1
|
Dong Z, Wu Q, Zhang P, Fang W, Lei X, Deng B, Hu N, Chen P, Huang X, Lu C, Pan M. Development of a novel anti-microsporidia strategy by inhibiting parasite and host glucose metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106276. [PMID: 40015868 DOI: 10.1016/j.pestbp.2024.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 03/01/2025]
Abstract
Microsporidia are obligate intracellular parasites that infect most types of animals. Exploring how microsporidia utilize energy substrates in infected host cells is important for human health and the development of the agricultural economy. In this study, transcriptomics was used to systematically analyze the enriched pathways involving ATP/ADP transporters and energy metabolism during the schizont proliferation period of Nosema bombycis. A Nosema bombycis ADP/ATP carrier 1 (NbAAC1) protein function characteristics of the adenine nucleotide translocase family were identified after infection with N. bombycis. NbAAC1 could inhibit ATP production and affect Nosema bombycis proliferation based on RNA interference in vivo and in vitro. Meanwhile, an effective gene-edited line targeted editing of the Bombyx mori hexokinase (BmHXK) gene of the host glycolytic metabolism pathway could inhibit N. bombycis infection was established. These findings provide new therapeutic approaches to controlling microsporidia infections by inhibiting intracellular parasitic fungi and host energy metabolism.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Pengcheng Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xiaocui Lei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Xuhua Huang
- The General Extension Station of Sericulture Technology of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Sgroi G, D’Auria LJ, Lucibelli MG, Mancusi A, Proroga YTR, Esposito M, Rea S, Signorelli D, Gargano F, D’Alessio N, Manoj RRS, Khademi P, Rofrano G. Bees on the run: Nosema spp. (Microsporidia) in Apis mellifera and related products, Italy. Front Vet Sci 2025; 11:1530169. [PMID: 39834918 PMCID: PMC11743364 DOI: 10.3389/fvets.2024.1530169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The decline of the European/western honeybee (Apis mellifera) population is on account of a plethora of microorganisms, such as Nosema apis and Nosema ceranae, two microsporidian fungi responsible of nosemosis that affects welfare and production of the bee industry. Accordingly, this study aimed to investigate the presence of both pathogens in bees, pollen and honey from apiaries in Southwestern Italy. Methods From March to July 2022 and 2023, apiaries (n = 10) were selected and classified as High Impact Areas (HIAs, n = 5) and Low Impact Areas (LIAs, n = 5) according to a 5-point environmental risk index based on factors affecting bee health sand related productions. Bee, pollen and honey samples, were collected and tested for Nosema spp. DNA by specific PCR protocols targeting the 16S rRNA gene. Signs/symptoms of nosemosis were monitored and collected by the cooperation of beekeepers. Results Out of 10 apiaries, 6 (i.e., 60%, 95% CI: 31.3-83.2) tested positive for at least one sample to Nosema spp. DNA, being 2 positives for N. apis, 2 for N. ceranae and 2 co-infected (i.e., 20%, 5.7-51.0). Based on the biological samples, honey was positive for N. apis in one apiary, pollen for N. ceranae in two apiaries, and bees for N. apis in 3 apiaries, N. ceranae in 1 apiary, and both species in 1 apiary. In all the apiaries positive to N. apis and N. ceranae, high mortality and low honey production were observed. A higher risk of infection was observed in apiaries from HIAs (OR = 6.00). The sequences of N. apis and N. ceranae had 99.5-100% homology with those in the GenBank database. Whereas all sequences of N. apis were identical to each other, four sequences types of N. ceranae characterized by single nucleotide polymorphisms (SNPs) were identified. The computation of polymorphisms revealed high haplotype diversity (i.e., Hd = 1.000) and low nucleotide diversity (i.e., Pi = 0.00913) of N. ceranae sequence types. Discussion This study reveals a high circulation of N. apis and N. ceranae in Southwestern Italy, indicating the need for improved monitoring of these microsporidia to protect bee welfare and bee industry.
Collapse
Affiliation(s)
- Giovanni Sgroi
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - Luigi Jacopo D’Auria
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
- Centro di Referenza Nazionale per l’analisi e lo studio delle correlazioni tra ambiente, animali e uomini, Portici, Naples, Italy
| | | | - Andrea Mancusi
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | | | - Mauro Esposito
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
- Centro di Referenza Nazionale per l’analisi e lo studio delle correlazioni tra ambiente, animali e uomini, Portici, Naples, Italy
| | - Simona Rea
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - Daniel Signorelli
- Department of Cultural Heritage Sciences, University of Salerno, Salerno, Italy
| | - Federica Gargano
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - Nicola D’Alessio
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | | | - Peyman Khademi
- Department of Microbiology and Food Hygiene, University of Lorestan, Khorramabad, Iran
| | - Giuseppe Rofrano
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
- Centro di Referenza Nazionale per l’analisi e lo studio delle correlazioni tra ambiente, animali e uomini, Portici, Naples, Italy
| |
Collapse
|
3
|
Jelisić S, Stanimirović Z, Ristanić M, Nakarada Đ, Mojović M, Bošnjaković D, Glavinić U. The Potential of Agaricus bisporus in Mitigating Pesticide-Induced Oxidative Stress in Honey Bees Infected with Nosema ceranae. Life (Basel) 2024; 14:1498. [PMID: 39598296 PMCID: PMC11595567 DOI: 10.3390/life14111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Global climate change, environmental pollution, and frequent pesticide use severely reduce bee populations, greatly challenging beekeeping. Pesticides such as deltamethrin, a pyrethroid insecticide commonly used to control mosquitoes, can kill individual bees and entire colonies, depending on the exposure. Due to mosquito resistance to pyrethroid insecticides, components that enhance their effect are commonly used. This study explores the potential of Agaricus bisporus mushroom extract in mitigating oxidative stress in bees triggered by pesticides and Nosema ceranae infection. Our findings indicate that A. bisporus extract significantly reduced mortality rates of bees and spore counts of N. ceranae. Furthermore, the extract demonstrated antioxidant properties that lower enzyme activity related to oxidative stress (CAT, SOD, and GST) and MDA concentration, which is linked to lipid peroxidation. These results indicate that natural extracts like A. bisporus can aid bee health by mitigating the effects of pesticides and pathogens on honey bees, thus improving biodiversity.
Collapse
Affiliation(s)
- Stefan Jelisić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| | - Đura Nakarada
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (Đ.N.); (M.M.)
| | - Miloš Mojović
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (Đ.N.); (M.M.)
| | - Dušan Bošnjaković
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Bartolomé C, Higes M, Hernández RM, Chen YP, Evans JD, Huang Q. The recent revision of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) was flawed and misleads the bee scientific community. J Invertebr Pathol 2024; 206:108146. [PMID: 38852837 DOI: 10.1016/j.jip.2024.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The genus Vairimorpha was proposed for several species of Nosema in 1976 (Pilley, 1976), almost 70 years after Nosema apis Zander (Zander, 1909). Tokarev and colleagues proposed the redefinition of 17 microsporidian species in four genera, Nosema, Vairimorpha, Rugispora, and Oligosporidium, based on phylogenetic trees of two genetic markers (SSU rRNA and RPB1) (Tokarev et al., 2020). Several issues should invalidate this new classification, leading to the synonymization of Vairimorpha within Nosema.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Raquel Martín Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Yan Ping Chen
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Bee Research Laboratory, 10300 Baltimore Avenue, 20705 Beltsville, MD, USA
| | - Jay D Evans
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Bee Research Laboratory, 10300 Baltimore Avenue, 20705 Beltsville, MD, USA
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Zhimin Ave 1101, 330045 Nanchang, China.
| |
Collapse
|
5
|
Shamaev ND, Shuralev EA, Mukminov MN. Current status of Nosema spp. infection cases in apis mellifera in eurasian countries and Ptp3 gene haplotypes in the Republic of Tatarstan, Russia. Vet Res Commun 2024; 48:2691-2698. [PMID: 38644458 DOI: 10.1007/s11259-024-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The current status of Nosema spp. infections in A. mellifera throughout Eurasia was characterized using electronic databases. Although N. ceranae was predominantly detected in southwestern and south-central regions and N. apis in northwestern and north-central areas, most studies reported the occurrence of both species in Eurasia. In addition, the occurrence of Nosema spp. and Ptp3 gene haplotypes was investigated in the Republic of Tatarstan, Russia. Most of the examined honey bees were infected with both N. apis and N. ceranae. N. apis and N. ceranae isolates were either heterozygous or belonged to different strains and showed infection with more than one strain. New haplotypes were found for N. apis and N. ceranae in the Republic of Tatarstan, Russia. This study expands the data regarding existing haplotypes of Nosema species: there are currently 9 shared and 56 unique Ptp3 nucleotide sequence haplotypes of N. ceranae, and 2 shared and 7 unique haplotypes of N. apis, respectively.
Collapse
Affiliation(s)
- Nikolai D Shamaev
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia.
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia.
- Kazan State Medical University, Republic of Tatarstan, 49 Butlerova St, Kazan, 420012, Russia.
| | - Eduard A Shuralev
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia
- Kazan State Academy of Veterinary Medicine named after N.E. Bauman, Republic of Tatarstan, 35 Sibirskiy tract St, 420029, Kazan, Russia
| | - Malik N Mukminov
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia
| |
Collapse
|
6
|
Foster LJ, Tsvetkov N, McAfee A. Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. Physiology (Bethesda) 2024; 39:0. [PMID: 38411571 PMCID: PMC11368521 DOI: 10.1152/physiol.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.
Collapse
Affiliation(s)
- Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nadejda Tsvetkov
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Braglia C, Alberoni D, Garrido PM, Porrini MP, Baffoni L, Scott D, Eguaras MJ, Di Gioia D, Mifsud D. Vairimorpha (Nosema) ceranae can promote Serratia development in honeybee gut: an underrated threat for bees? Front Cell Infect Microbiol 2024; 14:1323157. [PMID: 38808063 PMCID: PMC11131372 DOI: 10.3389/fcimb.2024.1323157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 05/30/2024] Open
Abstract
The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Martin Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | | | - Martin Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - David Mifsud
- Institute of Earth Systems, L-Universita ta’ Malta, Msida, Malta
| |
Collapse
|
8
|
Gok Yurttas A, Çinar K, Khan Z, Elgün T, Mayack C. Inactivation of Nosema spp. with zinc phthalocyanine. J Invertebr Pathol 2024; 203:108074. [PMID: 38350524 DOI: 10.1016/j.jip.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Most honey bee pathogens, such as Vairimorpha (Nosema), cannot be rapidly and definitively diagnosed in a natural setting, consequently there is typically the spread of these diseases through shared and re-use of beekeeping equipment. Furthermore, there are no viable treatment options available for Nosema spores to aid in managing the spread of this bee disease. We therefore aimed to develop a new method using novel Zinc Phthalocyanine (ZnPc) as a photosensitizer for the photodynamic inactivation of Nosema spores that could be used for the decontamination of beekeeping equipment. Nosema spores were propagated for in vitro testing using four caged Apis mellifera honey bees. The ZnPc treatment was characterized, encapsulated with a liposome, and then used as either a 10 or 100 µM treatment for the freshly harvested Nosema spores, for either a 30 and or 60-minute time period, under either light or dark conditions, in-vitro, in 96-well plates. In the dark treatment, after 30-min, the ZnPc 100 µM treatment, caused a 30 % Nosema mortality, while this increased to 80 % at the same concentration after the light treatment. The high rate of anti-spore effects, in a short period of time, supports the notion that this could be an effective treatment for managing honey bee Nosema infections in the future. Our results also suggest that the photo activation of the treatment could be applied in the field setting and this would increase the sterilization of beekeeping equipment against Nosema.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Çinar
- Department of Physics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
| | - Zaeema Khan
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.
| | - Tuğba Elgün
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey.
