments, covering sources, sampling strategies, and analysis methods. Microbial contamination has various origins, including human occupants, pets, and the outdoor environment. Sampling strategies for indoor microbial contamination include air, surface, and dust sampling, and various analysis methods are used to assess microbial diversity and complexity in indoor environments. The review also discusses the health risks associated with microbial contaminants, including bacteria, fungi, and viruses, and their products in indoor air, highlighting the need for evidence-based studies that can relate to specific health conditions. The importance of indoor air quality is emphasized from the perspective of the COVID-19 pandemic. A section of the review highlights the knowledge gap related to microbiological burden in indoor environments in developing countries, using India as a representative example. Finally, potential mitigation strategies to improve microbiological indoor air quality are briefly reviewed.
Collapse
Affiliation(s)
- Hitikk Chawla
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Purnima Anand
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeru Bhagat
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Shivani G. Varmani
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruchi Gulati Marwah
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| |
Collapse
|
45
|
Kumar LK, Verma SK, Chandel R, Thumar M, Singh D, Onteru SK. Aflatoxin M1 decreases the expression of genes encoding tight junction proteins and influences the intestinal epithelial integrity. Mycotoxin Res 2023; 39:453-467. [PMID: 37794205 DOI: 10.1007/s12550-023-00505-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Aflatoxin M1 (AFM1) is a mycotoxin that is commonly found as a milk contaminant, and its presence in milk has been linked to cytotoxicity. The present study aimed to evaluate the acute cytotoxic effects of AFM1 on intestinal Caco-2 cells. Initially, we checked the morphology and viability of Caco-2 cells after treatment with different concentrations of AFM1 (5 ng/L, 50 ng/L, 250 ng/L, 500 ng/L, 1000 ng/L, and 2000 ng/L) for different time intervals (6 h, 12 h, and 24 h). It was found that AFM1 did not show any effect on cell morphology, but 10% decrease in viability above 1000 ng/L after 12 h. Furthermore, DCFDA assay showed increased ROS production after 6 h treatments. qPCR analysis showed an increased expression of epithelial-specific cytoskeleton marker genes, Cytokeratin, Villin, Vimentin, and JAM-1, and a decreased expression of tight junction protein genes, Claudin-1, Occludin, and ZO-1. Similarly, we found an increased expression of Cyp1a1 transcript with an increasing AFM1 concentration and incubation time. This gene expression analysis showed AFM1 can cause disruption of tight junctions between intestinal cells, which was further confirmed by a transwell experiment. In conclusion, consumption of AFM1-contaminated milk does not show any effect on cells morphology and viability but decreases the expression of intestinal barrier transcripts that may lead to the disruption of intestinal barrier function and leaky gut.
Collapse
Affiliation(s)
- Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Surya Kant Verma
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Rajeev Chandel
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Meet Thumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001.
| |
Collapse
|
46
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
47
|
Ruan H, Wang Y, Zhang J, Huang Y, Yang Y, Wu C, Guo M, Luo J, Yang M. Zearalenone-14-glucoside specifically promotes dysplasia of Gut-Associated Lymphoid Tissue: A natural product for constructing intestinal nodular lymphatic hyperplasia model. J Adv Res 2023; 52:135-150. [PMID: 37230382 PMCID: PMC10555928 DOI: 10.1016/j.jare.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Zearalenone-14-glucoside (Z14G) is a modified mycotoxin that widely contaminates food across the world. Our preliminary experiment showed that Z14G degrades to zearalenone (ZEN) in the intestine exerting toxicity. Notably, oral administration of Z14G in rats induces intestinal nodular lymphatic hyperplasia. OBJECTIVES To investigate the mechanism of Z14G intestinal toxicity and how it differs from ZEN toxicity. We conducted a precise toxicology study on the intestine of rats exposed to Z14G and ZEN using multi-omics technology. METHODS Rats were exposed to ZEN (5 mg/kg), Z14G-L (5 mg/kg), Z14G-H (10 mg/kg), and pseudo germ free (PGF)-Z14G-H (10 mg/kg) for 14 days. Histopathological studies were performed on intestines from each group and compared. Metagenomic, metabolomic, and proteomic analyses were performed on rat feces, serum, and intestines, respectively. RESULTS Histopathological studies showed that Z14G exposure resulted in dysplasia of gut-associated lymphoid tissue (GALT) compared to ZEN exposure. The elimination of gut microbes in the PGF-Z14G-H group alleviated or eliminated Z14G-induced intestinal toxicity and GALT dysplasia. Metagenomic analysis revealed that Z14G exposure significantly promoted the proliferation of Bifidobacterium and Bacteroides compared to ZEN. Metabolomic analysis showed that Z14G exposure significantly reduced bile acid, while proteomic analysis found that Z14G exposure significantly reduced the expression of C-type lectins compared to ZEN. CONCLUSIONS Our experimental results and previous research suggest that Z14G is hydrolyzed to ZEN by Bifidobacterium and Bacteroides promoting their co-trophic proliferation. This leads to inactivation of lectins by hyperproliferative Bacteroides when ZEN caused intestinal involvement, resulting in abnormal lymphocyte homing and ultimately GALT dysplasia. It is noteworthy that Z14G is a promising model drug to establish rat models of intestinal nodular lymphatic hyperplasia (INLH), which is of great significance for studying the pathogenesis, drug screening and clinical application of INLH.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yanan Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Chongming Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
48
|
Xie H, Li Y, Li J, Chen Y, Li J, Kuang L, Shah Bacha SA, Zhang T, Chao Y. Mycotoxin Determination in Peaches and Peach Products with a Modified QuEChERS Extraction Procedure Coupled with UPLC-MS/MS Analysis. Foods 2023; 12:3216. [PMID: 37685149 PMCID: PMC10487233 DOI: 10.3390/foods12173216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Peaches are the most significant temperate fruit crop worldwide. However, peach fruits are susceptible to fungal and mycotoxin contamination. Consequently, monitoring the residual levels of multiple mycotoxins in peaches and related products is essential. In this study, a novel method based on QuEChERS extraction, followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection, was developed for analyzing 14 mycotoxins in peaches and peach products from China. Matrix-matched calibrations were employed to accurately quantify the mycotoxins and compensate for matrix effects. Recoveries for the target analytes ranged from 84.6% to 117.6%, with intra-day and inter-day precision below 20%. The limits of quantification were 2 or 5 μg/L for the 14 mycotoxins. This method was utilized to detect the presence of target mycotoxins in 109 fresh peaches, 100 diseased peaches, and 89 peach products from China. Six mycotoxins were identified in the rotten parts of the diseased peaches, with concentrations ranging from 5.2 to 1664.3 µg/kg. In the remaining parts of the diseased peach samples, only two toxins, alternariol (AOH) and alternariol monomethyl ether (AME), were quantified at levels of 15.3 µg/kg and 15.5 µg/kg, respectively. No mycotoxins were detected in fresh peaches. For peach products, all contamination levels were below the quantitative limits and significantly lower than the maximum legal limits established for the products.
