1
|
Burd BS, Mussagy CU, Bebber C, Sant'Ana Pegorin Brasil G, Dos Santos LS, Guerra NB, Persinoti GF, Jucaud V, Goldbeck R, Herculano RD. Can the insects Galleria mellonella and Tenebrio molitor be the future of plastic biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178879. [PMID: 40022971 DOI: 10.1016/j.scitotenv.2025.178879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
Plastics have been an integral part of human lives, enhancing the functionality and safety of many everyday products, contributing significantly to our overall well-being. However, petroleum-based plastics can take hundreds or even thousands of years to decompose, resulting in an unprecedented plastic waste accumulation in the environment. Widely used conventional plastic disposal methods as landfilling and incineration are also environmentally harmful, frequently leading to soil/water contamination and the release of microplastics. To overcome these limitations, researchers have been investigating novel sustainable alternatives for plastic waste management, such as the use of microorganisms, microbial-based enzymes, and, more recently, some insect larvae, being Galleria mellonella and Tenebrio molitor the most promising ones. In this review, we explore different methods of plastic waste disposal focusing on recent discoveries regarding biological plastic degradation using insects as alternative methods. We also discuss the plastic degradation mechanisms employed by G. mellonella and T. molitor larvae known so far, as salivary enzymes and the pool of microorganisms in their gut. Finally, this review highlights key challenges in plastic biodegradation, such as standardization and experimental comparability, while proposing innovative perspectives like using insects as bioreactors and exploring unexplored research directions.
Collapse
Affiliation(s)
- Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Camila Bebber
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), 55 Prof Francisco Degni Street, 14800-900 Araraquara, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo, University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Nayrim Brizuela Guerra
- School of Science, São Paulo State University (UNESP), 14-01 Eng. Luiz Edmundo Carrijo Coube, Avenue, Bauru, SP, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas, UNICAMP Monteiro Lobato no. 80, Campinas, São Paulo 13083-862, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 1 Araraquara Jaú Highway, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
2
|
Stevensen J, Janatunaim RZ, Ratnaputri AH, Aldafa SH, Rudjito RR, Saputro DH, Suhandono S, Putri RM, Aditama R, Fibriani A. Thermostability and Activity Improvements of PETase from Ideonella sakaiensis. ACS OMEGA 2025; 10:6385-6395. [PMID: 40028137 PMCID: PMC11866010 DOI: 10.1021/acsomega.4c05142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Polyethylene terephthalate (PET), a widely used plastic, is a significant environmental pollutant due to its persistence. While the PET-degrading enzyme PETase from Ideonella sakaiensis offers promising solutions, its limited activity at higher temperatures hinders its practical application. This study aimed to enhance the PETase performance through protein engineering. We introduced multiple amino acid substitutions to the wild-type I. sakaiensis PETase to improve its thermostability, substrate binding, and catalytic activity. Several potential mutant IsPETases were generated using computational design and evaluated in silico. The selected mutant was then produced in E. coli BL21(DE3). Finally, the catalytic activity of the purified mutant IsPETase was examined in vitro using p-nitrophenyl butyrate and PET substrates. IsPETaseMT has been confirmed to be catalytically active and more thermostable with a maximum temperature reaching 60 °C and the T m value increasing up to 15.3 °C compared to the wild-type PETase, IsPETaseWT. IsPETaseMT also showed better degradation toward the PET plastic film in comparison to IsPETaseWT. Thus, these findings demonstrate successful protein engineering to create a more robust PETase for potential plastic waste management applications.
Collapse
Affiliation(s)
- Jansen Stevensen
- School of
Life Sciences and Technology, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | - Rifqi Zahroh Janatunaim
- School of
Life Sciences and Technology, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | - Aisy Humaira Ratnaputri
- School of
Life Sciences and Technology, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | - Safero Hedi Aldafa
- School of
Life Sciences and Technology, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | | | - Dwi Hadi Saputro
- Biochemistry
and Biomolecular Engineering Research Group, Faculty of Mathematics
and Natural Sciences, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | - Sony Suhandono
- School of
Life Sciences and Technology, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | - Rindia Maharani Putri
- Biochemistry
and Biomolecular Engineering Research Group, Faculty of Mathematics
and Natural Sciences, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | - Reza Aditama
- Biochemistry
and Biomolecular Engineering Research Group, Faculty of Mathematics
and Natural Sciences, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| | - Azzania Fibriani
- School of
Life Sciences and Technology, Institut Teknologi
Bandung, Bandung 40132, Indonesia
| |
Collapse
|
3
|
Liu YJ, Yan F, Dong W, Sun Y, Wei R, Feng Y. Optimized whole-cell depolymerization of polyethylene terephthalate to monomers using engineered Clostridium thermocellum. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137441. [PMID: 39904161 DOI: 10.1016/j.jhazmat.2025.137441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Polyethylene terephthalate (PET) is a widely produced thermoplastic derived from fossil fuels, and its accumulation and improper waste disposal pose significant environmental concerns. Innovative bio-based recycling technologies have evolved in recent years, offering viable solutions to PET waste-related challenges. While the enzyme-based PET recycling technology utilizing free thermophilic enzymes has already been commercialized, related whole-cell recycling approaches are still in the early stages of research. Here, we improve a Clostridium thermocellum-based whole-cell catalyst for PET depolymerization by integrating beneficial variants of leaf-branch compost cutinase (LCC) into the bacterial chromosome DNA, ensuring stable enzyme expression. We also implement a pH-controlled bioreactor to counteract the pH drop during PET depolymerization, enhancing enzyme stability and stable cell growth. Using this optimized system, we achieve 96.7 % conversion of pretreated waste PET into its monomer, terephthalic acid (TPA), in a 1-L reactor within 10 days. This work demonstrates the potential of whole-cell biocatalysts for efficient PET recycling.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fei Yan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 8, Greifswald D-17489, Germany.
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Buhari SB, Ghahremani Nezhad N, Normi YM, Mohd Shariff F, Leow TC. Homology modeling and thermostability enhancement of Vibrio palustris PETase via hydrophobic interactions. J Biomol Struct Dyn 2025:1-14. [PMID: 39844700 DOI: 10.1080/07391102.2024.2440646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 01/24/2025]
Abstract
The quest for sustainable solutions to plastic pollution has driven research into plastic-degrading enzymes, offering promising avenues for polymer recycling applications. However, enzymes derived from natural sources often exhibit suboptimal thermostability, hindering their industrial viability. Protein engineering techniques have emerged as a powerful approach to enhance the desired properties of these biocatalysts. This study aims to conduct a comprehensive analysis of the thermostability of Vibrio palustris PETase (VpPETase) through an integrated computational approach encompassing homology modeling, site-specific molecular docking, molecular dynamics (MD) simulations, and comparative evaluation of a single-point mutation (V195F) against the wild-type enzyme. Homology modeling was used to predict VpPETase model using multiple templates. Model quality was rigorously assessed using Ramachandran plot analysis, ProSA, Verify 3D, and ERRAT. Molecular docking elucidated the catalytic region comprising residues His149, Asp117, and Ser71, while highlighting the pivotal roles of His149, Tyr1, and Ser71 in substrate binding affinity. MD simulations at various temperatures revealed higher stability at 313.15 K over a 100 ns trajectory, as evidenced by analyses of root-mean-square deviation (RMSD), radius of gyration (Rg), solvent-accessible surface area (SASA), hydrogen bonding, and root-mean-square fluctuation (RMSF). The V195F mutant exhibited a slight increase in stability compared to wild-type. While this study provides valuable insights into the thermostability of VpPETase, further investigations, including experimental validation of thermostability enhancements and in vitro characterization, are warranted to fully exploit the potential of this enzyme for industrial applications in plastic recycling.