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey; US Department of Agriculture, Invasive Species and Pollinator Health Research Unit (ISPHRU), Western Regional Research Center (WRRC) in the Pacific West Area (PWA), USDA ARS Bee Lab Trailer 1, United States.
| |
Collapse
|
9
|
Huang Q, Chen J, Pan G, Reinke AW. Screening of the Pandemic Response Box identifies anti-microsporidia compounds. PLoS Negl Trop Dis 2023; 17:e0011806. [PMID: 38064503 PMCID: PMC10732440 DOI: 10.1371/journal.pntd.0011806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Microsporidia are fungal obligate intracellular pathogens, which infect most animals and cause microsporidiosis. Despite the serious threat that microsporidia pose to humans and agricultural animals, few drugs are available for the treatment and control of microsporidia. To identify novel inhibitors, we took advantage of the model organism Caenorhabditis elegans infected with its natural microsporidian Nematocida parisii. We used this system to screen the Pandemic Response Box, a collection of 400 diverse compounds with known antimicrobial activity. After testing these compounds in a 96-well format at high (100 μM) and low (40 μM) concentrations, we identified four inhibitors that restored the ability of C. elegans to produce progeny in the presence of N. parisii. All four compounds reduced the pathogen load of both N. parisii and Pancytospora epiphaga, a C. elegans-infecting microsporidia related to human-infecting species. One of these compounds, a known inhibitor of a viral protease, MMV1006203, inhibited invasion and prevented the firing of spores. A bis-indole derivative, MMV1593539, decreased spore viability. An albendazole analog, MMV1782387, inhibited proliferation of N. parisii. We tested albendazole as well as 5 other analogs and observed that MMV1782387 was amongst the strongest inhibitors of N. parisii and displayed the least host toxicity. Our study further demonstrates the effectiveness of the C. elegans-N. parisii system for discovering microsporidia inhibitors and the compounds we identified provide potential scaffolds for anti-microsporidia drug development.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Zbrozek M, Fearon ML, Weise C, Tibbetts EA. Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees. Ecol Evol 2023; 13:e10528. [PMID: 37736280 PMCID: PMC10511299 DOI: 10.1002/ece3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Vairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers-including the petals, stamen, and nectary-at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.
Collapse
Affiliation(s)
- Maryellen Zbrozek
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Michelle L. Fearon
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Weise
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Tibbetts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
11
|
Mayack C, Cook SE, Niño BD, Rivera L, Niño EL, Seshadri A. Poor Air Quality Is Linked to Stress in Honeybees and Can Be Compounded by the Presence of Disease. INSECTS 2023; 14:689. [PMID: 37623399 PMCID: PMC10455886 DOI: 10.3390/insects14080689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
Climate change-related extreme weather events have manifested in the western United States as warmer and drier conditions with an increased risk of wildfires. Honeybees, essential for crop pollination in California, are at the center of these extreme weather events. We associated the maximum daily temperature and air quality index values with the performance of colonies placed in wildfire-prone areas and determined the impact of these abiotic stressors on gene expression and histopathology. Our results indicate that poor air quality was associated with higher maximum daily temperatures and a lower gene expression level of Prophenoloxidase (ProPO), which is tied to immune system strength; however, a higher gene expression level of Vitellogenin (Vg) is tied to oxidative stress. There was a positive relationship between Varroa mites and N. ceranae pathogen loads, and a negative correlation between Varroa mites and Heat Shock Protein 70 (HSP70) gene expression, suggesting the limited ability of mite-infested colonies to buffer against extreme temperatures. Histological analyses did not reveal overt signs of interaction between pathology and abiotic stressors, but N. ceranae infections were evident. Our study provides insights into interactions between abiotic stressors, their relation to common biotic stressors, and the expression of genes related to immunity and oxidative stress in bees.
Collapse
Affiliation(s)
- Christopher Mayack
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
| | - Sarah E. Cook
- SpecialtyVETPATH, 3450 16th Ave. W. Ste 303, Seattle, WA 98119, USA;
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, 944 Garrod Drive, Davis, CA 95616, USA
| | - Bernardo D. Niño
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
| | - Laura Rivera
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
- Department of Entomology and Nematology, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Elina L. Niño
- Department of Entomology and Nematology, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Arathi Seshadri
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
| |
Collapse
|
12
|
Blot N, Clémencet J, Jourda C, Lefeuvre P, Warrit N, Esnault O, Delatte H. Geographic population structure of the honeybee microsporidian parasite Vairimorpha (Nosema) ceranae in the South West Indian Ocean. Sci Rep 2023; 13:12122. [PMID: 37495608 PMCID: PMC10372035 DOI: 10.1038/s41598-023-38905-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The microsporidian Vairimorpha (Nosema) ceranae is one of the most common parasites of the honeybee. A single honeybee carries many parasites and therefore multiple alleles of V. ceranae genes that seem to be ubiquitous. As a consequence, nucleotide diversity analyses have not allowed discriminating genetic structure of parasite populations. We performed deep loci-targeted sequencing to monitor the haplotype frequencies of genome markers in isolates from discontinuous territories, namely the tropical islands of the South West Indian Ocean. The haplotype frequency distribution corroborated the suspected tetraploidy of the parasite. Most major haplotypes were ubiquitous in the area but with variable frequency. While oceanic isolates differed from European and Asian outgroups, parasite populations from distinct archipelagoes also differed in their haplotype distribution. Interestingly an original and very divergent Malagasy isolate was detected. The observed population structure allowed formulating hypotheses upon the natural history of V. ceranae in this oceanic area. We also discussed the usefulness of allelic distribution assessment, using multiple informative loci or genome-wide analyses, when parasite population is not clonal within a single host.
Collapse
Affiliation(s)
- Nicolas Blot
- Université Clermont Auvergne, CNRS, "Laboratoire Microorganismes: Génome et Environnement", Clermont-Ferrand, France.
| | - Johanna Clémencet
- Université de la Réunion, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Cyril Jourda
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Natapot Warrit
- Center of Excellence in Entomology, Department of Biology, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Olivier Esnault
- Groupement de Défense Sanitaire de la Réunion, La Plaine des Cafres, France
| | - Hélène Delatte
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 101, Antananarivo, Madagascar
| |
Collapse
|
13
|
Baigazanov A, Tikhomirova Y, Valitova N, Nurkenova M, Koigeldinova A, Abdullina E, Zaikovskaya O, Ikimbayeva N, Zainettinova D, Bauzhanova L. Occurrence of Nosemosis in honey bee, Apis mellifera L. at the apiaries of East Kazakhstan. PeerJ 2022; 10:e14430. [PMID: 36518264 PMCID: PMC9744157 DOI: 10.7717/peerj.14430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/30/2022] [Indexed: 12/03/2022] Open
Abstract
Nosemosis is the most common disease in honey bee Apis mellifera L., and is a major issue related to bee health worldwide. Therefore, the purpose of this research study was to determine prevalence of microsporidia parasitic infection of the genus Nosema spp. in East Kazakhstan Region (EKR). In the years of 2018 -2021, 394 honey bee samples were collected at 30 apiaries located in four districts of East Kazakhstan Region (Katon-Karagay, Urzhar, Borodulikhinsky, and Shemonaikhinsky). In order to determine the level of infestation, firstly, the presence of Nosema spp. spores was detected using optical microscopy, and then the average amount of spores per bee was counted using a hemocytometer. The degree of nosemosis prevalence was determined in points by means of a semi-quantitative method, and as a percentage from the total of samples and of the amount of positive tests. At the outcome of the study, microsporidia of the genus Nosema spp. were detected in 23.3% of cases (92 samples). Prevalence at its low degree was found in six samples (1.5%), at an average degree in 55 samples (14%), and at a high one in 31 samples (7.9%). This research study proved that microsporidia of the genus Nosema spp. are widely spread at the apiaries of East Kazakhstan Region in different orographic and climatic conditions. Notwithstanding that it was impossible to statistically determine any significant differences between the dependence of nosemosis prevalence and the apiary location, this indicator is actually higher in the mountainous regions than in the steppe. Concurrently, a close inverse correlation was recognized between the amount of spores in one bee and the level of infestation in bee families from the duration of the vegetation season at the apiary location. This gives grounds to assert that the environmental factors have an impact on formation and development of nosemosis. The results of the research presented in the article indicate the need for further research aimed at increasing the number of studied apiaries, and above all the use of molecular biology methods to distinguish the species that cause nosemosis infection (PCR).
