1
|
Huang CY, Liu YH. Sex difference, proteostasis and mitochondrial function impact stroke-related sarcopenia-A systematic review and meta-analysis. Ageing Res Rev 2024; 101:102484. [PMID: 39218079 DOI: 10.1016/j.arr.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The prevalence of stroke-related sarcopenia has been noted; however, epidemiological data and interventions that increase or reduce the incidence of stroke-related sarcopenia remain lacking. METHODS Studies on stroke-related sarcopenia were included in association or interventional analyses. All analyses were performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two evaluators independently extracted the data. RESULTS Female stroke patients had a higher preference for sarcopenia than male patients (pooled odds ratio [OR] = 0.670, 95 % CI 0.533-0.842, p = 0.001). Although stroke patients without drug use have improved skeletal muscle mass index (SMI) (MD = 0.272, 95 % CI 0.087-0.457, p = 0.004), handgrip strength (HGS) was not significantly altered (MD = -0.068, 95 % CI -0.221-0.076, p = 0.354). Stroke patients with nutrient interventions have improved SMI (MD = -0.354, 95 % CI -0.635- -0.073, p = 0.014) and HGS (MD = -0.394, 95 % CI -0.678- -0.111, p = 0.006); the synergistic effect of rehabilitation exercise has not been ruled out. Whether a sex difference exists in these interventions remains to be investigated. The underlying pathological mechanisms and potential therapeutic strategies for this disease are discussed. CONCLUSION Sex difference, proteostasis, and mitochondrial function may impact the incidence of stroke-related sarcopenia. Understanding the underlying pathological mechanisms and potential therapeutic targets for this disease will provide new insights into disease treatment, prevention, and drug development.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung 404333, Taiwan
| | - Yu-Huei Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan; Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 404328, Taiwan; Drug Development Center, China Medical University, Taichung 404333, Taiwan.
| |
Collapse
|
2
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
3
|
Nussinov R, Jang H, Cheng F. Ras, RhoA, and vascular pharmacology in neurodevelopment and aging. Neurochem Int 2024; 181:105883. [PMID: 39427854 DOI: 10.1016/j.neuint.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Small GTPases Ras, Rac, and RhoA are crucial regulators of cellular functions. They also act in dysregulated cell proliferation and transformation. Multiple publications have focused on illuminating their roles and mechanisms, including in immune system pathologies. Their functions in neurology-related diseases, neurodegeneration and neurodevelopment, are also emerging, as well as their potential as pharmacological targets in both pathologies. Observations increasingly suggest that these pathologies may relate to activation (or suppression) of signaling by members of the Ras superfamily, especially Ras, Rho, and Rac isoforms, and components of their signaling pathways. Germline (or embryonic) mutations that they harbor are responsible for neurodevelopmental disorders, such as RASopathies, autism spectrum disorder, and dilated cardiomyopathy. In aging, they promote neurodegenerative diseases, with Rho GTPase featuring in their pharmacology, as in the case of Alzheimer's disease (AD). Significantly, drugs with observed anti-AD activity, particularly those involved in cardiovascular systems, are associated with the RhoA signaling, as well as cerebral vasculature in brain development and aging. This leads us to suggest that anti-AD drugs could inform neurodevelopmental disorders, including pediatric low-grade gliomas pharmacology. Neurodevelopmental disorders associated with RhoA, like autism, are also connected with vascular systems, thus could be targets of vascular system-connected drugs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
4
|
Li R, Li Z, Luo W, Zhu X, Luo B. Identification of immunosenescence of unconventional T cells in hepatocellular carcinoma. Comput Biol Chem 2024; 112:108148. [PMID: 39004028 DOI: 10.1016/j.compbiolchem.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Accumulation of senescent cells is a recognized feature in hepatocellular carcinoma (HCC), but their specific types and prognostic implications remain under investigation. This study aimed to delineate senescent cell types and their senescent patterns in HCC using publicly available bulk and single-cell mRNA sequencing data. Through gene expression and gene set enrichment analysis, we identified distinct senescent patterns within HCC samples. Notably, unconventional T cells, specifically natural killer T cells and γδT cells, were found to be the predominant senescent cell types. These cells exhibited enriched pathways related to DNA damage, senescence and the negative regulation of lymphocyte activation. Furthermore, we observed upregulation of the mTOR signaling pathway, which correlated positively with the expression of senescence-associated genes. This suggests a potential regulatory role for mTOR in the senescence of HCC. Strikingly, patients with elevated expression of senescence markers, including p16INK4A, p21, and GLB1, demonstrated significantly reduced overall survival rates. Our findings indicate that immunosenescence in unconventional T cells may play a role in HCC progression. The potential therapeutic implications of targeting the mTOR pathway or eliminating senescent unconventional T cells warrant further exploration to improve HCC patient outcomes.