Collapse
Affiliation(s)
- Sunusi Bataiya Buhari
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
6
|
Colachis M, Lilly JL, Trigg E, Kucharzyk KH. Analytical tools to assess polymer biodegradation: A critical review and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176920. [PMID: 39461538 DOI: 10.1016/j.scitotenv.2024.176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Many petroleum-derived plastic materials are highly recalcitrant and persistent in the environment, posing significant threats to human and ecological receptors due to their accumulation in ecosystems. In recent years, research efforts have focused on advancing biological methods for polymer degradation. Enzymatic depolymerization has emerged as particularly relevant for biobased plastic recycling, potentially scalable for industrial use. Biodegradation involves adsorption to the plastic solid surface, followed by an interfacial reaction, resulting in cleavage of bonds of polymer chains exposed on the surface. Here, widely varying substrate-specific kinetics are observed, with the polymer's properties possessing a significant impact on the rate of this interfacial catalysis. Thus, there is a critical need for sensitive and accurate characterization of the material surface during and after interfacial depolymerization to fully understand the reaction mechanisms. Here, we provide a critical review of a range of techniques used in the analysis of material surfaces to characterize the chemical, topological, and morphological features relevant to the study of enzymatic biocatalysis, including microscopy techniques, spectroscopic techniques (e.g., X-ray diffraction analysis, Fourier transform infrared attenuated total reflectance spectroscopy, and mass spectrometry detection of analytes associated with degradation). Techniques for evaluation of surface energy and topology in their relevancy for sensitive detection of biological surface modifications are also discussed. In addition, this paper provides an overview of the strengths of these techniques and compares their performance in both sensitivity and throughput, including emerging techniques, which can be useful, particularly for the rapid analysis of the surface properties of polymeric materials in high-throughput screening of candidate biocatalysts. This research serves as a starting point in selecting and applying appropriate methodologies that provide direct evidence to the ongoing biotic degradation of polymeric materials.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Jacob L Lilly
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Edward Trigg
- Cambium Biomaterials, 626 Bancroft Way, Suite A, Berkeley, California 94710, United States
| | | |
Collapse
|
7
|
Razzaq S, Shahid S, Nawab Y. Applications and environmental impact of biodegradable polymers in textile industry: A review. Int J Biol Macromol 2024; 282:136791. [PMID: 39461644 DOI: 10.1016/j.ijbiomac.2024.136791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
With the increasing global population, the disposal of waste has risen, especially over the last century. The Environmental Protection Agency (EPA) reported that 11 million tons of textile-related waste were landfilled in the USA in 2018, and this amount is projected to increase to 4.5 billion tons by 2040. Bio-based polymers have gained attention due to their remarkable properties. The most important biodegradable polymers include PLA, PHA, PHB, PCL, PBS, bamboo fibers, and banana fibers. Global biopolymer production capacity is expected to rise significantly, from around 2.18 million tons in 2023 to approximately 7.43 million tons by 2028. In the textile industry, the linear waste model presents numerous challenges, such as environmental damage and resource shortages. Shifting from a linear to a circular economy is essential to address these issues. Reducing, reusing, and recycling are the three key actions and strategies that form the foundation of the circular economy. This paper presents the current state of knowledge and technological advancements in biodegradable polymers in the textile industry, along with their products and applications. The study explores the cost-effectiveness, limitations, opportunities, and advancements in their manufacturing technologies. Biodegradable polymers in the textile sector are regarded as green alternatives to non-biodegradable polymers.
Collapse
Affiliation(s)
- Sadia Razzaq
- National Center for Composite Materials, School of Engineering and Technology, National Textile University, Faisalabad 37600, Pakistan
| | - Salma Shahid
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan.
| | - Yasir Nawab
- National Center for Composite Materials, School of Engineering and Technology, National Textile University, Faisalabad 37600, Pakistan
| |
Collapse
|
8
|
Singh S, Soni M, Gupta N, Sandhu P, Tripathi D, Venkatesh Pratap J, Subramanian S, Manickam N. Unravelling biochemical and molecular mechanism of a carboxylesterase from Dietzia kunjamensis IITR165 reveal novel activities against polyethylene terephthalate. Biochem Biophys Res Commun 2024; 735:150833. [PMID: 39423573 DOI: 10.1016/j.bbrc.2024.150833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Plastics and plasticizers accumulate in the ecological niches affecting biodiversity, and human and environmental health. Bacteria degrading polyethylene terephthalate (PET) were screened and PETases involved in PET degradation were characterized. Here, we identified a carboxylesterase Dkca1 of 48.44 kDa molecular mass from Dietzia kunjamensis IITR165 shown to degrade amorphous PET film into bis(2-hydroxyethyl) terephthalate (BHET) and terephthalic acid (TPA) formed 64.35 μM and 35.26 μM, respectively within 96 h at 37 °C as revealed by LC-MS analysis showed significant PET hydrolase activity similar to reported PETases. SEM analysis confirms the surface erosion as cavities and holes. Dkca1 also hydrolysed BHET and dibutyl phthalate (DBP) at a concentration of 1 mM within 3 h indicating its versatility. Fluorescence quenching shows Dkca1 protein has a maximum affinity (Kd) towards BHET (86.55 μM) than DBP (134.2 μM). The protein demonstrated high stability under temperatures above 40 °C and at the pH range of 6.0-9.0. Moreover, Amino acid composition showed that the Dkca1 enzyme belongs to family VII carboxylesterase containing conserved catalytic triad of Ser183-Glu289-His378 with pentapeptide motif GXSAG and an oxyanion hole H103GGG106, sharing 37.47 % and 32.44 % similarity with a PET hydrolase TfCa from Thermobifida fusca and PAE hydrolase CarEW from Bacillus sp. K91, respectively. A docking study revealed that ligand PET, BHET, and DBP showed favourable binding in the catalytic pocket of the Dkca1 protein.
Collapse
Affiliation(s)
- Saurabh Singh
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Neha Gupta
- Analytical Chemistry Laboratory, Analytical Sciences and Accredited Testing Services, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Padmani Sandhu
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Deepali Tripathi
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - J Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Srikrishna Subramanian
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Yuan F, Yuan H, Zhang X, Yu W, Du J, Yang X, Wang D. Numerical study on the mechanism of microplastic separation from water by cyclonic air flotation. WATER RESEARCH 2024; 266:122338. [PMID: 39213685 DOI: 10.1016/j.watres.2024.122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Microplastics have attracted considerable attention as emerging contaminants that threaten water bodies. The removal of microplastics from a mini-hydrocyclone, enhanced by air flotation, was studied numerically. The three-phase flow was modeled using the Eulerian-Eulerian model coupled with interphase interactions. The characteristics of the flow field and distribution of microplastics and microbubbles were discussed, and the mechanism of cyclonic air flotation separation was analyzed. It was found that injecting microbubbles accelerated the axial migration of microplastics and moved the enriched area upward toward the overflow. The coalescence rate of the bubbles near the axis was higher than their breakage rate, which led to the formation of an air core. The length and diameter of the air core increased with the inlet gas holdup. When the air core size closely matched the overflow, the constrained flow channel prevented the discharge of microplastics. The optimal air holdup must be determined to ensure the efficiency of the cyclonic air flotation process. The sizes of the microbubbles used for cyclonic air flotation should be comparable to those of the separated microplastics. The upper cone angle significantly promoted the migration of microplastics to the axis. This study was conducted to purify microplastic-containing wastewater using an environmentally friendly and energy-efficient technique and to provide a theoretical basis and practical reference for applying microplastic separation technology in water.
Collapse
Affiliation(s)
- Fangyang Yuan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; Wuxi General Machinery Works Co. Ltd., Wuxi 214028, China.
| | - Hao Yuan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Xibin Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiyun Du
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinjun Yang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongxiang Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi 214122, China; School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Pan Y, Zhang H, Zhu L, Tan J, Wang B, Li M. The role of gut microbiota in MP/NP-induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124742. [PMID: 39153541 DOI: 10.1016/j.envpol.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are globally recognized as emerging environmental pollutants in various environmental media, posing potential threats to ecosystems and human health. MPs/NPs are unavoidably ingested by humans, mainly through contaminated food and drinks, impairing the gastrointestinal ecology and seriously impacting the human body. The specific role of gut microbiota in the gastrointestinal tract upon MP/NP exposure remains unknown. Given the importance of gut microbiota in metabolism, immunity, and homeostasis, this review aims to enhance our current understanding of the role of gut microbiota in MP/NP-induced toxicity. First, it discusses human exposure to MPs/NPs through the diet and MP/NP-induced adverse effects on the respiratory, digestive, neural, urinary, reproductive, and immune systems. Second, it elucidates the complex interactions between the gut microbiota and MPs/NPs. MPs/NPs can disrupt gut microbiota homeostasis, while the gut microbiota can degrade MPs/NPs. Third, it reveals the role of the gut microbiota in MP/NP-mediated systematic toxicity. MPs/NPs cause direct intestinal toxicity and indirect toxicity in other organs via regulating the gut-brain, gut-liver, and gut-lung axes. Finally, novel approaches such as dietary interventions, prebiotics, probiotics, polyphenols, engineered bacteria, microalgae, and micro/nanorobots are recommended to reduce MP/NP toxicity in humans. Overall, this review provides a theoretical basis for targeting the gut microbiota to study MP/NP toxicity and develop novel strategies for its mitigation.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
11
|
Fritzsche S, Hübner H, Oldiges M, Castiglione K. Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes. Microb Cell Fact 2024; 23:274. [PMID: 39390488 PMCID: PMC11468216 DOI: 10.1186/s12934-024-02547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. RESULTS In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCGDAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL-1) and cutinase titre (660 mg L-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCGDAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCGDAQI at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%. CONCLUSION Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCGDAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
12
|
Retnadhas S, Ducat DC, Hegg EL. Nature-Inspired Strategies for Sustainable Degradation of Synthetic Plastics. JACS AU 2024; 4:3323-3339. [PMID: 39328769 PMCID: PMC11423324 DOI: 10.1021/jacsau.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Synthetic plastics have become integral to our daily lives, yet their escalating production, limited biodegradability, and inadequate waste management contribute to environmental contamination. Biological plastic degradation is one promising strategy to address this pollution. The inherent chemical and physical properties of synthetic plastics, however, pose challenges for microbial enzymes, hindering the effective degradation and the development of a sustainable biological recycling process. This Perspective explores alternative, nature-inspired strategies designed to overcome some key limitations in currently available plastic-degrading enzymes. Nature's refined degradation pathways for natural polymers, such as cellulose, present a compelling framework for the development of efficient technologies for enzymatic plastic degradation. By drawing insights from nature, we propose a general strategy of employing substrate binding domains to improve targeting and multienzyme scaffolds to overcome enzymatic efficiency limitations. As one potential application, we outline a multienzyme pathway to upcycle polyethylene into alkenes. Employing nature-inspired strategies can present a path toward sustainable solution to the environmental impact of synthetic plastics.
