1
|
Brigagão Pacheco da Silva C, Nascimento-Silva EA, Zaramela LS, da Costa BRB, Rodrigues VF, De Martinis BS, Carlos D, Tostes RC. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Physiol Genomics 2025; 57:179-194. [PMID: 39918827 DOI: 10.1152/physiolgenomics.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Gut microbiota impacts host homeostasis and diseases. Chronic plus binge ethanol consumption has been linked to increased injuries than chronic or binge ethanol intake alone. We hypothesized that distinct shapes in gut microbiota composition are induced by chronic, binge, and the association of these treatments, thereby affecting host functions and contributing to sex-based differences in alcohol use disorders. Male and female C57BL/6J mice were submitted to chronic, binge, or chronic plus binge ethanol feeding. DNA was extracted from fecal microbiota, followed by analysis of the V3-V4 region of the 16S rRNA gene and sequencing on an Illumina platform. Gut microbiome analysis was performed using QIIME v2022.2.0. Functional profiling of the gut microbiome was performed using PICRUSt2. Ethanol differentially affected the gut microbiota of female and male mice. Decreased α diversity was observed in male and female mice from the chronic plus binge and chronic groups, respectively. The genera Faecalibaculum, Lachnospiraceae, and Alistipes were identified as major potential biomarkers for gut dysbiosis induced by ethanol consumption. In addition, ethanol-induced gut dysbiosis altered several metabolic pathways. Ethanol consumption modifies the mouse gut microbiome in a drinking pattern- and sex-dependent manner, potentially leading to different susceptibility to ethanol-related diseases. Chronic plus binge ethanol intake induces a more pronounced gut dysbiosis in male mice. Conversely, chronic ethanol is linked to a greater degree of gut dysbiosis in female mice. The changed gut microbiome may be potentially targeted to prevent, mitigate, or treat alcohol use disorders.NEW & NOTEWORTHY Ethanol alters the mouse gut microbiome in a drinking pattern- and sex-dependent manner. Chronic plus binge ethanol intake induces a more severe gut dysbiosis in male mice, whereas chronic ethanol consumption appears to be a more potent inductor of gut dysbiosis in female mice. Ethanol-induced gut dysbiosis alters several pathways linked to metabolism, genetic and environmental information processing, cellular processes, organism systems, and neurological human diseases.
Collapse
Affiliation(s)
| | | | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Swarup S, Gupta A, Chung M, Radhakrishnan V, Davis V, Lynch MDJ, Charles TC, Cheng J, Mendoza G. Rapid shift of gut microbiome and enrichment of beneficial microbes during arhatic yoga meditation retreat in a single-arm pilot study. BMC Complement Med Ther 2025; 25:51. [PMID: 39939954 PMCID: PMC11823196 DOI: 10.1186/s12906-025-04783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The human microbiome plays a vital role in human health, mediated by the gut-brain axis, with a large diversity of functions and physiological benefits. The dynamics and mechanisms of meditations on oral and gut microbiome modulations are not well understood. This study investigates the short-term modulations of the gut and oral microbiome during an Arhatic Yoga meditation retreat as well as on the role of microbiome in improving well-being through a possible gut-brain axis. METHODS A single-arm pilot clinical trial was conducted in a controlled environment during a 9-day intensive retreat of Arhatic Yoga meditation practices with vegetarian diet. Oral and fecal samples of 24 practitioners were collected at the start (Day0: T1), middle (Day3: T2), and end (Day9:T3) of the retreat. Targeted 16S rRNA gene amplicon sequencing was performed for both oral and gut samples. Functional pathway predictions was identified using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2). DESeq2 was used to identify the differential abundant taxa. Various statistical analyses were performed to assess the significant changes in the data. RESULTS Our findings revealed that Arhatic Yoga meditation together with a vegetarian diet led to changes in the oral and gut microbiome profiles within the 9-day retreat. Oral microbiome profile showed a significant (p < 0.05) difference in the species richness and evenness at the end of study, while non-metric multidimensional scaling (NMDS) confirmed the shift in the gut microbiome profile of the practitioners by T2 timepoint, which was further supported by PERMANOVA analysis (p < 0.05). Health-benefiting microbes known to improve the gastrointestinal and gut-barrier functions, immune modulation, and gut-brain axis were enriched. Gut microbiome of both beginner and advanced Arhatic Yoga practitioners showed similar trends of convergence by the end of study. This implies a strong selection pressure by Arhatic Yoga meditation together with a vegetarian diet on the beneficial gut microbiome. CONCLUSION This pilot study demonstrates that Arhatic Yoga meditation practices combined with a vegetarian diet during a short intensive retreat resulted in enrichment of known health-promoting microbes. Such microbial consortia may be developed for potential health benefits and used as probiotics to improve the gastrointestinal and immune systems, as well as functions mediated by the gut-brain axis. TRIAL REGISTRATION Study was submitted in https://clinicaltrials.gov/on28-02-2024 . Retrospective registered.
Collapse
Affiliation(s)
- Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore.
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, 117456, Singapore.
- Pranic Healing Research Institute, New Jersey, 07071, USA.
| | - Abhishek Gupta
- Singapore Centre For Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore, 117456, Singapore
| | - Marianne Chung
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| | - Vaishnavi Radhakrishnan
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| | - Valerie Davis
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| | | | - Trevor C Charles
- Metagenom Bio Life Science Inc, Waterloo, Canada
- University of Waterloo, Waterloo, Canada
| | - Jiujun Cheng
- Metagenom Bio Life Science Inc, Waterloo, Canada
- University of Waterloo, Waterloo, Canada
| | - Glenn Mendoza
- Pranic Healing Research Institute, New Jersey, 07071, USA
- Center for Pranic Healing, New Jersey, USA
| |
Collapse
|
3
|
Wang S, Gao L, Wang C, Bai J, Shen M, Zhao X, Lin M. Effects of internet-based cognitive behavioral therapy on anxiety and depressive symptoms among patients with cardiovascular and cerebrovascular diseases: a systematic review and meta-analysis. Front Psychiatry 2025; 15:1433558. [PMID: 39886052 PMCID: PMC11779714 DOI: 10.3389/fpsyt.2024.1433558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Background This study aimed to evaluate the effectiveness of Internet-based Cognitive Behavioral Therapy (ICBT) in reducing anxiety and depressive symptoms among patients with cardiovascular diseases (CVDs) and to explore how intervention characteristics, such as module number and program duration, influence treatment outcomes. Methods A systematic review and meta-analysis were conducted by searching eight databases, including PubMed, Embase, and Cochrane Library, for randomized controlled trials (RCTs) published up to December 2023. Studies involving adult CVD patients with anxiety or depressive symptoms who underwent ICBT interventions were included. Statistical analyses used random-effects models, with subgroup analyses performed to assess the impact of intervention format, module number, and program duration. Sensitivity and publication bias assessments ensured the robustness of the findings. Results Eight RCTs with 1177 participants were included. ICBT significantly reduced depressive symptoms (SMD = -0.32, 95% CI [-0.56, -0.08], p < 0.015) and anxiety symptoms (SMD = -0.37, 95% CI [-0.68, -0.06], p < 0.001). Subgroup analysis indicated that self-guided ICBT was more effective than therapist-guided ICBT. Programs with fewer than eight modules were more effective for anxiety, while those with eight or more modules were more effective for depression. Shorter programs (< 9 weeks) were better for anxiety, whereas longer programs (≥ 9 weeks) were more effective for depression. Conclusions ICBT is an effective intervention for managing anxiety and depression in CVD patients. Tailoring ICBT interventions based on symptom type, module number, and program duration can optimize outcomes. Future research should explore personalized, long-term strategies to enhance effectiveness and safety.
Collapse
Affiliation(s)
- Shuangyu Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lishuo Gao
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Congyu Wang
- Department of Graduate, Tianjin Medical University, Tianjin, China
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Mengshuang Shen
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuejie Zhao
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Lin
- Department of Nursing, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Wang Y, Magliano DJ. Special Issue: "New Trends in Diabetes, Hypertension, and Cardiovascular Diseases-2nd Edition". Int J Mol Sci 2025; 26:449. [PMID: 39859164 PMCID: PMC11764960 DOI: 10.3390/ijms26020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) encompass a range of conditions affecting both the heart (e.g., coronary heart disease and heart failure [1]) and blood vessels (e.g., cerebrovascular disease [2] and peripheral artery disease [3]) [...].
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Dianna J. Magliano
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| |
Collapse
|
5
|
Lin CC, Chen CS. Bacterial proteome microarray technology in biomedical research. Trends Biotechnol 2025:S0167-7799(24)00361-5. [PMID: 39755450 DOI: 10.1016/j.tibtech.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs). This review highlights significant outcomes from recent studies, focusing on their diverse applications in biomedical research. Notable findings include the identification of novel antigens and diagnostic markers for gastrointestinal infections, autoimmune diseases, and mental health disorders. This technology promises to further elucidate the complex relationship between bacteria and their hosts, ultimately informing the development of new diagnostic, therapeutic, and preventive strategies.
