1
|
Hlohlongoane MN, Marume U, Chikwanha OC, Mapiye C. An exploratory study on the quality of the Longissimus thoracis et lumborum muscle of impala (Aepyceros melampus), mountain reedbuck (Redunca fulvorufula) and springbok (Antidorcas marsupialis) in South Africa. Meat Sci 2024; 218:109630. [PMID: 39173458 DOI: 10.1016/j.meatsci.2024.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Physicochemical quality, fatty acids, volatile compounds and shelf-life profiles of the longissimus thoracis et lumborum muscle of three game species: impala, mountain reedbuck and springbok harvested from a private game estate were measured. Average live weight at slaughter that ranged from 28 to 36 kg was included in the study. The carcass weights were recorded 24 h after slaughter. The longissimus thoracis et lumborum (LTL) muscle was sampled for meat analyses. Impala and springbok LTL had higher (P ≤ 0.05) pH24 and cooking loss values than the mountain reedbuck. In addition, the springbok had more tender (P ≤ 0.05) meat than the impala and mountain reedbuck. The mountain reedbuck and springbok had higher (P ≤ 0.05) proportions of oleic acid, total monounsaturated fatty acids (FA), linoleic acid, omega (n)-6 polyunsaturated FA, and alpha-linolenic acid compared to impala. During retail display, redness and chroma decreased over time, while yellowness and hue showed an upward trend for all species (P ≤ 0.05). It was observed that species affected meat quality, total proportions of fatty acids and volatile compounds.
Collapse
Affiliation(s)
- M N Hlohlongoane
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa; Food Security and Safety Niche Area, School of Agriculture Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa
| | - U Marume
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa; Food Security and Safety Niche Area, School of Agriculture Sciences, Faculty of Natural and Agricultural Sciences, North West University, South Africa.
| | - O C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - C Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, South Africa
| |
Collapse
|
2
|
Zhu Z, Zhang H, Liu X, Zeng Q, Sun DW, Wang Z. In situ investigation of ice fractions and water states during partial freezing of pork loins and shrimps. Food Chem 2024; 457:140089. [PMID: 38955122 DOI: 10.1016/j.foodchem.2024.140089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Ice fractions and water states in partially frozen muscle foods greatly affect their quality. In the study, a variable temperature nuclear magnetic resonance (VT-NMR) with a liquid nitrogen temperature control system was employed to in situ investigate the relationship between ice fractions and temperatures and changes in water states during partial freezing and thawing of pork and shrimp. Results indicated that changes in ice fractions ranging from -2 ∼ -20 °C could be divided into 3 stages including slow increase, random leap and remarkable leap. More serious damages to the structures related to immobile water occurred in shrimp than in pork, and partial freezing also caused deterioration in muscle fibres related to free water. Additionally, -2 ∼ -3 °C and - 3.5 °C were the appropriate partial freezing temperatures for pork and shrimp, respectively. Therefore, the VT-NMR method possessed great potential for fundamental studies and applications of partial freezing of muscle foods.
Collapse
Affiliation(s)
- Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Han Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | | | | | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Zhe Wang
- Hefei Hualing Co., Ltd, Hefei 230000, China
| |
Collapse
|
3
|
Xia B, Wang J, Chen H, Lin S, Pan B, Wang N. Recent Advances in Antifreeze Peptide Preparation: A Review. Molecules 2024; 29:4913. [PMID: 39459283 PMCID: PMC11510398 DOI: 10.3390/molecules29204913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Antifreeze agents play a critical role in various fields including tissue engineering, gene therapy, therapeutic protein production, and transplantation. Commonly used antifreeze agents such as DMSO and other organic substances are known to have cytotoxic effects. Antifreeze proteins sourced from cold-adapted organisms offer a promising solution by inhibiting ice crystal formation; however, their effectiveness is hindered by a dynamic ice-shaping (DIS) effect and thermal hysteresis (TH) properties. In response to these limitations, antifreeze peptides (AFPs) have been developed as alternatives to antifreeze proteins, providing similar antifreeze properties without the associated drawbacks. This review explores the methods for acquiring AFPs, with a particular emphasis on chemical synthesis. It aims to offer valuable insights and practical implications to drive the realm of sub-zero storage.
