1
|
Zabcı S, Kocabıyık S. Anti-aggregation Properties of the Mini-Peptides Derived from Alpha Crystallin Domain of the Small Heat Shock Protein, Tpv HSP 14.3. Mol Biotechnol 2024:10.1007/s12033-024-01332-1. [PMID: 39645640 DOI: 10.1007/s12033-024-01332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
The highly conserved alpha crystallin domain of the small heat shock proteins is essential for dimerization and also implicated in substrate interaction. In this study, we designed four novel mini-peptides from alpha crystallin domain of archaeal Small Heat Shock Protein Tpv HSP 14.3. Among the peptide designs, the mini-peptides 38SDLVLEAEMAGFDKKNIKVS57 and 40LVLEAEMAGFD50 overlapped to the sequences of β3-β4 region. The other two peptides 77YIDQRVDKVYKVVKLPVE94 and 107GILTVRMK114 correspond to β6-β7 region and β9, respectively. Functional activity of the peptides was evaluated by monitoring heat-induced aggregation of the model substrates alcohol dehydrogenase at 43 °C and citrate synthase at 45 °C. Our results showed that the (38-57) and the (77-94) fragments exhibited chaperone activity with both of the substrate proteins. The (40-50) fragment while exhibiting a noticeable protective effect (> 90%) when tested with citrate synthase showed an anti-chaperone property toward alcohol dehydrogenase. Unlike the (40-50) fragment, the (107-114) fragment did not show any chaperone activity with citrate synthase but exhibited the highest chaperone efficiency among four mini-peptides with alcohol dehydrogenase. The selectivity of the (40-50) and the (107-114) fragments in targeting the client proteins is most likely dependent on their surface hydrophobicity and/or charge as revealed by the sequence and exposed surface analyses.
Collapse
Affiliation(s)
- Sema Zabcı
- Department of Biological Sciences, Faculty of Arts and Science, Middle East Technical University, 06800, Ankara, Türkiye.
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Baskent University, 06790, Ankara, Türkiye.
| | - Semra Kocabıyık
- Department of Biological Sciences, Faculty of Arts and Science, Middle East Technical University, 06800, Ankara, Türkiye
| |
Collapse
|
2
|
Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, Li Y, Jiang T, Liu B, Yan H. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDH-induced sirtuin 1 activation in Alzheimer's disease. Br J Pharmacol 2024; 181:3039-3063. [PMID: 38679474 DOI: 10.1111/bph.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyloid-β (Aβ) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aβ. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aβ and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aβ clearance remain unclear. EXPERIMENTAL APPROACH We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS AdipoRon promotes Aβ clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aβ deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS AdipoRon promotes the clearance of Aβ by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Lingbin Meng
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenyu Zhou
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yong Xu
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Tianrui Jiang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Wang XF, Xiang XH, Wei J, Zhang PB, Xu Q, Liu MH, Qu LQ, Wang XX, Yu L, Wu AG, Qing DL, Wu JM, Law BYK, Yu CL, Yong-Tang. Raddeanin A Protects the BRB Through Inhibiting Inflammation and Apoptosis in the Retina of Alzheimer's Disease. Neurochem Res 2024; 49:2197-2214. [PMID: 38834846 DOI: 10.1007/s11064-024-04145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular β-amyloid (Aβ) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting β-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aβ-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/β-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
| | - Xiao-Hong Xiang
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Wei
- Eye School and Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection of Chengdu University of TCM, Chengdu, China
| | - Peng-Bo Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 15651, China
| | - Qin Xu
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Meng-Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li-Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Da-Lian Qing
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Jian-Ming Wu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chong-Lin Yu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| | - Yong-Tang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Manoharan SD, Abdul Hamid H, Md Hashim NF, Cheema MS, Chiroma SM, Mustapha M, Mehat MZ. Could protein phosphatase 2A and glycogen synthase kinase-3 beta be targeted by natural compounds to ameliorate Alzheimer's pathologies? Brain Res 2024; 1829:148793. [PMID: 38309553 DOI: 10.1016/j.brainres.2024.148793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and cognitive abilities, primarily in the elderly. The burden of AD extends beyond patients, impacting families and caregivers due to the patients' reliance on assistance for daily tasks. The main features of the pathogenesis of AD are beta-amyloid plaques and neurofibrillary tangles (NFTs), that strongly correlate with oxidative stress and inflammation. NFTs result from misfolded and hyperphosphorylated tau proteins. Various studies have focused on tau phosphorylation, indicating protein phosphatase 2A (PP2A) as the primary tau phosphatase and glycogen synthase kinase-3 beta (GSK-3β) as the leading tau kinase. Experimental evidence suggests that inhibition of PP2A and increased GSK-3β activity contribute to neuroinflammation, oxidative stress, and cognitive impairment. Hence, targeting PP2A and GSK-3β with pharmacological approaches shows promise in treating AD. The use of natural compounds in the drug development for AD have been extensively studied for their antioxidant, anti-inflammatory, anti-cholinesterase, and neuroprotective properties, demonstrating therapeutic advantages in neurological diseases. Alongside the development of PP2A activator and GSK-3β inhibitor drugs, natural compounds are likely to have neuroprotective effects by increasing PP2A activity and decreasing GSK-3β levels. Therefore, based on the preclinical and clinical studies, the potential of PP2A and GSK-3β as therapeutic targets of natural compounds are highlighted in this review.
Collapse
Affiliation(s)
- Sushmitaa Dhevii Manoharan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Samaila Musa Chiroma
- Newcastle University Medicine Malaysia (NUMed), Iskandar Puteri 79200, Johor, Malaysia.