Collapse
Affiliation(s)
- Chia-Chi Lin
- School of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Kundo NK, Kitada K. Is fruits granola beneficial for blood pressure management? Hypertens Res 2025; 48:439-441. [PMID: 39516369 DOI: 10.1038/s41440-024-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Netish Kumar Kundo
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan.
| |
Collapse
|
7
|
Wang Y, Bai M, Peng Q, Li L, Tian F, Guo Y, Jing C. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease. Eur J Med Res 2024; 29:614. [PMID: 39710789 DOI: 10.1186/s40001-024-02224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator. This abstract aims to elucidate the connection between the gut microbiota and angiogenesis in various diseases. The gut microbiota influences angiogenesis through various mechanisms, including the production of metabolites that directly or indirectly affect vascularization. For example, short-chain fatty acids (SCFAs) such as butyrate, propionate, and acetate are known to regulate immune responses and inflammation, thereby affecting angiogenesis. In the context of cardiovascular diseases, the gut microbiota promotes atherosclerosis and vascular dysfunction by producing trimethylamine N-oxide (TMAO) and other metabolites that promote inflammation and endothelial dysfunction. Similarly, in neurodegenerative diseases, the gut microbiota may influence neuroinflammation and the integrity of the blood-brain barrier, thereby affecting angiogenesis. In cases of fractures and wound healing, the gut microbiota promotes angiogenesis by activating inflammatory responses and immune effects, facilitating the healing of tissue damage. In cancer, the gut microbiota can either inhibit or promote tumor growth and angiogenesis, depending on the specific bacterial composition and their metabolites. For instance, some bacteria can activate inflammasomes, leading to the production of inflammatory factors that alter the tumor immune microenvironment and activate angiogenesis-related signaling pathways, affecting tumor angiogenesis and metastasis. Some bacteria can directly interact with tumor cells, activating angiogenesis-related signaling pathways. Diet, as a modifiable factor, significantly influences angiogenesis through diet-derived microbial metabolites. Diet can rapidly alter the composition of the microbiota and its metabolic activity, thereby changing the concentration of microbial-derived metabolites and profoundly affecting the host's immune response and angiogenesis. For example, a high animal protein diet promotes the production of pro-atherogenic metabolites like TMAO, activating inflammatory pathways and interfering with platelet function, which is associated with the severity of coronary artery plaques, peripheral artery disease, and cardiovascular diseases. A diet rich in dietary fiber promotes the production of SCFAs, which act as ligands for cell surface or intracellular receptors, regulating various biological processes, including inflammation, tissue homeostasis, and immune responses, thereby influencing angiogenesis. In summary, the role of the gut microbiota in angiogenesis is multifaceted, playing an important role in disease progression by affecting various biological processes such as inflammation, immune responses, and multiple signaling pathways. Diet-derived microbial metabolites play a crucial role in linking the gut microbiota and angiogenesis. Understanding the complex interactions between diet, the gut microbiota, and angiogenesis has the potential to uncover novel therapeutic targets for managing these conditions. Therefore, interventions targeting the gut microbiota and its metabolites, such as through fecal microbiota transplantation (FMT) and the application of probiotics to alter the composition of the gut microbiota and enhance the production of beneficial metabolites, present a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Mingshuai Bai
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qifan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Guo
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
8
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
10
|
Wang Y, Cross TWL, Lindemann SR, Tang M, Campbell WW. Healthy Dietary Pattern Cycling Affects Gut Microbiota and Cardiovascular Disease Risk Factors: Results from a Randomized Controlled Feeding Trial with Young, Healthy Adults. Nutrients 2024; 16:3619. [PMID: 39519452 PMCID: PMC11547453 DOI: 10.3390/nu16213619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Previous research demonstrates that adopting, abandoning, and re-adopting (i.e., cycling) a healthy dietary pattern (HDP) improved, reverted, and re-improved cardiovascular disease (CVD) risk factors. In addition, changes in CVD risk factors are associated with dietary modifications of gut microbiota. OBJECTIVE We sought to assess the effects of cycling an HDP on gut microbiota and CVD risk factors. METHODS Retrospectively, we used data from a randomized controlled, crossover trial with three 3-week controlled dietary interventions, each separated by a 5-week period of participant-chosen, uncontrolled food intake. Seventeen participants (10 males, 7 females, age 26 ± 4 years old, BMI 23 ± 3 kg/m2) all consumed intervention diets that followed healthy U.S.-style dietary patterns. Gut microbiota composition and cardiovascular risk factors were measured before and after each HDP. RESULTS Repeatedly adopting and abandoning an HDP led to a cycling pattern of changes in the gut microbial community and taxonomic composition. During the HDP cycles, relative abundances of several bacterial taxa (e.g., Collinsella, Mediterraneibacter, Romboutsia, and Dorea) decreased and returned to baseline repeatedly. Similar HDP cycling occurred for multiple CVD risk factors (i.e., serum total cholesterol and LDL-C concentrations). Consistent negative associations were observed between changes in Mediterraneibacter or Collinsella and serum total cholesterol/HDL-C ratio. CONCLUSIONS These results support previous findings that HDP cycling affected multiple CVD risk factors and expand the HDP cycling phenomenon to include several bacterial taxa. Young adults are encouraged to adopt and sustain a healthy dietary pattern to improve cardiovascular health, potentially through modifying gut microbiota composition.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (Y.W.); (T.-W.L.C.)
| | - Tzu-Wen L. Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (Y.W.); (T.-W.L.C.)
| | | | - Minghua Tang
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (Y.W.); (T.-W.L.C.)
| |
Collapse
|
11
|
Athmuri DN, Bhattacharyya J, Bhatnagar N, Shiekh PA. Alleviating hypoxia and oxidative stress for treatment of cardiovascular diseases: a biomaterials perspective. J Mater Chem B 2024; 12:10490-10515. [PMID: 39302443 DOI: 10.1039/d4tb01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A state of hypoxia (lack of oxygen) persists in the initial and later phases of healing in cardiovascular diseases, which can alter the tissue's repair or regeneration, ultimately affecting the structure and functionality of the related organ. Consequently, this results in a cascade of events, leading to metabolic stress and the production of reactive oxygen species (ROS) and autophagy. This unwanted situation not only limits the oxygen supply to the needy tissues but also creates an inflammatory state, limiting the exchange of nutrients and other supplements. Consequently, biomaterials have gained considerable attention to alleviate hypoxia and oxidative stress in cardiovascular diseases. Numerous oxygen releasing and antioxidant biomaterials have been developed and proven to alleviate hypoxia and oxidative stress. This review article summarizes the mechanisms involved in cardiovascular pathologies due to hypoxia and oxidative stress, as well as the treatment modalities currently in practice. The applications, benefits and possible shortcomings of these approaches have been discussed. Additionally, the review explores the role of novel biomaterials in combating the limitations of existing approaches, primarily focusing on the development of oxygen-releasing and antioxidant biomaterials for cardiac repair and regeneration. It also directs attention to various other potential applications with critical insights for further advancement in this area.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Jayanta Bhattacharyya
- Bio-therapeutics Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
12
|
Li J, Liang J, Liu Y, Sun W, Sun W. Basal metabolic rate mediates the causal relationship between gut microbiota and osteoarthritis: a two-step bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1371679. [PMID: 39411433 PMCID: PMC11473340 DOI: 10.3389/fmicb.2024.1371679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Background The relationship between gut microbiota and osteoarthritis (OA) occurrence remains unclear. Existing research needs to clearly understand how basal metabolic rate (BMR) regulates this relationship. Therefore, using a two-step bidirectional Mendelian Randomization approach, our study aims to investigate whether BMR levels mediate the causal relationship between gut microbiota and OA. Methods In this study, we examined publicly available summary statistics from Genome-Wide Association Studies (GWAS) to determine the correlation between gut microbiota and OA. The analysis included one primary dataset and two secondary datasets. Initially, a two-step, two-sample, and reverse MR analysis was performed to identify the causal relationship between gut microbiota and OA. Subsequently, a two-step MR analysis revealed that the relationship between microbiota and OA is mediated by BMR. Sensitivity analyses confirmed the robustness of the study results. Results In our analysis of the primary dataset, we discovered a positive correlation between three taxa and the outcome of OA, and eight taxa exhibited a negative correlation with the OA outcome. Through comparisons with the secondary dataset and multiple testing corrections, we found a negative association between the class Actinobacteria (OR=0.992886277, p-value = 0.003) and the likelihood of OA occurrence. Notably, knee osteoarthritis (KOA) and hip osteoarthritis (HOA) had a strong negative correlation (OR = 0.927237553/0.892581219). Our analysis suggests that BMR significantly mediates the causal pathway from Actinobacteria to OA, with a mediated effect of 2.59%. Additionally, BMR mediates 3.98% of the impact in the path from the order Bifidobacteriales and the family Bifidobacteriaceae to OA. Besides these findings, our reverse analysis did not indicate any significant effect of OA on gut microbiota or BMR. Conclusion Our research results indicate that an increase in the abundance of specific gut microbial taxa is associated with a reduced incidence of OA, and BMR levels mediate this causal relationship. Further large-scale randomized controlled trials are necessary to validate the causal impact of gut microbiota on the risk of OA. This study provides new insights into the potential prevention of OA by modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Singh A, Kishore PS, Khan S. From Microbes to Myocardium: A Comprehensive Review of the Impact of the Gut-Brain Axis on Cardiovascular Disease. Cureus 2024; 16:e70877. [PMID: 39497887 PMCID: PMC11533101 DOI: 10.7759/cureus.70877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide despite advances in medical research and therapeutics. Emerging evidence suggests a significant role of the gut-brain axis, a complex communication network involving the gut microbiota, central nervous system, and cardiovascular system, in modulating cardiovascular health. The gut microbiota influences systemic inflammation, neurohumoral pathways, and metabolic processes, which are critical in the pathogenesis of CVD. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various cardiovascular conditions, including hypertension, atherosclerosis, and heart failure. This comprehensive review aims to elucidate the intricate relationship between the gut microbiome, brain, and cardiovascular system, highlighting the mechanisms by which gut-derived signals affect cardiovascular function. Key microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), and their impact on vascular health and blood pressure regulation are discussed. Furthermore, the review explores potential therapeutic strategies targeting the gut-brain axis, including probiotics, prebiotics, dietary modifications, and pharmacological interventions, to improve cardiovascular outcomes. Despite promising findings, the field faces challenges such as individual variability in microbiome composition, complexities in gut-brain interactions, and the need for robust clinical trials to establish causality. Addressing these challenges through interdisciplinary research could pave the way for innovative, personalized therapeutic approaches. This review provides a comprehensive understanding of the gut-brain-cardiovascular axis, underscoring its potential as a novel target for preventing and treating CVD.