Collapse
Affiliation(s)
- Bo Xia
- Correspondence: (B.X.); (N.W.)
| | | | | | | | | | - Nan Wang
- Department of Bioenvironment, Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
4
|
Wu K, Zhang H, Lou X, Wu X, Wang Y, Zhao K, Du X, Xia X. Analysis of NADES and its water tailoring effects constructed from inulin and L-proline based on structure, physicochemical and antifreeze properties. Int J Biol Macromol 2024; 277:134049. [PMID: 39038572 DOI: 10.1016/j.ijbiomac.2024.134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The structure, physicochemical and anti-freeze properties of natural deep eutectic solvent (NADES) composed of inulin and L-proline (molar ratio of 1:11) were investigated. Proton nuclear magnetic resonance (1H NMR), Fourier infrared spectroscopy (FTIR), and Raman spectroscopy revealed extensive hydrogen bonding in the pure NADES system, and the addition of water weakens the hydrogen bonding interactions between the components. The smaller transverse relaxation time (T2) represents the stronger hydrogen bond strength, and NADES+40 % H2O exhibited a large T2 (71.68 ms). When 10 % water was added, the viscosity decreased from 3620 mPa·s to 1777 mPa·s, but the conductivity increased to approximately twice the original value. Furthermore, adding 10 % water lowered the glass transition temperature (Tg) of NADES by 5.6 °C. NADES+10 % H2O exhibited favorable thermal stability and freezing resistance, as evidenced by the fact that approximately 82.61 % of the ice crystals area <200 μm2 after 30 min of crystallization. The changes in the structure, physicochemical, and anti-freezing properties of water-tailored NADES are expected to enable the design of novel antifreeze agents.
Collapse
Affiliation(s)
- Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinjiang Lou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Kuangyu Zhao
- Fang zheng comprehensive Product quality inspection and testing center, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Zheng O, Zhang L, Sun Q, Liu S. Basic Theory of Ice Crystallization Based on Water Molecular Structure and Ice Structure. Foods 2024; 13:2773. [PMID: 39272539 PMCID: PMC11395702 DOI: 10.3390/foods13172773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Freezing storage is the most common method of food preservation and the formation of ice crystals during freezing has an important impact on food quality. The water molecular structure, mechanism of ice crystal formation, and ice crystal structure are elaborated in the present review. Meanwhile the methods of ice crystal characterization are outlined. It is concluded that the distribution of the water molecule cluster structure during the crystallization process directly affects the formed ice crystals' structure, but the intrinsic relationship needs to be further investigated. The morphology and distribution of ice crystals can be observed by experimental methods while simulation methods provide the possibility to study the molecular structure changes in water and ice crystals. It is hoped that this review will provide more information about ice crystallization and promote the control of ice crystals in frozen foods.
Collapse
Affiliation(s)
- Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Li Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
6
|
Xia X, Zhang B, Huang Y, Zhu Y, Qu M, Liu L, Sun B, Zhu X. Soy Protein Isolate Gel Subjected to Freezing Treatment: Influence of Methylcellulose and Sodium Hexametaphosphate on Gel Stability, Texture and Structure. Foods 2024; 13:2117. [PMID: 38998623 PMCID: PMC11241562 DOI: 10.3390/foods13132117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Freezing affects texture and induces the loss of gel quality. This study investigated the effects of methylcellulose (MC) (0.2%, 0.4%, 0.6%) and sodium hexametaphosphate (SHMP) (0.15%, 0.3%) on the gel textural and structural properties of SPI gels before and after freezing, and explores the synergistic enhancement of gel texture and the underlying mechanisms resulting from the simultaneous addition of SHMP and MC to SPI gels. It was revealed that MC improved the strength of SPI gels through its thickening properties, but it could not inhibit the reduction of SPI gels after freezing. The 0.4% MC-SPI gel exhibited the best gel strength (193.2 ± 2.4 g). SHMP inhibited gel reduction during freezing through hydrogen bonding and ionic interactions; it enhanced the freezing stability of SPI gels. The addition of 0.15% SHMP made the water-holding capacity in SPI gels reach the highest score after freezing (58.2 ± 0.32%). The synergistic effect of MC and SHMP could improve the strength and the freezing stability of SPI gels. MC facilitated the release of ionizable groups within SPI, causing negatively charged SHMP groups to aggregate on the SPI and inhibit the freezing aggregation of proteins. These results provide a strong basis for the improvement of cryogenic soy protein gel performance by SHMP and MC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (X.X.); (B.Z.); (Y.H.); (Y.Z.); (M.Q.); (L.L.); (B.S.)