Collapse
Affiliation(s)
- Rumei Li
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhaoxi Li
- Central Laboratory, Dongguan People's Hospital/Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523069, China
| | - Wanrong Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaotong Zhu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
5
|
Xu F, Li Z, Liu T, Pang X, Fan C, Jiang H. The role of cellular senescence in the pathogenesis of Rheumatoid Arthritis: Focus on IL-6 as a target gene. Cytokine 2024; 184:156762. [PMID: 39326197 DOI: 10.1016/j.cyto.2024.156762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Rheumatoid arthritis is a chronic autoimmune disease. However, the specific role of senescence in rheumatoid arthritis (RA) is unknown. This study aimed to identify potential aging-related genes that have diagnostic and therapeutic value for RA. METHODS The GSE89408 dataset was downloaded from the Gene Expression Omnibus (GEO). Aging-related genes were downloaded from the HAGR database. Differentially expressed genes (DEGs) were subsequently identified with the "edgeR" tool. Next, hub genes were identified with a PPI network and CytoHubba analysis. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of these hub genes. Immune infiltration analysis was performed with the CIBERSORT algorithm. Additionally, molecular docking was performed with CB-Dock2. Finally, correlation experiments were performed to validate the bioinformatics and molecular docking results. RESULTS A total of 22 ADEGs were identified. Combined PPI network and CytoHubba analyses identified a total of 7 hub genes, including IL-6, IL7R, IL2RG, CDK1, PTGS2, and LEP, which are associated mainly with inflammation and immune responses. ROC analysis revealed that the hub genes were highly predictive of RA. Analysis of immune infiltration revealed that the 6 hub genes were positively associated with M1 macrophages. Validation experiments revealed that the inhibition of IL-6 significantly decreased the degree of synovial fibroblast (FLS) senescence. Furthermore, molecular docking and validation experiments revealed that IL-6 is a potential target for drug therapy. CONCLUSION This study demonstrated that RA-FLS senescence may promote the development of RA via inflammatory and immune mechanisms. Seven hub genes were identified, of which IL-6 is a reliable biomarker for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Fengxia Xu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Zhen Li
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Tao Liu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Xue Pang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| |
Collapse
|
6
|
Liu L, Zhao B, Yu Y, Gao W, Liu W, Chen L, Xia Z, Cao Q. Vascular Aging in Ischemic Stroke. J Am Heart Assoc 2024; 13:e033341. [PMID: 39023057 DOI: 10.1161/jaha.123.033341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence, a permanent halt in cell division due to stress, spurs functional and structural changes, contributing to vascular aging characterized by endothelial dysfunction and vascular remodeling. This process raises the risk of ischemic stroke (IS) in older individuals, with its mechanisms still not completely understood despite ongoing research efforts. In this review, we have analyzed the impact of vascular aging on increasing susceptibility and exacerbating the pathology of IS. We have emphasized the detrimental effects of endothelial dysfunction and vascular remodeling influenced by oxidative stress and inflammatory response on vascular aging and IS. Our goal is to aid the understanding of vascular aging and IS pathogenesis, particularly benefiting older adults with high risk of IS.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Bo Zhao
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Yueyang Yu
- Taikang Medical School, School of Basic Medical Sciences Wuhan University Wuhan China