Collapse
Affiliation(s)
- Abdrakhman Baigazanov
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan,Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Yelena Tikhomirova
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan
| | - Natalya Valitova
- School of Earth and Environmental Sciences, D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, East Kazakhstan Region, Kazakhstan
| | - Maral Nurkenova
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan,Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Ainur Koigeldinova
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Elmira Abdullina
- Department of Veterinary, Faculty of Veterinary Medicine and Agricultural Management, Shakarim University, Semey, East Kazakhstan Region, Kazakhstan,Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Olga Zaikovskaya
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Nurgul Ikimbayeva
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Dinara Zainettinova
- Agrotechnopark Scientific Center, Veterinary and Food Safety Laboratory, Shakarim University, Semey, East Kazakstan Region, Kazakhstan
| | - Lyailya Bauzhanova
- Department of Zoo Technology, Genetics and Breeding, Toraighyrov University, Pavlodar, Pavlodar Region, Kazakhstan
| |
Collapse
|
14
|
Chen H, Fan X, Zhang W, Ye Y, Cai Z, Zhang K, Zhang K, Fu Z, Chen D, Guo R. Deciphering the CircRNA-Regulated Response of Western Honey Bee ( Apis mellifera) Workers to Microsporidian Invasion. BIOLOGY 2022; 11:1285. [PMID: 36138764 PMCID: PMC9495892 DOI: 10.3390/biology11091285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 05/13/2023]
Abstract
Vairimorpha ceranae is a widespread fungal parasite of adult honey bees that leads to a serious disease called nosemosis. Circular RNAs (circRNAs) are newly discovered non-coding RNAs (ncRNAs) that regulate biological processes such as immune defense and development. Here, 8199 and 8711 circRNAs were predicted from the midguts of Apis mellifera ligustica workers at 7 d (Am7T) and 10 d (Am10T) after inoculation (dpi) with V. ceranae spores. In combination with transcriptome data from corresponding uninoculated midguts (Am7CK and Am10CK), 4464 circRNAs were found to be shared by these four groups. Additionally, 16 circRNAs were highly conserved among A. m. ligustica, Apis cerana cerana, and Homo sapiens. In the Am7CK vs. Am7T (Am10CK vs. Am10T) comparison group, 168 (306) differentially expressed circRNAs (DEcircRNAs) were identified. RT-qPCR results showed that the expression trend of eight DEcircRNAs was consistent with that in the transcriptome datasets. The source genes of DEcircRNAs in Am7CK vs. Am7T (Am10CK vs. Am10T) were engaged in 27 (35) GO functional terms, including 1 (1) immunity-associated terms. Moreover, the aforementioned source genes were involved in three cellular immune-related pathways. Moreover, 86 (178) DEcircRNAs in workers' midguts at 7 (10) dpi could interact with 75 (103) miRNAs, further targeting 215 (305) mRNAs. These targets were associated with cellular renewal, cellular structure, carbohydrate and energy metabolism, and cellular and humoral immunity. Findings in the present study unraveled the mechanism underlying circRNA-mediated immune responses of western honey bee workers to V. ceranae invasion, but also provided new insights into host-microsporidian interaction during nosemosis.
Collapse
Affiliation(s)
- Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Xiaoxue Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Wende Zhang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Yaping Ye
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Zongbing Cai
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Kaiyao Zhang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Kuihao Zhang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Zhongmin Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 35002, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 35002, China
| |
Collapse
|
15
|
Antifungal activity of "HO21-F", a formulation based on Olea europaea plant extract, in honey bees infected with Nosema ceranae. J Invertebr Pathol 2022; 193:107801. [PMID: 35863438 DOI: 10.1016/j.jip.2022.107801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
Nosema ceranae is a microsporidium parasite that silently affects honey bees, causing a disease called nosemosis. This parasite produces resistant spores and germinates in the midgut of honey bees, extrudes a polar tubule that injects an infective sporoplasm in the host cell epithelium, proliferates, and produces intestinal disorders that shorten honey bee lifespan. The rapid extension of this disease has been reported to be widespread among adult bees, and treatments are less effective and counterproductive weakening colonies. This work aimed to evaluate the antifungal activity of a prototype formulation based on a non-toxic plant extract (HO21-F) against N. ceranae. In laboratory, honey bees were infected artificially, kept in cages for 17 days and samples were taken at 7 and 14 days post infection (dpi). At the same time, in field conditions we evaluated the therapeutic effect of HO21-F for 28 days in naturally infected colonies. The effectiveness of the treatment has been demonstrated by a reduction of 83.6 % of the infection levels observed in laboratory conditions at concentrations of 0.5 and 1 g/L without affecting the survival rate. Besides, in-field conditions we reported a reduction of 88 % of the infection level at a concentration of 2.5 g/L, obtaining better antifungal effectiveness in comparison to other commercially available treatments. As a result, we observed that the use of HO21-F led to an increase in population size and honey production, both parameters associated with colony strength. The reported antifungal activity of HO21-F against N. ceranae, with a significant control of spore proliferation in worker bees, suggests the promising commercial application use of this product against nosemosis, and it will encourage new research studies to understand the mechanism of action, whether related to the spore-inhibition effect and/or a stimulating effect in natural response of colonies to counteract the disease.
Collapse
|
16
|
Use of Thymol in Nosema ceranae Control and Health Improvement of Infected Honey Bees. INSECTS 2022; 13:insects13070574. [PMID: 35886750 PMCID: PMC9319372 DOI: 10.3390/insects13070574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary In the European Union, there is no registered product for the control of the honey bee endoparasite Nosema ceranae. Thus, researchers are looking for options for Nosema treatment. The aim of this study was to investigate the effect of a natural essential-oil ingredient (thymol) derived from Thymus vulgaris on honey bees infected with N. ceranae. Thymol exerted certain positive effects (increasing bee survival, immunity, and antioxidative protection), as well as positively affecting the spore loads in Nosema-infected bees. However, when applied to Nosema-free bees, thymol caused certain health disorders; therefore, beekeepers should be careful with its use. Abstract Nosema ceranae is the most widespread microsporidian species which infects the honey bees of Apis mellifera by causing the weakening of their colonies and a decline in their productive and reproductive capacities. The only registered product for its control is the antibiotic fumagillin; however, in the European Union, there is no formulation registered for use in beekeeping. Thymol (3-hydroxy-p-cymene) is a natural essential-oil ingredient derived from Thymus vulgaris, which has been used in Varroa control for decades. The aim of this study was to investigate the effect of thymol supplementation on the expression of immune-related genes and the parameters of oxidative stress and bee survival, as well as spore loads in bees infected with the microsporidian parasite N. ceranae. The results reveal mostly positive effects of thymol on health (increasing levels of immune-related genes and values of oxidative stress parameters, and decreasing Nosema spore loads) when applied to Nosema-infected bees. Moreover, supplementation with thymol did not induce negative effects in Nosema-infected bees. However, our results indicate that in Nosema-free bees, thymol itself could cause certain disorders (affecting bee survival, decreasing oxidative capacity, and downregulation of some immune-related gene expressions), showing that one should be careful with preventive, uncontrolled, and excessive use of thymol. Thus, further research is needed to reveal the effect of this phytogenic supplement on the immunity of uninfected bees.
Collapse
|
17
|
Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J Fungi (Basel) 2022; 8:jof8050424. [PMID: 35628680 PMCID: PMC9145624 DOI: 10.3390/jof8050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.
Collapse
|
18
|
Caravello G, Franchet A, Niehus S, Ferrandon D. Phagocytosis Is the Sole Arm of Drosophila melanogaster Known Host Defenses That Provides Some Protection Against Microsporidia Infection. Front Immunol 2022; 13:858360. [PMID: 35493511 PMCID: PMC9043853 DOI: 10.3389/fimmu.2022.858360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular parasites able to infest specifically a large range of species, including insects. The knowledge about the biology of microsporidial infections remains confined to mostly descriptive studies, including molecular approaches such as transcriptomics or proteomics. Thus, functional data to understand insect host defenses are currently lacking. Here, we have undertaken a genetic analysis of known host defenses of the Drosophila melanogaster using an infection model whereby Tubulinosema ratisbonensis spores are directly injected in this insect. We find that phagocytosis does confer some protection in this infection model. In contrast, the systemic immune response, extracellular reactive oxygen species, thioester proteins, xenophagy, and intracellular antiviral response pathways do not appear to be involved in the resistance against this parasite. Unexpectedly, several genes such as PGRP-LE seem to promote this infection. The prophenol oxidases that mediate melanization have different functions; PPO1 presents a phenotype similar to that of PGRP-LE whereas that of PPO2 suggests a function in the resilience to infection. Similarly, eiger and Unpaired3, which encode two cytokines secreted by hemocytes display a resilience phenotype with a strong susceptibility to T. ratisbonensis.
Collapse
Affiliation(s)
| | | | | | - Dominique Ferrandon
- UPR9022, University of Strasbourg, Institut de Biologie Moléculaire et Cellulaire (IBMC), Modèles Insectes D’Immunité Innée (M3I) Unité Propre Recherche (UPR) 9022 du Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
19
|
Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role? INSECTS 2022; 13:insects13040371. [PMID: 35447813 PMCID: PMC9032297 DOI: 10.3390/insects13040371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The collapse of the honey bee colonies is a complex phenomenon in which different factors may participate in an interrelated manner (e.g., pathogen interactions, exposure to chemicals, beekeeping practices, climatology, etc.). In light of the current debate regarding the interpretation of field and monitoring studies in prospective risk assessments, here we studied how exposure to thiamethoxam affects honey bee colonies in Central Spain when applied as a seed treatment to winter oilseed rape, according to the good agricultural practice in place prior to the EU restrictions. Under the experimental conditions, exposure to thiamethoxam, alone or in combination with other stressors, did not generate and maintain sufficient chronic stress as to provoke honey bee colony collapse. The stress derived from exposure to thiamethoxam and honey bee pathogens was compensated by adjustments in the colony’s dynamics, and by an increase in the worker bee population, a behavior known as hormesis. An analysis of the factors underlying this phenomenon should be incorporated into the prospective risk assessment of plant protection products in order to improve the future interpretation of field studies and management practices. Abstract To study the influence of thiamethoxam exposure on colony strength and pathogen prevalence, an apiary (5 colonies) was placed in front of a plot sown with winter oilseed rape (wOSR), just before the flowering phase. Before sowing, the seeds were treated with an equivalent application of 18 g thiamethoxam/ha. For comparison, a second apiary (5 colonies) was located in front of a separate 750 m plot sown with untreated wOSR. Dead foragers at the entrance of hives were assessed every 2–3 days throughout the exposure period, while the colony strength (number of combs covered with adult honey bees and brood) and pathogens were monitored each month until the following spring. Foraging on the wOSR crop was confirmed by melissopalynology determination of the corbicular pollen collected periodically, while the chemical analysis showed that exposure to thiamethoxam was mainly through nectar. There was an increase in the accumulation of dead bees in the apiary exposed to thiamethoxam relating with the control, which was coped with an increment of bee brood surface and adult bee population. However, we did not find statistically significant differences between apiaries (α = 0.05) in terms of the evolution of pathogens. We discuss these results under hormesis perspective.
Collapse
|
20
|
Marín-García PJ, Peyre Y, Ahuir-Baraja AE, Garijo MM, Llobat L. The Role of Nosema ceranae (Microsporidia: Nosematidae) in Honey Bee Colony Losses and Current Insights on Treatment. Vet Sci 2022; 9:vetsci9030130. [PMID: 35324858 PMCID: PMC8952814 DOI: 10.3390/vetsci9030130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Honeybee populations have locally and temporally declined in the last few years because of both biotic and abiotic factors. Among the latter, one of the most important reasons is infection by the microsporidia Nosema ceranae, which is the etiological agent of type C nosemosis. This species was first described in Asian honeybees (Apis cerana). Nowadays, domestic honeybees (Apis mellifera) worldwide are also becoming infected due to globalization. Type C nosemosis can be asymptomatic or can cause important damage to bees, such as changes in temporal polyethism, energy and oxidative stress, immunity loss, and decreased average life expectancy. It causes drastic reductions in workers, numbers of broods, and honey production, finally leading to colony loss. Common treatment is based on fumagillin, an antibiotic with side effects and relatively poor efficiency, which is banned in the European Union. Natural products, probiotics, food supplements, nutraceuticals, and other veterinary drugs are currently under study and might represent alternative treatments. Prophylaxis and management of affected colonies are essential to control the disease. While N. ceranae is one potential cause of bee losses in a colony, other factors must also be considered, especially synergies between microsporidia and the use of insecticides.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
| | - Yoorana Peyre
- Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain;
| | - Ana Elena Ahuir-Baraja
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
| | - María Magdalena Garijo
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
- Correspondence: (M.M.G.); (L.L.)
| | - Lola Llobat
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain; (P.J.M.-G.); (A.E.A.-B.)