| |
Collapse
|
7
|
Zhu Y, Gu M, Su Y, Li Z, Xiao Z, Lu F, Han C. Recent advances in spoilage mechanisms and preservation technologies in beef quality: A review. Meat Sci 2024; 213:109481. [PMID: 38461675 DOI: 10.1016/j.meatsci.2024.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Beef is a popular meat product that can spoil and lose quality during postharvest handling and storage. This review examines different preservation methods for beef, from conventional techniques like low-temperature preservation, irradiation, vacuum packing, and chemical preservatives, to novel approaches like bacteriocin, essential oil, and non-thermal technologies. It also discusses how these methods work and affect beef quality. The review shows that beef spoilage is mainly due to enzymatic and microbial activities that impact beef freshness, texture, and quality. Although traditional preservation methods can extend beef shelf life, they have some drawbacks and limitations. Therefore, innovative preservation methods have been created and tested to improve beef quality and safety. These methods have promising results and potential applications in the beef industry. However, more research is needed to overcome the challenges and barriers for their commercialization. This review gives a comprehensive and critical overview of the current and emerging preservation methods for beef and their implications for the beef supply chain.
Collapse
Affiliation(s)
- Yiqun Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Yuhan Su
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning 110034, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang, Liaoning 110034, China.
| | - Chunyang Han
- Guangxi Key Laboratory of Health Care Food Science and Technology, Hezhou, Guangxi 542899, China.
| |
Collapse
|
8
|
Chen B, Du G, Li K, Wang Y, Shi P, Li J, Bai Y. Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field. Foods 2024; 13:1988. [PMID: 38998495 PMCID: PMC11241723 DOI: 10.3390/foods13131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
The present study demonstrates the effects of pH-shifting treatments and magnetic field-assisted pH-shifting treatments on the properties of myofibrillar protein (MP) in frozen meat. The solubility results indicate that the pH-shifting treatments increased the solubility of MP from 16.8% to a maximum of 21.0% (pH 9). The values of surface hydrophobicity and protein particle size distribution indicate that the pH-shifting treatment effectively inhibited protein aggregation through electrostatic interactions. However, under higher pH conditions (pH 10, 11), the treatments assisted by the magnetic field increased the degree of aggregation. The total thiol content and SDS-PAGE results further suggest that the magnetic field-assisted pH-shifting treatment accelerated the formation of covalent bonds among MPs under the alkaline environment. The results of the Differential Scanning Calorimetry (DSC) and protein secondary structure analysis indicate that the magnetic field promoted the unfolding of protein structures in an alkaline environment, markedly reducing the effective pH levels of pH-shifting. Electron paramagnetic resonance (EPR) data indicate that the phenomenon might be associated with the increased concentration of free radicals caused by the magnetic field treatment. In summary, the application of magnetic field-assisted pH-shifting treatments could emerge as a potent and promising strategy to improve the protein properties in frozen meat.
Collapse
Affiliation(s)
- Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Gaoang Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Panpan Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (B.C.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou 450001, China
| |
Collapse
|
9
|
Dong X, Raghavan V. High-intensity ultrasound treatment of Atlantic cod: Impact on nutrients, structure, sensory quality, bioactivity, and in-vitro digestibility. Food Res Int 2024; 186:114363. [PMID: 38729725 DOI: 10.1016/j.foodres.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
10
|
Indu GK, Habibullah S, Kumar Shaw T, Mohanty B. Effect of mango butter on the physicochemical properties of beeswax-Moringa seed oil-based oleogels for topical application. Drug Dev Ind Pharm 2024; 50:432-445. [PMID: 38526993 DOI: 10.1080/03639045.2024.2334314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE The purpose of this research was to determine any connections between the characteristics of oleogels made of beeswax and the impact of mango butter. METHODS Oleogel was prepared through inverted tube methods, and optimized through oil binding capacity. Other evaluations like bright field and polarized microscopy, Fourier-transform infrared (FTIR) spectroscopy, crystallization kinetics, mechanical study, and X-ray diffractometry (XRD). The drug release kinetic studies and in vitro antibacterial studies were performed. RESULTS FTIR study reveals that the gelation process does not significantly alter the chemical composition of the individual components. Prepared gel exhibiting fluid-like behavior or composed of brittle networks is particularly vulnerable to disruptions in their network design. The incorporation of mango butter increases the drug permeation. In-vitro microbial efficacy study was found to be excellent. CONCLUSION The studies revealed that mango butter can be used to modify the physico-chemical properties of the oleogels.