Collapse
Affiliation(s)
- Akhilesh Singh
- Emergency Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Sharleen Khan
- Ophthalmology, Heritage Institute of Medical Sciences, Varanasi, IND
| |
Collapse
|
14
|
Qi L, Li Y, Chen Z, Wei C, Wen X, Hu S, Wu H, Lv Z, Xu Z, Xia L. Microbiome-metabolome analysis insight into the effects of high-salt diet on hemorheological functions in SD rats. Front Nutr 2024; 11:1408778. [PMID: 39381352 PMCID: PMC11460366 DOI: 10.3389/fnut.2024.1408778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
The present study examined the effect of two dietary regimens with elevated salt concentrations (4% and 8% salt) on hemorheological functions of SD rats, and explored the underlying mechanisms mainly through microbiome-metabolome analysis. An 8% HSD substantially altered the hemorheological parameters, and compromised intestinal barrier integrity and reduced the short-chain fatty acid levels. The microbiome-metabolome analysis revealed that 49 genus-specific microorganisms and 156 metabolites showed a consistent trend after exposure to both 4% and 8% HSDs. Pathway analysis identified significant alterations in key metabolites within bile acid and arachidonic acid metabolism pathways. A two-sample Mendelian randomization (MR) analysis verified the link between high dietary salt intake and hemorheology. It also suggested that some key microbes and metabolites (such as Ruminococcaceae_UCG-005, Lachnospiraceae_NK4A136, Ruminiclostridium_6, and Ruminococcaceae_UCG-010, TXB-2, 11,12-diHETrE, glycochenodeoxycholate) may involve in abnormalities in blood rheology caused by high salt intake. Collectively, our findings underscored the adverse effects of high dietary salt on hemorheological functions and provide new insight into the underlying mechanism based on microbiome-metabolome analysis.
Collapse
Affiliation(s)
- Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yao Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Zhixuan Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Changhong Wei
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xue Wen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuangyan Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hang Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuoheng Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhangmeng Xu
- Department of Neck, Shoulder, Waist, and Leg Pain, Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
16
|
Xin M, Xu A, Tian J, Wang L, He Y, Jiang H, Yang B, Li B, Sun Y. Anthocyanins as natural bioactives with anti-hypertensive and atherosclerotic potential: Health benefits and recent advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155889. [PMID: 39047414 DOI: 10.1016/j.phymed.2024.155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Hypertension is a highly prevalent chronic metabolic illness affecting individuals of all age groups. Furthermore, it is a significant risk factor for the development of atherosclerosis (AS), as a correlation between hypertension and AS has been observed. However, the effective treatments for either of these disorders appear to be uncommon. METHODS A systematic search of articles published in PubMed, Web of Science, ScienceDirect, Scopus, and Google Scholar databases over the last decade was performed using the following keywords: hypertension, AS, anthocyanins, antioxidants, gut microbes, health benefits, and bioactivity. RESULTS The available research indicates that anthocyanin consumption can achieve antioxidant effects by inducing the activation of intracellular nuclear factor erythroid 2-related factor (Nrf2) and the expression of antioxidant genes. Moreover, previous reports showed that anthocyanins can enhance the human body's ability to fight against inflammation and cancer through the inhibition of inflammatory factors and the regulation of related signaling pathways. They can also protect the blood vessels and nervous system by regulating the production and function of endothelial nitric oxide synthase (eNOS). Gut microorganisms play an important role in various chronic diseases. Our research has also investigated the role of anthocyanins in the metabolism of the gut microbiota, leading to significant breakthroughs. This study not only presents a unique strategy for reducing the risk of cardiovascular diseases (CVDs) without the need for medicine but also provides insights into the development and utilization of intestinal probiotic dietary supplements. CONCLUSION In this review, different in vitro and in vivo studies have shown that anthocyanins slow down the onset and progression of hypertension and AS through different mechanisms. In addition, gut microbial metabolites also play a crucial role in diseases through the gut-liver axis.
Collapse
Affiliation(s)
- Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Hongzhou Jiang
- Anhui Ziyue Biotechnology Co., Ltd, Wuhu, Anhui,241000, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
17
|
Trehan S, Singh G, Bector G, Jain P, Mehta T, Goswami K, Chawla A, Jain A, Puri P, Garg N. Gut Dysbiosis and Cardiovascular Health: A Comprehensive Review of Mechanisms and Therapeutic Potential. Cureus 2024; 16:e67010. [PMID: 39280497 PMCID: PMC11402436 DOI: 10.7759/cureus.67010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. Recent research has identified gut dysbiosis - an imbalance in the gut microbiota - as a significant factor in the development of CVDs. This complex relationship between gut microbiota and cardiovascular health involves various mechanisms, including the production of metabolites such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs). These metabolites influence lipid metabolism, inflammation, and blood pressure regulation. In addition, the gut-brain axis and neurohormonal pathways play crucial roles in cardiovascular function. Epidemiological studies have linked gut dysbiosis to various cardiovascular conditions, highlighting the potential for therapeutic interventions. Dietary changes, probiotics, and prebiotics have shown promise in modulating gut microbiota and reducing cardiovascular risk factors. This underscores the critical role of gut health in preventing and treating CVDs. However, further research is needed to develop targeted therapies that can enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Shubam Trehan
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Gurjot Singh
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Gaurav Bector
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Prateek Jain
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Tejal Mehta
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Kanishka Goswami
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Avantika Chawla
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Aayush Jain
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Piyush Puri
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | - Nadish Garg
- Division of Cardiology, Memorial Hermann Pearland Hospital, Pearland, USA
- Division of Cardiology, Memorial Hermann Southeast Hospital, Houston, USA
| |
Collapse
|
18
|
Xiao JH, Wang Y, Zhang XM, Wang WX, Zhang Q, Tang YP, Yue SJ. Intestinal permeability in human cardiovascular diseases: a systematic review and meta-analysis. Front Nutr 2024; 11:1361126. [PMID: 39086542 PMCID: PMC11289889 DOI: 10.3389/fnut.2024.1361126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background There is a link between cardiovascular diseases and intestinal permeability, but it is not clear. This review aimed to elucidate intestinal permeability in cardiovascular diseases by meta-analysis. Methods Multidisciplinary electronic databases were searched from the database creation to April 2023. All included studies were assessed for risk of bias according to the Joanna Briggs Institute Critical Appraisal Checklist. The heterogeneity of each study was estimated using the I2 statistic, and the data were analyzed using Review Manager 5.3 and Stata 16.0. Results In total, studies in 13 pieces of literature were included in the quantitative meta-analysis. These studies were conducted among 1,321 subjects mostly older than 48. Patients had higher levels of intestinal permeability markers (lipopolysaccharide, d-lactate, zonulin, serum diamine oxidase, lipopolysaccharide-binding protein, intestinal fatty acid binding protein, and melibiose/rhamnose) than controls (standard mean difference SMD = 1.50; 95% CI = 1.31-1.88; p < 0.00001). Similarly, lipopolysaccharide levels were higher in patients than in controls (SMD = 1.61; 95% CI = 1.02-2.21; p < 0.00001); d-lactate levels were higher in patients than in controls (SMD = 1.16; 95% CI = 0.23-2.08; p = 0.01); zonulin levels were higher in patients than in controls (SMD = 1.74; 95% CI = 1.45-2.03; p < 0.00001); serum diamine oxidase levels were higher in patients than in controls (SMD = 2.51; 95% CI = 0.29-4.73; p = 0.03). Conclusion The results of the meta-analysis verified that the intestinal barrier was damaged and intestinal permeability was increased in patients with cardiovascular diseases. These markers may become a means of the diagnosis and treatment of cardiovascular diseases. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=414296, identifier CRD42023414296.