- Correspondence: (M.M.G.); (L.L.)
| |
Collapse
|
21
|
Antibiotic treatment (Tetracycline) effect on bio-efficiency of the larvae honey bee ( Apis mellifera jemenatica). Saudi J Biol Sci 2022; 29:1477-1486. [PMID: 35280597 PMCID: PMC8913381 DOI: 10.1016/j.sjbs.2021.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Honey bees are important for ecological health, biodiversity preservation, and crop output. Antimicrobials, like Tetracyclines, are commonly used in agriculture, medicine, and beekeeping, bees might be exposed to Tetracycline residues in the environment either directly or indirectly. This study aimed to determine the effect of antibiotic treatment (Tetracycline) effect on the Bio-efficiency of the larvae honey bee (Apis mellifera jemenatica), when larvae honeybee workers were exposed to different concentrations of it, to see how long they survived after being exposed to it and affected this antibiotic to the histological structure of the midgut. The results demonstrated that the concentration (LC50 = 125.25 μg/ml) of antibiotics Tetracycline leads to kills half of the individuals. Our data indicate that the high concentrations of Tetracycline have a significant effect on the histological composition of the cells of the midgut of honeybee larvae. Antibiotic exposure can negatively impact the health of honey bees, especially Tetracycline because it is the most used antibiotic in apiculture.
Collapse
|
22
|
Borba RS, Hoover SE, Currie RW, Giovenazzo P, Guarna MM, Foster LJ, Zayed A, Pernal SF. Phenomic analysis of the honey bee pathogen-web and its dynamics on colony productivity, health and social immunity behaviors. PLoS One 2022; 17:e0263273. [PMID: 35100308 PMCID: PMC8803170 DOI: 10.1371/journal.pone.0263273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Many pathogens and parasites have evolved to overwhelm and suppress their host's immune system. Nevertheless, the interactive effects of these agents on colony productivity and wintering success have been relatively unexplored, particularly in large-scale phenomic studies. As a defense mechanism, honey bees have evolved remarkable social behaviors to defend against pathogen and parasite challenges, which reduce the impact of disease and improve colony health. To investigate the complex role of pathogens, parasites and social immunity behaviors in relation to colony productivity and outcomes, we extensively studied colonies at several locations across Canada for two years. In 2016 and 2017, colonies founded with 1-year-old queens of diverse genetic origin were evaluated, which represented a generalized subset of the Canadian bee population. During each experimental year (May through April), we collected phenotypic data and sampled colonies for pathogen analysis in a standardized manner. Measures included: colony size and productivity (colony weight, cluster size, honey production, and sealed brood population), social immunity traits (hygienic behavior, instantaneous mite population growth rate, and grooming behavior), as well as quantification of gut parasites (Nosema spp., and Lotmaria passim), viruses (DWV-A, DWV-B, BQCV and SBV) and external parasites (Varroa destructor). Our goal was to examine: 1) correlations between pathogens and colony phenotypes; 2) the dynamics of pathogens and parasites on colony phenotypes and productivity traits; and 3) the effects of social immunity behaviors on colony pathogen load. Our results show that colonies expressing high levels of some social immunity behaviors were associated with low levels of pathogens/parasites, including viruses, Nosema spp., and V. destructor. In addition, we determined that elevated viral and Nosema spp. levels were associated with low levels of colony productivity, and that five out of six pathogenic factors measured were negatively associated with colony size and weight in both fall and spring periods. Finally, this study also provides information about the incidence and abundance of pathogens, colony phenotypes, and further disentangles their inter-correlation, so as to better understand drivers of honey bee colony health and productivity.
Collapse
Affiliation(s)
- Renata S. Borba
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelley E. Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert W. Currie
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pierre Giovenazzo
- Département de Biologie, faculté des sciences et génie, Université Laval, Québec City, Québec, Canada
| | - M. Marta Guarna
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Stephen F. Pernal
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| |
Collapse
|
23
|
Bila Dubaić J, Simonović S, Plećaš M, Stanisavljević L, Davidović S, Tanasković M, Ćetković A. Unprecedented Density and Persistence of Feral Honey Bees in Urban Environments of a Large SE-European City (Belgrade, Serbia). INSECTS 2021; 12:1127. [PMID: 34940215 PMCID: PMC8706874 DOI: 10.3390/insects12121127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
It is assumed that wild honey bees have become largely extinct across Europe since the 1980s, following the introduction of exotic ectoparasitic mite (Varroa) and the associated spillover of various pathogens. However, several recent studies reported on unmanaged colonies that survived the Varroa mite infestation. Herewith, we present another case of unmanaged, free-living population of honey bees in SE Europe, a rare case of feral bees inhabiting a large and highly populated urban area: Belgrade, the capital of Serbia. We compiled a massive data-set derived from opportunistic citizen science (>1300 records) during the 2011-2017 period and investigated whether these honey bee colonies and the high incidence of swarms could be a result of a stable, self-sustaining feral population (i.e., not of regular inflow of swarms escaping from local managed apiaries), and discussed various explanations for its existence. We also present the possibilities and challenges associated with the detection and effective monitoring of feral/wild honey bees in urban settings, and the role of citizen science in such endeavors. Our results will underpin ongoing initiatives to better understand and support naturally selected resistance mechanisms against the Varroa mite, which should contribute to alleviating current threats and risks to global apiculture and food production security.
Collapse
Affiliation(s)
- Jovana Bila Dubaić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| | - Slađan Simonović
- SOS Mobile Team for Rescue and Removal of Honey Bee Swarms and Colonies, Koste Glavinića 12, 11000 Belgrade, Serbia;
| | - Milan Plećaš
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| | - Ljubiša Stanisavljević
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.D.); (M.T.)
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.D.); (M.T.)
| | - Aleksandar Ćetković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (J.B.D.); (M.P.); (A.Ć.)
| |
Collapse
|
24
|
Mráz P, Hýbl M, Kopecký M, Bohatá A, Hoštičková I, Šipoš J, Vočadlová K, Čurn V. Screening of Honey Bee Pathogens in the Czech Republic and Their Prevalence in Various Habitats. INSECTS 2021; 12:insects12121051. [PMID: 34940139 PMCID: PMC8706798 DOI: 10.3390/insects12121051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/04/2023]
Abstract
Western honey bee (Apis mellifera) is one of the most important pollinators in the world. Thus, a recent honey bee health decline and frequent honey bee mass losses have drawn attention and concern. Honey bee fitness is primarily reduced by pathogens, parasites, and viral load, exposure to pesticides and their residues, and inadequate nutrition from both the quality and amount of food resources. This study evaluated the prevalence of the most common honey bee pathogens and viruses in different habitats across the Czech Republic. The agroecosystems, urban ecosystems, and national park were chosen for sampling from 250 colonies in 50 apiaries. Surprisingly, the most prevalent honey bee pathogens belong to the family Trypanosomatidae including Lotmaria passim and Crithidia mellificae. As expected, the most prevalent viruses were DWV, followed by ABPV. Additionally, the occurrence of DWV-B and DWV-C were correlated with honey bee colony mortality. From the habitat point of view, most pathogens occurred in the town habitat, less in the agroecosystem and least in the national park. The opposite trend was observed in the occurrence of viruses. However, the prevalence of viruses was not affected by habitat.
Collapse
Affiliation(s)
- Petr Mráz
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
- Correspondence:
| | - Marian Hýbl
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Marek Kopecký
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Andrea Bohatá
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Irena Hoštičková
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Jan Šipoš
- Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Kateřina Vočadlová
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Vladislav Čurn
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| |
Collapse
|
25
|
Ugolini L, Cilia G, Pagnotta E, Malaguti L, Capano V, Guerra I, Zavatta L, Albertazzi S, Matteo R, Lazzeri L, Righetti L, Nanetti A. Glucosinolate Bioactivation by Apis mellifera Workers and Its Impact on Nosema ceranae Infection at the Colony Level. Biomolecules 2021; 11:1657. [PMID: 34827655 PMCID: PMC8615805 DOI: 10.3390/biom11111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/02/2022] Open
Abstract
The microsporidian fungus Nosema ceranae represents one of the primary bee infection threats worldwide and the antibiotic fumagillin is the only registered product for nosemosis disease control, while few alternatives are, at present, available. Natural bioactive compounds deriving from the glucosinolate-myrosinase system (GSL-MYR) in Brassicaceae plants, mainly isothiocyanates (ITCs), are known for their antimicrobial activity against numerous pathogens and for their health-protective effects in humans. This work explored the use of Brassica nigra and Eruca sativa defatted seed meal (DSM) GSL-containing diets against natural Nosema infection in Apis mellifera colonies. DSM patties from each plant species were obtained by adding DSMs to sugar candy at the concentration of 4% (w/w). The feeding was administered in May to mildly N. ceranae-infected honey bee colonies for four weeks at the dose of 250 g/week. In the treated groups, no significant effects on colony development and bee mortality were observed compared to the negative controls. The N. ceranae abundance showed a slight but significant decrease. Furthermore, the GSL metabolism in bees was investigated, and MYR hydrolytic activity was qualitatively searched in isolated bee midgut and hindgut. Interestingly, MYR activity was detected both in the bees fed DSMs and in the control group where the bees did not receive DSMs. In parallel, ITCs were found in gut tissues from the bees treated with DSMs, corroborating the presence of a MYR-like enzyme capable of hydrolyzing ingested GSLs. On the other hand, GSLs and other GSL hydrolysis products other than ITCs, such as nitriles, were found in honey produced by the treated bees, potentially increasing the health value of the final product for human consumption. The results are indicative of a specific effect on the N. ceranae infection in managed honey bee colonies depending on the GSL activation within the target organ.
Collapse
Affiliation(s)
- Luisa Ugolini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Eleonora Pagnotta
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Lorena Malaguti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Vittorio Capano
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Irene Guerra
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Sergio Albertazzi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| | - Roberto Matteo
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Luca Lazzeri
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; (L.U.); (L.M.); (R.M.); (L.L.); (L.R.)