Collapse
Affiliation(s)
- Gourav Kumar Indu
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, India
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (deemed to be) University, Odisha, India
| | - Tapan Kumar Shaw
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, India
| |
Collapse
|
11
|
Zhao S, Hei M, Liu Y, Zhao Y, Wang H, Ma H, He H, Kang Z. Effect of low-frequency alternating magnetic fields on the physicochemical, conformational and rheological properties of myofibrillar protein after iterative freeze-thaw cycles. Int J Biol Macromol 2024; 267:131418. [PMID: 38582465 DOI: 10.1016/j.ijbiomac.2024.131418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in β-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China.
| | - Mengran Hei
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hongju He
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
12
|
Sijin Z, Zhang L, Yin T, You J, Liu R, Wang L, Huang Q, Wang W, Ma H. Exploring the versatility of carbohydrates in surimi and surimi products: novel applications and future perspectives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1874-1883. [PMID: 37885307 DOI: 10.1002/jsfa.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Carbohydrate is one kind of the most important additives in the production of surimi and surimi products, mainly due to its wide range of sources and superior functionality. In recent years, new carbohydrates (oligosaccharides and polysaccharides) have been gradually applied in the production of surimi and surimi products which is mainly driven by consumer requirement on nutritional and the flavors or taste quality and producer requirement on extending the shelf life, like low calorie intake, dietary fiber enrichment, rich taste and improvement of antioxidant properties. Besides anti-freezing and improvement in gelling ability, novel functionalities have been explored such as fat substitution, improving flavor, antibacterial effect, antioxidant effect and improving three-dimensional printability. With an in-depth study of the mechanism of carbohydrate improving the qualities of surimi and surimi products, the application of carbohydrates in surimi would be more effective. Therefore, this review summarizes the new carbohydrates applied in the processing of surimi and surimi products, and their novel functionalities. Additionally, progress of the research on the mechanism of carbohydrate improving the qualities of surimi is also reviewed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Sijin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- Wuhan Business University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Tao Yin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
13
|
Diao Y, Hao T, Liu X, Yang H. Advances in single ice crystal shaping materials: From nature to synthesis and applications in cryopreservation. Acta Biomater 2024; 174:49-68. [PMID: 38040076 DOI: 10.1016/j.actbio.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Antifreeze (glyco) proteins [AF(G)Ps], which are widely present in various extreme microorganisms, can control the formation and growth of ice crystals. Given the significance of cryogenic technology in biomedicine, climate science, electronic energy, and other fields of research, scientists are quite interested in the development and synthesis high-efficiency bionic antifreeze protein materials, particularly to reproduce their dynamic ice shaping (DIS) characteristics. Single ice crystal shaping materials, a promising class of ice-controlling materials, can alter the morphology and growth rate of ice crystals at low temperatures. This review aims to highlight the development of single ice crystal shaping materials and provide a brief comparison between a series of natural and bionic synthetic materials with DIS ability, which include AF(G)Ps, polymers, salts, and nanomaterials. Additionally, we summarize their applications in cryopreservation. Finally, this paper presents the current challenges and prospects encountered in developing high-efficiency and practical single ice crystal shaping materials. STATEMENT OF SIGNIFICANCE: The formation and growth of ice crystals hold a significant importance to an incredibly broad range of fields. Therefore, the design and fabrication of the single ice crystal shaping materials have gained the increasing popularity due to its key role in dynamic ice shaping (DIS) characteristics. Especially, single ice crystal shaping materials are considered one of the most promising candidates as ice inhibitors, presenting tremendous prospects for enhancing cryopreservation. In this work, we focus on the molecular characteristics, structure-function relationships, and DIS mechanisms of typical natural and biomimetic synthetic materials. This review may provide inspiration for the design and preparation of single ice crystal shaping materials and give guidance for the development of effective cryopreservation agent.