Collapse
Affiliation(s)
- Jiang-Hong Xiao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Xi-Mei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
19
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
20
|
Ondondo B. Editorial: Overcoming challenges in microbial immunology: 2022. Front Immunol 2024; 15:1436631. [PMID: 38953029 PMCID: PMC11215133 DOI: 10.3389/fimmu.2024.1436631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- Beatrice Ondondo
- Immunology Department, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| |
Collapse
|
21
|
Boel L, Gallacher DJ, Marchesi JR, Kotecha S. The Role of the Airway and Gut Microbiome in the Development of Chronic Lung Disease of Prematurity. Pathogens 2024; 13:472. [PMID: 38921770 PMCID: PMC11206380 DOI: 10.3390/pathogens13060472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic lung disease (CLD) of prematurity, a common cause of morbidity and mortality in preterm-born infants, has a multifactorial aetiology. This review summarizes the current evidence for the effect of the gut and airway microbiota on the development of CLD, highlighting the differences in the early colonisation patterns in preterm-born infants compared to term-born infants. Stool samples from preterm-born infants who develop CLD have less diversity than those who do not develop CLD. Pulmonary inflammation, which is a hallmark in the development of CLD, may potentially be influenced by gut bacteria. The respiratory microbiota is less abundant than the stool microbiota in preterm-born infants. There is a lack of clear evidence for the role of the respiratory microbiota in the development of CLD, with results from individual studies not replicated. A common finding is the presence of a single predominant bacterial genus in the lungs of preterm-born infants who develop CLD. Probiotic preparations have been proposed as a potential therapeutic strategy to modify the gut or lung microbiota with the aim of reducing rates of CLD but additional robust evidence is required before this treatment is introduced into routine clinical practice.
Collapse
Affiliation(s)
- Lieve Boel
- Neonatal Unit, University Hospital of Wales, Cardiff CF14 4XW, UK; (L.B.); (D.J.G.)
| | - David J. Gallacher
- Neonatal Unit, University Hospital of Wales, Cardiff CF14 4XW, UK; (L.B.); (D.J.G.)
| | - Julian R. Marchesi
- Division of Digestive Diseases, Faculty of Medicine, Imperial College, London W2 1NY, UK;
| | - Sailesh Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
22
|
Sliwa K, Viljoen CA, Stewart S, Miller MR, Prabhakaran D, Kumar RK, Thienemann F, Piniero D, Prabhakaran P, Narula J, Pinto F. Cardiovascular disease in low- and middle-income countries associated with environmental factors. Eur J Prev Cardiol 2024; 31:688-697. [PMID: 38175939 DOI: 10.1093/eurjpc/zwad388] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
There is a growing recognition that the profound environmental changes that have occurred over the past century pose threats to human health. Many of these environmental factors, including air pollution, noise pollution, as well as exposure to metals such as arsenic, cadmium, lead, and other metals, are particularly detrimental to the cardiovascular health of people living in low-to-middle income countries (LMICs). Low-to-middle income countries are likely to be disproportionally burdened by cardiovascular diseases provoked by environmental factors. Moreover, they have the least capacity to address the core drivers and consequences of this phenomenon. This review summarizes the impact of environmental factors such as climate change, air pollution, and metal exposure on the cardiovascular system, and how these specifically affect people living in LMICs. It also outlines how behaviour changes and interventions that reduce environmental pollution would have significant effects on the cardiovascular health of those from LMICs, and globally.
Collapse
Affiliation(s)
- Karen Sliwa
- Cape Heart Institute, Chris Barnard Building, University of Cape Town, Faculty of Health Sciences, Cnr Anzio Road and Falmouth Road, 7925, Observatory, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Main Road, 7925, Observatory, Cape Town, South Africa
| | - Charle André Viljoen
- Cape Heart Institute, Chris Barnard Building, University of Cape Town, Faculty of Health Sciences, Cnr Anzio Road and Falmouth Road, 7925, Observatory, Cape Town, South Africa
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Main Road, 7925, Observatory, Cape Town, South Africa
| | - Simon Stewart
- Institute for Health Research, University of Notre Dame Australia, 32 Mouat St, Fremantle, Western Australia, 6160, Australia
- Eduardo Mondlane University, 3435 Avenida Julius Nyerere, Maputo, Mozambique
| | - Mark R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH4 3RL, UK
| | - Dorairaj Prabhakaran
- Centre for Chronic Disease Control, C1/52, Safdarjung Development Area, New Delhi, 110016, India
| | - Raman Krishna Kumar
- Department of Pediatric Cardiology, Amrita Institute of Medical Sciences and Research Centre, Ponekkara PO, Cochin 682041, Kerala, India
| | - Friedrich Thienemann
- Cape Heart Institute, Chris Barnard Building, University of Cape Town, Faculty of Health Sciences, Cnr Anzio Road and Falmouth Road, 7925, Observatory, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, 100 Rämistrasse, 8091 Zurich, Switzerland
| | - Daniel Piniero
- Facultad de Medicina, Universidad de Buenos Aires, Arenales 2463, Buenos Aires, C1124AAN, Argentina
| | - Poornima Prabhakaran
- Centre for Chronic Disease Control, C1/52, Safdarjung Development Area, New Delhi, 110016, India
| | - Jagat Narula
- Department of Cardiology, McGovern Medical School, University of Texas Health, 7000 Fannin St, Houston, TX 77030, USA
| | - Fausto Pinto
- Department of Cardiology, Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
23
|
Xiong Y, He Y, Chen Z, Wu T, Xiong Y, Peng Y, Yang X, Liu Y, Zhou J, Zhou H, Zhang W, Shu Y, Li X, Li Q. Lactobacillus induced by irbesartan on spontaneously hypertensive rat contribute to its antihypertensive effect. J Hypertens 2024; 42:460-470. [PMID: 38009301 DOI: 10.1097/hjh.0000000000003613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
OBJECTIVE Hypertension is linked to gut dysbiosis. Here, the impact of the angiotensin receptor antagonist irbesartan on the gut microbiota of spontaneously hypertensive rats (SHR) were investigated. In addition, we assessed their contribution to its antihypertensive effect. METHODS Eight-week-old Wistar-Kyoto (WKY) rats and SHR were administered irbesartan for 8 weeks. Fecal microbiota transplantation (FMT) was performed from SHR treated with irbesartan or untreated SHR to recipient untreated SHR. The preventive effect of Lactobacillus on hypertension in SHR was evaluated. Blood pressure (BP) was calculated using a tail-sleeve sphygmomanometer. To better assess the composition of the gut microbiota, the V3-V4 region of the 16S rRNA gene was amplified while short-chain fatty acids (SCFAs) in feces were tested by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS Irbesartan restored gut dysbiosis, increased the abundance of Lactobacillus , and improved anti-inflammatory ability, antioxidative ability, intestinal integrity, and intestinal inflammation in SHR. The microbiota in SHR-treated irbesartan could reduce BP and improve antioxidative ability and gut integrity in SHR. Lactobacillus johnsonii ( L. johnsonii ) and Lactobacillus reuteri ( L. reuteri ) reduced BP, restored gut dysbiosis and improved anti-inflammatory ability, antioxidative ability, intestinal integrity in SHR. Most notably, irbesartan, L. johnsonii , and L. reuteri can significantly increase SCFA content in SHR feces. CONCLUSION The current study demonstrated that irbesartan treatment ameliorated gut dysbiosis in SHR. Irbesartan induced alterations in gut microbiota, with increased prevalence of Lactobacillus .
Collapse
Affiliation(s)
- Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Department of Pharmacy, First hospital of Nanchang, Nanchang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yanping He
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou
| | - Zhi Chen
- Department of Hypertension, Xingsha Hospital, Changsha, China
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yilei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland, USA
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| |
Collapse
|
24
|
Rashid S, Sado AI, Afzal MS, Ahmed A, Almaalouli B, Waheed T, Abid R, Majumder K, Kumar V, Tejwaney U, Kumar S. Role of gut microbiota in cardiovascular diseases - a comprehensive review. Ann Med Surg (Lond) 2024; 86:1483-1489. [PMID: 38463085 PMCID: PMC10923299 DOI: 10.1097/ms9.0000000000001419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/30/2023] [Indexed: 03/12/2024] Open
Abstract
The connection between cardiovascular illnesses and the gut microbiota has drawn more and more attention in recent years. According to research, there are intricate relationships between dietary elements, gut bacteria, and their metabolites that affect cardiovascular health. In this study, the role of gut microbiota in cardiovascular disorders is examined, with an emphasis on the cardiac consequences brought on by changes in gut microbiota. This essay discusses the gut-heart axis in depth and in detail. It talks about clinical research looking at how soy consumption, probiotic supplements, and dietary changes affected gut microbiota and cardiovascular risk variables. Our goal is to clarify the possible pathways that connect gut microbiota to cardiovascular health and the implications for upcoming treatment approaches. The authors examine the composition, roles, and effects of the gut microbiota on cardiovascular health, including their contributions to hypertension, atherosclerosis, lipid metabolism, and heart failure. Endotoxemia, inflammation, immunological dysfunction, and host lipid metabolism are some of the potential processes investigated for how the gut microbiota affects cardiac outcomes. The research emphasizes the need for larger interventional studies and personalized medicine strategies to completely understand the complexity of the gut-heart axis and its implications for the management of cardiovascular disease. The development of novel treatment strategies and cutting-edge diagnostic technologies in cardiovascular medicine may be facilitated by a better understanding of this axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rabia Abid
- Liaquat college of medicine and dentistry, Karachi, Pakistan
| | | | | | | | - Sarwan Kumar
- Wayne State University
- Department of Medicine, Chittagong Medical College, Chittagong, Bangladesh
| |
Collapse
|
25
|
Ouyang J, Zhao L, Song Y, Qu H, Du T, Shi L, Cui Z, Jiang Z, Gao Z. Trends in gut-heart axis and heart failure research (1993-2023): A bibliometric and visual analysis. Heliyon 2024; 10:e25995. [PMID: 38404792 PMCID: PMC10884449 DOI: 10.1016/j.heliyon.2024.e25995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Background The incidence of heart failure, the terminal stage of several cardiovascular diseases, is increasing owing to population growth and aging. Bidirectional crosstalk between the gut and heart plays a significant role in heart failure. This study aimed to analyze the gut-heart axis and heart failure from a bibliometric perspective. Methods We extracted literature regarding the gut-heart axis and heart failure from the Web of Science Core Collection database (January 1, 1993, to June 30, 2023) and conducted bibliometric and visualization analyses using Microsoft Excel, CiteSpace, VOSviewer, and the R package "bibliometrix." Results The final analysis included 1646 articles with an average of 35.38 citations per article. Despite some fluctuations, the number of articles published per year has steadily increased over the past 31 years, particularly since 2018. A total of 9412 authors from 2287 institutions in 86 countries have contributed to this field. The USA and China have been the most productive countries, with the Cleveland Clinic in the USA and Charité-Universitätsmedizin Berlin in Germany being the most active institutions. The cooperation between countries/regions and institutions was relatively close. Professor Tang WHW was the most productive author in the field and the journal Shocks published the highest number of articles. "Heart failure," "gut microbiota," "trimethylamine N-oxide," and "inflammation" were the most common keywords, representing the current research hotspots. The keyword burst analysis indicated that "gut microbiota" and "short-chain fatty acids" are the current frontier research topics in this field. Conclusion Research on the gut-heart axis and heart failure is increasing. This bibliometric analysis indicated that the mechanisms associated with the gut-heart axis and heart failure, particularly the gut microbiota, trimethylamine N-oxide, inflammation, and short-chain fatty acids, will become hotspots and emerging trends in research in this field. These findings provide valuable insights into current research and future directions.