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (V.C.); (I.G.); (L.Z.); (S.A.); (A.N.)
| |
Collapse
|
26
|
Chaimanee V, Kasem A, Nuanjohn T, Boonmee T, Siangsuepchart A, Malaithong W, Sinpoo C, Disayathanoowat T, Pettis JS. Natural extracts as potential control agents for Nosema ceranae infection in honeybees, Apis mellifera. J Invertebr Pathol 2021; 186:107688. [PMID: 34728218 DOI: 10.1016/j.jip.2021.107688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
Nosema disease is one factor that can cause colony decline in honeybees (Apis mellifera L.) worldwide. Nosema ceranae has outcompeted Nosema apis in the Western honeybee (A. mellifera) which is its original host. Fumagilin is an effective antibiotic treatment to control Nosema infection but currently it is forbidden in many countries. In this study, 12 plant extracts were evaluated for their toxicity to adult bees and antimicrosporidian activity under laboratory and field conditions. N. ceranae-infected adult bees were fed ad libitum with 50% sucrose solution containing 1% and 5% (w/v) of each plant extract. Bee mortality in N. ceranae-infected groups fed with plant extracts was higher than that in the control group treated with fumagilin. The results demonstrated that 9 of 12 extracts had high antimicrosporidian activity against N. ceranae and their efficacies were comparable to fumagilin. Spore reduction in infected bees was 4-6 fold less after extract treatment. Following laboratory screening, Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos were tested in honeybee colonies. Plant extracts of 2% concentration (w/v) inhibited the development of Nosema spores after 30 days of treatment. At the end of experiment (90 days), spores in the plant extract treated groups were lower than in group treated with fumagilin but there was no significant difference. Although, extracts tested in this study showed high toxicity to bee in laboratory cages, they did not show negative affects on bees under whole colony conditions. Therefore, the effectiveness of plant extracts tested in this study was notable and warrants further study as potential Nosema control agents in honey bees. Plant extracts would offer a non-antibiotic alternative for Nosema control and help reduce the overuse of antibiotics in livestock.
Collapse
Affiliation(s)
- Veeranan Chaimanee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand.
| | - Aticha Kasem
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Tananya Nuanjohn
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Thummanoon Boonmee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Apiradee Siangsuepchart
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Worasin Malaithong
- Department of Animal Production, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
27
|
Ponkit R, Naree S, Mayack CL, Suwannapong G. The pathological effects of a Nosema ceranae infection in the giant honey bee, Apis dorsata Fabricius, 1793. J Invertebr Pathol 2021; 185:107672. [PMID: 34597621 DOI: 10.1016/j.jip.2021.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
Nosema ceranae is an intracellular microsporidian pathogen that lives in the midgut ventricular cells of all known honey bee Apis species. We suspect that N. ceranae may also cause energetic stress in the giant honey bee because this parasite is known to disrupt nutrient absorption resulting in energetic stress in the honey bee species Apis mellifera. To understand how N. ceranae impacts the energetic stress of the giant honey bee, A. dorsata, we measured the hemolymph trehalose levels of experimentally infected giant honey bees on days three, five, seven, and fourteen post infection (p.i.). We also measured the hypopharyngeal gland protein content, the total midgut proteolytic enzyme activity, honey bee survival, infection ratio, and spore loads comparing infected and uninfected honey bees across the same time frame. Nosema ceranae-infected honey bees had significantly lowered survival, trehalose levels, hypopharyngeal gland protein content, and midgut proteolytic enzyme activity. We found an increasing level of parasitic loads and infection ratio of N. ceranae-infected bees after inoculation. Collectively, our results suggest that the giant honey bee suffers from energetic stress and limited nutrient absorption from a N. ceranae infection, which results in lowered survival in comparison to uninfected honey bees. Our findings highlight that other honey bee species besides A. mellifera are susceptible to microsporidian pathogens that they harbor, which results in negative effects on health and survival. Therefore, these pathogens might be transmitted at a community level, in the natural environment, resulting in negative health effects of multiple honey bee species.
Collapse
Affiliation(s)
- Rujira Ponkit
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand
| | - Sanchai Naree
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand
| | - Christopher L Mayack
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Guntima Suwannapong
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand.
| |
Collapse
|
28
|
Biochemical and histological alterations induced by nickel oxide nanoparticles in the ground beetle Blaps polychresta (Forskl, 1775) (Coleoptera: Tenebrionidae). PLoS One 2021; 16:e0255623. [PMID: 34559804 PMCID: PMC8462711 DOI: 10.1371/journal.pone.0255623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
The present study evaluates the effect of nickel oxide nanoparticles on some biochemical parameters and midgut tissues in the ground beetle Blaps polychresta as an indicator organism for nanotoxicity. Serial doses of the NiO-NPs colloid (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g) were prepared for injecting into the adult beetles. Insect survival was reported daily for 30 days, and the sublethal dose of 0.02 mg/g NiO-NPs was selected for the tested parameters. After the treatment, nickel was detected in the midgut tissues by X-ray microanalysis. The treated group demonstrated a significant increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities when compared to the untreated group. However, the treated group demonstrated a significant decrease in ascorbate peroxidase (APOX) activity when compared to the untreated group. Histological and ultrastructural changes in the midgut tissues of treated and untreated beetles were also observed. The current findings provide a precedent for describing the physiological and histological changes caused by NiO-NPs in the ground beetle B. polychresta.
Collapse
|
29
|
Tlak Gajger I, Smodiš Škerl MI, Šoštarić P, Šuran J, Sikirić P, Vlainić J. Physiological and Immunological Status of Adult Honeybees ( Apis mellifera) Fed Sugar Syrup Supplemented with Pentadecapeptide BPC 157. BIOLOGY 2021; 10:891. [PMID: 34571768 PMCID: PMC8467873 DOI: 10.3390/biology10090891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023]
Abstract
Various factors contribute to a decline in diversity and number of bees. Here, an integrated approach in experimental BPC 157 therapy was implemented, combining laboratory-controlled and field study results. The aim of a study was to assess the effects of BPC 157 additional feeding of newly emerged worker honeybees on few biochemical and immunological parameters in hemolymph (glucose, trehalose, lipids, proteins, vitellogenin, glucose-oxidase (GOX)), and hypopharyngeal gland (HPG), in laboratory-controlled conditions. Additionally, to examine the physiological status of protein digestion, the enzymatic activity of leucine aminopeptidase (LAP) in the mid-guts of worker honeybees was analyzed. It was found that individual honeybees, in hoarding cages, following BPC 157 administration through carbohydrate food, showed positive physiological changes when compared to the control groups. Those results were complemented by strong and visible LAP activity, particularly noticeable in the apical parts of the epithelial cells in the mid-guts of young worker honeybees originated from treated hives, suggesting a link between alternative oral therapy with BPC 157 and honeybees' immunity.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Petra Šoštarić
- Department for Pharmacology, Medical Faculty, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (P.S.)
| | - Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Predrag Sikirić
- Department for Pharmacology, Medical Faculty, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (P.S.)
| | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Alonso-Prados E, González-Porto AV, Bernal JL, Bernal J, Martín-Hernández R, Higes M. A Case Report of Chronic Stress in Honey Bee Colonies Induced by Pathogens and Acaricide Residues. Pathogens 2021; 10:955. [PMID: 34451419 PMCID: PMC8398566 DOI: 10.3390/pathogens10080955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
In this case report, we analyze the possible causes of the poor health status of a professional Apis mellifera iberiensis apiary located in Gajanejos (Guadalajara, Spain). Several factors that potentially favor colony collapse were identified, including Nosema ceranae infection, alone or in combination with other factors (e.g., BQCV and DWV infection), and the accumulation of acaricides commonly used to control Varroa destructor in the beebread (coumaphos and tau-fluvalinate). Based on the levels of residues, the average toxic unit estimated for the apiary suggests a possible increase in vulnerability to infection by N. ceranae due to the presence of high levels of acaricides and the unusual climatic conditions of the year of the collapse event. These data highlight the importance of evaluating these factors in future monitoring programs, as well as the need to adopt adequate preventive measures as part of national and international welfare programs aimed at guaranteeing the health and fitness of bees.
Collapse
Affiliation(s)
- Elena Alonso-Prados
- Unidad de Productos Fitosanitarios, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040 Madrid, Spain;
| | - Amelia-Virginia González-Porto
- Laboratorio de Mieles y Productos de las Colmenas Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
| | - José Luis Bernal
- Analytical Chemistry Group, Instituto Universitario Centro de Innovación en Química y Materiales Avanzados (I.U.CINQUIMA), Universidad de Valladolid, 47011 Valladolid, Spain; (J.L.B.); (J.B.)
| | - José Bernal
- Analytical Chemistry Group, Instituto Universitario Centro de Innovación en Química y Materiales Avanzados (I.U.CINQUIMA), Universidad de Valladolid, 47011 Valladolid, Spain; (J.L.B.); (J.B.)
| | - Raquel Martín-Hernández
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain;
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| |
Collapse
|
31
|
Serra RS, Cossolin JFS, Resende MTCSD, Castro MAD, Oliveira AH, Martínez LC, Serrão JE. Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). CHEMOSPHERE 2021; 270:129439. [PMID: 33395581 DOI: 10.1016/j.chemosphere.2020.129439] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The honeybee Apis mellifera is an important pollinator that, similarly to other bees, undergoes colony losses due to several problems, including the use of pesticides in the agriculture. In addition to direct mortality, pesticides cause side-effects in some non-target organs, such as the midgut, which is the main organ for digestion and absorption. Spiromesifen is a pesticide used to control mites and whiteflies, which can be ingested by bees feeding on contaminated floral resources. This study evaluated the histopathological and cytological effects of the ingestion of spiromesifen on the midgut of A. mellifera workers. The bees were exposed per os to the field recommended dose of spiromesifen, and the midgut was analyzed after 24h and 48h of exposure to the pesticide. The midgut has a single layer of digestive cells, with spherical nucleus, nests of regenerative cells and layers of peritrophic matrix in the lumen. Bees treated with spiromesifen presented histological and cytological changes in the midgut, including disorganization of the epithelial architecture, release of cell fragments to the lumen, accumulation of mitochondria in the apical cytoplasm, alteration of the basal labyrinth, changes in the rough endoplasmic reticulum and cell degeneration. The occurrence of damage in the digestive cells of the A. mellifera midgut indicates that spiromesifen does not cause mortality in honeybees, but its side-effects can damage the midgut, which may affect the longevity and behavior of this pollinator.
Collapse
Affiliation(s)
- Raissa Santana Serra
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | | | | | - Mayara Arthidoro de Castro
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - André Henrique Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Castelli L, Balbuena S, Branchiccela B, Zunino P, Liberti J, Engel P, Antúnez K. Impact of Chronic Exposure to Sublethal Doses of Glyphosate on Honey Bee Immunity, Gut Microbiota and Infection by Pathogens. Microorganisms 2021; 9:microorganisms9040845. [PMID: 33920750 PMCID: PMC8071123 DOI: 10.3390/microorganisms9040845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Sofía Balbuena
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Belén Branchiccela
- Sección Apicultura, Instituto Nacional de Investigación Agropecuaria, Colonia 70002, Uruguay;
| | - Pablo Zunino
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland; (J.L.); (P.E.)