Collapse
Affiliation(s)
- Yunhe Diao
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Tongtong Hao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China..
| |
Collapse
|
14
|
Xie Y, Zhou K, Tan L, Ma Y, Li C, Zhou H, Wang Z, Xu B. Coexisting with Ice Crystals: Cryogenic Preservation of Muscle Food─Mechanisms, Challenges, and Cutting-Edge Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19221-19239. [PMID: 37947813 DOI: 10.1021/acs.jafc.3c06155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cryopreservation, one of the most effective preservation methods, is essential for maintaining the safety and quality of food. However, there is no denying the fact that the quality of muscle food deteriorates as a result of the unavoidable production of ice. Advancements in cryoregulatory materials and techniques have effectively mitigated the adverse impacts of ice, thereby enhancing the standard of freezing preservation. The first part of this overview explains how ice forms, including the theoretical foundations of nucleation, growth, and recrystallization as well as the key influencing factors that affect each process. Subsequently, the impact of ice formation on the eating quality and nutritional value of muscle food is delineated. A systematic explanation of cutting-edge strategies based on nucleation intervention, growth control, and recrystallization inhibition is offered. These methods include antifreeze proteins, ice-nucleating proteins, antifreeze peptides, natural deep eutectic solvents, polysaccharides, amino acids, and their derivatives. Furthermore, advanced physical techniques such as electrostatic fields, magnetic fields, acoustic fields, liquid nitrogen, and supercooling preservation techniques are expounded upon, which effectively hinder the formation of ice crystals during cryopreservation. The paper outlines the difficulties and potential directions in ice inhibition for effective cryopreservation.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
15
|
Li R, Fan X, Gao X, Zhou C. Injection of l-arginine or l-lysine before freezing delays the emulsifying and gelling properties deterioration of myofibrillar proteins of frozen porcine Longissimus lumborum muscle. Food Chem 2023; 427:136736. [PMID: 37393633 DOI: 10.1016/j.foodchem.2023.136736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to investigate the effects of injecting l-arginine and l-lysine solution before freezing and after thawing on the emulsifying and gelling properties of myofibrillar proteins (MPs) of frozen porcine longissimus dorsi. The results showed that the pre-freezing injections were more effective in alleviating the decrease in emulsifying properties of MPs compared with the post-thawing injections, as evidenced by higher emulsion creaming index, oil droplet size, interfacial absorptive protein amount, and viscoelasticity. Additionally, the pre-freezing injections could effectively mitigate the damage to the gelling properties of MPs, as evidenced by the formation of a homogeneous and compact gel network with stronger water retention, strength and chemical forces, as well as a higher proportion of non-flowing water, whereas the post-thawing injections could not. These results demonstrated that the injection of l-arginine and l-lysine solution before freezing could delay freezing-induced damage to the emulsifying and gelling properties of MPs, keeping the processing characteristics of frozen porcine.
Collapse
Affiliation(s)
- Rui Li
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xiaokang Fan
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Xun Gao
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China
| | - Cunliu Zhou
- Engineering Research Centre of Bio-Process, Ministry of Education, Hefei Univresity of Technology, Hefei 230009, Anhui, China; School of Food and Biological Enginereing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
16
|
Li H, Wang Q, Li W, Xia X. Cryoprotective Effect of NADES on Frozen-Thawed Mirror Carp Surimi in Terms of Oxidative Denaturation, Structural Properties, and Thermal Stability of Myofibrillar Proteins. Foods 2023; 12:3530. [PMID: 37835183 PMCID: PMC10572836 DOI: 10.3390/foods12193530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Quality degradation due to the formation and growth of ice crystals caused by temperature fluctuations during storage, transportation, or retailing is a common problem in frozen surimi. While commercial antifreeze is used as an ingredient in frozen surimi, its high sweetness does not meet the contemporary consumer demand for low sugar and low calories. Therefore, the development of new green antifreeze agents to achieve an enhanced frozen-thawed stability of surimi has received more attention. The aim of this study was to develop a cryoprotectant (a mixture of citric acid and trehalose) to enhance the frozen-thawed stability of surimi by inhibiting the oxidative denaturation and structural changes of frozen-thawed mirror carp (Cyprinus carpio L.) surimi myofibrillar protein (MP). The results showed that the amounts of free amine, sulfhydryl, α-helix, intrinsic fluorescence intensity, and thermal stability in the control significantly decreased after five F-T cycles, while the Schiff base fluorescence intensity, amounts of disulfide bonds and surface hydrophobicity significantly increased (p < 0.05). Compared to sucrose + sorbitol (SS), the natural deep eutectic solvents (NADES) effectively inhibited protein oxidation. After five F-T cycles, the α-helix content and Ca2+-ATPase activity of the NADES samples were 4.32% and 80.0%, respectively, higher, and the carbonyl content was 17.4% lower than those of the control. These observations indicate that NADES could inhibit oxidative denaturation and enhance the structural stability of MP.