Collapse
Affiliation(s)
- Jiahui Ouyang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Lingli Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yewen Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tianyi Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liu Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhijie Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhonghui Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
26
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
28
|
Wang J, Fiori PL, Capobianco G, Carru C, Chen Z. Gut microbiota and polycystic ovary syndrome, focus on genetic associations: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1275419. [PMID: 38318294 PMCID: PMC10838976 DOI: 10.3389/fendo.2024.1275419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Background The contribution of gut microbiota to the pathogenesis of polycystic ovary syndrome (PCOS) is controversial. The causal relationship to this question is worth an in-depth comprehensive of known single nucleotide polymorphisms associated with gut microbiota. Methods We conducted bidirectional Mendelian randomization (MR) utilizing instrumental variables associated with gut microbiota (N = 18,340) from MiBioGen GWAS to assess their impact on PCOS risk in the FinnGen GWAS (27,943 PCOS cases and 162,936 controls). Two-sample MR using inverse variance weighting (IVW) was undertaken, followed by the weighted median, weighted mode, and MR-Egger regression. In a subsample, we replicated our findings using the meta-analysis PCOS consortium (10,074 cases and 103,164 controls) from European ancestry. Results IVWMR results suggested that six gut microbiota were causally associated with PCOS features. After adjusting BMI, SHBG, fasting insulin, testosterone, and alcohol intake frequency, the effect sizes were significantly reduced. Reverse MR analysis revealed that the effects of PCOS features on 13 gut microbiota no longer remained significant after sensitivity analysis and Bonferroni corrections. MR replication analysis was consistent and the results suggest that gut microbiota was likely not an independent cause of PCOS. Conclusion Our findings did not support the causal relationships between the gut microbiota and PCOS features at the genetic level. More comprehensive genome-wide association studies of the gut microbiota and PCOS are warranted to confirm their genetic relationship. Declaration This study contains 3533 words, 0 tables, and six figures in the text as well as night supplementary files and 0 supplementary figures in the Supplementary material.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
29
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
30
|
Zhang T, Liu G, Cao Y, Zhao J, Jiang S, Zhang Y, Li M. Genetically predicted causality between gut microbiota, blood metabolites, and intracerebral hemorrhage: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1257405. [PMID: 38298896 PMCID: PMC10829105 DOI: 10.3389/fmicb.2024.1257405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Background Recent research linked changes in the gut microbiota and serum metabolite concentrations to intracerebral hemorrhage (ICH). However, the potential causal relationship remained unclear. Therefore, the current study aims to estimate the effects of genetically predicted causality between gut microbiota, serum metabolites, and ICH. Methods Summary data from genome-wide association studies (GWAS) of gut microbiota, serum metabolites, and ICH were obtained separately. Gut microbiota GWAS (N = 18,340) were acquired from the MiBioGen study, serum metabolites GWAS (N = 7,824) from the TwinsUK and KORA studies, and GWAS summary-level data for ICH from the FinnGen R9 (ICH, 3,749 cases; 339,914 controls). A two-sample Mendelian randomization (MR) study was conducted to explore the causal effects between gut microbiota, serum metabolites, and ICH. The random-effects inverse variance-weighted (IVW) MR analyses were performed as the primary results, together with a series of sensitivity analyses to assess the robustness of the results. Besides, a reverse MR was conducted to evaluate the possibility of reverse causation. To validate the relevant findings, we further selected data from the UK Biobank for analysis. Results MR analysis results revealed a nominal association (p < 0.05) between 17 gut microbial taxa, 31 serum metabolites, and ICH. Among gut microbiota, the higher level of genus Eubacterium xylanophilum (odds ratio (OR): 1.327, 95% confidence interval (CI):1.154-1.526; Bonferroni-corrected p = 7.28 × 10-5) retained a strong causal relationship with a higher risk of ICH after the Bonferroni corrected test. Concurrently, the genus Senegalimassilia (OR: 0.843, 95% CI: 0.778-0.915; Bonferroni-corrected p = 4.10 × 10-5) was associated with lower ICH risk. Moreover, after Bonferroni correction, only two serum metabolites remained out of the initial 31 serum metabolites. One of the serum metabolites, Isovalerate (OR: 7.130, 95% CI: 2.648-19.199; Bonferroni-corrected p = 1.01 × 10-4) showed a very strong causal relationship with a higher risk of ICH, whereas the other metabolite was unidentified and excluded from further analysis. Various sensitivity analyses yielded similar results, with no heterogeneity or directional pleiotropy observed. Conclusion This two-sample MR study revealed the significant influence of gut microbiota and serum metabolites on the risk of ICH. The specific bacterial taxa and metabolites engaged in ICH development were identified. Further research is required in the future to delve deeper into the mechanisms behind these findings.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Gang Liu
- Department of Infection Control, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yina Cao
- Department of Neurology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Siyi Jiang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Ya Zhang
- Department of Pharmacy, Yiwu Hospital of Traditional Chinese Medicine, Yiwu, Zhejiang, China
| | - Min Li
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
31
|
Wang J, Hu Z, Xu Q, Shi Y, Cao X, Ma Y, Wang M, Zhang C, Luo X, Lin F, Li X, Duan Y, Cai H. Gut microbiome-based noninvasive diagnostic model to predict acute coronary syndromes. Front Cell Infect Microbiol 2024; 13:1305375. [PMID: 38298920 PMCID: PMC10829574 DOI: 10.3389/fcimb.2023.1305375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Background Previous studies have shown that alterations in the gut microbiota are closely associated with Acute Coronary Syndrome (ACS) development. However, the value of gut microbiota for early diagnosis of ACS remains understudied. Methods We recruited 66 volunteers, including 29 patients with a first diagnosis of ACS and 37 healthy volunteers during the same period, collected their fecal samples, and sequenced the V4 region of the 16S rRNA gene. Functional prediction of the microbiota was performed using PICRUSt2. Subsequently, we constructed a nomogram and corresponding webpage based on microbial markers to assist in the diagnosis of ACS. The diagnostic performance and usefulness of the model were analyzed using boostrap internal validation, calibration curves, and decision curve analysis (DCA). Results Compared to that of healthy controls, the diversity and composition of microbial community of patients with ACS was markedly abnormal. Potentially pathogenic genera such as Streptococcus and Acinetobacter were significantly increased in the ACS group, whereas certain SCFA-producing genera such as Blautia and Agathobacter were depleted. In addition, in the correlation analysis with clinical indicators, the microbiota was observed to be associated with the level of inflammation and severity of coronary atherosclerosis. Finally, a diagnostic model for ACS based on gut microbiota and clinical variables was developed with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.963 (95% CI: 0.925-1) and an AUC value of 0.948 (95% CI: 0.549-0.641) for bootstrap internal validation. The calibration curves of the model show good consistency between the actual and predicted probabilities. The DCA showed that the model had a high net clinical benefit for clinical applications. Conclusion Our study is the first to characterize the composition and function of the gut microbiota in patients with ACS and healthy populations in Southwest China and demonstrates the potential effect of the microbiota as a non-invasive marker for the early diagnosis of ACS.
Collapse
Affiliation(s)
- Jincheng Wang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Geriatric Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiuyue Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Yunke Shi
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mingqiang Wang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaoyue Zhang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiang Luo
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fanru Lin
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianbin Li
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Duan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
32
|
Jain H, Marsool MDM, Goyal A, Sulaiman SA, Fatima L, Idrees M, Sharma B, Borra V, Gupta P, Nadeem A, Jain J, Ali H, Sohail AH. Unveiling the relationship between gut microbiota and heart failure: Recent understandings and insights. Curr Probl Cardiol 2024; 49:102179. [PMID: 37923029 DOI: 10.1016/j.cpcardiol.2023.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Gut microbiota, which comprises a broad range of bacteria inhabiting the human intestines, plays a crucial role in establishing a mutually beneficial relationship with the host body. Dysbiosis refers to the perturbations in the composition or functioning of the microbial community, which can result in a shift from a balanced microbiota to an impaired state. This alteration has the potential to contribute to the development of chronic systemic inflammation. Heart failure (HF) is a largely prevalent clinical condition that has been demonstrated to have variations in the gut microbiome, indicating a potential active involvement in the pathogenesis and advancement of the disease. The exploration of the complex interplay between the gut microbiome and HF presents a potential avenue for the discovery of innovative biomarkers, preventive measures, and therapeutic targets. This review aims to investigate the impact of gut bacteria on HF.