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland; (J.L.); (P.E.)
| | - Karina Antúnez
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
- Correspondence: ; Tel.: +598-2-4871616
| |
Collapse
|
33
|
Glavinic U, Stevanovic J, Ristanic M, Rajkovic M, Davitkov D, Lakic N, Stanimirovic Z. Potential of Fumagillin and Agaricus blazei Mushroom Extract to Reduce Nosema ceranae in Honey Bees. INSECTS 2021; 12:282. [PMID: 33806001 PMCID: PMC8064457 DOI: 10.3390/insects12040282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/08/2023]
Abstract
Depending on the infection level and colony strength, Nosema ceranae, a microsporidian endoparasite of the honey bee may have significant consequences on the health, reproduction and productivity of bee colonies. Despite exerting some side effects, fumagillin is most often used for Nosema control. In this study, in a cage experiment, N. ceranae infected bees were treated with fumagillin or the extract of Agaricus blazei mushroom, a possible alternative for Nosema control. Bee survival, Nosema spore loads, the expression levels of immune-related genes and parameters of oxidative stress were observed. Fumagillin treatment showed a negative effect on monitored parameters when applied preventively to non-infected bees, while a noticeable anti-Nosema effect and protection from Nosema-induced immunosuppression and oxidative stress were proven in Nosema-infected bees. However, a protective effect of the natural A. blazei extract was detected, without any side effects but with immunostimulatory activity in the preventive application. The results of this research suggest the potential of A. blazei extract for Nosema control, which needs to be further investigated.
Collapse
Affiliation(s)
- Uros Glavinic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Jevrosima Stevanovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Milan Rajkovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| | - Dajana Davitkov
- Faculty of Veterinary Medicine, Department of Forensic Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Nada Lakic
- Faculty of Agriculture, Department of Statistics, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia;
| | - Zoran Stanimirovic
- Faculty of Veterinary Medicine, Department of Biology, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (J.S.); (M.R.); (M.R.); (Z.S.)
| |
Collapse
|
34
|
Effects of Prebiotics and Probiotics on Honey Bees ( Apis mellifera) Infected with the Microsporidian Parasite Nosema ceranae. Microorganisms 2021; 9:microorganisms9030481. [PMID: 33668904 PMCID: PMC7996622 DOI: 10.3390/microorganisms9030481] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Nosema ceranae is a microsporidian fungus that parasitizes the midgut epithelial cells of honey bees, Apis mellifera. Due to the role that midgut microorganisms play in bee health and immunity, food supplementation with prebiotics and probiotics may assist in the control of N. ceranae. The dietary fiber prebiotics acacia gum, inulin, and fructooligosaccharides, as well as the commercial probiotics Vetafarm Probotic, Protexin Concentrate single-strain (Enterococcus faecium), and Protexin Concentrate multi-strain (Lactobacillus acidophilus, L. plantarum, L. rhamnosus, L. delbrueckii, Bifidobacterium bifidum, Streptococcus salivarius, and E. faecium) were tested for their effect on N. ceranae spore loads and honey bee survivorship. Bees kept in cages were inoculated with N. ceranae spores and single-dose treatments were administered in sugar syrup. Acacia gum caused the greatest reduction in N. ceranae spore numbers (67%) but also significantly increased bee mortality (62.2%). However, Protexin Concentrate single-strain gave similarly reduced spore numbers (59%) without affecting the mortality. In a second experiment, multiple doses of the probiotics revealed significantly reduced spore numbers with 2.50 mg/mL Vetafarm Probotic, and 0.25, 1.25, and 2.50 mg/mL Protexin Concentrate single-strain. Mortality was also significantly reduced with 1.25 mg/mL Protexin Concentrate single-strain. N. ceranae-inoculated bees fed 3.75 mg/mL Vetafarm Probotic had higher survival than N. ceranae-inoculated bees, which was similar to that of non-inoculated bees, while N. ceranae-inoculated bees fed 2.50 mg/mL Protexin Concentrate single-strain, had significantly higher survival than both N. ceranae-inoculated and non-inoculated bees. Protexin Concentrate single-strain is promising as it can reduce N. ceranae proliferation and increase bee survivorship of infected bees, even compared to healthy, non-infected bees.
Collapse
|
35
|
The Herbal Supplements NOZEMAT HERB ® and NOZEMAT HERB PLUS ®: An Alternative Therapy for N. ceranae Infection and Its Effects on Honey Bee Strength and Production Traits. Pathogens 2021; 10:pathogens10020234. [PMID: 33669663 PMCID: PMC7922068 DOI: 10.3390/pathogens10020234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Honey bees (Apis mellifera L.) are the most effective pollinators for different crops and wild flowering plants, thus maintaining numerous ecosystems in the world. However, honey bee colonies often suffer from stress or even death due to various pests and diseases. Among the latter, nosemosis is considered to be one of the most common diseases, causing serious damage to beekeeping every year. Here, we present, for the first time, the effects from the application of the herbal supplements NOZEMAT HERB® (NH) and NOZEMAT HERB PLUS® (NHP) for treating N. ceranae infection and positively influencing the general development of honey bee colonies. To achieve this, in autumn 2019, 45 colonies were selected based on the presence of N. ceranae infections. The treatment was carried out for 11 months (August 2019–June 2020). All colonies were sampled pre- and post-treatment for the presence of N. ceranae by means of light microscopy and PCR analysis. The honey bee colonies’ performance and health were evaluated pre- and post-treatment. The obtained results have shown that both supplements have exhibited statistically significant biological activity against N. ceranae in infected apiaries. Considerable enhancement in the strength of honey bee colonies and the amount of sealed workers was observed just one month after the application of NH and NHP. Although the mechanisms of action of NH and NHP against N. ceranae infection are yet to be completely elucidated, our results suggest a new holistic approach as an alternative therapy to control nosemosis and to improve honey bee colonies’ performance and health.
Collapse
|
36
|
Houdelet C, Bocquet M, Bulet P. Matrix-assisted laser desorption/ionization mass spectrometry biotyping, an approach for deciphering and assessing the identity of the honeybee pathogen Nosema. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8980. [PMID: 33063365 DOI: 10.1002/rcm.8980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE The microsporidia are obligate intracellular pathogenic fungi that parasitize a wide range of invertebrate and vertebrate hosts and have important impacts on health, food security and the economy. In this paper, we focus on Nosema ceranae and N. apis, which chronically infect the digestive tract of honeybees, altering their physiology and lifespan. METHODS We applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for rapid molecular profiling of extracts of Nosema spores in order to identify the species and the geographical origin, and assess the viability status of Nosema microsporidia in conjunction with a flow cytometric approach. Pure solutions of spores were prepared for flow cytometric analysis and MALDI-MS profiling. A mechanical extraction of viable or heat-killed Nosema spores was conducted to obtain mass fingerprints of peptides/proteins for samples of microsporidia from different geographical origins (MBO.NC01, MBO.NC02 and MBO.NA01). RESULTS A distinction in the peptide/protein profiles between two isolates with different geographical origins was observed. Mass fingerprints of viable and experimentally killed spores were also clearly distinguishable, regardless of Nosema species. Finally, using our computational models on the different Nosema species, we were able to classify five independent isolates of Nosema microsporidia. CONCLUSIONS We have shown that MALDI-MS is a rapid, cost-effective and simple method for identifying Nosema species. We demonstrated that MALDI Biotyping could represent a valuable surveillance tool of nosemosis in apiaries for sanitary services and beekeepers.
Collapse
Affiliation(s)
- Camille Houdelet
- Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, Grenoble, France
- Platform BioPark Archamps, Archamps, France
| | | | - Philippe Bulet
- Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, Grenoble, France
- Platform BioPark Archamps, Archamps, France
| |
Collapse
|
37
|
Dostálková S, Dobeš P, Kunc M, Hurychová J, Škrabišová M, Petřivalský M, Titěra D, Havlík J, Hyršl P, Danihlík J. Winter honeybee ( Apis mellifera) populations show greater potential to induce immune responses than summer populations after immune stimuli. J Exp Biol 2021; 224:jeb232595. [PMID: 33288532 DOI: 10.1242/jeb.232595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023]
Abstract
In the temperate climates of central Europe and North America, two distinct honeybee (Apis mellifera) populations are found in colonies: short-living summer bees emerge in spring and survive until summer, whereas long-living winter bees emerge in late August and overwinter. Besides the difference in their life spans, each of these populations fulfils a different role in the colonies and individual bees have distinct physiological and immunological adaptations depending on their roles. For instance, winter worker bees have higher vitellogenin levels and larger reserves of nutrients in the fat body than summer bees. The differences between the immune systems of both populations are well described at the constitutive level; however, our knowledge of its inducibility is still very limited. In this study, we focus on the response of 10-day-old honeybee workers to immune challenges triggered in vivo by injecting heat-killed bacteria, with particular focus on honeybees that emerge and live under hive conditions. Responses to bacterial injections differed between summer and winter bees. Winter bees exhibited a more intense response, including higher expression of antimicrobial genes and antimicrobial activity, as well as a significant decrease in vitellogenin gene expression and its concentration in the hemolymph. The intense immune response observed in winter honeybees may contribute to our understanding of the relationships between colony fitness and infection with pathogens, as well as its association with successful overwintering.
Collapse
Affiliation(s)
- Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dalibor Titěra
- Bee Research Institute, Libčice nad Vltavou 252 66, Czech Republic
| | - Jaroslav Havlík
- Department of Food Quality and Safety, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, Prague 252 63, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
38
|
Ostroverkhova NV. Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera. Vet Sci 2020; 8:vetsci8010002. [PMID: 33383841 PMCID: PMC7823830 DOI: 10.3390/vetsci8010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
The microsporidian Nosema parasites, primarily Nosema ceranae, remain critical threats to the health of the honey bee Apis mellifera. One promising intervention approach is the breeding of Nosema-resistant honey bee colonies using molecular technologies, for example marker-assisted selection (MAS). For this, specific genetic markers used in bee selection should be developed. The objective of the paper is to search for associations between some microsatellite markers and Nosema disease in a dark forest bee Apis mellifera mellifera. For the dark forest bee, the most promising molecular genetic markers for determining resistance to nosemosis are microsatellite loci AC117, Ap243 and SV185, the alleles of which (“177”, “263” and “269”, respectively) were associated with a low level of Nosema infection. This article is the first associative study aimed at finding DNA loci of resistance to nosemosis in the dark forest bee. Nevertheless, microsatellite markers identified can be used to predict the risk of developing the Nosema disease.