Collapse
Affiliation(s)
- Sreeahila Retnadhas
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Sitara A, Hocq R, Horvath J, Pflügl S. Industrial biotechnology goes thermophilic: Thermoanaerobes as promising hosts in the circular carbon economy. BIORESOURCE TECHNOLOGY 2024; 408:131164. [PMID: 39069138 DOI: 10.1016/j.biortech.2024.131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Transitioning away from fossil feedstocks is imperative to mitigate climate change, and necessitates the utilization of renewable, alternative carbon and energy sources to foster a circular carbon economy. In this context, lignocellulosic biomass and one-carbon compounds emerge as promising feedstocks that could be renewably upgraded by thermophilic anaerobes (thermoanaerobes) via gas fermentation or consolidated bioprocessing to value-added products. In this review, the potential of thermoanaerobes for cost-efficient, effective and sustainable bioproduction is discussed. Metabolic and bioprocess engineering approaches are reviewed to draw a comprehensive picture of current developments and future perspectives for the conversion of renewable feedstocks to chemicals and fuels of interest. Selected bioprocessing scenarios are outlined, offering practical insights into the applicability of thermoanaerobes at a large scale. Collectively, the potential advantages of thermoanaerobes regarding process economics could facilitate an easier transition towards sustainable bioprocesses with renewable feedstocks.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
14
|
Yip A, McArthur OD, Ho KC, Aucoin MG, Ingalls BP. Degradation of polyethylene terephthalate (PET) plastics by wastewater bacteria engineered via conjugation. Microb Biotechnol 2024; 17:e70015. [PMID: 39315602 PMCID: PMC11420662 DOI: 10.1111/1751-7915.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Wastewater treatment plants are one of the major pathways for microplastics to enter the environment. In general, microplastics are contaminants of global concern that pose risks to ecosystems and human health. Here, we present a proof-of-concept for reduction of microplastic pollution emitted from wastewater treatment plants: delivery of recombinant DNA to bacteria in wastewater to enable degradation of polyethylene terephthalate (PET). Using a broad-host-range conjugative plasmid, we enabled various bacterial species from a municipal wastewater sample to express FAST-PETase, which was released into the extracellular environment. We found that FAST-PETase purified from some transconjugant isolates could degrade about 40% of a 0.25 mm thick commercial PET film within 4 days at 50°C. We then demonstrated partial degradation of a post-consumer PET product over 5-7 days by exposure to conditioned media from isolates. These results have broad implications for addressing the global plastic pollution problem by enabling environmental bacteria to degrade PET.
Collapse
Affiliation(s)
- Aaron Yip
- Department of Chemical EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Owen D. McArthur
- Department of BiologyUniversity of WaterlooWaterlooOntarioCanada
| | - Kalista C. Ho
- Department of BiologyUniversity of WaterlooWaterlooOntarioCanada
| | - Marc G. Aucoin
- Department of Chemical EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Brian P. Ingalls
- Department of Applied MathematicsUniversity of WaterlooWaterlooOntarioCanada
| |
Collapse
|
15
|
Guidotti G, Palumbo A, Soccio M, Gazzano M, Salatelli E, Siracusa VM, Lotti N. Fully Bio-Based Blends of Poly (Pentamethylene Furanoate) and Poly (Hexamethylene Furanoate) for Sustainable and Flexible Packaging. Polymers (Basel) 2024; 16:2342. [PMID: 39204562 PMCID: PMC11360354 DOI: 10.3390/polym16162342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
In the present study, bio-based polymeric blends have been prepared for applications in the field of sustainable food packaging, starting from two furan-based homopolymers, poly(hexamethylene 2,5-furanoate) (PHF) and poly(pentamethylene 2,5-furanoate) (PPeF). PHF and PPeF were synthesized by two-step melt polycondensation-a solvent-free synthetic strategy-and then binary physical mixtures, PHF/PPeF, with different weight compositions were prepared by dissolution in a common solvent. The blends were processed into compression-moulded films, and molecular, morphological, structural, thermal, and mechanical characterizations were subsequently carried out. Blending did not negatively affect the thermal stability of the parent homopolymers, and good compatibility between them was observed. This strategy also allowed for the modulation of the chain rigidity as well as of the crystallinity, simply by acting on the relative weight amount of the homopolymers. From a mechanical point of view, the presence of PPeF led to a reduction in stiffness and an increase in the elongation at break, obtaining materials with an elastomeric behaviour. Evaluation of the gas barrier properties confirmed that the good barrier properties of PHF were preserved by blending. Finally, lab-scale composting tests confirmed a greater weight loss of the mixtures with respect to the PHF homopolymer.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
| | - Arianna Palumbo
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy;
| | - Elisabetta Salatelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Valentina M. Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (G.G.); (A.P.); (M.S.)
- Interdepartmental Center for Industrial Agro-Food Research, CIRI-AGRO, Via Q. Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
16
|
Pham VHT, Kim J, Chang S. A Valuable Source of Promising Extremophiles in Microbial Plastic Degradation. Polymers (Basel) 2024; 16:2109. [PMID: 39125136 PMCID: PMC11314448 DOI: 10.3390/polym16152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Plastics have accumulated in open environments, such as oceans, rivers, and land, for centuries, but their effect has been of concern for only decades. Plastic pollution is a global challenge at the forefront of public awareness worldwide due to its negative effects on ecological systems, animals, human health, and national economies. Therefore, interest has increased regarding specific circular economies for the development of plastic production and the investigation of green technologies for plastic degradation after use on an appropriate timescale. Moreover, biodegradable plastics have been found to contain potential new hazards compared with conventional plastics due to the physicochemical properties of the polymers involved. Recently, plastic biodegradation was defined as microbial conversion using functional microorganisms and their enzymatic systems. This is a promising strategy for depolymerizing organic components into carbon dioxide, methane, water, new biomass, and other higher value bioproducts under both oxic and anoxic conditions. This study reviews microplastic pollution, the negative consequences of plastic use, and the current technologies used for plastic degradation and biodegradation mediated by microorganisms with their drawbacks; in particular, the important and questionable role of extremophilic multi-enzyme-producing bacteria in synergistic systems of plastic decomposition is discussed. This study emphasizes the key points for enhancing the plastic degradation process using extremophiles, such as cell hydrophobicity, amyloid protein, and other relevant factors. Bioprospecting for novel mechanisms with unknown information about the bioproducts produced during the plastic degradation process is also mentioned in this review with the significant goals of CO2 evolution and increasing H2/CH4 production in the future. Based on the potential factors that were analyzed, there may be new ideas for in vitro isolation techniques for unculturable/multiple-enzyme-producing bacteria and extremophiles from various polluted environments.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Soonwoong Chang
- Department of Environmental Energy Engineering, College of Creative Engineering, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
17
|
Pires CS, Costa L, Barbosa SG, Sequeira JC, Cachetas D, Freitas JP, Martins G, Machado AV, Cavaleiro AJ, Salvador AF. Microplastics Biodegradation by Estuarine and Landfill Microbiomes. MICROBIAL ECOLOGY 2024; 87:88. [PMID: 38943017 PMCID: PMC11213754 DOI: 10.1007/s00248-024-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.
Collapse
Affiliation(s)
- Cristina S Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sónia G Barbosa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Diogo Cachetas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José P Freitas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Gilberto Martins
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Vera Machado
- IPC - Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Chu WC, Gao YY, Wu YX, Liu FF. Biofilm of petroleum-based and bio-based microplastics in seawater in response to Zn(II): Biofilm formation, community structure, and microbial function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172397. [PMID: 38608889 DOI: 10.1016/j.scitotenv.2024.172397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Microplastic biofilms are novel vectors for the transport and spread of pathogenic and drug-resistant bacteria. With the increasing use of bio-based plastics, there is an urgent need to investigate the microbial colonization characteristics of these materials in seawater, particularly in comparison with conventional petroleum-based plastics. Furthermore, the effect of co-occurring contaminants, such as heavy metals, on the formation of microplastic biofilms and bacterial communities remains unclear. In this study, we compared the biofilm bacterial community structure of petroleum-based polyethylene (PE) and bio-based polylactic acid (PLA) in seawater under the influence of zinc ions (Zn2+). Our findings indicate that the biofilm on PLA microplastics in the late stage was impeded by the formation of a mildly acidic microenvironment resulting from the hydrolysis of the ester group on PLA. The PE surface had higher bacterial abundance and diversity, with a more intricate symbiotic pattern. The bacterial structures on the two types of microplastics were different; PE was more conducive to the colonization of anaerobic bacteria, whereas PLA was more favorable for the colonization of aerobic and acid-tolerant species. Furthermore, Zn increased the proportion of the dominant genera that could utilize microplastics as a carbon source, such as Alcanivorax and Nitratireductor. PLA had a greater propensity to harbor and disseminate pathogenic and drug-resistant bacteria, and Zn promoted the enrichment and spread of harmful bacteria such as, Pseudomonas and Clostridioides. Therefore, further research is essential to fully understand the potential environmental effects of bio-based microplastics and the role of heavy metals in the dynamics of bacterial colonization.