Collapse
Affiliation(s)
| | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (Q.W.); (W.L.)
| |
Collapse
|
17
|
Bai X, Li Y, Liang W, Xia X, Bian C. Formation of advanced glycation end products of chicken breast meat induced by freeze-thaw cycles and subsequent cooking. Int J Biol Macromol 2023; 244:125387. [PMID: 37330105 DOI: 10.1016/j.ijbiomac.2023.125387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The impacts of freeze-thaw (F-T) cycles and cooking on the basic composition, protein and lipid oxidation, and advanced glycation end products (AGEs) of chicken breasts were studied. During F-T cycles, the moisture and protein contents of raw and cooked chicken breasts decreased, and protein and lipid oxidation occurred, increasing carbonyl and TBARS contents. Meanwhile, the contents of methylglyoxal, glyoxal, and hydroxymethylfurfural in raw meat increased by 2.27, 2.27, and 5 times, respectively, whereas glyoxal and hydroxymethylfurfural contents increased by 2.73 and 3 times, respectively, after cooking as F-T cycles increased. The formation of carboxymethyl lysine, pentosidine, and fluorescent AGEs in cooked samples was confirmed using an ELISA kit and fluorescent intensity. The study also revealed that AGEs contents of chicken meat were negatively correlated with moisture contents and positively correlated with carbonyl and TBARS levels. Therefore, F-T cycles and subsequent cooking promoted AGEs formation in cooked meat.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Weiwei Liang
- School of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Chun Bian
- School of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
18
|
Du X, Kong B, He J, Zhang Q, An G, Zhang T, Xia X. Cryoprotective effect of water-tailored trehalose-based natural deep eutectic solvents on frozen-thawed mirror carp (Cyprinus carpio L.) surimi. Food Chem 2023; 426:136633. [PMID: 37329788 DOI: 10.1016/j.foodchem.2023.136633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The inhibitory effect of water-tailored natural deep eutectic solvents (NADES) constructed from citric acid and trehalose with different amounts on the quality deterioration and oxidation of frozen-thawed (F-T) mirror carp (Cyprinus carpio L.) surimi was studied. NADES was obtained by citric acid to trehalose and the effect of moisture addition (v/v) on the structure, physicochemical, and anti-freezing capacity of NADES was assessed. NADES + 10 % H2O has relatively low viscosity (25 %) and strong freezing resistance. However, a 50 % H2O addition leads to the disappearance of the hydrogen bond. The addition of NADES effectively inhibits water loss, migration, and mechanical damage on F-T surimi. An inhibitory effect of 4 % (w/w) NADES on oxidation was verified by a decrease in carbonyl contents (17.4 %, 8.63 %) and TBARS (37.9 %, 15.2 %) of surimi compared with control (P < 0.05) and sucrose + sorbitol after 5F-T cycles, suggesting the potential of NADES as a cryoprotectant for the food industry.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Junjie He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Geer An
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tingting Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
19
|
Li H, Chang L, Pan N, Du X, Shi S, Zhang Q, An G, Xia X, Zhang L. Dynamic changes in postmortem quality of mirror carp (Cyprinus carpio L.): Based on oxidation reaction and mitochondrial function properties. Food Chem 2023; 425:136426. [PMID: 37245464 DOI: 10.1016/j.foodchem.2023.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
The dynamic changes in the postmortem quality of mirror carp (Cyprinus carpio L.) were investigated. With extended postmortem time, conductivity, redness, lipid oxidation, and protein oxidation all increased, while lightness, whiteness, and freshness decreased. At 4 h postmortem, the pH value reached a minimum (6.58), while the centrifugal loss and hardness reached a maximum (17.13% and 2539 g). Additionally, variations in mitochondria-related parameters during apoptosis were studied. Within 72 h postmortem, the content of reactive oxygen species initially decreased and subsequently increased; furthermore, there was a significant increase in the mitochondrial membrane permeability transition pore, membrane fluidity, and swelling (P < 0.05). Meanwhile, the cytosolic cytochrome c level decreased from 0.71 to 0.23, which indicated potential mitochondrial damage. Thus, mitochondrial dysfunction during postmortem aging can give rise to oxidation and the production of ammonia and amine compounds, which leads to flesh quality deterioration.