| | - Wenwei Gao
- Department of Critical Care Medicine Renmin Hospital of Wuhan University Wuhan China
| | - Weitu Liu
- Department of Pathology Hubei Provincial Hospital of Traditional Chinese Medicine Wuhan China
| | - Lili Chen
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Zhongyuan Xia
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Quan Cao
- Department of Nephrology Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
7
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
8
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00738-8. [PMID: 38831121 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
Reis ASLDS, Furtado GE, Menuchi MRTP, Borges GF. The Impact of Exercise on Interleukin-6 to Counteract Immunosenescence: Methodological Quality and Overview of Systematic Reviews. Healthcare (Basel) 2024; 12:954. [PMID: 38786366 PMCID: PMC11121001 DOI: 10.3390/healthcare12100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE This study evaluated the methodological quality of published systematic reviews on randomized and non-randomized clinical trials to synthesize evidence on the association between IL-6, immunosenescence, and aerobic and/or resistance exercise. METHOD The Preferred Reporting Items for Overviews of Systematic Reviews (PRIO-harms) guideline was used, with registration number CRD42022346142-PROSPERO. Relevant databases such as Cochrane Library, PubMed, Web of Science, Scopus, and Google Scholar were searched using English Medical Subject Headings terms. Inclusion criteria were systematic reviews analyzing aerobic exercise, resistance exercise, or a combination of both and assessing IL-6 as a biomarker of cellular immunosenescence in humans. The Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2) was employed. RESULTS Out of 742 identified articles, 18 were eligible, and 13 were selected for analysis. Sample sizes ranged from 249 to 1421 participants, mostly female, with ages ranging from 17 to 95 years. Aerobic exercise was the most studied type (46.15%), followed by combined exercise (38.46%) and resistance exercise (15.38%). Aerobic exercise showed a statistically significant reduction in IL-6, C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α) levels. Among the 13 reviews analyzed using AMSTAR-2, 8 were rated as critically low quality, and 5 were classified as low quality. CONCLUSION Aerobic exercise has anti-inflammatory properties and the potential to modulate IL-6, CRP, and TNF-α levels in immunosenescence. However, the limited methodological quality of the analyzed systematic reviews highlights the urgent need for robust, high-quality studies to improve access to information and facilitate evidence-based decision-making in healthcare.
Collapse
Affiliation(s)
- Anne Sulivan Lopes da Silva Reis
- Postgraduate Program in Physical Education, The State University of Santa Cruz (PPGEF/UESB/UESC), Ilhéus 45650-000, BA, Brazil; (A.S.L.d.S.R.); (M.R.T.P.M.)
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços-S. Martinho do Bispo, 3045-093 Coimbra, Portugal;
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
- Sport Physical Activity and Health Research & Inovation Center, 4960-320 Melgaço, Portugal
| | | | - Grasiely Faccin Borges
- Postgraduate Program in Physical Education, The State University of Santa Cruz (PPGEF/UESB/UESC), Ilhéus 45650-000, BA, Brazil; (A.S.L.d.S.R.); (M.R.T.P.M.)
- Center for Public Policies and Social Technologies, Federal University of Southern Bahia, Praça José Bastos, s/n, Centro, Itabuna 45600-923, BA, Brazil
| |
Collapse
|
10
|
Cai Y, Han Z, Cheng H, Li H, Wang K, Chen J, Liu ZX, Xie Y, Lin Y, Zhou S, Wang S, Zhou X, Jin S. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly. Front Immunol 2024; 15:1405621. [PMID: 38774874 PMCID: PMC11106385 DOI: 10.3389/fimmu.2024.1405621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future.