Collapse
Affiliation(s)
- Wang-Chao Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuan-Yuan Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yu-Xin Wu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fei-Fei Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
19
|
Yan ZF, Feng CQ, Chen XQ, Jin CX, Xia W, Chen S, Wu J. Design and construction of chemical-biological module clusters for degradation and assimilation of poly(ethylene terephthalate) waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121258. [PMID: 38815428 DOI: 10.1016/j.jenvman.2024.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
The rising accumulation of poly(ethylene terephthalate) (PET) waste presents an urgent ecological challenge, necessitating an efficient and economical treatment technology. Here, we developed chemical-biological module clusters that perform chemical pretreatment, enzymatic degradation, and microbial assimilation for the large-scale treatment of PET waste. This module cluster included (i) a chemical pretreatment that involves incorporating polycaprolactone (PCL) at a weight ratio of 2% (PET:PCL = 98:2) into PET via mechanical blending, which effectively reduces the crystallinity and enhances degradation; (ii) enzymatic degradation using Thermobifida fusca cutinase variant (4Mz), that achieves complete degradation of pretreated PET at 300 g/L PET, with an enzymatic loading of 1 mg protein per gram of PET; and (iii) microbial assimilation, where Rhodococcus jostii RHA1 metabolizes the degradation products, assimilating each monomer at a rate above 90%. A comparative life cycle assessment demonstrated that the carbon emissions from our module clusters (0.25 kg CO2-eq/kg PET) are lower than those from other established approaches. This study pioneers a closed-loop system that seamlessly incorporates pretreatment, degradation, and assimilation processes, thus mitigating the environmental impacts of PET waste and propelling the development of a circular PET economy.
Collapse
Affiliation(s)
- Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | - Chu-Qi Feng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiao-Qian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Chang-Xu Jin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Wei Xia
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
20
|
Martín-González D, de la Fuente Tagarro C, De Lucas A, Bordel S, Santos-Beneit F. Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review. Int J Mol Sci 2024; 25:5536. [PMID: 38791573 PMCID: PMC11121894 DOI: 10.3390/ijms25105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Synthetic polymers, commonly known as plastics, are currently present in all aspects of our lives. Although they are useful, they present the problem of what to do with them after their lifespan. There are currently mechanical and chemical methods to treat plastics, but these are methods that, among other disadvantages, can be expensive in terms of energy or produce polluting gases. A more environmentally friendly alternative is recycling, although this practice is not widespread. Based on the practice of the so-called circular economy, many studies are focused on the biodegradation of these polymers by enzymes. Using enzymes is a harmless method that can also generate substances with high added value. Novel and enhanced plastic-degrading enzymes have been obtained by modifying the amino acid sequence of existing ones, especially on their active site, using a wide variety of genetic approaches. Currently, many studies focus on the common aim of achieving strains with greater hydrolytic activity toward a different range of plastic polymers. Although in most cases the depolymerization rate is improved, more research is required to develop effective biodegradation strategies for plastic recycling or upcycling. This review focuses on a compilation and discussion of the most important research outcomes carried out on microbial biotechnology to degrade and recycle plastics.
Collapse
Affiliation(s)
- Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
21
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
22
|
Singh P, Lau CSS, Siah SY, Chua KO, Ting ASY. Microbial degradation of low-density polyethylene, polyethylene terephthalate, and polystyrene by novel isolates from plastic-polluted environment. Arch Microbiol 2024; 206:188. [PMID: 38519709 DOI: 10.1007/s00203-024-03895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.
Collapse
Affiliation(s)
- Pooja Singh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Claudeen Sze Siang Lau
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sze Yin Siah
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Kah Ooi Chua
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
23
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
24
|
Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, Kumar V, Muzammil K, Mani Sankar M. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. CHEMOSPHERE 2024; 352:141417. [PMID: 38340992 DOI: 10.1016/j.chemosphere.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.
Collapse
Affiliation(s)
- J R Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - G Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - M Mani Sankar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
25
|
Kumar V, Sharma N, Umesh M, Sharma R, Sharma M, Sharma D, Sharma M, Sondhi S, Thomas J, Kumar D, Kansal L, Jha NK. Commercialization potential of PET (polyethylene terephthalate) recycled nanomaterials: A review on validation parameters. CHEMOSPHERE 2024; 352:141453. [PMID: 38364916 DOI: 10.1016/j.chemosphere.2024.141453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Polyethylene Terephthalate (PET) is a polymer which is considered as one of the major contaminants to the environment. The PET waste materials can be recycled to produce value-added products. PET can be converted to nanoparticles, nanofibers, nanocomposites, and nano coatings. To extend the applications of PET nanomaterials, understanding its commercialization potential is important. In addition, knowledge about the factors affecting recycling of PET based nanomaterials is essential. The presented review is focused on understanding the PET commercialization aspects, keeping in mind market analysis, growth drivers, regulatory affairs, safety considerations, issues associated with scale-up, manufacturing challenges, economic viability, and cost-effectiveness. In addition, the paper elaborates the challenges associated with the use of PET based nanomaterials. These challenges include PET contamination to water, soil, sediments, and human exposure to PET nanomaterials. Moreover, the paper discusses in detail about the factors affecting PET recycling, commercialization, and circular economy with specific emphasis on life cycle assessment (LCA) of PET recycled nanomaterials.
Collapse
Affiliation(s)
- Vinay Kumar
- Bioconversion and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam, 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560029, Karnataka, India.
| | - Roopali Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, 176206, Kangra, Himachal Pradesh, India
| | - Deepak Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, 176206, Kangra, Himachal Pradesh, India
| | - Sonica Sondhi
- Haryana State Pollution Control Board, C-11, Panchkula, Haryana, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Deepak Kumar
- Department of Biotechnology-UIBT, Chandigarh University, Punjab, India
| | - Lavish Kansal
- School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre for Research Impact and Outcomes, Chitkara University, Rajpura, Punjab, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| |
Collapse
|
26
|
Amalia L, Chang CY, Wang SSS, Yeh YC, Tsai SL. Recent advances in the biological depolymerization and upcycling of polyethylene terephthalate. Curr Opin Biotechnol 2024; 85:103053. [PMID: 38128200 DOI: 10.1016/j.copbio.2023.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Polyethylene terephthalate (PET) is favored for its exceptional properties and widespread daily use. This review highlights recent advancements that enable the development of biological tools for PET decomposition, transforming PET into valuable platform chemicals and materials in upcycling processes. Enhancing PET hydrolases' catalytic activity and efficiency through protein engineering strategies is a priority, facilitating more effective PET waste management. Efforts to create novel PET hydrolases for large-scale PET depolymerization continue, but cost-effectiveness remains challenging. Hydrolyzed monomers must add additional value to make PET recycling economically attractive. Valorization of hydrolysis products through the upcycling process is expected to produce new compounds with different values and qualities from the initial polymer, making the decomposed monomers more appealing. Advances in synthetic biology and enzyme engineering hold promise for PET upcycling. While biological depolymerization offers environmental benefits, further research is needed to make PET upcycling sustainable and economically feasible.
Collapse
Affiliation(s)
- Lita Amalia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
27
|
He Y, Deng X, Jiang L, Hao L, Shi Y, Lyu M, Zhang L, Wang S. Current advances, challenges and strategies for enhancing the biodegradation of plastic waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167850. [PMID: 37844647 DOI: 10.1016/j.scitotenv.2023.167850] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Due to its highly recalcitrant nature, the growing accumulation of plastic waste is becoming an urgent global problem. Biodegradation is one of the best possible approaches for the treatment of plastic waste in an environmentally friendly manner, but our current knowledge on the underlying mechanisms, as well as strategies for the development and enhancement of plastic biodegradation are still limited. This review aims to provide an updated and comprehensive overview of current research on plastic waste biodegradation, focusing on enhancement strategies with ongoing research significance, including the mining of highly efficient plastic-degrading microorganisms/enzymes, utilization of synergistic additives, novel pretreatment approaches, modification via molecular engineering, and construction of bacterial/enzyme consortia systems. Studying these strategies can (i) enrich the high-performance microbial/enzymes toolbox for plastic degradation, (ii) provide methods for recycling and upgrading plastics, as well as (iii) enable further molecular modification and functional optimization of plastic-degrading enzymes to realize economically viable biodegradation of plastics. To the best of our knowledge, this is the first review to discuss in detail strategies to enhance biodegradation of plastics. Finally, some recommendations for future research on plastic biodegradation are listed, hoping to provide the best direction for tackling the plastic waste dilemma in the future.