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
5
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
6
|
Chen KS, Noureldein MH, Rigan DM, Hayes JM, Savelieff MG, Feldman EL. Regional interneuron transcriptional changes reveal pathologic markers of disease progression in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565165. [PMID: 37961679 PMCID: PMC10635060 DOI: 10.1101/2023.11.01.565165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and leading cause of dementia, characterized by neuronal and synapse loss, amyloid-β and tau protein aggregates, and a multifactorial pathology involving neuroinflammation, vascular dysfunction, and disrupted metabolism. Additionally, there is growing evidence of imbalance between neuronal excitation and inhibition in the AD brain secondary to dysfunction of parvalbumin (PV)- and somatostatin (SST)-positive interneurons, which differentially modulate neuronal activity. Importantly, impaired interneuron activity in AD may occur upstream of amyloid-β pathology rendering it a potential therapeutic target. To determine the underlying pathologic processes involved in interneuron dysfunction, we spatially profiled the brain transcriptome of the 5XFAD AD mouse model versus controls, across four brain regions, dentate gyrus, hippocampal CA1 and CA3, and cortex, at early-stage (12 weeks-of-age) and late-stage (30 weeks-of-age) disease. Global comparison of differentially expressed genes (DEGs) followed by enrichment analysis of 5XFAD versus control highlighted various biological pathways related to RNA and protein processing, transport, and clearance in early-stage disease and neurodegeneration pathways at late-stage disease. Early-stage DEGs examination found shared, e.g ., RNA and protein biology, and distinct, e.g ., N-glycan biosynthesis, pathways enriched in PV-versus somatostatin SST-positive interneurons and in excitatory neurons, which expressed neurodegenerative and axon- and synapse-related pathways. At late-stage disease, PV-positive interneurons featured cancer and cancer signaling pathways along with neuronal and synapse pathways, whereas SST-positive interneurons showcased glycan biosynthesis and various infection pathways. Late-state excitatory neurons were primarily characterized by neurodegenerative pathways. These fine-grained transcriptomic profiles for PV- and SST-positive interneurons in a time- and spatial-dependent manner offer new insight into potential AD pathophysiology and therapeutic targets.
Collapse
|
7
|
Barmaki H, Nourazarian A, Khaki-Khatibi F. Proteostasis and neurodegeneration: a closer look at autophagy in Alzheimer's disease. Front Aging Neurosci 2023; 15:1281338. [PMID: 38020769 PMCID: PMC10652403 DOI: 10.3389/fnagi.2023.1281338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of misfolded amyloid-beta and tau proteins. Autophagy acts as a proteostasis process to remove protein clumps, although it progressively weakens with aging and AD, thus facilitating the accumulation of toxic proteins and causing neurodegeneration. This review examines the impact of impaired autophagy on the progression of AD disease pathology. Under normal circumstances, autophagy removes abnormal proteins and damaged organelles, but any dysfunction in this process can lead to the exacerbation of amyloid and tau pathology, particularly in AD. There is increasing attention to therapeutic tactics to revitalize autophagy, including reduced caloric intake, autophagy-stimulating drugs, and genetic therapy. However, the translation of these strategies into clinical practice faces several hurdles. In summary, this review integrates the understanding of the intricate role of autophagy dysfunction in Alzheimer's disease progression and reinforces the promising prospects of autophagy as a beneficial target for treatments to modify the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Haleh Barmaki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Ma C, Yu R, Li J, Chao J, Liu P. Targeting proteostasis network in osteoporosis: Pathological mechanisms and therapeutic implications. Ageing Res Rev 2023; 90:102024. [PMID: 37532006 DOI: 10.1016/j.arr.2023.102024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
As the most common bone disease, osteoporosis (OP) increases bone fragility and makes patients more vulnerable to the threat of osteoporotic fractures. With the ageing population in today's society, OP has become a huge and growing public health problem. Unfortunately, the clear pathogenesis of OP is still under exploration, and effective interventions are still scarce. Therefore, exploring new targets for pharmacological interventions to develop promising therapeutic drugs for OP is of great clinical value. Previous studies have shown that normal bone remodeling depends on proteostasis, whereas loss of proteostasis during ageing leads to the dysfunctional proteostasis network (PN) that fails to maintain bone homeostasis. Nevertheless, only a few studies have revealed the pathophysiological relationship between bone metabolism and a single component of PN, yet the role of PN as a whole in the pathogenesis of OP is still under investigation. This review comprehensively summarized the role of PN in the pathogenesis of OP and further discussed the potential of PN as innovative drug targets for the therapy of OP.
Collapse
Affiliation(s)
- Cong Ma
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ronghui Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiashuo Chao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
9
|
Keele GR, Zhang JG, Szpyt J, Korstanje R, Gygi SP, Churchill GA, Schweppe DK. Global and tissue-specific aging effects on murine proteomes. Cell Rep 2023; 42:112715. [PMID: 37405913 PMCID: PMC10588767 DOI: 10.1016/j.celrep.2023.112715] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Maintenance of protein homeostasis degrades with age, contributing to aging-related decline and disease. Previous studies have primarily surveyed transcriptional aging changes. To define the effects of age directly at the protein level, we perform discovery-based proteomics in 10 tissues from 20 C57BL/6J mice, representing both sexes at adult and late midlife ages (8 and 18 months). Consistent with previous studies, age-related changes in protein abundance often have no corresponding transcriptional change. Aging results in increases in immune proteins across all tissues, consistent with a global pattern of immune infiltration with age. Our protein-centric data reveal tissue-specific aging changes with functional consequences, including altered endoplasmic reticulum and protein trafficking in the spleen. We further observe changes in the stoichiometry of protein complexes with important roles in protein homeostasis, including the CCT/TriC complex and large ribosomal subunit. These data provide a foundation for understanding how proteins contribute to systemic aging across tissues.