Collapse
Affiliation(s)
- Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lixin Chang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Geer An
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
20
|
Pan N, Bai X, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. The dynamic change in the degradation and in vitro digestive properties of porcine myofibrillar protein during freezing storage. Int J Biol Macromol 2023; 234:123682. [PMID: 36796280 DOI: 10.1016/j.ijbiomac.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The myofibrillar protein (MP) degradation and in vitro digestive properties of porcine longissimus during freezing at -8, -18, -25 and - 40 °C for 1, 3, 6, 9 and 12 months were investigated. As the freezing temperature and duration of frozen storage increased, the amino nitrogen and TCA (trichloroacetic acid)-soluble peptides of the samples were significantly increased, while the total sulfhydryl content and band intensity of myosin heavy chain, actin, troponin T, tropomyosin were significantly decreased (P < 0.05). At higher freezing storage temperatures and durations, the particle size of MP samples and the green fluorescent spots detected using a laser particle size analyzer and confocal laser scanning microscopy became large. After 12 months of freezing, the digestibility and the degree of hydrolysis of the trypsin digestion solution of the samples frozen at -8 °C were significantly decreased by 15.02 % and 14.28 %, respectively, when compared to fresh samples, whereas, the mean surface diameter (d3,2) and mean volume diameter (d4,3) were significantly increased by 14.97 % and 21.53 %, respectively. Therefore, frozen storage induced protein degradation and impaired the ability of digestion in the pork proteins. This phenomenon was more evident as the samples were frozen at high temperatures over a long storage period.
Collapse
Affiliation(s)
- Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
21
|
Li Y, Bai X, Zhao M, Wang H, Feng J, Xia X, Liu Q. Sodium alginate edible coating to reduce oil absorption of French fries with maintaining overall acceptability: Based on a water replacement mechanism. Int J Biol Macromol 2023; 236:124042. [PMID: 36924874 DOI: 10.1016/j.ijbiomac.2023.124042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
The effect of sodium alginate (SA) coating on the oil content and quality of fries was evaluated, and the inhibitory mechanism of SA on oil absorption was analyzed based on the water replacement theory. Compared to uncoated samples, the penetrated surface oil (PSO), structure oil (STO), and total oil (TO) contents, a*, and b* of coated fries decreased, whereas moisture content, L* and hardness increased with no significant difference revealed by sensory evaluation of all samples. The water contact angle of the films correlated negatively with the water content and hardness of the fries. In contrast, it correlated positively with PSO, STO, and TO contents. The TO content of fries with 1 % SA film which had a compact microstructure, was the lowest, reduced by 52.5 % compared to the control sample. SA coating reduces the pores and roughness on the fries' surface, which inhibits the oil from penetrating into the samples. SA coating decreased the T21, T22, and pores of the starch, and increased the P2b, P21, relative crystallinity, and ΔH significantly (P < 0.05). Therefore, SA coating inhibits the oil absorption in fries by reducing water evaporation which is attributed to the increase in double helices and crystallinity of starch.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengna Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
22
|
Chang L, Li Y, Bai X, Xia X, Xu W. Inhibition of Chitosan Ice Coating on the Quality Deterioration of Quick-Frozen Fish Balls during Repeated Freeze-Thaw Cycles. Foods 2023; 12:foods12040717. [PMID: 36832791 PMCID: PMC9955944 DOI: 10.3390/foods12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Chitosan ice coating's properties and its inhibitory effect on the quality deterioration of quick-frozen fish balls during repeated freeze-thaw cycles were investigated. When the chitosan (CH) coating concentration increased, the viscosity and ice coating rate increased, while water vapor permeability (WVP), water solubility, and transmittance decreased, and 1.5% CH was regarded as the excellent coating to apply to freeze-thaw quick-frozen fish balls. As the freeze-thaw cycles increased, the frost production, total volatile base nitrogen (TVB-N) values, and free water content of all of the samples increased significantly (p < 0.05), and the whiteness values, textural properties, and water-holding capacity (WHC) decreased. Freeze-thaw cycles expanded the aperture between the muscle fibers and the occurrence of crystallization and recrystallization between cells increased, damaging the original intact tissue structure, which were confirmed by SEM and optical microscopy. Compared with the untreated ones, the frost production, free water, and TVB-N of the samples with 1.5% CH decreased during 1, 3, 5, and 7 cycles, and were reduced by 23.80%, 32.21%, 30.33%, and 52.10% by the 7th cycle. The WHC and texture properties showed an increasing trend during the freeze-thaw cycles. Therefore, the chitosan ice coating effectively inhibited the quality deterioration by reducing water loss, the occurrence of ice crystallization and recrystallization, and the pores of the samples.