Collapse
Affiliation(s)
- Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | | | - Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India
| | | | | | | | - Bhavya Sharma
- Department of Internal Medicine, Baroda Medical College and SSG Hospital, Vadodara, India
| | - Vamsikalyan Borra
- Department of Internal Medicine, University of Texas Rio Grande Valley, TX, United States
| | - Prakash Gupta
- Virgen Milagrosa University Foundation College of Medicine, San Carlos City, Philippines
| | - Abdullah Nadeem
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Hassam Ali
- Department of Gastroenterology, East Carolina University, North Carolina, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
33
|
Huang S, Li F, Quan C, Jin D. Intestinal flora: a potential pathogenesis mechanism and treatment strategy for type 1 diabetes mellitus. Gut Microbes 2024; 16:2423024. [PMID: 39520706 PMCID: PMC11552262 DOI: 10.1080/19490976.2024.2423024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by destruction of pancreatic β-cells, leading to insulin deficiency and hyperglycemia, and its incidence is increasing year by year. The pathogenesis of T1DM is complex, mainly including genetic and environmental factors. Intestinal flora is the largest microbial community in the human body and plays a very important role in human health and disease. In recent years, more and more studies have shown that intestinal flora and its metabolites, as an environmental factor, regulate the development of T1DM through various mechanisms such as altering the intestinal mucosal barrier, influencing insulin secretion and body immune regulation. Intestinal flora transplantation, probiotic supplementation, and other approaches to modulate the intestinal flora appear to be potential therapeutic approaches for T1DM. This article reviews the dysbiosis of the intestinal flora in T1DM, the potential mechanisms by which the intestinal flora affects T1DM, as well as discusses potential approaches to treating T1DM by intervening in the intestinal flora.
Collapse
Affiliation(s)
- Shengnan Huang
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| | - Fangfang Li
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| | - Chunhua Quan
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, China
| | - Dan Jin
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
34
|
Meng Q, Li Y, Xu Y, Wang Y. Acetobacter and lactobacillus alleviate the symptom of insulin resistance by blocking the JNK-JAK/STAT pathway in Drosophila melanogaster. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166901. [PMID: 37774935 DOI: 10.1016/j.bbadis.2023.166901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The dysregulation of intestinal microbiota is well-known to be one of the main causes of insulin resistance in both vertebrates and invertebrates. Specially, the acetobacter and lactobacillus have been identified as potentially capable of alleviating insulin resistance. However, the molecular mechanism underlying this effect requires further elucidation. In this study, we employed Drosophila melanogaster (fruit fly) as a model organism to delineate how intestinal microbiota disrupts the host intestinal signaling pathway, contributing to insulin resistance. Our findings demonstrate that a long-term high-sugar diet lead to a reduction in the general diversity of intestinal microbiota in flies, as well as a marked decrease in the abundances of acetobacter and lactobacillus. Furthermore, we observed that symptoms of insulin resistance were alleviated by feeding flies with acetobacter or lactobacillus, indicating that these microorganisms play an essential role in maintaining blood sugar homeostasis in flies. Conversely, when all intestinal microbiota was removed, flies show severe symptoms of insulin resistance, confirming that the critical role of intestinal microbiota in maintaining host blood sugar homeostasis. Our studies suggested that the intestinal but not fat body JNK pathway mediates the communication of intestinal microbiota and host insulin pathway. In flies, downregulation of JNK activity alleviates symptoms of insulin resistance by decreasing the activity of the JAK/STAT pathway. However, this offsets the therapeutic effects of supplying flies with acetobacter or lactobacillus, suggesting that the therapeutic function of these microorganisms is based on their interaction with JNK-JAK/STAT axis. Taken together, our study reveals that acetobacter and lactobacillus alleviate insulin resistance symptoms in a JNK-JAK/STAT pathway-dependent manner, indicating the therapeutic potential of probiotic supplementation and regulation of the activities of JNK-JAK/STAT pathway for diabetes control.
Collapse
Affiliation(s)
- Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
35
|
Hamjane N, Mechita MB, Nourouti NG, Barakat A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res 2024; 151:104601. [PMID: 37690507 DOI: 10.1016/j.mvr.2023.104601] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Obesity is a complex, multifactorial disease caused by various factors. Recently, the role of the gut microbiota in the development of obesity and its complications has attracted increasing interest. PURPOSE This article focuses on the mechanisms by which gut microbiota dysbiosis induces insulin resistance, type 2 diabetes, and cardiovascular diseases linked to obesity, highlighting the mechanisms explaining the role of gut microbiota dysbiosis-associated inflammation in the onset of these pathologies. METHODS A systematic study was carried out to understand and summarize the published results on this topic. More than 150 articles were included in this search, including different types of studies, consulted by an online search in English using various electronic search databases and predefined keywords related to the objectives of our study. RESULTS We have summarized the data from the articles consulted in this search, and we have found a major gut microbiota alteration in obesity, characterized by a specific decrease in butyrate-producing bacteria and the production of metabolites and components that lead to metabolic impairments and affect the progression of various diseases associated with obesity through distinct signaling pathways, including insulin resistance, type 2 diabetes, and cardiovascular diseases (CVD). We have also focused on the major role of inflammation as a link between gut microbiota dysbiosis and obesity-associated metabolic complications by explaining the mechanisms involved. CONCLUSION Gut microbiota dysbiosis plays a crucial role in the development of various obesity-related metabolic abnormalities, among them type 2 diabetes and CVD, and represents a major challenge for chronic disease prevention and health. Indeed, the intestinal microbiota appears to be a promising target for the nutritional or therapeutic management of these diseases.
Collapse
Affiliation(s)
- Nadia Hamjane
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco.
| | - Mohcine Bennani Mechita
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Naima Ghailani Nourouti
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Amina Barakat
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| |
Collapse
|
36
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
37
|
Bartsch M, Hahn A, Berkemeyer S. Bridging the Gap from Enterotypes to Personalized Dietary Recommendations: A Metabolomics Perspective on Microbiome Research. Metabolites 2023; 13:1182. [PMID: 38132864 PMCID: PMC10744656 DOI: 10.3390/metabo13121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Advances in high-throughput DNA sequencing have propelled research into the human microbiome and its link to metabolic health. We explore microbiome analysis methods, specifically emphasizing metabolomics, how dietary choices impact the production of microbial metabolites, providing an overview of studies examining the connection between enterotypes and diet, and thus, improvement of personalized dietary recommendations. Acetate, propionate, and butyrate constitute more than 95% of the collective pool of short-chain fatty acids. Conflicting data on acetate's effects may result from its dynamic signaling, which can vary depending on physiological conditions and metabolic phenotypes. Human studies suggest that propionate has overall anti-obesity effects due to its well-documented chemistry, cellular signaling mechanisms, and various clinical benefits. Butyrate, similar to propionate, has the ability to reduce obesity by stimulating the release of appetite-suppressing hormones and promoting the synthesis of leptin. Tryptophan affects systemic hormone secretion, with indole stimulating the release of GLP-1, which impacts insulin secretion, appetite suppression, and gastric emptying. Bile acids, synthesized from cholesterol in the liver and subsequently modified by gut bacteria, play an essential role in the digestion and absorption of dietary fats and fat-soluble vitamins, but they also interact directly with intestinal microbiota and their metabolites. One study using statistical methods identified primarily two groupings of enterotypes Bacteroides and Ruminococcus. The Prevotella-dominated enterotype, P-type, in humans correlates with vegetarians, high-fiber and carbohydrate-rich diets, and traditional diets. Conversely, individuals who consume diets rich in animal fats and proteins, typical in Western-style diets, often exhibit the Bacteroides-dominated, B-type, enterotype. The P-type showcases efficient hydrolytic enzymes for plant fiber degradation but has limited lipid and protein fermentation capacity. Conversely, the B-type features specialized enzymes tailored for the degradation of animal-derived carbohydrates and proteins, showcasing an enhanced saccharolytic and proteolytic potential. Generally, models excel at predictions but often struggle to fully elucidate why certain substances yield varied responses. These studies provide valuable insights into the potential for personalized dietary recommendations based on enterotypes.