Collapse
Affiliation(s)
| | | | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
10
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
11
|
Wen JH, He XH, Feng ZS, Li DY, Tang JX, Liu HF. Cellular Protein Aggregates: Formation, Biological Effects, and Ways of Elimination. Int J Mol Sci 2023; 24:ijms24108593. [PMID: 37239937 DOI: 10.3390/ijms24108593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases. Over the long course of evolution, eukaryotic cells have evolved a variety of mechanisms to rescue or eliminate aggregated proteins. Here, we will briefly review the composition and causes of protein aggregation in mammalian cells, systematically summarize the role of protein aggregates in the organisms, and further highlight some of the clearance mechanisms of protein aggregates. Finally, we will discuss potential therapeutic strategies that target protein aggregates in the treatment of aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun-Hao Wen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiang-Hong He
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ze-Sen Feng
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dong-Yi Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
12
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
13
|
Peng Q, Liu Y, Yu L, Shen Y, Li F, Feng S, Chen F. Deletion of Arrb2 Down-regulates Autophagy in the Mouse Hippocampus via Akt-mTOR Pathway Activation. Neuroscience 2023; 519:120-130. [PMID: 36796753 DOI: 10.1016/j.neuroscience.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
The cytoplasmic multifunctional adaptor protein β-arrestin 2 (Arrb2) is involved in the occurrence of various nervous system diseases, such as Alzheimer's disease and Parkinson's disease. Previous laboratory studies have shown that the expression and function of the Arrb2 gene was increased in valproic acid-induced autistic mice models. However, few reports have examined the possible role of Arrb2 in the pathogenesis of autism spectrum disorder. Therefore, Arrb2-deficient (Arrb2-/-) mice were further studied to uncover the physiological function of Arrb2 in the nervous system. In this study, we found that Arrb2-/- mice had normal behavioral characteristics compared with wild-type mice. The autophagy marker protein LC3B was decreased in the hippocampus of Arrb2-/- mice compared to wild-type mice. Western blot analysis revealed that deletion of Arrb2 caused hyperactivation of Akt-mTOR signaling in the hippocampus. In addition, abnormal mitochondrial dysfunction was observed in Arrb2-/- hippocampal neurons, which was characterized by a reduction in mitochondrial membrane potential and adenosine triphosphate production and an increase in reactive oxygen species levels. Therefore, this study elucidates the interaction between Arrb2 and the Akt-mTOR signaling pathway and provides insights into the role of Arrb2 in hippocampal neuron autophagy.
Collapse
Affiliation(s)
- Qingyu Peng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lele Yu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yizhe Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Shini Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
14
|
Guan J, Li F, Kang D, Anderson T, Pitcher T, Dalrymple-Alford J, Shorten P, Singh-Mallah G. Cyclic Glycine-Proline (cGP) Normalises Insulin-Like Growth Factor-1 (IGF-1) Function: Clinical Significance in the Ageing Brain and in Age-Related Neurological Conditions. Molecules 2023; 28:molecules28031021. [PMID: 36770687 PMCID: PMC9919809 DOI: 10.3390/molecules28031021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- The cGP Lab Limited New Zealand, Auckland 1021, New Zealand
- Correspondence: ; Tel.: +64-9-923-6134
| | - Fengxia Li
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510075, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Dali Kang
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- Shenyang Medical College, Shenyang 110034, China
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - John Dalrymple-Alford
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
- Department of Psychology, University of Canterbury, Christchurch 4710, New Zealand
| | - Paul Shorten
- AgResearch Ltd., Ruakura Research Centre, Hamilton 3214, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Gagandeep Singh-Mallah
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
15
|
Lai YJ, Chen B, Song L, Yang J, Zhou WY, Cheng YY. Proteomics of serum exosomes identified fibulin-1 as a novel biomarker for mild cognitive impairment. Neural Regen Res 2023; 18:587-593. [DOI: 10.4103/1673-5374.347740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
17
|
Lapresa R, Agulla J, Bolaños JP, Almeida A. APC/C-Cdh1-targeted substrates as potential therapies for Alzheimer's disease. Front Pharmacol 2022; 13:1086540. [PMID: 36588673 PMCID: PMC9794583 DOI: 10.3389/fphar.2022.1086540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the main cause of dementia in the elderly. The disease has a high impact on individuals and their families and represents a growing public health and socio-economic burden. Despite this, there is no effective treatment options to cure or modify the disease progression, highlighting the need to identify new therapeutic targets. Synapse dysfunction and loss are early pathological features of Alzheimer's disease, correlate with cognitive decline and proceed with neuronal death. In the last years, the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C) has emerged as a key regulator of synaptic plasticity and neuronal survival. To this end, the ligase binds Cdh1, its main activator in the brain. However, inactivation of the anaphase promoting complex/cyclosome-Cdh1 complex triggers dendrite disruption, synapse loss and neurodegeneration, leading to memory and learning impairment. Interestingly, oligomerized amyloid-β (Aβ) peptide, which is involved in Alzheimer's disease onset and progression, induces Cdh1 phosphorylation leading to anaphase promoting complex/cyclosome-Cdh1 complex disassembly and inactivation. This causes the aberrant accumulation of several anaphase promoting complex/cyclosome-Cdh1 targets in the damaged areas of Alzheimer's disease brains, including Rock2 and Cyclin B1. Here we review the function of anaphase promoting complex/cyclosome-Cdh1 dysregulation in the pathogenesis of Alzheimer's disease, paying particular attention in the neurotoxicity induced by its molecular targets. Understanding the role of anaphase promoting complex/cyclosome-Cdh1-targeted substrates in Alzheimer's disease may be useful in the development of new effective disease-modifying treatments for this neurological disorder.
Collapse
Affiliation(s)
- Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Jesus Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, CSIC, University of Salamanca, Salamanca, Spain,*Correspondence: Angeles Almeida,
| |
Collapse
|
18
|
Wakhloo D, Oberhauser J, Madira A, Mahajani S. From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regen Res 2022; 17:2606-2614. [PMID: 35662189 PMCID: PMC9165389 DOI: 10.4103/1673-5374.336138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Two of the most common neurodegenerative disorders - Alzheimer's and Parkinson's diseases - are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer's disease pathology. The major hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders. Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some publications provide significant findings related to axonal regeneration in Alzheimer's and Parkinson's diseases, they also highlight the limitations and obstacles to the development of neuroregenerative therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, neuroregeneration and neurodegeneration in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Debia Wakhloo
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jane Oberhauser
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Angela Madira
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sameehan Mahajani
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Zhu Y, Liu Y, Escames G, Yang Z, Zhao H, Qian L, Xue C, Xu D, Acuña-Castroviejo D, Yang Y. Deciphering clock genes as emerging targets against aging. Ageing Res Rev 2022; 81:101725. [PMID: 36029999 DOI: 10.1016/j.arr.2022.101725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
The old people often suffer from circadian rhythm disturbances, which in turn accelerate aging. Many aging-related degenerative diseases such as Alzheimer's disease, Parkinson's disease, and osteoarthritis have an inextricable connection with circadian rhythm. In light of the predominant effects of clock genes on regulating circadian rhythm, we systematically present the elaborate network of roles that clock genes play in aging in this review. First, we briefly introduce the basic background regarding clock genes. Second, we systemically summarize the roles of clock genes in aging and aging-related degenerative diseases. Third, we discuss the relationship between clock genes polymorphisms and aging. In summary, this review is intended to clarify the indispensable roles of clock genes in aging and sheds light on developing clock genes as anti-aging targets.