Collapse
Affiliation(s)
- Nadezhda V. Ostroverkhova
- Invertebrate Zoology Department, Biology Institute, National Research Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia; ; Tel.: +7-3822-529-461
- Department of Biology and Genetics, Siberian State Medical University, 2 Moskovsky Trakt, 634055 Tomsk, Russia
| |
Collapse
|
39
|
Houdelet C, Sinpoo C, Chantaphanwattana T, Voisin SN, Bocquet M, Chantawannakul P, Bulet P. Proteomics of Anatomical Sections of the Gut of Nosema-Infected Western Honeybee ( Apis mellifera) Reveals Different Early Responses to Nosema spp. Isolates. J Proteome Res 2020; 20:804-817. [PMID: 33305956 DOI: 10.1021/acs.jproteome.0c00658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Honeybees play an important role in pollinating native plants and agricultural crops and produce valuable hive products. Within the last decade, honeybee colonies have been reported to be in decline, due to both biotic and abiotic stress factors including pathogens and pesticides. This study evaluated the impact of different isolates of Nosema spp. [Nosema apis spores (NA), Nosema ceranae from Apis mellifera from France (NF), N. ceranae from Apis cerana from Thailand (NC1), and N. ceranae from A. mellifera from Thailand (NC2)] on the different gut sections of newly emerged adult A. mellifera bees. With an attempt to decipher the early impact of Nosema spp. on the first barrier against Nosema infection, we used off-gel bottom-up proteomics on the different anatomical sections of the gut four days post inoculation. A total of 2185 identified proteins in the esophagus, 2095 in the crop, 1571 in the midgut, 2552 in the ileum, and 3173 in the rectum were obtained. Using label-free quantification, we observed that the response of the host varies according to the Nosema spp. (N. apis versus N. ceranae) and the geographical origin of Nosema. The proteins in the midgut of A. mellifera, orally inoculated with spores of N. ceranae isolated from France, were the most altered, when compared with controls, exhibiting 50 proteins down-regulated and 16 up-regulated. We thereby established the first mass-spectrometry-based proteomics of different anatomical sections of the gut tissue of Nosema-infected A. mellifera four days post inoculation, following infection by different isolates of Nosema spp. that provoked differential host responses. We reported an alteration of proteins involved in the metabolic pathways and specifically eight proteins of the oxidative phosphorylation pathway. More importantly, we propose that the collagen IV NC1 domain-containing protein may represent an early prognostic marker of the impact of Nosema spores on the A. mellifera health status. Data are available via ProteomeXchange with the identifier PXD021848.
Collapse
Affiliation(s)
- Camille Houdelet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.,Plateform BioPark Archamps, 260 Avenue Marie Curie, Archparc, 74166 Saint Julien-en Genevois, France
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sébastien N Voisin
- Plateform BioPark Archamps, 260 Avenue Marie Curie, Archparc, 74166 Saint Julien-en Genevois, France
| | | | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Philippe Bulet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.,Plateform BioPark Archamps, 260 Avenue Marie Curie, Archparc, 74166 Saint Julien-en Genevois, France
| |
Collapse
|
40
|
Effects of Synthetic Acaricides and Nosema ceranae (Microsporidia: Nosematidae) on Molecules Associated with Chemical Communication and Recognition in Honey Bees. Vet Sci 2020; 7:vetsci7040199. [PMID: 33302502 PMCID: PMC7768465 DOI: 10.3390/vetsci7040199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/02/2022] Open
Abstract
Acaricides and the gut parasite Nosema ceranae are commonly present in most productive hives. Those stressors could be affecting key semiochemicals, which act as homeostasis regulators in Apis mellifera colonies, such as cuticular hydrocarbons (CHC) involved in social recognition and ethyl oleate (EO) which plays a role as primer pheromone in honey bees. Here we test the effect of amitraz, coumaphos, tau-fluvalinate and flumethrin, commonly applied to treat varroosis, on honey bee survival time, rate of food consumption, CHC profiles and EO production on N. ceranae-infected and non-infected honey bees. Different sublethal concentrations of amitraz, coumaphos, tau-fluvalinate and flumethrin were administered chronically in a syrup-based diet. After treatment, purified hole-body extracts were analyzed by gas chromatography coupled to mass spectrometry. While N. ceranae infection was also shown to decrease EO production affecting survival rates, acaricides showed no significant effect on this pheromone. As for the CHC, we found no changes in relation to the health status or consumption of acaricides. This absence of alteration in EO or CHC as response to acaricides ingestion or in combination with N. ceranae, suggests that worker honey bees exposed to those highly ubiquitous drugs are hardly differentiated by nest-mates. Having determined a synergic effect on mortality in worker bees exposed to coumaphos and Nosema infection but also, alterations in EO production as a response to N. ceranae infection it is an interesting clue to deeper understand the effects of parasite-host-pesticide interaction on colony functioning.
Collapse
|
41
|
Jousse C, Dalle C, Abila A, Traikia M, Diogon M, Lyan B, El Alaoui H, Vidau C, Delbac F. A combined LC-MS and NMR approach to reveal metabolic changes in the hemolymph of honeybees infected by the gut parasite Nosema ceranae. J Invertebr Pathol 2020; 176:107478. [PMID: 33027624 DOI: 10.1016/j.jip.2020.107478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Nosema ceranae is an emerging and invasive gut pathogen in Apis mellifera and is considered as a factor contributing to the decline of honeybee populations. Here, we used a combined LC-MS and NMR approach to reveal the metabolomics changes in the hemolymph of honeybees infected by this obligate intracellular parasite. For metabolic profiling, hemolymph samples were collected from both uninfected and N. ceranae-infected bees at two time points, 2 days and 10 days after the experimental infection of emergent bees. Hemolymph samples were individually analyzed by LC-MS, whereas each NMR spectrum was obtained from a pool of three hemolymphs. Multivariate statistical PLS-DA models clearly showed that the age of bees was the parameter with the strongest effect on the metabolite profiles. Interestingly, a total of 15 biomarkers were accurately identified and were assigned as candidate biomarkers representative of infection alone or combined effect of age and infection. These biomarkers included carbohydrates (α/β glucose, α/β fructose and hexosamine), amino acids (histidine and proline), dipeptides (Glu-Thr, Cys-Cys and γ-Glu-Leu/Ile), metabolites involved in lipid metabolism (choline, glycerophosphocholine and O-phosphorylethanolamine) and a polyamine compound (spermidine). Our study demonstrated that this untargeted metabolomics-based approach may be useful for a better understanding of pathophysiological mechanisms of the honeybee infection by N. ceranae.
Collapse
Affiliation(s)
- Cyril Jousse
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France.
| | - Céline Dalle
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Angélique Abila
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Mounir Traikia
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes : Génome et Environnement", F-63000 Clermont-Ferrand, France
| | - Bernard Lyan
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Plateforme d'Exploration du Métabolisme, Université Clermont Auvergne & I.N.R.A site de Theix, Clermont-Ferrand, France
| | - Hicham El Alaoui
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes : Génome et Environnement", F-63000 Clermont-Ferrand, France
| | - Cyril Vidau
- ITSAP, UMT PrADE, Inra - Acta, 228 route de l'aérodrome, F-84000 Avignon, France(1)
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes : Génome et Environnement", F-63000 Clermont-Ferrand, France
| |
Collapse
|
42
|
Applegate JR, Petritz OA. Common and Emerging Infectious Diseases of Honeybees (Apis mellifera). Vet Clin North Am Exot Anim Pract 2020; 23:285-297. [PMID: 32327036 DOI: 10.1016/j.cvex.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most honeybee diseases are not newly emerging diseases; however, honeybee veterinary medicine and disease understanding are emerging concepts for veterinarians in the United States. Beekeepers in the hobby and commercial sectors need a prescription or veterinary feed directive from a veterinarian to obtain medically important antibiotics for administration to their honeybees. Medically important antibiotics such as oxytetracycline, lincomycin, and tylosin were removed from over-the-counter availability for use in honeybees. There are many other aspects of beekeeping that allow veterinarians to build a strong veterinarian-client patient relationship, and fulfill an integral role alongside apiarists.
Collapse
Affiliation(s)
- Jeffrey R Applegate
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 602 Higgins Avenue, Suite 1-302, Brielle, NJ 08730, USA.
| | - Olivia A Petritz
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
43
|
Tlak Gajger I, Vlainić J, Šoštarić P, Prešern J, Bubnič J, Smodiš Škerl MI. Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee ( Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. INSECTS 2020; 11:insects11090638. [PMID: 32957451 PMCID: PMC7563132 DOI: 10.3390/insects11090638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary Various negative factors contribute to a decline in insect pollinators. The aim of this study was to assess the impact of commercial probiotic EM® PROBIOTIC FOR BEES on honey bees. The study was conducted in field and laboratory-controlled conditions. In the field, the sugar syrup with 10% of probiotic was administered by spraying or feeding the honey bee colonies in order to evaluate the colonies’ strength and Nosema spp. infection levels. In the laboratory, the adult workers have been fed with sugar syrup supplemented with 2.5, 5, and 10% of EM® for bees for biochemical and immunological analyses of hemolymph, and with 5 and 10% for measuring the size of hypopharyngeal glands. It was found that following the EM® for bees administration the Nosema spp. spore counts in colonies were significantly reduced, and colonies’ strength was increased. The results at the individual level showed positive physiological changes in treated groups of adult bees, but, at the same time, a higher mortality rate. Our findings indicate that the EM® for bees is a promising food additive for nosemosis combating. Therefore, additional emphasis needs to be placed on studies investigating the nutritional requirements crucial to improve and sustain honey bee colonies health. Abstract Several negative factors contribute to a decline in the number of insect pollinators. As a novel approach in therapy, we hypothesize that the EM® for bees could potentially have an important therapeutic and immunomodulatory effect on honey bee colonies. The aim of our study was to evaluate its impact on honey bees at the individual and colony level. This is the first appliance of the commercial probiotic mix EM® PROBIOTIC FOR BEES in honey bees as economically important social insects. The sugar syrup with 10% of probiotic was administered by spraying or feeding the honey bee colonies in the field conditions, in order to evaluate the infection levels with spores of Nosema spp. and colonies’ strength. Moreover, in laboratory-controlled conditions, in the hoarding cages, adult workers have been fed with sugar syrup supplemented with 2.5, 5, and 10% of EM® for bees for biochemical and immunological analyses of hemolymph, and with 5 and 10% for measuring the size of hypopharyngeal glands. It was found that following the EM® for bees administration the Nosema spp. spore counts in colonies were significantly reduced, and colonies’ strength was increased. The results at the individual level showed significant positive physiological changes in treated groups of adult bees, revealing at the same time a higher mortality rate when feeding sugar syrup supplemented with the probiotic.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-91-2390-041
| | - Josipa Vlainić
- Division of Molecular Medicine, Laboratory for Advanced Genomics, Institute Ruđer Bošković, 10 000 Zagreb, Croatia;
| | - Petra Šoštarić
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Janez Prešern
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.P.); (J.B.); (M.I.S.Š.)