Collapse
Affiliation(s)
- Yuehui He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xilong Deng
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lijuan Hao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yong Shi
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
28
|
Jain R, Gaur A, Suravajhala R, Chauhan U, Pant M, Tripathi V, Pant G. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167098. [PMID: 37717754 DOI: 10.1016/j.scitotenv.2023.167098] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Microplastics are ubiquitous environmental pollutants with the potential for adverse impacts on ecosystems and human health. These particles originate from the fragmentation of larger plastic items, shedding from synthetic fibers, tire abrasions, and direct release from personal care products and industrial processes. Once released into the environment, microplastics can disrupt ecosystems, accumulate in organisms, cause physical harm, and carry chemical pollutants that pose risks to both wildlife and human health. There is an urgent need to comprehensively explore the multifaceted issue of microplastic pollution and understand microbial degradation to reduce environmental pollution caused by microplastics. This paper presents a comprehensive exploration of microplastics, including their types, composition, advantages, and disadvantages, as well as the journey and evolution of microplastic pollution. The impact of microplastics on the microbiome and microbial communities is elucidated, highlighting the intricate interactions between microplastics and microbial ecosystems. Furthermore, the microbial degradation of microplastics is discussed, including the identification, characterization, and culturing methods of microplastic-degrading microorganisms. Mechanisms of microplastic degradation and the involvement of microbial enzymes are elucidated to shed light on potential biotechnological applications. Strategies for reducing microplastic pollution are presented, encompassing policy recommendations and the importance of enhanced waste management practices. Finally, the paper addresses future challenges and prospects in the field, emphasizing the need for international collaboration, research advancements, and public engagement. Overall, this study underscores the urgent need for concerted efforts to mitigate microplastic pollution and offers valuable insights for researchers, policymakers, and stakeholders involved in environmental preservation.
Collapse
Affiliation(s)
- Rajul Jain
- Bioclues.org, India, Vivekananda Nagar, Kukatpally, 500072 Hyderabad, Telangana, India.
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| | - Renuka Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, 690525, Kerala, India.
| | - Uttra Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Manu Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| | - Gaurav Pant
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248002, India.
| |
Collapse
|
29
|
Akarsu C, Özdemir S, Ozay Y, Acer Ö, Dizge N. Investigation of two different size microplastic degradation ability of thermophilic bacteria using polyethylene polymers. ENVIRONMENTAL TECHNOLOGY 2023; 44:3710-3720. [PMID: 35476583 DOI: 10.1080/09593330.2022.2071638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
There are several studies stating that many types of microplastics cannot be retained completely by conventional wastewater treatment systems. Therefore, it is necessary to prevent the discharge of these microplastics to the ecological system. The objective of this study was to investigate the biodegradation ability of two different size of PE (50 and 150 µm) by using two Gram-positive, spore-forming, rod-shaped, and motile thermophilic bacteria, called strain Gecek4 and strain ST5, which can hydrolyse starch, were isolated from the soil's samples of Gecek and Ömer hot-springs in Afyonkarahisar, Turkey, respectively. Phenotypic features and 16S rRNA analyzing of strains also studied. According to these results, Gecek4s and ST5 were identified as Anoxybacillus flavithermus Gecek4s and Bacillus firmus ST5, respectively. Results showed that A. flavithermus Gecek4s could colonise the polymer surface and cause surface damage whereas B. firmus ST5 could not degrade bigger-sized particles efficiently. In addition, morphological changes on microplastic surface were investigated by scanning electron microscopy (SEM) where dimensional changes, irregularities, crack, and/or holes were detected. This finding suggests that there is a high potential to develop an effective integrated method for plastic bags degradation by extracellular enzymes from bacteria.
Collapse
Affiliation(s)
- Ceyhun Akarsu
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Yasin Ozay
- Department of Environmental Protection Technologies, Tarsus University, Mersin, Turkey
| | - Ömer Acer
- Medical Faculty, Department of Medical Microbiology, Siirt University, Siirt, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
30
|
James-Pearson LF, Dudley KJ, Te'o VSJ, Patel BKC. A hot topic: thermophilic plastic biodegradation. Trends Biotechnol 2023; 41:1117-1126. [PMID: 37121828 DOI: 10.1016/j.tibtech.2023.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023]
Abstract
Biological degradation of plastic waste is an environmentally and economically friendlier alternative to current recycling practices and enables the cycling of plastic monomers back into virgin-quality plastics. However, due to slow reaction rates, there is a lack of an industrially viable biodegradation strategy for most plastics. Here, we highlight the applicability of a thermophilic biodegradation strategy over a mesophilic approach, to enhance enzyme accessibility and catalyze plastic biodegradation. Thus, at reactions closer to the melting temperature or glass transition temperature of plastics, thermophilic reactions can offer an alternative direction to conventional plastic biodegradation strategies.
Collapse
Affiliation(s)
- Louisa F James-Pearson
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Valentino Setoa Junior Te'o
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bharat K C Patel
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Kim JH, Lee SH, Lee BM, Son KH, Park HY. Biodegradation Potential of Polyethylene Terephthalate by the Two Insect Gut Symbionts Xanthomonas sp. HY-74 and Bacillus sp. HY-75. Polymers (Basel) 2023; 15:3546. [PMID: 37688172 PMCID: PMC10489954 DOI: 10.3390/polym15173546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Polyethylene terephthalate (PET) is a plastic material that is widely used in beverage bottles, food packaging, and other consumer products, which is highly resistant to biodegradation. In this study, we investigated the effects of two insect gut symbionts, Xanthomonas sp. HY-74 and Bacillus sp. HY-75, during PET biodegradation. Both strains degraded PET-containing agar plates, and the sole nutrition source assay showed that HY-74 had different degradation rates depending on the presence of specific carbon and nitrogen sources, whereas HY-75 exhibited comparable degradation across all tested conditions. The two strains biodegraded the PET film with 1.57 ± 0.21% and 1.42 ± 0.46% weight loss after 6 weeks, respectively. Changes in the morphology and structure of the PET films, such as erosion, scratching, and surface roughening, were determined using scanning electron microscopy (SEM). Further, the two strains biodegraded PET powder, broke it into its degradation products, and changed the surface functional groups. This is the first study to investigate the biodegradation of PET by Hymenoptera gut-derived microbes and offers promising insights into the potential applications of insect gut symbionts in PET waste management.
Collapse
Affiliation(s)
| | | | | | | | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; (J.-H.K.); (S.-H.L.); (B.-M.L.); (K.-H.S.)
| |
Collapse
|
32
|
Williams GB, Ma H, Khusnutdinova AN, Yakunin AF, Golyshin PN. Harnessing extremophilic carboxylesterases for applications in polyester depolymerisation and plastic waste recycling. Essays Biochem 2023; 67:715-729. [PMID: 37334661 PMCID: PMC10423841 DOI: 10.1042/ebc20220255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
The steady growth in industrial production of synthetic plastics and their limited recycling have resulted in severe environmental pollution and contribute to global warming and oil depletion. Currently, there is an urgent need to develop efficient plastic recycling technologies to prevent further environmental pollution and recover chemical feedstocks for polymer re-synthesis and upcycling in a circular economy. Enzymatic depolymerization of synthetic polyesters by microbial carboxylesterases provides an attractive addition to existing mechanical and chemical recycling technologies due to enzyme specificity, low energy consumption, and mild reaction conditions. Carboxylesterases constitute a diverse group of serine-dependent hydrolases catalysing the cleavage and formation of ester bonds. However, the stability and hydrolytic activity of identified natural esterases towards synthetic polyesters are usually insufficient for applications in industrial polyester recycling. This necessitates further efforts on the discovery of robust enzymes, as well as protein engineering of natural enzymes for enhanced activity and stability. In this essay, we discuss the current knowledge of microbial carboxylesterases that degrade polyesters (polyesterases) with focus on polyethylene terephthalate (PET), which is one of the five major synthetic polymers. Then, we briefly review the recent progress in the discovery and protein engineering of microbial polyesterases, as well as developing enzyme cocktails and secreted protein expression for applications in the depolymerisation of polyester blends and mixed plastics. Future research aimed at the discovery of novel polyesterases from extreme environments and protein engineering for improved performance will aid developing efficient polyester recycling technologies for the circular plastics economy.