Collapse
Affiliation(s)
- Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Chengxu Xue
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Danni Xu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain; Ibs. Granada and CIBERfes, Granada, Spain; UGC of Clinical Laboratories, Universitu San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
20
|
Shokhirev MN, Johnson AA. An integrative machine-learning meta-analysis of high-throughput omics data identifies age-specific hallmarks of Alzheimer's disease. Ageing Res Rev 2022; 81:101721. [PMID: 36029998 DOI: 10.1016/j.arr.2022.101721] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an incredibly complex and presently incurable age-related brain disorder. To better understand this debilitating disease, we collated and performed a meta-analysis on publicly available RNA-Seq, microarray, proteomics, and microRNA samples derived from AD patients and non-AD controls. 4089 samples originating from brain tissues and blood remained after applying quality filters. Since disease progression in AD correlates with age, we stratified this large dataset into three different age groups: < 75 years, 75-84 years, and ≥ 85 years. The RNA-Seq, microarray, and proteomics datasets were then combined into different integrated datasets. Ensemble machine learning was employed to identify genes and proteins that can accurately classify samples as either AD or control. These predictive inputs were then subjected to network-based enrichment analyses. The ability of genes/proteins associated with different pathways in the Molecular Signatures Database to diagnose AD was also tested. We separately identified microRNAs that can be used to make an AD diagnosis and subjected the predicted gene targets of the most predictive microRNAs to an enrichment analysis. The following key themes emerged from our machine learning and bioinformatics analyses: cell death, cellular senescence, energy metabolism, genomic integrity, glia, immune system, metal ion homeostasis, oxidative stress, proteostasis, and synaptic function. Many of the results demonstrated unique age-specificity. For example, terms highlighting cellular senescence only emerged in the earliest and intermediate age ranges while the majority of results relevant to cell death appeared in the youngest patients. Existing literature corroborates the importance of these hallmarks in AD.
Collapse
Affiliation(s)
- Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | | |
Collapse
|
21
|
Wimalarathne MM, Wilkerson-Vidal QC, Hunt EC, Love-Rutledge ST. The case for FAT10 as a novel target in fatty liver diseases. Front Pharmacol 2022; 13:972320. [PMID: 36386217 PMCID: PMC9665838 DOI: 10.3389/fphar.2022.972320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen F locus adjacent transcript 10 (FAT10) is a ubiquitin-like protein that targets proteins for degradation. TNFα and IFNγ upregulate FAT10, which increases susceptibility to inflammation-driven diseases like nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). It is well established that inflammation contributes to fatty liver disease, but how inflammation contributes to upregulation and what genes are involved is still poorly understood. New evidence shows that FAT10 plays a role in mitophagy, autophagy, insulin signaling, insulin resistance, and inflammation which may be directly associated with fatty liver disease development. This review will summarize the current literature regarding FAT10 role in developing liver diseases and potential therapeutic targets for nonalcoholic/alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
|
22
|
Therapeutic Antiaging Strategies. Biomedicines 2022; 10:biomedicines10102515. [PMID: 36289777 PMCID: PMC9599338 DOI: 10.3390/biomedicines10102515] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
Collapse
|
23
|
The Effect of Ghrelin on Apoptosis, Necroptosis and Autophagy Programmed Cell Death Pathways in the Hippocampal Neurons of Amyloid-β 1–42-Induced Rat Model of Alzheimer’s Disease. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Chowdhury MR, Jin HK, Bae JS. Diverse Roles of Ceramide in the Progression and Pathogenesis of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081956. [PMID: 36009503 PMCID: PMC9406151 DOI: 10.3390/biomedicines10081956] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and is associated with several pathophysiological features, including cellular dysfunction, failure of neurotransmission, cognitive impairment, cell death, and other clinical consequences. Advanced research on the pathogenesis of AD has elucidated a mechanistic framework and revealed many therapeutic possibilities. Among the mechanisms, sphingolipids are mentioned as distinctive mediators to be associated with the pathology of AD. Reportedly, alteration in the metabolism of sphingolipids and their metabolites result in the dysfunction of mitochondria, autophagy, amyloid beta regulation, and neuronal homeostasis, which exacerbates AD progression. Considering the importance of sphingolipids, in this review, we discuss the role of ceramide, a bioactive sphingolipid metabolite, in the progression and pathogenesis of AD. Herein, we describe the ceramide synthesis pathway and its involvement in the dysregulation of homeostasis, which eventually leads to AD. Furthermore, this review references different therapeutics proposed to modulate the ceramide pathway to maintain ceramide levels and prevent the disease progression.
Collapse
Affiliation(s)
- Md Riad Chowdhury
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hee Kyung Jin
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (H.K.J.); (J.-s.B.); Tel.: +82-53-950-5966 (H.K.J.); +82-53-420-4815 (J.-s.B.); Fax: +82-53-950-5955 (H.K.J.); +82-53-424-3349 (J.-s.B.)
| | - Jae-sung Bae
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (H.K.J.); (J.-s.B.); Tel.: +82-53-950-5966 (H.K.J.); +82-53-420-4815 (J.-s.B.); Fax: +82-53-950-5955 (H.K.J.); +82-53-424-3349 (J.-s.B.)
| |
Collapse
|
25
|
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer's disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152:113208. [PMID: 35660246 DOI: 10.1016/j.biopha.2022.113208] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
AIM OF THE REVIEW This study aimed to reveal the classical signal pathways and important potential targets of traditional Chinese medicine (TCM) for treating Alzheimer's disease (AD), and provide support for further investigation on TCM and its active ingredients. MATERIALS AND METHODS Literature survey was conducted using PubMed, Web of Science, Google Scholar, CNKI, and other databases, with "Alzheimer's disease," "traditional Chinese medicine," "medicinal herb," "Chinese herb," and "natural plant" as the primary keywords. RESULTS TCM could modulate signal pathways related to AD pathological progression, including NF-κB, Nrf2, JAK/STAT, ubiquitin-proteasome pathway, autophagy-lysosome pathway-related AMPK/mTOR, GSK-3/mTOR, and PI3K/Akt/mTOR, as well as SIRT1 and PPARα pathway. It could regulate crosstalk between pathways through a multitarget, thus maintaining chronic inflammatory interaction balance, inhibiting oxidative stress damage, regulating ubiquitin-proteasome system function, modulating autophagy, and eventually improving cognitive impairment in patients with AD. CONCLUSION TCM could be multilevel, multitargeted, and multifaceted to prevent and treat AD. In-depth research on the prevention and treatment of AD with TCM could provide new ideas for exploring the pathogenesis of AD and developing new anti-AD drugs.