Collapse
Affiliation(s)
- Madeline Bartsch
- NutritionLab, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrueck University of Applied Sciences, Am Kruempel 31, 49090 Osnabrueck, Germany;
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167 Hannover, Germany;
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, 30167 Hannover, Germany;
| | - Shoma Berkemeyer
- NutritionLab, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrueck University of Applied Sciences, Am Kruempel 31, 49090 Osnabrueck, Germany;
| |
Collapse
|
38
|
Chen M, Peng L, Zhang C, Liu Q, Long T, Xie Q. Gut microbiota might mediate the benefits of high-fiber/acetate diet to cardiac hypertrophy mice. J Physiol Biochem 2023; 79:745-756. [PMID: 37537429 DOI: 10.1007/s13105-023-00971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Continuously prolonged cardiac hypertrophy results in maladaptive myocardial remodeling, which affects cardiac function and can eventually lead to heart failure. Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, have been reported to be associated with cardiovascular diseases (CVD). Gut microbiota may mediate between dietary fiber and SCFA effects on cardiac hypertrophy. The mice model of isoproterenol (ISO)-induced cardiac hypertrophy was constructed and verified for physiological, functional, and fibrotic alterations in this study. Both high-fiber and acetate diet improved physiological indexes, ameliorated cardiac functions, and relieved fibrotic alterations in model mice hearts; collectively, cardiac hypertrophy in mice receiving both high-fiber and acetate diet improved. Following 16s rDNA sequencing and integrative bioinformatics, analyses indicated that both high-fiber and acetate diet caused alterations in mice gut microbiota compared with the ISO group, including OTU composition and abundance. In conclusion, high-fiber and acetate diet improve the physiological status, cardiac functions, and fibrotic alterations in ISO-induced hypertrophic mice. Besides, considering the alterations in mice gut microbiota in response to single ISO, both high-fiber and acetate diet treatment, gut microbiota might mediate the favorable benefits of both high-fiber and acetate diet on cardiac hypertrophy.
Collapse
Affiliation(s)
- Meifang Chen
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, Changsha, 41008, China
- Department of Cardiology, Xiangya Hospital, Central South University, #87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Liming Peng
- Department of Cardiology, Xiangya Hospital, Central South University, #87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chenglong Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, #87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Liu
- Department of Cardiology, Xiangya Hospital, Central South University, #87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianyi Long
- Department of Cardiology, Xiangya Hospital, Central South University, #87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiying Xie
- Department of Cardiology, Xiangya Hospital, Central South University, #87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
39
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
40
|
Saxami G, Kerezoudi EN, Eliopoulos C, Arapoglou D, Kyriacou A. The Gut-Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life (Basel) 2023; 13:2023. [PMID: 37895405 PMCID: PMC10608660 DOI: 10.3390/life13102023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The human gut microbiota (GM) is a complex microbial ecosystem that colonises the gastrointestinal tract (GIT) and is comprised of bacteria, viruses, fungi, and protozoa. The GM has a symbiotic relationship with its host that is fundamental for body homeostasis. The GM is not limited to the scope of the GIT, but there are bidirectional interactions between the GM and other organs, highlighting the concept of the "gut-organ axis". Any deviation from the normal composition of the GM, termed "microbial dysbiosis", is implicated in the pathogenesis of various diseases. Only a few studies have demonstrated a relationship between GM modifications and disease phenotypes, and it is still unknown whether an altered GM contributes to a disease or simply reflects its status. Restoration of the GM with probiotics and prebiotics has been postulated, but evidence for the effects of prebiotics is limited. Prebiotics are substrates that are "selectively utilized by host microorganisms, conferring a health benefit". This study highlights the bidirectional relationship between the gut and vital human organs and demonstrates the relationship between GM dysbiosis and the emergence of certain representative diseases. Finally, this article focuses on the potential of prebiotics as a target therapy to manipulate the GM and presents the gaps in the literature and research.
Collapse
Affiliation(s)
- Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| | - Evangelia N. Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| |
Collapse
|
41
|
Ye J, Li Y, Wang X, Yu M, Liu X, Zhang H, Meng Q, Majeed U, Jian L, Song W, Xue W, Luo Y, Yue T. Positive interactions among Corynebacterium glutamicum and keystone bacteria producing SCFAs benefited T2D mice to rebuild gut eubiosis. Food Res Int 2023; 172:113163. [PMID: 37689914 DOI: 10.1016/j.foodres.2023.113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yihua Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xuehua Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huaxin Zhang
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lijuan Jian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Weiming Xue
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
42
|
Zhu J, Lyu J, Zhao R, Liu G, Wang S. Gut macrobiotic and its metabolic pathways modulate cardiovascular disease. Front Microbiol 2023; 14:1272479. [PMID: 37822750 PMCID: PMC10562559 DOI: 10.3389/fmicb.2023.1272479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Thousands of microorganisms reside in the human gut, and extensive research has demonstrated the crucial role of the gut microbiota in overall health and maintaining homeostasis. The disruption of microbial populations, known as dysbiosis, can impair the host's metabolism and contribute to the development of various diseases, including cardiovascular disease (CVD). Furthermore, a growing body of evidence indicates that metabolites produced by the gut microbiota play a significant role in the pathogenesis of cardiovascular disease. These bioactive metabolites, such as short-chain fatty acids (SCFAs), trimethylamine (TMA), trimethylamine N-oxide (TMAO), bile acids (BAs), and lipopolysaccharides (LPS), are implicated in conditions such as hypertension and atherosclerosis. These metabolites impact cardiovascular function through various pathways, such as altering the composition of the gut microbiota and activating specific signaling pathways. Targeting the gut microbiota and their metabolic pathways represents a promising approach for the prevention and treatment of cardiovascular diseases. Intervention strategies, such as probiotic drug delivery and fecal transplantation, can selectively modify the composition of the gut microbiota and enhance its beneficial metabolic functions, ultimately leading to improved cardiovascular outcomes. These interventions hold the potential to reshape the gut microbial community and restore its balance, thereby promoting cardiovascular health. Harnessing the potential of these microbial metabolites through targeted interventions offers a novel avenue for tackling cardiovascular health issues. This manuscript provides an in-depth review of the recent advances in gut microbiota research and its impact on cardiovascular health and offers a promising avenue for tackling cardiovascular health issues through gut microbiome-targeted therapies.
Collapse
Affiliation(s)
- Junwen Zhu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ruochi Zhao
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
| |
Collapse
|
43
|
Hemmati M, Kashanipoor S, Mazaheri P, Alibabaei F, Babaeizad A, Asli S, Mohammadi S, Gorgin AH, Ghods K, Yousefi B, Eslami M. Importance of gut microbiota metabolites in the development of cardiovascular diseases (CVD). Life Sci 2023; 329:121947. [PMID: 37463653 DOI: 10.1016/j.lfs.2023.121947] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Cardiovascular disease (CVD) remains the most common cause of death worldwide and has become a public health concern. The proven notable risk factors for CVD are atherosclerosis, hypertension, diabetes, dyslipidemia, inflammation, and some genetic defects. However, research has shown a correlation between metabolic health, gut microbiota, and dietary risk factors. The gut microbiota makes an important contribution to human functional metabolic pathways by contributing enzymes that are not encoded by the human genome, for instance, the breakdown of polysaccharides, polyphenols and vitamins synthesis. TMAO and SCFAs, human gut microbiota compounds, have respective immunomodulatory and pro-inflammatory effects. Choline and l-carnitine are abundant in high-fat diets and are transformed into TMA by gut bacteria. The liver's phase of metabolism then changes TMA into TMAO. In turn, TMAO promotes the activation of macrophages, damages vascular endothelium, and results in CVD-however, dysbiosis decreases SCFAs and bile acids, which raises intestinal permeability. Congestion in the portal vein, a drop in cardiac output, a reduction in intestinal perfusion, and intestinal leakage are all caused by heart failure. These factors induce systemic inflammation by increasing intestinal leakage. By raising CRP and pro-inflammatory reactions, human gut dysbiosis and elevated TMAO levels promote the development of arterial plaque, hasten the beginning of atherosclerosis, and raise the risk of CAD. A healthy symbiosis between the gut microbiota and host is a key factor in shaping the biochemical profile of the diet, therefore which are crucial for maintaining the intestinal epithelial barrier, growing mucosa, reducing inflammation, and controlling blood pressure.
Collapse
Affiliation(s)
- Maryam Hemmati
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Payman Mazaheri
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnaz Alibabaei
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Shima Asli
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sina Mohammadi
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Hosein Gorgin
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Kamran Ghods
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
44
|
Zhang Y, Xing H, Bolotnikov G, Krämer M, Gotzmann N, Knippschild U, Kissmann AK, Rosenau F. Enriched Aptamer Libraries in Fluorescence-Based Assays for Rikenella microfusus-Specific Gut Microbiome Analyses. Microorganisms 2023; 11:2266. [PMID: 37764110 PMCID: PMC10535755 DOI: 10.3390/microorganisms11092266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Rikenella microfusus is an essential intestinal probiotic with great potential. The latest research shows that imbalance in the intestinal flora are related to the occurrence of various diseases, such as intestinal diseases, immune diseases, and metabolic diseases. Rikenella may be a target or biomarker for some diseases, providing a new possibility for preventing and treating these diseases by monitoring and optimizing the abundance of Rikenella in the intestine. However, the current monitoring methods have disadvantages, such as long detection times, complicated operations, and high costs, which seriously limit the possibility of clinical application of microbiome-based treatment options. Therefore, the intention of this study was to evolve an enriched aptamer library to be used for specific labeling of R. microfusus, allowing rapid and low-cost detection methods and, ultimately the construction of aptamer-based biosensors. In this study, we used Rikenella as the target bacterium for an in vitro whole Cell-SELEX (Systematic Evolution of Ligands by EXponential Enrichment) to evolve and enrich specific DNA oligonucleotide aptamers. Five other prominent anaerobic gut bacteria were included in this process for counterselection and served as control cells. The aptamer library R.m-R13 was evolved with high specificity and strong affinity (Kd = 9.597 nM after 13 rounds of selection). With this enriched aptamer library, R. microfusus could efficiently be discriminated from the control bacteria in complex mixtures using different analysis techniques, including fluorescence microscopy or fluorometric suspension assays, and even in human stool samples. These preliminary results open new avenues toward the development of aptamer-based microbiome bio-sensing applications for fast and reliable monitoring of R. microfusus.