Collapse
Affiliation(s)
- Hong Xie
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinping Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Lixue Kuang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Syed Asim Shah Bacha
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
49
|
Li Z, Zhang Y, Zhang B, Guo R, He M, Liu ZL, Yang L, Wang H. Bibliometric study of immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1210802. [PMID: 37600802 PMCID: PMC10436521 DOI: 10.3389/fimmu.2023.1210802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), recognized as a significant global health concern, ranks as the sixth most prevalent form of cancer and is the third leading cause of cancer-associated mortality. Over half of HCC patients are diagnosed at advanced stages, an unfortunate phenomenon primarily attributed to the liver's robust compensatory mechanisms. Given the limited availability of donor livers, existing clinical surgical approaches have yet to provide universally applicable treatment strategies offering substantial prognostic improvement for late-stage cancer. Although the past few decades have witnessed significant advancements in chemotherapy and targeted therapy for HCC, the emergence of drug resistance poses a substantial impediment to their successful execution. Furthermore, issues such as diminished quality of life post-treatment and high treatment costs warrant critical attention. Consequently, the imperative for an effective treatment strategy for advanced liver cancer is unequivocal. In recent years, notable progress in the development and application of immunotherapy has sparked a revolution in advanced liver cancer treatment. This study aims to elucidate a more comprehensive understanding of the current landscape, knowledge framework, research focal points, and nascent breakthrough trends in the domain of immunotherapy for hepatocellular carcinoma via bibliometric analysis. Method Our study involved conducting a comprehensive literature search spanning from 1999 through December 31, 2022, by utilizing the Science Citation Index Expanded (SCI-Expanded) database. Our aim was to amass all the papers and reviews related to immunotherapy for hepatocellular carcinoma. Our search strategy yielded a total of 4,486 papers. After exclusion of self-citations, we focused our analysis on 68,925 references. These references were cited 119,523 times (excluding 97,941 self-citations), boasting an average citation frequency of 26.64 times per paper, and achieved an h-index of 135. We employed analytical software tools like Citespace and VOSviewer to perform an intricate analysis of the amassed literature, covering various aspects, including geographical location, research institutions, publishing journals, authors, references, and keywords. Our method incorporated timeline analysis, burst detection, and co-occurrence analysis. The application of these tools facilitated a thorough evaluation of research hotspots, knowledge structure, and emerging advancements within the sphere of immunotherapy for hepatocellular carcinoma. Results Our bibliometric analysis disclosed a noteworthy escalation in the number of publications in the realm of hepatocellular carcinoma immunotherapy during the years 2021-2022, surpassing the aggregate number of papers published in the preceding decade (2011-2020). This surge underscores a sharp upturn in research interest within this field. Additionally, the research hotspot in hepatocellular carcinoma immunotherapy has perceptibly deviated from the preceding decade's trends. In terms of geographical distribution, China emerged as the leading country, producing 50.08% of the total publications. This was followed by the United States, with 963 papers, and Japan, contributing 335 papers. Among research institutions, Sun Yat-sen University was the most prolific, while Tim F. Greten stood out as the most published author with 42 papers to his credit. A co-reference network examination uncovered a shift in research emphasis within the field of hepatocellular carcinoma immunotherapy, highlighting the evolving nature of this important area of study. Conclusion Our bibliometric study highlights the significant evolution and growth in HCC immunotherapy research over the past two decades. Looking ahead, research will focus on improving the microenvironment post-drug resistance from immune combination therapy, harnessing adoptive cellular immunity (as CAR-T), subclassify the population and developing new tumor markers. Incorporation of technologies such as nanotechnology, microbiology, and gene editing will further advance HCC treatments. This progressive trajectory in the field promises a brighter future for individuals suffering from HCC.
Collapse
Affiliation(s)
- Zhiyi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Baipan Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Minhua He
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zi-Ling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|