Collapse
Affiliation(s)
- Yijin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Xiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Xie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Zhou
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Guan Y, Cao M, Wu X, Yan J, Hao Y, Zhang C. CD28 null T cells in aging and diseases: From biology to assessment and intervention. Int Immunopharmacol 2024; 131:111807. [PMID: 38471362 DOI: 10.1016/j.intimp.2024.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
CD28null T cells, an atypical subset characterized by the loss of CD28 costimulatory molecule expression, exhibit functional variants and progressively expand with age. Moreover, T cells with these phenotypes are found in both typical and atypical humoral immune responses. Consequently, they accumulate during infectious diseases, autoimmune disorders, cardiovascular conditions, and neurodegenerative ailments. To provide an in-depth review of the current knowledge regarding CD28null T cells, we specifically focus on their phenotypic and functional characteristics as well as their physiological roles in aging and diseases. While uncertainties regarding the clinical utility remains, we will review the following two crucial research perspectives to explore clinical translational applications of the research on this specific T cell subset: 1) addressing the potential utility of CD28null T cells as immunological markers for prognosis and adverse outcomes in both aging and disease, and 2) speculating on the potential of targeting CD28null T cells as an interventional strategy for preventing or delaying immune aging processes and disease progression.
Collapse
Affiliation(s)
- Yuqi Guan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ming Cao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaofen Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Hao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
12
|
Elshazly AM, Shahin U, Al Shboul S, Gewirtz DA, Saleh T. A Conversation with ChatGPT on Contentious Issues in Senescence and Cancer Research. Mol Pharmacol 2024; 105:313-327. [PMID: 38458774 PMCID: PMC11026153 DOI: 10.1124/molpharm.124.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Uruk Shahin
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Sofian Al Shboul
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Tareq Saleh
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| |
Collapse
|
13
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
14
|
Shenker BJ, Korostoff J, Walker LP, Zekavat A, Dhingra A, Kim TJ, Boesze-Battaglia K. Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Induces Cellugyrin-(Synaptogyrin 2) Dependent Cellular Senescence in Oral Keratinocytes. Pathogens 2024; 13:155. [PMID: 38392893 PMCID: PMC10892517 DOI: 10.3390/pathogens13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, we reported that oral-epithelial cells (OE) are unique in their response to Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) in that cell cycle arrest (G2/M) occurs without leading to apoptosis. We now demonstrate that Cdt-induced cell cycle arrest in OE has a duration of at least 7 days with no change in viability. Moreover, toxin-treated OE develops a new phenotype consistent with cellular senescence; this includes increased senescence-associated β-galactosidase (SA-β-gal) activity and accumulation of the lipopigment, lipofuscin. Moreover, the cells exhibit a secretory profile associated with cellular senescence known as the senescence-associated secretory phenotype (SASP), which includes IL-6, IL-8 and RANKL. Another unique feature of Cdt-induced OE senescence is disruption of barrier function, as shown by loss of transepithelial electrical resistance and confocal microscopic assessment of primary gingival keratinocyte structure. Finally, we demonstrate that Cdt-induced senescence is dependent upon the host cell protein cellugyrin, a homologue of the synaptic vesicle protein synaptogyrin. Collectively, these observations point to a novel pathogenic outcome in oral epithelium that we propose contributes to both A. actinomycetemcomitans infection and periodontal disease progression.
Collapse
Affiliation(s)
- Bruce J. Shenker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.P.W.); (A.Z.); (A.D.); (K.B.-B.)
| | - Jonathan Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (T.J.K.)
| | - Lisa P. Walker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.P.W.); (A.Z.); (A.D.); (K.B.-B.)
| | - Ali Zekavat
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.P.W.); (A.Z.); (A.D.); (K.B.-B.)
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.P.W.); (A.Z.); (A.D.); (K.B.-B.)
| | - Taewan J. Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (T.J.K.)