Collapse
Affiliation(s)
- Gwion B Williams
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| | - Hairong Ma
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| | - Anna N Khusnutdinova
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| | - Alexander F Yakunin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| |
Collapse
|
33
|
Cai Z, Li M, Zhu Z, Wang X, Huang Y, Li T, Gong H, Yan M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023; 11:1661. [PMID: 37512834 PMCID: PMC10386651 DOI: 10.3390/microorganisms11071661] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Plastic and microplastic pollution has caused a great deal of ecological problems because of its persistence and potential adverse effects on human health. The degradation of plastics through biological processes is of great significance for ecological health, therefore, the feasibility of plastic degradation by microorganisms has attracted a lot of attention. This study comprises a preliminary discussion on the biodegradation mechanism and the advantages and roles of different bacterial enzymes, such as PET hydrolase and PCL-cutinase, in the degradation of different polymers, such as PET and PCL, respectively. With a particular focus on their modes of action and potential enzymatic mechanisms, this review sums up studies on the biological degradation of plastics and microplastics related to mechanisms and influencing factors, along with their enzymes in enhancing the degradation of synthetic plastics in the process. In addition, biodegradation of plastic is also affected by plastic additives and plasticizers. Plasticizers and additives in the composition of plastics can cause harmful impacts. To further improve the degradation efficiency of polymers, various pretreatments to improve the efficiency of biodegradation, which can cause a significant reduction in toxic plastic pollution, were also preliminarily discussed here. The existing research and data show a large number of microorganisms involved in plastic biodegradation, though their specific mechanisms have not been thoroughly explored yet. Therefore, there is a significant potential for employing various bacterial strains for efficient degradation of plastics to improve human health and safety.
Collapse
Affiliation(s)
- Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yuanyin Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Tianmu Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
34
|
Kothawale SS, Kumar L, Singh SP. Role of organisms and their enzymes in the biodegradation of microplastics and nanoplastics: A review. ENVIRONMENTAL RESEARCH 2023:116281. [PMID: 37276977 DOI: 10.1016/j.envres.2023.116281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Microplastic (MP) and Nanoplastic (NP) contamination have become a critical ecological concern due to their persistent presence in every aspect of the ecosystem and their potentially harmful effects. The current approaches to eradicate these wastes by burning up and dumping adversely impact the environment, while recycling has its own challenges. As a result, applying degradation techniques to eliminate these recalcitrant polymers has been a focus of scientific investigation in the recent past. Biological, photocatalytic, electrocatalytic, and, recently, nanotechnologies have been studied to degrade these polymers. Nevertheless, it is hard to degrade MPs and NPs in the environment, and these degradation techniques are comparatively inefficient and require further development. The recent research focuses on the potential use of microbes to degrade MPs and NPs as a sustainable solution. Therefore, considering the recent advancements in this important research field, this review highlights the utilization of organisms and enzymes for the biodegradation of the MPs and NPs with their probable degradation mechanisms. This review provides insight into various microbial entities and their enzymes for the biodegradation of MPs. In addition, owing to the lack of research on the biodegradation of NPs, the perspective of applying these processes to NPs degradation has also been looked at. Finally, a critical evaluation of the recent development and perspective for future research to improve the effective removal of MPs and NPs in the environment through biodegradation is also discussed.
Collapse
Affiliation(s)
- Sheetal S Kothawale
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Lalit Kumar
- Department of Energy Science and Engineering Department (DESE), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
35
|
He L, Yang SS, Ding J, He ZL, Pang JW, Xing DF, Zhao L, Zheng HS, Ren NQ, Wu WM. Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131759. [PMID: 37276692 DOI: 10.1016/j.jhazmat.2023.131759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Polyethylene terephthalate (PET) is a mass-produced fossil-based plastic polymer that contributes to catastrophic levels of plastic pollution. Here we demonstrated that Tenebrio molitor (mealworms) was capable of rapidly biodegrading two commercial PET resins (microplastics) with respective weight-average molecular weight (Mw) of 39.33 and 29.43 kDa and crystallinity of 22.8 ± 3.06% and 18 ± 2.25%, resulting in an average mass reduction of 71.03% and 73.28% after passage of their digestive tract, and respective decrease by 9.22% and 11.36% in Mw of residual PET polymer in egested frass. Sequencing of 16 S rRNA gene amplicons of gut microbial communities showed that dominant bacterial genera were enriched and associated with PET degradation. Also, PICRUSt prediction exhibited that oxidases (monooxygenases and dioxygenases), hydrolases (cutinase, carboxylesterase and chitinase), and PET metabolic enzymes, and chemotaxis related functions were up-regulated in the PET-fed larvae. Additionally, metabolite analyses revealed that PET uptake caused alterations of stress response and plastic degradation related pathways, and lipid metabolism pathways in the T. molitor larvae could be reprogrammed when the larvae fed on PET. This study provides new insights into gut microbial community adaptation to PET diet under nutritional stress (especially nitrogen deficiency) and its contribution to PET degradation.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Li He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - He-Shan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Jiang S, Yin M, Ren H, Qin Y, Wang W, Wang Q, Li X. Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation. Polymers (Basel) 2023; 15:polym15102347. [PMID: 37242921 DOI: 10.3390/polym15102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Microplastics (MPs) in the water system could easily enter the human body and pose a potential threat, so finding a green and effective solution remains a great challenge. At present, the advanced oxidation technology represented by photocatalysis has been proven to be effective in the removal of organic pollutants, making it a feasible method to solve the problem of MP pollution. In this study, the photocatalytic degradation of typical MP polystyrene (PS) and polyethylene (PE) by a new quaternary layered double hydroxide composite photomaterial CuMgAlTi-R400 was tested under visible light irradiation. After 300 h of visible light irradiation, the average particle size of PS decreased by 54.2% compared with the initial average particle size. The smaller the particle size, the higher the degradation efficiency. The degradation pathway and mechanism of MPs were also studied by GC-MS, which showed that PS and PE produced hydroxyl and carbonyl intermediates in the process of photodegradation. This study demonstrated a green, economical, and effective strategy for the control of MPs in water.
Collapse
Affiliation(s)
- Shengyun Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Mingshan Yin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Huixue Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yaping Qin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weiliang Wang
- Beicheng Environmental Engineering Co., Ltd., Jinan 250101, China
| | - Quanyong Wang
- Shandong Huacheng Urban Construction Design Engineering Co., Ltd., Jinan 250101, China
| | - Xuemei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
37
|
Fang Y, Chao K, He J, Wang Z, Chen Z. High-efficiency depolymerization/degradation of polyethylene terephthalate plastic by a whole-cell biocatalyst. 3 Biotech 2023; 13:138. [PMID: 37124986 PMCID: PMC10130265 DOI: 10.1007/s13205-023-03557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Polyethylene terephthalate (PET) is the most abundantly produced plastic due to its excellent performance, but is also the primary source of poorly degradable plastic pollution. The development of environment-friendly PET biodegradation is attracting increasing interest. The leaf-branch compost cutinase mutant ICCG (F243I/D238C/S283C/Y127G) exhibits the best hydrolytic activity and thermostability of all known PET hydrolases. However, its superior PET degradation is highly dependent on its preparation as a purified enzyme, which critically reduces its industrial utility. Herein, we report the use of rational design and combinatorial mutagenesis to develop a novel ICCG mutant RITK (D53R/R143I/D193T/E208K) that demonstrated excellent whole-cell biocatalytic activity. Whole cells expressing RITK showed an 8.33-fold increase in biocatalytic activity compared to those expressing ICCG. Thermostability was also improved. After reacting at 85 °C for 3 h, purified RITK exhibited a 12.75-fold increase in depolymerization compared to ICCG. These results will greatly enhance the industrial utility of PET hydrolytic enzymes and further the progress of PET recycling. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03557-4.
Collapse
Affiliation(s)
- Yaxuan Fang
- Laboratory of Biocatalysis, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang China
| | - Kexin Chao
- Laboratory of Biocatalysis, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang China
| | - Jin He
- Laboratory of Biocatalysis, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang China
| | - Zhiguo Wang
- Laboratory of Biocatalysis, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang China
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang China
| | - Zhenming Chen
- Laboratory of Biocatalysis, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang China
| |
Collapse
|
38
|
Thew CXE, Lee ZS, Srinophakun P, Ooi CW. Recent advances and challenges in sustainable management of plastic waste using biodegradation approach. BIORESOURCE TECHNOLOGY 2023; 374:128772. [PMID: 36828218 DOI: 10.1016/j.biortech.2023.128772] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Versatility and desirable attributes of synthetic plastics have greatly contributed towards their wide applications. However, vast accumulation of plastic wastes in environment as a result of their highly recalcitrant nature has given rise to plastic pollution. Existing strategies in alleviating plastic wastes accumulation are inadequate, and there is a pressing need for alternative sustainable approaches in tackling plastic pollution. In this context, plastic biodegradation has emerged as a sustainable and environmental-friendly approach in handling plastic wastes accumulation, due to its milder and less energy-intensive conditions. In recent years, extensive research effort has focused on the identification of microorganisms and enzymes with plastic-degrading abilities. This review aims to provide a timely and holistic view on the current status of plastic biodegradation, focusing on recent breakthroughs and discoveries in this field. Furthermore, current challenges associated to plastic biodegradation are discussed, and the future perspectives for continuous advancement of plastic biodegradation are highlighted.