Collapse
Affiliation(s)
- Min-Rui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Jie Qu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
26
|
Thrush KL, Bennett DA, Gaiteri C, Horvath S, van Dyck CH, Higgins-Chen AT, Levine ME. Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer's disease. Aging (Albany NY) 2022; 14:5641-5668. [PMID: 35907208 PMCID: PMC9365556 DOI: 10.18632/aging.204196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5' cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge's utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge's increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.
Collapse
Affiliation(s)
- Kyra L. Thrush
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Alzheimer’s Disease Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Albert T. Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Morgan E. Levine
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA 92114, USA
| |
Collapse
|
27
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
28
|
Wang F, Li S, Houerbi N, Chou TF. Temporal proteomics reveal specific cell cycle oncoprotein downregulation by p97/VCP inhibition. Cell Chem Biol 2022; 29:517-529.e5. [PMID: 34847375 PMCID: PMC8934257 DOI: 10.1016/j.chembiol.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/03/2021] [Accepted: 11/02/2021] [Indexed: 11/03/2022]
Abstract
Targeting protein quality control (PQC) pathways using proteasome or p97/VCP inhibition can effectively treat blood tumors. However, in solid tumors, only p97/VCP inhibitors are effective. To probe this difference in efficacy, we tracked HCT116 colon cancer cells using temporal proteomics to define the cellular and molecular responses to proteasome and p97 inhibition. Proteins involved in general PQC pathways were similarly upregulated by both treatments, suggesting that the proteotoxic stress caused by inhibitors does not explain the differential therapeutic effectiveness. Unexpectedly, proteins specifically dysregulated by two p97 inhibitors are involved in cell cycle control. Indeed, eleven cell cycle proteins were downregulated by p97 inhibition but not by proteasome inhibition. Western blot analysis validated the degradation of cyclin D1 and Securin, which depends on proteasome but not on p97. Differing regulation of cell cycle proteins by p97 and the proteasome may, therefore, explain the therapeutic efficacy of p97 inhibitors in colon cancer.
Collapse
Affiliation(s)
- Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
29
|
Tecalco-Cruz AC, Pedraza-Chaverri J, Briones-Herrera A, Cruz-Ramos E, López-Canovas L, Zepeda-Cervantes J. Protein degradation-associated mechanisms that are affected in Alzheimer´s disease. Mol Cell Biochem 2022; 477:915-925. [PMID: 35083609 DOI: 10.1007/s11010-021-04334-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia associated with age-related neurodegeneration. Alteration of several molecular mechanisms has been correlated with the progression of AD. In recent years, dysregulation of proteostasis-associated pathways has emerged as a potential risk factor for neurodegenerative diseases. This review investigated the ubiquitin-proteasome system, lysosome-associated degradation, endoplasmic-reticulum-associated degradation, and the formation of advanced glycation end products. These pathways involved in proteostasis have been reported to be altered in AD, suggesting that their study may be critical for identifying new biomarkers and target molecules for AD.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| | - Alfredo Briones-Herrera
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| | - Eduardo Cruz-Ramos
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico
| | - Jesús Zepeda-Cervantes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| |
Collapse
|
30
|
Jiang XJ, Wu YQ, Ma R, Chang YM, Li LL, Zhu JH, Liu GP, Li G. PINK1 Alleviates Cognitive Impairments via Attenuating Pathological Tau Aggregation in a Mouse Model of Tauopathy. Front Cell Dev Biol 2022; 9:736267. [PMID: 35059394 PMCID: PMC8763800 DOI: 10.3389/fcell.2021.736267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
As a primary cause of dementia and death in older people, Alzheimer’s disease (AD) has become a common problem and challenge worldwide. Abnormal accumulation of tau proteins in the brain is a hallmark pathology of AD and is closely related to the clinical progression and severity of cognitive deficits. Here, we found that overexpression of phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) effectively promoted the degradation of tau, thereby rescuing neuron loss, synaptic damage, and cognitive impairments in a mouse model of tauopathy with AAV-full-length human Tau (hTau) injected into the hippocampal CA1 area (hTau mice). Overexpression of PINK1 activated autophagy, and chloroquine but not MG132 reversed the PINK1-induced decrease in human Tau levels and cognitive improvement in hTau mice. Furthermore, PINK1 also ameliorated mitochondrial dysfunction induced by hTau. Taken together, our data revealed that PINK1 overexpression promoted degradation of abnormal accumulated tau via the autophagy–lysosome pathway, indicating that PINK1 may be a potential target for AD treatment.