| | - Jernej Bubnič
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.P.); (J.B.); (M.I.S.Š.)
| | | |
Collapse
|
44
|
Ribani A, Utzeri VJ, Taurisano V, Fontanesi L. Honey as a Source of Environmental DNA for the Detection and Monitoring of Honey Bee Pathogens and Parasites. Vet Sci 2020; 7:vetsci7030113. [PMID: 32824137 PMCID: PMC7558659 DOI: 10.3390/vetsci7030113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Environmental DNA (eDNA) has been proposed as a powerful tool to detect and monitor cryptic, elusive, or invasive organisms. We recently demonstrated that honey constitutes an easily accessible source of eDNA. In this study, we extracted DNA from 102 honey samples (74 from Italy and 28 from 17 other countries of all continents) and tested the presence of DNA of nine honey bee pathogens and parasites (Paenibacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Ascosphaera apis,Lotmaria passim, Acarapis woodi, Varroa destructor, and Tropilaelaps spp.) using qualitative PCR assays. All honey samples contained DNA from V. destructor, confirming the widespread diffusion of this mite. None of the samples gave positive amplifications for N. apis, A. woodi, and Tropilaelaps spp. M. plutonius was detected in 87% of the samples, whereas the other pathogens were detected in 43% to 57% of all samples. The frequency of Italian samples positive for P. larvae was significantly lower (49%) than in all other countries (79%). The co-occurrence of positive samples for L. passim and A. apis with N. ceranae was significant. This study demonstrated that honey eDNA can be useful to establish monitoring tools to evaluate the sanitary status of honey bee populations.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- GRIFFA s.r.l., Viale Giuseppe Fanin 48, 40127 Bologna, Italy
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- GRIFFA s.r.l., Viale Giuseppe Fanin 48, 40127 Bologna, Italy
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.J.U.); (V.T.)
- Correspondence: ; Tel.: +39-051-2096535
| |
Collapse
|
45
|
Burnham AJ, De Jong E, Jones JA, Lehman HK. North American Propolis Extracts From Upstate New York Decrease Nosema ceranae ( Microsporidia) Spore Levels in Honey Bees ( Apis mellifera). Front Microbiol 2020; 11:1719. [PMID: 32793168 PMCID: PMC7387503 DOI: 10.3389/fmicb.2020.01719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Nosema ceranae infections in honey bees (Apis mellifera) pose a severe threat to colony health. Beekeepers have used dicyclohexylammonium fumagillin to control Nosema apis, although it may be ineffective against N. ceranae. We investigated the ability of various propolis extracts collected from Upstate New York (United States) to decrease in vivo N. ceranae infection levels when fed ad libitum to N. ceranae-infected honey bees. Propolis extracts, most notably a dichloromethane extract, significantly lowered spore levels in a dose-dependent fashion 4 days post inoculation. When testing the in vitro anti-Nosema activity of propolis extracts, we report for the first time that spore viability was unaffected after a 24 h exposure to propolis extracts. These results present evidence that propolis extracts may effectively lower Microsporidia infections in honey bees, and that direct exposure of environmental spores to propolis alone does not kill N. ceranae.
Collapse
Affiliation(s)
- Andre J Burnham
- Department of Biology, Hamilton College, Clinton, NY, United States.,Program in Biochemistry, Hamilton College, Clinton, NY, United States.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily De Jong
- Department of Biology, Hamilton College, Clinton, NY, United States.,Program in Biochemistry, Hamilton College, Clinton, NY, United States
| | - Jayre A Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Herman K Lehman
- Department of Biology, Hamilton College, Clinton, NY, United States.,Program in Biochemistry, Hamilton College, Clinton, NY, United States.,Program in Neuroscience, Hamilton College, Clinton, NY, United States
| |
Collapse
|
46
|
Silicone Wristbands as Passive Samplers in Honey Bee Hives. Vet Sci 2020; 7:vetsci7030086. [PMID: 32640622 PMCID: PMC7558201 DOI: 10.3390/vetsci7030086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
The recent decline of European honey bees (Apis mellifera) has prompted a surge in research into their chemical environment, including chemicals produced by bees, as well as chemicals produced by plants and derived from human activity that bees also interact with. This study sought to develop a novel approach to passively sampling honey bee hives using silicone wristbands. Wristbands placed in hives for 24 h captured various compounds, including long-chain hydrocarbons, fatty acids, fatty alcohols, sugars, and sterols with wide ranging octanol–water partition coefficients (Kow) that varied by up to 19 orders of magnitude. Most of the compounds identified from the wristbands are known to be produced by bees or plants. This study indicates that silicone wristbands provide a simple, affordable, and passive method for sampling the chemical environment of honey bees.
Collapse
|
47
|
Transcriptomic analysis to elucidate the response of honeybees (Hymenoptera: Apidae) to amitraz treatment. PLoS One 2020; 15:e0228933. [PMID: 32143212 PMCID: PMC7060074 DOI: 10.1371/journal.pone.0228933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/01/2022] Open
Abstract
Amitraz is an acaricide that is widely used in apiculture. Several studies have reported that in honeybees (Apis mellifera Linnaeus; Hymenoptera: Apidae), amitraz affects learning, memory, behavior, immunity, and various other physiological processes. Despite this, few studies have explored the molecular mechanisms underlying the action of amitraz on honeybees. Here, we investigated the transcriptome of honeybees after exposure to 9.4 mg/L amitraz for 10 d, a subchronic dose. Overall, 279 differentially expressed genes (DEGs) were identified (237 upregulated, 42 downregulated). Several, including Pla2, LOC725381, LOC413324, LOC724386, LOC100577456, LOC551785, and P4504c3, were validated by quantitative PCR. According to gene ontology, DEGs were mainly involved in metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that amitraz treatment affected the relaxin signaling pathway, platelet activation, and protein digestion and absorption.
Collapse
|
48
|
Tesovnik T, Zorc M, Ristanić M, Glavinić U, Stevanović J, Narat M, Stanimirović Z. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113443. [PMID: 31733951 DOI: 10.1016/j.envpol.2019.113443] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
During their lifetime honey bees (Apis mellifera) rarely experience optimal conditions. Sometimes, a simultaneous action of multiple stressors, natural and chemical, results in even greater effect than of any stressor alone. Therefore, integrative investigations of different factors affecting honey bees have to be carried out. In this study, adult honey bees exposed to thiamethoxam in larval and/or adult stage and infected with Nosema ceranae were examined. Newly emerged bees from colonies, non-treated or treated with thiamethoxam, were organized in six groups and kept in cages. Thiamethoxam treated bees were further exposed to either thiamethoxam or Nosema (groups TT and TN), or simultaneously to both (group TTN). Newly emerged bees from non-treated colonies were exposed to Nosema (group CN). From both, treated and non-treated colonies two groups were organized and further fed only with sugar solution (groups C and TC). Here, we present the expression profile of 19 genes in adult worker honey bees comprising those involved in immune, detoxification, development and apoptosis response. Results showed that gene expression patterns changed with time and depended on the treatment. In group TC at the time of emergence the majority of tested genes were downregulated, among which nine were significantly altered. The same gene pattern was observed on day six, where the only significantly upregulated gene was defensin-1. On day nine most of analyzed genes in all experimental groups showed upregulation compared to control group, where upregulation of antimicrobial peptide genes abaecin, defensin-1 and defensin-2 was significant in groups TT and TTN. On day 15 we observed a similar pattern of expression in groups TC and TT exposed to thiamethoxam only, where most of the detoxification genes were downregulated. Additionally RNA loads of Nosema and honey bee viruses were recorded. We detected a synergistic interaction of thiamethoxam and Nosema, reflected in lowest honey bee survival.
Collapse
Affiliation(s)
- Tanja Tesovnik
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia.
| | - Minja Zorc
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Marko Ristanić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| | - Uroš Glavinić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| | - Jevrosima Stevanović
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| | - Mojca Narat
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Zoran Stanimirović
- University of Belgrade, Faculty of Veterinary Medicine, Department of Biology, Belgrade, Serbia
| |
Collapse
|
49
|
Al Naggar Y, Baer B. Consequences of a short time exposure to a sublethal dose of Flupyradifurone (Sivanto) pesticide early in life on survival and immunity in the honeybee (Apis mellifera). Sci Rep 2019; 9:19753. [PMID: 31874994 PMCID: PMC6930273 DOI: 10.1038/s41598-019-56224-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
Dramatic losses of pollinating insects have become of global concern, as they threaten not only key ecosystem services but also human food production. Recent research provided evidence that interactions between ecological stressors are drivers of declining pollinator health and responsible for observed population collapses. We used the honeybee Apis mellifera and conducted a series of experiments to test for long-term effects of a single short exposure to the agricultural pesticide flupyradifurone to a second environmental stressor later in life. To do this, we exposed individuals during their larval development or early adulthood to sublethal dosages of flupyradifurone (0.025 μg for larvae and 0.645 μg for imagos), either pure or as part of an agricultural formulation (Sivanto). We afterwards exposed bees to a second ecological stressor infecting individuals with 10,000 spores of the fungal gut parasite Nosema ceranae. We found that pesticide exposures significantly reduced survival of bees and altered the expression of several immune and detoxification genes. The ability of bees to respond to these latter effects differed significantly between colonies, offering opportunities to breed bees with elevated levels of pesticide tolerance in the future. We conclude that short episodes of sublethal pesticide exposures during development are sufficient to trigger effects later in life and could therefore contribute to the widespread declines in bee health.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Center for Integrative Bee Research (CIBER), Department of Entomology, University of California Riverside, Riverside, CA, 92507, USA. .,Zoology Department, Faculty of Science, Tanta University31527, Tanta, Egypt. .,General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher weg 8, 06120, Halle (Saale), Germany.
| | - Boris Baer
- Center for Integrative Bee Research (CIBER), Department of Entomology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
50
|
Bagheri S, Mirzaie M. A mathematical model of honey bee colony dynamics to predict the effect of pollen on colony failure. PLoS One 2019; 14:e0225632. [PMID: 31756236 PMCID: PMC6874302 DOI: 10.1371/journal.pone.0225632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
The decline in colony populations of the honey bee, known as the Colony Collapse Disorder (CCD), is a global concern. Numerous studies have reported possible causes, including pesticides, parasites, and nutritional stress. Poor nutrition affects the immune system at both the individual and colony level, amplifying effects of other stress factors. Pollen is the only source of ten amino acids that are essential to honey bee development, brood rearing and reproduction. This paper presents a new mathematical model to explore the effect of pollen on honey bee colony dynamics. In this model, we considered pollen and nectar as the required food for the colony. The effect of pollen and nectar collected by foragers was evaluated at different mortality rates of pupa, pollen and nectar foragers.
Collapse
Affiliation(s)
- Shahin Bagheri
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, Iran
- * E-mail:
| |
Collapse
|