Collapse
Affiliation(s)
- Yiting Zhang
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Grigory Bolotnikov
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Nina Gotzmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| |
Collapse
|
45
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
46
|
Mahajan A, Bandaru D, Parikh K, Gupta V, Patel M. From the inside out: understanding the gut-heart connection. Future Cardiol 2023; 19:505-514. [PMID: 37721335 DOI: 10.2217/fca-2023-0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
The gut microbiome was first termed as 'Animalcules' by Antonie van Leeuwenhoek in the 17th century. The diverse composition and complex interactions of gut microbes are essential for good human health. They play a crucial role in inflammation, which by itself leads to the development of cardiovascular diseases. Although the mechanisms are not fully understood, it has been studied that the gut microbiota produce several bioactive metabolites impacting cardiovascular health mainly through TMAO pathway, SCFA pathway and bile acid pathway. Moreover, studies have found that using dietary interventions like high fiber diet and probiotics to re-establish a healthy equilibrium show promising results on improving cardiovascular health and thus, could be potentially used for prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Kinna Parikh
- G.M.E.R.S Medical College, Gandhinagar, 382007, India
| | - Vasu Gupta
- Satyam Hospital & Trauma Center, Jalandhar, 144008, India
| | - Meet Patel
- Department of Medicine, Shraddha Hospital, Gujarat, 380043, India
| |
Collapse
|
47
|
Yang N, Lan T, Han Y, Zhao H, Wang C, Xu Z, Chen Z, Tao M, Li H, Song Y, Ma X. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice. PLoS One 2023; 18:e0289364. [PMID: 37523400 PMCID: PMC10389721 DOI: 10.1371/journal.pone.0289364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Tributyrin (TB) is a butyric acid precursor and has a key role in anti-inflammatory and intestinal barrier repair effects by slowly releasing butyric acid. However, its roles in gut microbiota disorder caused by antibiotics remain unclear. Herein, we established an intestinal microbiota disorder model using ceftriaxone sodium via gavage to investigate the effects of different TB doses for restoring gut microbiota and intestinal injury. First, we divided C57BL/6 male mice into two groups: control (NC, n = 8) and experimental (ABx, n = 24) groups, receiving gavage with 0.2 mL normal saline and 400 mg/mL ceftriaxone sodium solution for 7 d (twice a day and the intermediate interval was 6 h), respectively. Then, mice in the ABx group were randomly split into three groups: model (M, 0.2 mL normal saline), low TB group (TL, 0.3 g/kg BW), and high TB group (TH, 3 g/kg BW) for 11 d. We found that TB supplementation alleviated antibiotics-induced weight loss, diarrhea, and intestinal tissue damage. The 16S rRNA sequence analysis showed that TB intervention increased the α diversity of intestinal flora, increased potential short-chain fatty acids (SCFAs)-producing bacteria (such as Muribaculaceae and Bifidobacterium), and inhibited the relative abundance of potentially pathogenic bacteria (such as Bacteroidetes and Enterococcus) compared to the M group. TB supplementation reversed the reduction in SCFAs production in antibiotic-treated mice. Additionally, TB downregulated the levels of serum LPS and zonulin, TNF-α, IL-6, IL-1β and NLRP3 inflammasome-related factors in intestinal tissue and upregulated tight junction proteins (such as ZO-1 and Occludin) and MUC2. Overall, the adjustment ability of low-dose TB to the above indexes was stronger than high-dose TB. In conclusion, TB can restore the dysbiosis of gut microbiota, increase SCFAs, suppress inflammation, and ameliorate antibiotic-induced intestinal damage, indicating that TB might be a potential gut microbiota modulator.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yisa Han
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Control, Key Laboratory of Quality Research and Evaluation of Marine Traditional Chinese Medicine, State Medical Products Administration, Qingdao, China
| | - Chuhui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Meng Tao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Aziz F, Tripolt NJ, Pferschy PN, Kolesnik E, Mangge H, Curcic P, Hermann M, Meinitzer A, von Lewinski D, Sourij H. Alterations in trimethylamine-N-oxide in response to Empagliflozin therapy: a secondary analysis of the EMMY trial. Cardiovasc Diabetol 2023; 22:184. [PMID: 37475009 PMCID: PMC10357596 DOI: 10.1186/s12933-023-01920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION The relationship between sodium glucose co-transporter 2 inhibitors (SGLT2i) and trimethylamine N-oxide (TMAO) following acute myocardial infarction (AMI) is not yet explored. METHODS In this secondary analysis of the EMMY trial (ClinicalTrials.gov registration: NCT03087773), changes in serum TMAO levels were investigated in response to 26-week Empagliflozin treatment following an AMI compared to the standard post-MI treatment. Additionally, the association of TMAO changes with clinical risk factors and cardiorenal biomarkers was assessed. RESULTS The mean age of patients (N = 367) was 57 ± 9 years, 82% were males, and 14% had type 2 diabetes. In the Empagliflozin group, the median TMAO value was 2.62 µmol/L (IQR: 1.81) at baseline, 3.74 µmol/L (2.81) at 6 weeks, and 4.20 µmol/L (3.14) at 26 weeks. In the placebo group, the median TMAO value was 2.90 µmol/L (2.17) at baseline, 3.23 µmol/L (1.90) at 6 weeks, and 3.35 µmol/L (2.50) at 26 weeks. The serum TMAO levels increased significantly from baseline to week 6 (coefficient: 0.233; 95% confidence interval 0.149-0.317, p < 0.001) and week 26 (0.320, 0.236-0.405, p < 0.001). The average increase in TMAO levels over time (pinteraction = 0.007) was significantly higher in the Empagliflozin compared to the Placebo group. Age was positively associated with TMAO, whereas eGFR and LVEF were negatively associated with TMAO. CONCLUSIONS Our results are contrary to existing experimental studies that showed the positive impact of SGLT2i on TMAO precursors and cardiovascular events. Therefore, we recommend further research investigating the impact of SGLT2i therapy on acute and long-term changes in TMAO in cardiovascular cohorts.
Collapse
Affiliation(s)
- Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Pero Curcic
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Hermann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Graz, Austria.
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
49
|
Fang C, Zuo K, Liu Z, Liu Y, Liu L, Wang Y, Yin X, Li J, Liu X, Chen M, Yang X. Disordered gut microbiota promotes atrial fibrillation by aggravated conduction disturbance and unbalanced linoleic acid/SIRT1 signaling. Biochem Pharmacol 2023; 213:115599. [PMID: 37196685 DOI: 10.1016/j.bcp.2023.115599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Emerging evidence suggests an association of dysbiotic gut microbiota (GM) with atrial fibrillation (AF). The current study aimed to determine whether aberrant GM promotes AF development. A fecal microbiota transplantation (FMT) mouse model demonstrated that dysbiotic GM is sufficient to enhance AF susceptibility assessed by transesophageal burst pacing. Compared with recipients transplanted with GM obtained from healthy subjects (FMT-CH), the prolonged P wave duration and an enlarging tendency for the left atrium were detected in recipients transplanted with AF GM (FMT-AF). Meanwhile, the disrupted localizations of connexin 43 and N-cadherin and increased expression levels of phospho-CaMKII and phospho-RyR2, were observed in the atrium of FMT-AF, which indicated aggravated electrical remodeling caused by the altered gut flora. Specifically, exacerbated fibrosis disarray, collagen deposition, α-SMA expression, and inflammation in the atrium were also confirmed to be transmissible by the GM. Furthermore, deteriorated intestinal epithelial barrier and intestinal permeability, accompanied by disturbing metabolomic features in both feces and plasma, especially decreased linoleic acid (LA), were identified in FMT-AF mice. Subsequently, the anti-inflammatory role of LA among the imbalanced SIRT1 signaling discovered in the atrium of FMT-AF was confirmed in mouse HL-1 cells treated with LPS/nigericin, LA, and SIRT1 knockdown. This study provides preliminary insights into the causal role of aberrant GM in the pathophysiology of AF, suggesting the GM-intestinal barrier-atrium axis might participate in the vulnerable substrates for AF development, and the GM could be utilized as an environmental target in AF management.
Collapse
Affiliation(s)
- Chen Fang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Kun Zuo
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zheng Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ye Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lifeng Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuxing Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiandong Yin
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoqing Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
50
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci 2023; 24:10672. [PMID: 37445852 DOI: 10.3390/ijms241310672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Endocrine homeostasis and metabolic diseases have been the subject of extensive research in recent years. The development of new techniques and insights has led to a deeper understanding of the mechanisms underlying these conditions and opened up new avenues for diagnosis and treatment. In this review, we discussed the rise of metabolic diseases, especially in Western countries, the genetical, psychological, and behavioral basis of metabolic diseases, the role of nutrition and physical activity in the development of metabolic diseases, the role of single-cell transcriptomics, gut microbiota, epigenetics, advanced imaging techniques, and cell-based therapies in metabolic diseases. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain
| | - Clara López-Mora
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Valencia, Pg. de l'Albereda, 7, 46010 València, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|