Collapse
Affiliation(s)
- Xing Jun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Qing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Min Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Lu Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Ning P, Luo A, Mu X, Xu Y, Li T. Exploring the dual character of metformin in Alzheimer's disease. Neuropharmacology 2022; 207:108966. [PMID: 35077762 DOI: 10.1016/j.neuropharm.2022.108966] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which results in dementia typically in the elderly. The disease is mainly characterized by the deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. However, only few drugs are available for AD because of its unknown pathological mechanism which limits the development of new drugs. Therefore, it is urgent to identify potential therapeutic strategies for AD. Moreover, research have showed that there is a significant association between Type 2 diabetes mellites (T2DM) and AD, suggesting that the two diseases may share common pathophysiological mechanisms. Such mechanisms include impaired insulin signaling, altered glucose metabolism, inflammation, oxidative stress, and premature aging, which strongly affect cognitive function and increased risk of dementia. Consequently, as a widely used drug for T2DM, metformin also has therapeutic potential for AD in vivo. It has been confirmed that metformin is beneficial on the brain of AD animal models. The mechanisms underlying the effects of metformin in Alzheimer's disease are complex and multifaceted. Metformin may work through mechanisms involving homeostasis of glucose metabolism, decrease of amyloid plaque deposition, normalization of tau protein phosphorylation and enhancement of autophagy. However, in clinical trials, metformin had little effects on patients with mild cognitive impairment or mild AD. Pathological effects and negative clinical results of metformin on AD make the current topic quite controversial. By reviewing the latest progress of related research, this paper summarizes the possible role of metformin in AD. The purpose of this study is not only to determine the potential treatment of AD, but also other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Anling Luo
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Xin Mu
- Department of Neurology, Chengdu First People's Hospital, 18 Wanxiang North Road, Chengdu, Sichuan Province, 610041, PR China.
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University/Air Force Medical University, No. 169 Changle West Rd, Xi'an, 710032, PR China.
| |
Collapse
|
32
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
33
|
Lin KH, Ali A, Kuo CH, Yang PC, Kumar VB, Padma VV, Lo JF, Huang CY, Kuo WW. Carboxyl terminus of HSP70-interacting protein attenuates advanced glycation end products-induced cardiac injuries by promoting NFκB proteasomal degradation. J Cell Physiol 2021; 237:1888-1901. [PMID: 34958118 DOI: 10.1002/jcp.30660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Pei-Chen Yang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | | | - Jeng-Fan Lo
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Genome Research Centre, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Centre of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Hu F, Rao M, Zhang M, Meng Q, Wan M, Zhang X, Ding L, Jiang Y. Long non-coding RNA profiles in plasma exosomes of patients with gastric high-grade intraepithelial neoplasia. Exp Ther Med 2021; 23:1. [PMID: 34815753 PMCID: PMC8593877 DOI: 10.3892/etm.2021.10923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding (lnc) RNAs in circulating exosomes are a new class of promising cancer biomarkers; however, their expression in exosomes derived from gastric high-grade intraepithelial neoplasia (GHGIN) has not been reported. In the present study, differentially expressed (DE) lncRNAs were analyzed in the peripheral blood collected from 5 patients with GHGIN and 5 healthy donors using high-throughput sequencing. Reverse transcription-quantitative PCR analysis was performed on 6 randomly selected DE lncRNAs to validate the reliability of the sequencing results. The potential roles of the DE lncRNAs in GHGIN were investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses. A total of 25,145 lncRNAs were identified in all the samples and 83 DE lncRNAs were further screened, including 76 upregulated and 7 downregulated DE lncRNAs. GO and KEGG analyses predicted that the DE lncRNAs played notable roles in ‘protein/macromolecule glycosylation’, ‘regulation of protein ubiquitination’, ‘renin-angiotensin system’ and ‘MAPK signaling pathways’. A lncRNA-micro (mi)RNA-mRNA interaction network was constructed and used to perform association analyses. It was found that 83 lncRNAs were abnormally expressed in GHGIN, with some potential functions associated with gastric cancer. Furthermore, the lncRNA-miRNA-mRNA interaction network indicated that 7 DE lncRNAs may play a notable role in the occurrence and development of GHGIN. The results of the present study showed the expression profiles of lncRNAs in human GHGIN, elucidated some of the molecular changes associated with GHGIN and improved the understanding of the molecular mechanisms underlying GHGIN and gastric cancer.
Collapse
Affiliation(s)
- Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Min Rao
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Manli Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Qingqing Meng
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiuna Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lili Ding
- Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
35
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
36
|
Tapella L, Dematteis G, Ruffinatti FA, Ponzoni L, Fiordaliso F, Corbelli A, Albanese E, Pistolato B, Pagano J, Barberis E, Marengo E, Balducci C, Forloni G, Verpelli C, Sala C, Distasi C, Sala M, Manfredi M, Genazzani AA, Lim D. Deletion of calcineurin from astrocytes reproduces proteome signature of Alzheimer's disease and epilepsy and predisposes to seizures. Cell Calcium 2021; 100:102480. [PMID: 34607180 DOI: 10.1016/j.ceca.2021.102480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Calcineurin (CaN), acting downstream of intracellular calcium signals, orchestrates cellular remodeling in many cellular types. In astrocytes, major homeostatic players in the central nervous system (CNS), CaN is involved in neuroinflammation and gliosis, while its role in healthy CNS or in early neuro-pathogenesis is poorly understood. Here we report that in mice with conditional deletion of CaN in GFAP-expressing astrocytes (astroglial calcineurin KO, ACN-KO), at 1 month of age, transcription was largely unchanged, while the proteome was deranged in the hippocampus and cerebellum. Gene ontology analysis revealed overrepresentation of annotations related to myelin sheath, mitochondria, ribosome and cytoskeleton. Over-represented pathways were related to protein synthesis, oxidative phosphorylation, mTOR and neurological disorders, including Alzheimer's disease (AD) and seizure disorder. Comparison with published proteomic datasets showed significant overlap with the proteome of a familial AD mouse model and of human subjects with drug-resistant seizures. ACN-KO mice showed no alterations of motor activity, equilibrium, anxiety or depressive state. However, in Barnes maze ACN-KO mice learned the task but adopted serial search strategy. Strikingly, beginning from about 5 months of age ACN-KO mice developed spontaneous tonic-clonic seizures with an inflammatory signature of epileptic brains. Altogether, our data suggest that the deletion of astroglial CaN produces features of neurological disorders and predisposes mice to seizures. We suggest that calcineurin in astrocytes may serve as a novel Ca2+-sensitive switch which regulates protein expression and homeostasis in the central nervous system.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Federico Alessandro Ruffinatti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Luisa Ponzoni