Collapse
Affiliation(s)
- Crystal Xue Er Thew
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Zhi Sen Lee
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Penjit Srinophakun
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
39
|
Determinants for an Efficient Enzymatic Catalysis in Poly(Ethylene Terephthalate) Degradation. Catalysts 2023. [DOI: 10.3390/catal13030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The enzymatic degradation of the recalcitrant poly(ethylene terephthalate) (PET) has been an important biotechnological goal. The present review focuses on the state of the art in enzymatic degradation of PET, and the challenges ahead. This review covers (i) enzymes acting on PET, (ii) protein improvements through selection or engineering, (iii) strategies to improve biocatalyst–polymer interaction and monomer yields. Finally, this review discusses critical points on PET degradation, and their related experimental aspects, that include the control of physicochemical parameters. The search for, and engineering of, PET hydrolases, have been widely studied to achieve this, and several examples are discussed here. Many enzymes, from various microbial sources, have been studied and engineered, but recently true PET hydrolases (PETases), active at moderate temperatures, were reported. For a circular economy process, terephtalic acid (TPA) production is critical. Some thermophilic cutinases and engineered PETases have been reported to release terephthalic acid in significant amounts. Some bottlenecks in enzyme performance are discussed, including enzyme activity, thermal stability, substrate accessibility, PET microstructures, high crystallinity, molecular mass, mass transfer, and efficient conversion into reusable fragments.
Collapse
|
40
|
Atanasova N, Paunova-Krasteva T, Kambourova M, Boyadzhieva I. A Thermostable Lipase Isolated from Brevibacillus thermoruber Strain 7 Degrades Ɛ-Polycaprolactone. BIOTECH 2023; 12:biotech12010023. [PMID: 36975313 PMCID: PMC10046884 DOI: 10.3390/biotech12010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
The tremendous problem with plastic waste accumulation has determined an interest in biodegradation by effective degraders and their enzymes, such as thermophilic enzymes, which are characterized by high catalytic rates, thermostability, and optimum temperatures close to the melting points of some plastics. In the present work, we report on the ability of a thermophilic lipase, by Brevibacillus thermoruber strain 7, to degrade Ɛ-polycaprolactone (PCL), as well as the enzyme purification, the characterization of its physicochemical properties, the product degradation, and its disruptive effect on the PCL surface. The pure enzyme showed the highest reported optimum temperature at 55 °C and a pH of 7.5, while its half-life at 60 °C was more than five hours. Its substrate specificity referred the enzyme to the subgroup of lipases in the esterase group. A strong inhibitory effect was observed by detergents, inhibitors, and Fe3+ while Ca2+ enhanced its activity. The monomer Ɛ-caprolactone was a main product of the enzyme degradation. Similar elution profiles of the products received after treatment with ultra-concentrate and pure enzyme were observed. The significant changes in PCL appearance comprising the formation of shallower or deeper in-folds were observed after a week of incubation. The valuable enzyme properties of the lipase from Brevibacillus thermoruber strain 7, which caused a comparatively quick degradation of PCL, suggests further possible exploration of the enzyme for effective and environment-friendly degradation of PCL wastes in the area of thermal basins, or in thermophilic remediation processes.
Collapse
|
41
|
Kumar V, Sharma N, Duhan L, Pasrija R, Thomas J, Umesh M, Lakkaboyana SK, Andler R, Vangnai AS, Vithanage M, Awasthi MK, Chia WY, LokeShow P, Barceló D. Microbial engineering strategies for synthetic microplastics clean up: A review on recent approaches. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104045. [PMID: 36572198 DOI: 10.1016/j.etap.2022.104045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Microplastics are the small fragments of the plastic molecules which find their applications in various routine products such as beauty products. Later, it was realized that it has several toxic effects on marine and terrestrial organisms. This review is an approach in understanding the microplastics, their origin, dispersal in the aquatic system, their biodegradation and factors affecting biodegradation. In addition, the paper discusses the major engineering approaches applied in microbial biotechnology. Specifically, it reviews microbial genetic engineering, such as PET-ase engineering, MHET-ase engineering, and immobilization approaches. Moreover, the major challenges associated with the plastic removal are presented by evaluating the recent reports available.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India; Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Neha Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Chile
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau LokeShow
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, India
| |
Collapse
|
42
|
Zheng X, Song W, Ding S, Han L, Dong J, Feng Y, Feng Y. Environmental risk of microplastics after field aging: Reduced rice yield without mitigating yield-scale ammonia volatilization from paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 311:119947. [PMID: 36481464 DOI: 10.1016/j.envpol.2022.119947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 05/20/2023]
Abstract
Microplastics (MPs, <5 mm) are enriched in paddy ecosystems as emerging environmental pollutants. Biochar (BC) is a controversial recalcitrant carbon product that poses potential environmental risks. The presence of these two exogenous organic substances has been demonstrated to have impacts on soil nitrogen cycling and crop production. However, the after-effects of MPs and BC on soil ammonia (NH3) volatilization and rice yield after field aging remain unexplored. In this study, two common MPs, including polyethylene (PE) and polyacrylonitrile (PAN), and BC were selected for rice growing season observations to study the impacts on soil NH3 volatilization and rice yield after field aging. The results showed that the reduction of cumulative soil NH3 losses by MPs was around 45% after one-year field aging, which was within the range of 40-57% in the previous rice season. Abatement of NH3 volatilization by MPs mainly occurred in basal fertilization and was related to floodwater pH. Besides, the reduction rate of NH3 volatilization by BC and MPs + BC was enhanced after field aging (63% and 50-57%) compared to that in the previous rice season (5% and 11-19%), with the abatement process occurring in the first supplementary fertilization. There was a significant positive correlation between cumulative NH3 volatilization and soil urease activity. Notably, field aging removed the positive effect of MPs and MPs + BC in reducing yield-scale NH3 losses in the previous rice season (∼62%). Furthermore, despite BC affecting rice yield insignificantly after field aging, the presence of MPs led to a significant 17-19% reduction in rice yield. Our findings reveal that differences in the after-effects of BC and MPs in field aging emerge, where the negative impacts of MPs on soil NH3 abatement and crop yield are progressively becoming apparent and should be taken into serious consideration.
Collapse
Affiliation(s)
- Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianxin Dong
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
43
|
Ghosh D, Ghorai P, Sarkar S, Maiti KS, Hansda SR, Das P. Microbial assemblage for solid waste bioremediation and valorization with an essence of bioengineering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16797-16816. [PMID: 36595166 DOI: 10.1007/s11356-022-24849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Environmental solid waste bioremediation is a method of treating contaminated solid waste that involves changing ecological conditions to foster the growth of a broad spectrum of microorganisms and the destruction of the target contaminants. A wide range of microorganisms creates metabolites that may break down and change solid waste-based pollution to various value-added molecules. Diverse bioremediation technologies, their limitations, and the procedure involve recycling solid waste materials from the environment. The existing environmental solid waste disposal services are insufficient and must be upgraded with more lucrative recovery, recycling, and reuse technologies to decrease the enormous expenditures in treatment procedures. Bioremediation of solid waste eliminates the toxic components. It restores the site with the advent of potential microbial communities towards solid waste valorization utilizing agriculture solid waste, organic food waste, plastic solid waste, and multiple industrial solid wastes.Bioengineering on diverse ranges of microbial regimes has accelerated to provide extra momentum toward solid waste recycling and valorization. This approach increases the activity of bioremediating microbes in the commercial development of waste treatment techniques and increases the cost-effective valuable product generation. This framework facilitates collaboration between solid waste and utilities. It can aid in establishing a long-term management strategy for recycling development with the advent of a broad spectrum of potential microbial assemblages, increasing solid waste contamination tolerance efficiency and solid waste degradability. The current literature survey extensively summarises solid waste remediation valorization using a broad spectrum of microbial assemblages with special emphasis on bioengineering-based acceleration. This approach is to attain sustainable environmental management and value-added biomolecule generation.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India.
| | - Palash Ghorai
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Soumita Sarkar
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Kumar Sagar Maiti
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Serma Rimil Hansda
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Parna Das
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| |
Collapse
|
44
|
Bacha AUR, Nabi I, Zaheer M, Jin W, Yang L. Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160108. [PMID: 36370786 DOI: 10.1016/j.scitotenv.2022.160108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Plastic waste has gained remarkable research attention due to its accumulation, associated environmental issues, and impact on living organisms. In order to overcome this challenge, there is an urgent need for its removal from the environment. Under this menace, finding appropriate treatment methods like biodegradation instead of typical treatment methods is of supreme importance. However, there is a limited review on bio-decomposition of plastics, existing microbial species, their degradation efficacy, and mechanism. From this point of view, this study focused on a brief overview of biodegradation such as influencing factors on biodegradation, existing species for macro- and micro-plastics, and present research gap. Degradation percentage, limitations of existing species, and future recommendations are proposed. Microbial species such as bacteria, algae, and fungi have the ability to decompose plastics but they are unable to completely mineralize the plastics. Meanwhile, there is limited knowledge about the involved enzymes in plastics degradation, especially in the case of algae. Bio-decomposition of plastics requires more stringent conditions which are usually feasible for field application. This work will be a reference for new researchers to use this effective strategy for plastic pollution removal.