Collapse
Affiliation(s)
- Lixin Chang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| | - Weidong Xu
- Office of Student Work, Heilongjiang Agricultural Engineering Vocational College, Harbin 150088, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| |
Collapse
|
23
|
Kim YJ, Lee MH, Kim SM, Kim BK, Yong HI, Choi YS. Improvement of structural, physicochemical, and rheological properties of porcine myofibrillar proteins by high-intensity ultrasound treatment for application as Pickering stabilizers. ULTRASONICS SONOCHEMISTRY 2023; 92:106263. [PMID: 36516724 PMCID: PMC9768353 DOI: 10.1016/j.ultsonch.2022.106263] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 05/07/2023]
Abstract
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min Hyeock Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Se-Myung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea; Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
24
|
Effect of Potato Dietary Fiber on the Quality, Microstructure, and Thermal Stability of Chicken Patty. Foods 2022; 11:foods11243978. [PMID: 36553720 PMCID: PMC9778111 DOI: 10.3390/foods11243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A total of 150 chicken patties containing different concentrations of potato dietary fiber (PDF) (0.0−4.0%) (30 for every treatment) with three replicates were used to access the influence of PDF on their quality, microstructure, and thermal stability. PDF improved the quality of chicken patty, including significantly inhibiting dimensional change and improving water- and fat-binding properties and textural properties (p < 0.05). Moreover, PDF promoted a more homogeneous and dense meat−protein network structure to be formed. The results of thermal stability showed that PDF did not affect the thermal denaturation of proteins (p > 0.05). The samples with PDF (<3.0%) did not have a significant negative effect on sensory properties of chicken patty; meanwhile, there were more abundant nutrients and a lower energy value in samples with PDF compared with the control. Therefore, PDF could be a promising ingredient to improve the properties of chicken patties, which was related to the amount of PDF added and performed best at 3.0% level.
Collapse
|
25
|
Li H, Bai X, Li Y, Du X, Wang B, Li F, Shi S, Pan N, Zhang Q, Xia X, Kong B. The positive contribution of ultrasound technology in muscle food key processing and its mechanism-a review. Crit Rev Food Sci Nutr 2022; 64:5220-5241. [PMID: 36469643 DOI: 10.1080/10408398.2022.2153239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional processing methods can no longer meet the demands of consumers for high-quality muscle food. As a green and non-thermal processing technology, ultrasound has the advantage of improving processing efficiency and reducing processing costs. Of these, the positive effect of power ultrasound in the processing of muscle foods is noticeable. Based on the action mechanism of ultrasound, the factors affecting the action of ultrasound are analyzed. On this basis, the effect of ultrasound technology on muscle food quality and its action mechanism and application status in processing operations (freezing-thawing, tenderization, marination, sterilization, drying, and extraction) is discussed. The transient and steady-state effects, mechanical effects, thermal effects, and chemical effects can have an impact on processing operations through complex correlations, such as improving the efficiency of mass and heat transfer. Ultrasound technology has been proven to be valuable in muscle food processing, but inappropriate ultrasound treatment can also have adverse effects on muscle foods. In the future, kinetic models are expected to be an effective tool for investigating the application effects of ultrasound in food processing. Additionally, the combination with other processing technologies can facilitate their intensive application on an industrial level to overcome the disadvantages of using ultrasound technology alone.
Collapse
Affiliation(s)
- Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Wu K, Ren J, Wang Q, Nuerjiang M, Xia X, Bian C. Research Progress on the Preparation and Action Mechanism of Natural Deep Eutectic Solvents and Their Application in Food. Foods 2022; 11:3528. [PMID: 36360140 PMCID: PMC9655939 DOI: 10.3390/foods11213528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Natural deep eutectic solvent (NADES) is the eutectic mixture which is formed by hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) with a certain molar ratio through hydrogen bonding. NADES is a liquid with low cost, easy preparation, biodegradability, sustainability and environmental friendliness at room temperature. At present, it is widely used in food, medicine and other areas. First, the composition, preparation and properties of NADES are outlined. Second, the potential mechanism of NADES in freezing preservation, the removal of heavy metals from food and the extraction of phenolic compounds, and its application in cryopreservation, food analysis and food component extraction, and as a food taste enhancer and food film, are summarized. Lastly, the potential and challenges of its application in the food field are reviewed. This review could provide a theoretical basis for the wide application of NADES in food processing and production.
Collapse
Affiliation(s)
- Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Maheshati Nuerjiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Bian
- School of Food Engineering, Harbin University, Harbin 150036, China
| |
Collapse
|