- BIOMETRA, University of Milan and Fondazione Zardi-Gori, Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Albanese
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Beatrice Pistolato
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | | | - Elettra Barberis
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy; Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | | | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
37
|
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. FRONT BIOSCI-LANDMRK 2021; 26:614-627. [PMID: 34590471 PMCID: PMC8756734 DOI: 10.52586/4971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Introduction: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results: Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions: Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
38
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
39
|
Rosnoblet C, Chatelain P, Klinguer A, Bègue H, Winckler P, Pichereaux C, Wendehenne D. The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2636-2655. [PMID: 33908641 DOI: 10.1111/pce.14073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analysed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the number of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ubiquitinated proteins. A similar process occurred in leaves overexpressing transiently Rpn3, a proteasome subunit. Cdc48 being involved in plant immunity, its regulation of UPS was also investigated in response to cryptogein, an elicitor of immune responses. In the cell lines stably overexpressing Cdc48 and in leaves transiently overexpressing Cdc48 and/or Rpn3, cryptogein triggered a premature cell death while no increase of the proteasomal activity occurred. Overall, this study highlights a role for Cdc48 in ubiquitin homeostasis and confirms its involvement, as well as that of Rpn3, in the processes underlying the hypersensitive response.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
- Laboratory of Parasitology and Mycology, Dijon University Hospital, Dijon, France
| | - Pascale Winckler
- Plateforme DimaCell, PAM UMR A 02.102, Université Bourgogne Franche-Comté, AgroSup Dijon, Dijon, France
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (AIB), CNRS, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, Toulouse, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
40
|
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11:1002. [PMID: 34356626 PMCID: PMC8301848 DOI: 10.3390/biom11071002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative disorders affect fifteen percent of the world's population and pose a significant financial burden to all nations. Cognitive impairment is the seventh leading cause of death throughout the globe. Given the enormous challenges to treat cognitive disorders, such as Alzheimer's disease, and the inability to markedly limit disease progression, circadian clock gene pathways offer an exciting strategy to address cognitive loss. Alterations in circadian clock genes can result in age-related motor deficits, affect treatment regimens with neurodegenerative disorders, and lead to the onset and progression of dementia. Interestingly, circadian pathways hold an intricate relationship with autophagy, the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), and the trophic factor erythropoietin. Autophagy induction is necessary to maintain circadian rhythm homeostasis and limit cortical neurodegenerative disease, but requires a fine balance in biological activity to foster proper circadian clock gene regulation that is intimately dependent upon mTOR, SIRT1, FoxOs, and growth factor expression. Circadian rhythm mechanisms offer innovative prospects for the development of new avenues to comprehend the underlying mechanisms of cognitive loss and forge ahead with new therapeutics for dementia that can offer effective clinical treatments.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
41
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Zhang L, Qi Z, Li J, Li M, Du X, Wang S, Zhou G, Xu B, Liu W, Xi S, Xu Z, Deng Y. Roles and Mechanisms of Axon-Guidance Molecules in Alzheimer's Disease. Mol Neurobiol 2021; 58:3290-3307. [PMID: 33675023 DOI: 10.1007/s12035-021-02311-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by progressive memory decline and cognitive dysfunctions. Although the causes of AD have not yet been established, many mechanisms have been proposed. Axon-guidance molecules play the roles in the occurrence and development of AD by participating in different mechanisms. Therefore, what roles do axon-guidance molecules play in AD? This study aimed at elucidating how axon-guidance molecules Netrins, Slits, Semaphorins, and Ephrins regulate the levels of Aβ, hyperphosphorylation of tau protein, Reelin, and other ways through different signaling pathways, in order to show the roles of axon-guidance molecules in the occurrence and development of AD. And it is hoped that this study can provide a theoretical basis and new perspectives in the search for new therapeutic targets for AD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Guoyu Zhou
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
43
|
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169:382-396. [PMID: 33933601 PMCID: PMC8145782 DOI: 10.1016/j.freeradbiomed.2021.04.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population and has worldwide impact. The etiology of the disease is complex and results from the confluence of multiple mechanisms ultimately leading to neuronal loss and cognitive decline. Among risk factors, aging is the most relevant and accounts for several pathogenic events that contribute to disease-specific toxic mechanisms. Accumulating evidence linked the alterations of the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase playing a key role in the regulation of protein synthesis and degradation, to age-dependent cognitive decline and pathogenesis of AD. To date, growing studies demonstrated that aberrant mTOR signaling in the brain affects several pathways involved in energy metabolism, cell growth, mitochondrial function and proteostasis. Recent advances associated alterations of the mTOR pathway with the increased oxidative stress. Disruption of all these events strongly contribute to age-related cognitive decline including AD. The current review discusses the main regulatory roles of mTOR signaling network in the brain, focusing on its role in autophagy, oxidative stress and energy metabolism. Collectively, experimental data suggest that targeting mTOR in the CNS can be a valuable strategy to prevent/slow the progression of AD.