Collapse
Affiliation(s)
- Aziz-Ur-Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Iqra Nabi
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Muhammad Zaheer
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China.
| |
Collapse
|
45
|
Tarazona NA, Wei R, Brott S, Pfaff L, Bornscheuer UT, Lendlein A, Machatschek R. Rapid depolymerization of poly(ethylene terephthalate) thin films by a dual-enzyme system and its impact on material properties. CHEM CATALYSIS 2022; 2:3573-3589. [PMID: 37350932 PMCID: PMC10284027 DOI: 10.1016/j.checat.2022.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 06/24/2023]
Abstract
Enzymatic hydrolysis holds great promise for plastic waste recycling and upcycling. The interfacial catalysis mode, and the variability of polymer specimen properties under different degradation conditions, add to the complexity and difficulty of understanding polymer cleavage and engineering better biocatalysts. We present a systemic approach to studying the enzyme-catalyzed surface erosion of poly(ethylene terephthalate) (PET) while monitoring/controlling operating conditions in real time with simultaneous detection of mass loss and changes in viscoelastic behavior. PET nanofilms placed on water showed a porous morphology and a thickness-dependent glass transition temperature (Tg) between 40°C and 44°C, which is >20°C lower than the Tg of bulk amorphous PET. Hydrolysis by a dual-enzyme system containing thermostabilized variants of Ideonella sakaiensis PETase and MHETase resulted in a maximum depolymerization of 70% in 1 h at 50°C. We demonstrate that increased accessible surface area, amorphization, and Tg reduction speed up PET degradation while simultaneously lowering the threshold for degradation-induced crystallization.
Collapse
Affiliation(s)
- Natalia A. Tarazona
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Ren Wei
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Stefan Brott
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Lara Pfaff
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| |
Collapse
|
46
|
Hwang DH, Lee ME, Cho BH, Oh JW, You SK, Ko YJ, Hyeon JE, Han SO. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156890. [PMID: 35753492 DOI: 10.1016/j.scitotenv.2022.156890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Poly(ethylene terephthalate) (PET) is synthesized via a rich ester bond between terephthalate (TPA) and ethylene glycol (EG). Because of this, PET degradation takes a long time and PET accumulates in the environment. Many studies have been conducted to improve PET degrading enzyme to increase the efficiency of PET depolymerization. However, enzymatic PET decomposition is still restricted, making upcycling and recycling difficult. Here, we report a novel PET degrading complex composed of Ideonella sakaiensis PETase and Candida antarctica lipase B (CALB) that improves degradability, binding ability and enzyme stability. The reaction mechanism of chimeric PETase (cPETase) and chimeric CALB (cCALB) was confirmed by PET and bis (2-hydroxyethyl terephthalate) (BHET). cPETase generated BHET and mono (2-hydroxyethyl terephthalate (MHET) and cCALB produced terephthalate (TPA). Carbohydrate binding module 3 (CBM3) in the scaffolding protein greatly improved PET film binding affinity. Finally, the final enzyme complex demonstrated a 6.5-fold and 8.0-fold increase in the efficiency of hydrolysis from PET with either high crystalline or waste to TPA than single enzymes, respectively. This complex could effectively break down waste PET while maintaining enzyme stability and would be applied for biological upcycling of TPA.
Collapse
Affiliation(s)
- Dong-Hyeok Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byeong-Hyeon Cho
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Won Oh
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seung Kyou You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
47
|
Microbial degradation of polyethylene terephthalate: a systematic review. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractPlastic pollution levels have increased rapidly in recent years, due to the accumulation of plastic waste, including polyethylene terephthalate (PET). Both high production and the lack of efficient methods for disposal and recycling affect diverse aquatic and terrestrial ecosystems owing to the high accumulation rates of plastics. Traditional chemical and physical degradation techniques have caused adverse effects on the environment; hence, the use of microorganisms for plastic degradation has gained importance recently. This systematic review was conducted for evaluating the reported findings about PET degradation by wild and genetically modified microorganisms to make them available for future work and to contribute to the eventual implementation of an alternative, an effective, and environmentally friendly method for the management of plastic waste such as PET. Both wild and genetically modified microorganisms with the metabolic potential to degrade this polymer were identified, in addition to the enzymes and genes used for genetic modification. The most prevalent wild-type PET-degrading microorganisms were bacteria (56.3%, 36 genera), followed by fungi (32.4%, 30 genera), microalgae (1.4%; 1 genus, namely Spirulina sp.), and invertebrate associated microbiota (2.8%). Among fungi and bacteria, the most prevalent genera were Aspergillus sp. and Bacillus sp., respectively. About genetically modified microorganisms, 50 strains of Escherichia coli, most of them expressing PETase enzyme, have been used. We emphasize the pressing need for implementing biological techniques for PET waste management on a commercial scale, using consortia of microorganisms. We present this work in five sections: an Introduction that highlights the importance of PET biodegradation as an effective and sustainable alternative, a section on Materials and methods that summarizes how the search for articles and manuscripts in different databases was done, and another Results section where we present the works found on the subject, a final part of Discussion and analysis of the literature found and finally we present a Conclusion and prospects.
Collapse
|
48
|
The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess Biosyst Eng 2022; 45:1865-1878. [PMID: 36173483 DOI: 10.1007/s00449-022-02793-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Wastewater treatment plants (WWTPs) play the role of intercepting microplastics in the environment and provide a platform for bioremediation to remove microplastics. Despite, this opportunity has not been adequately studied. This paper shows the potential ways microplastics-targeted bioremediation could be incorporated into wastewater treatment through the review of relevant literature on bioaugmentation of water treatment processes for pollutants removal. Having reviewed more than 90 papers in this area, it highlights that bioremediation in WWTPs can be employed through bioaugmentation of secondary biological treatment systems, particularly the aerobic conventional activated sludge, sequencing batch reactor, membrane bioreactor and rotating biological contactor. The efficiency of microplastics removal, however, is influenced by the types and forms of microorganisms used, the polymer types and the incubation time (100% for polycaprolactone with Streptomyces thermoviolaceus and 0.76% for low-density polyethylene with Acinetobacter iwoffii). Bioaugmentation of anaerobic system, though possible, is constrained by comparatively less anaerobic microplastics-degrading microorganisms identified. In tertiary system, bioremediation through biological activated carbon and biological aerated filter can be accomplished and enzymatic membrane reactor can be added to the system for deployment of biocatalysts. During sludge treatment, bioaugmentation and addition of enzymes to composting and anaerobic digestion are potential ways to enhance microplastics breakdown. Limitations of bioremediation in wastewater treatment include longer degradation time of microplastics, incomplete biodegradation, variable efficiency, specific microbial activities and uncertainty in colonization. This paper provides important insight into the practical applications of bioremediation in wastewater treatment for microplastics removal.
Collapse
|
49
|
Liu P, Zheng Y, Yuan Y, Zhang T, Li Q, Liang Q, Su T, Qi Q. Valorization of Polyethylene Terephthalate to Muconic Acid by Engineering Pseudomonas Putida. Int J Mol Sci 2022; 23:ijms231910997. [PMID: 36232310 PMCID: PMC9569715 DOI: 10.3390/ijms231910997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Plastic waste is rapidly accumulating in the environment and becoming a huge global challenge. Many studies have highlighted the role of microbial metabolic engineering for the valorization of polyethylene terephthalate (PET) waste. In this study, we proposed a new conceptual scheme for upcycling of PET. We constructed a multifunctional Pseudomonas putida KT2440 to simultaneously secrete PET hydrolase LCC, a leaf-branch compost cutinase, and synthesize muconic acid (MA) using the PET hydrolysate. The final product MA and extracellular LCC can be separated from the supernatant of the culture by ultrafiltration, and the latter was used for the next round of PET hydrolysis. A total of 0.50 g MA was produced from 1 g PET in each cycle of the whole biological processes, reaching 68% of the theoretical conversion. This new conceptual scheme for the valorization of PET waste should have advantages over existing PET upcycling schemes and provides new ideas for the utilization of other macromolecular resources that are difficult to decompose, such as lignin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianyuan Su
- Correspondence: (T.S.); (Q.Q.); Tel./Fax: +86-532-58632580 (Q.Q.)
| | - Qingsheng Qi
- Correspondence: (T.S.); (Q.Q.); Tel./Fax: +86-532-58632580 (Q.Q.)
| |
Collapse
|
50
|
Tang KHD, Lock SSM, Yap PS, Cheah KW, Chan YH, Yiin CL, Ku AZE, Loy ACM, Chin BLF, Chai YH. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154868. [PMID: 35358520 DOI: 10.1016/j.scitotenv.2022.154868] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes/microorganisms to increase the efficiency of microplastics degradation but optimization of enzymatic or microbial activities and synthesis of immobilized enzymes/microorganisms are crucial to overcome the barriers to their wide application.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Serene Sow Mun Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kin Wai Cheah
- Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Andrian Zi En Ku
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| |
Collapse
|