Collapse
Affiliation(s)
- M Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - F Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - E Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D A Butterfield
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy; Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
44
|
Kang D, Waldvogel HJ, Wang A, Fan D, Faull RLM, Curtis MA, Shorten PR, Guan J. The autocrine regulation of insulin-like growth factor-1 in human brain of Alzheimer's disease. Psychoneuroendocrinology 2021; 127:105191. [PMID: 33706042 DOI: 10.1016/j.psyneuen.2021.105191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Insulin-like growth factor (IGF) binding protein (IGFBP)-3 and cyclic Glycine-Proline (cGP) regulate circulating IGF-1 function that is associated with cognition. The association between IGF-1 function and Alzheimer's disease (AD) remains inconclusive. This study evaluated the changes of IGFBPs and cGP, and their effects on the bioavailability and function of IGF-1 in human brain of AD cases. METHODS Using biological and mathematic analysis we measured the concentrations of total, bound and unbound forms of IGF-1, IGFBPs and cGP in the inferior-frontal gyrus and middle-frontal gyrus of human AD (n = 15) and control cases (n = 15). The association between the changes of total concentration of these peptides and total protein concentration in brain tissues were also analyzed. RESULTS The unbound bioavailable IGF-1 was lower whereas the bound cGP and IGFBP-3 were higher in AD than the control cases. Total protein that was lower in AD than control cases, was negatively associated with cGP concentration of control cases and with IGFBP-3 concentration of AD cases. CONCLUSIONS The results provide direct evidence for IGF-1 deficiency in AD brain due to lower bioavailable IGF-1. The increase of bound IGFBP-3 impaired autocrine regulation. The increase of bound cGP is an autocrine response to improve the bioavailability and function of IGF-1 in AD brain. AVAILABILITY OF DATA AND MATERIAL All data generated or analysed during this study are included in this published article. Additional datasets analysed during the current study available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Dali Kang
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | - Ao Wang
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand
| | - Dawei Fan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | - Paul R Shorten
- AgResearch Ltd, Ruakura Research Centre, Hamilton 3240, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
| |
Collapse
|
45
|
Tsakiri EN, Gumeni S, Manola MS, Trougakos IP. Amyloid toxicity in a Drosophila Alzheimer's model is ameliorated by autophagy activation. Neurobiol Aging 2021; 105:137-147. [PMID: 34062489 DOI: 10.1016/j.neurobiolaging.2021.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the prevailing form of dementia. Protein degradation and antioxidant pathways have a critical role in preventing the accumulation of protein aggregation; thus, failure of proteostasis in neurons along with redox imbalance mark AD. Herein, we exploited an AD Drosophila model expressing human amyloid precursor (hAPP) and beta-secretase 1 (hBACE1) proteins, to better understand the role of proteostatic or antioxidant pathways in AD. Ubiquitous expression of hAPP, hBACE1 in flies caused more severe degenerative phenotypes versus neuronal targeted expression; it also, suppressed proteasome activity, increased oxidative stress and significantly enhanced stress-sensitivity. Overexpression of Prosβ5 proteasomal subunit or Nrf2 transcription factor in AD Drosophila flies partially restored proteasomal activity but did not rescue hAPP, hBACE1 induced neurodegeneration. On the other hand, expression of autophagy-related Atg8a in AD flies decelerated neurodegeneration, increased stress-resistance, and improved flies' health-/lifespan. Overall, our data suggest that the noxious effects of amyloid-beta aggregates can be alleviated by enhanced autophagy, thus dietary or pharmacological interventions that target autophagy should be considered in AD therapeutic approaches.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
46
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
47
|
The proteasome and its role in the nervous system. Cell Chem Biol 2021; 28:903-917. [PMID: 33905676 DOI: 10.1016/j.chembiol.2021.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Proteasomes are multisubunit complexes that catalyze the majority of protein degradation in mammalian cells to maintain protein homeostasis and influence the regulation of most cellular processes. The proteasome, a multicatalytic protease complex, is a ring-like structure with a narrow pore that exhibits regulated gating, enabling the selective degradation of target proteins into peptide fragments. This process of removing proteins is essential for eliminating proteins that are no longer wanted, such as unfolded or aggregated proteins. This is important for preserving cellular function relevant to brain health and disease. Recently, in the nervous system, specialized proteasomes have been shown to generate peptides with important cellular functions. These discoveries challenge the prevailing notion that proteasomes primarily operate to eliminate proteins and identify signaling-competent proteasomes. This review focuses on the structure, function, and regulation of proteasomes and sheds light on emerging areas of investigation regarding the role of proteasomes in the nervous system.
Collapse
|
48
|
Wang J, Liu B, Xu Y, Yang M, Wang C, Song M, Liu J, Wang W, You J, Sun F, Wang D, Liu D, Yan H. Activation of CREB-mediated autophagy by thioperamide ameliorates β-amyloid pathology and cognition in Alzheimer's disease. Aging Cell 2021; 20:e13333. [PMID: 33682314 PMCID: PMC7963336 DOI: 10.1111/acel.13333] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, and the imbalance between production and clearance of β-amyloid (Aβ) is involved in its pathogenesis. Autophagy is an intracellular degradation pathway whereby leads to removal of aggregated proteins, up-regulation of which may be a plausible therapeutic strategy for the treatment of AD. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Our previous study showed that thioperamide, as an antagonist of H3R, enhances autophagy and protects against ischemic injury. However, the effect of thioperamide on autophagic function and Aβ pathology in AD remains unknown. In this study, we found that thioperamide promoted cognitive function, ameliorated neuronal loss, and Aβ pathology in APP/PS1 transgenic (Tg) mice. Interestingly, thioperamide up-regulated autophagic level and lysosomal function both in APP/PS1 Tg mice and in primary neurons under Aβ-induced injury. The neuroprotection by thioperamide against AD was reversed by 3-MA, inhibitor of autophagy, and siRNA of Atg7, key autophagic-related gene. Furthermore, inhibition of activity of CREB, H3R downstream signaling, by H89 reversed the effect of thioperamide on promoted cell viability, activated autophagic flux, and increased autophagic-lysosomal proteins expression, including Atg7, TFEB, and LAMP1, suggesting a CREB-dependent autophagic activation by thioperamide in AD. Taken together, these results suggested that H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated autophagy and lysosomal pathway, which contributed to Aβ clearance. This study uncovered a novel mechanism involving autophagic regulating behind the therapeutic effect of thioperamide in AD.
Collapse
Affiliation(s)
- Jiangong Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Xu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Chaoyun Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mengmeng Song
- Department of Thyroid Breast Surgery, Dongying People's Hospital, Dongying, China
| | - Jing Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dunjiang Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
49
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
50
|
Agarwal M, Alam MR, Haider MK, Malik MZ, Kim DK. Alzheimer's Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E59. [PMID: 33383712 PMCID: PMC7823376 DOI: 10.3390/nano11010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), a progressively fatal neurodegenerative disorder, is the most prominent form of dementia found today. Patients suffering from Alzheimer's begin to show the signs and symptoms, like decline in memory and cognition, long after the cellular damage has been initiated in their brain. There are several hypothesis for the neurodegeneration process; however, the lack of availability of in vivo models makes the recapitulation of AD in humans impossible. Moreover, the drugs currently available in the market serve to alleviate the symptoms and there is no cure for the disease. There have been two major hurdles in the process of finding the same-the inefficiency in cracking the complexity of the disease pathogenesis and the inefficiency in delivery of drugs targeted for AD. This review discusses the different drugs that have been designed over the recent years and the drug delivery options in the field of nanotechnology that have been found most feasible in surpassing the blood-brain barrier (BBB) and reaching the brain.
Collapse
Affiliation(s)
- Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India;
| | - Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | | | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
- Hanvit Institute for Medical Genetics, Daegu 42601, Korea
| |
Collapse
|