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.P.W.); (A.Z.); (A.D.); (K.B.-B.)
| |
Collapse
|
15
|
Chu JH, Xiong J, Wong CTT, Wang S, Tam DY, García-Fernández A, Martínez-Máñez R, Ng DKP. Detection and Elimination of Senescent Cells with a Self-Assembled Senescence-Associated β-Galactosidase-Activatable Nanophotosensitizer. J Med Chem 2024; 67:234-244. [PMID: 38113190 PMCID: PMC10788907 DOI: 10.1021/acs.jmedchem.3c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Senescent cells have become an important therapeutic target for many age-related dysfunctions and diseases. We report herein a novel nanophotosensitizing system that is responsive to the senescence-associated β-galactosidase (β-gal) for selective detection and elimination of these cells. It involves a dimeric zinc(II) phthalocyanine linked to a β-galactose unit via a self-immolative linker. This compound can self-assemble in aqueous media, forming stable nanoscale particles in which the phthalocyanine units are stacked and self-quenched for fluorescence emission and singlet oxygen production. Upon internalization into senescent HeLa cells, these nanoparticles interact with the overproduced senescence-associated β-gal inside the cells to trigger the disassembly process through enzymatic cleavage of the glycosidic bonds, followed by self-immolation to release the photoactive monomeric phthalocyanine units. These senescent cells can then be lit up with fluorescence and eliminated through the photodynamic action upon light irradiation with a half-maximal inhibitory concentration of 0.06 μM.
Collapse
Affiliation(s)
- Jacky
C. H. Chu
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, China
| | - Junlong Xiong
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, China
- Department
of Pharmacy, The Affiliated Luohu Hospital
of Shenzhen University, Shenzhen University, Shenzhen 518001, China
| | - Clarence T. T. Wong
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, China
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Shuai Wang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dick Yan Tam
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, China
| | - Alba García-Fernández
- Instituto
Interuniversitario de Investigación de Reconocimiento, Molecular
y Desarrollo Tecnológico, Universitat
Politècnica de València, Universitat de València, Valencia46022, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28029, Spain
- Unidad Mixta
UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina,
Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Valencia46012, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento, Molecular
y Desarrollo Tecnológico, Universitat
Politècnica de València, Universitat de València, Valencia46022, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28029, Spain
- Unidad Mixta
UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina,
Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Valencia46012, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Instituto
de Investigación Sanitaria La Fe (IIS La Fe), Universitat Politècnica e València, Valencia 46026, Spain
| | - Dennis K. P. Ng
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
16
|
Kent SA, Miron VE. Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol 2024; 24:49-63. [PMID: 37452201 DOI: 10.1038/s41577-023-00907-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.
Collapse
Affiliation(s)
- Sarah A Kent
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Xing C, Zeng Z, Shan Y, Guo W, Shah R, Wang L, Wang Y, Du H. A Network Pharmacology-based Study on the Anti-aging Properties of Traditional Chinese Medicine Sisheng Bulao Elixir. Comb Chem High Throughput Screen 2024; 27:1840-1849. [PMID: 38178682 DOI: 10.2174/0113862073276253231114063813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has a rich history of use in preventing senescence for millennia in China. Nonetheless, a systematic method to study the antiaging properties and the underlying molecular mechanism of TCM remains absent. OBJECTIVE The objective of this study is to decipher the anti-aging targets and mechanisms of Sisheng Bulao Elixir (SBE) using a systematic approach based on a novel aging database and network pharmacology. METHODS Bioactive compounds and target proteins in SBE were identified via the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Aging-related proteins were uncovered through alignment with the Ageing Alta database. A compound-target (CT) protein network analysis highlighted key flavonoids targeting aging. Core aging-related proteins were extracted through protein-protein interaction (PPI) network analysis. Molecular docking validated binding activities between core compounds and aging-related proteins. The antioxidant activity of SBE was confirmed using an in vitro senescent cells model. RESULTS A total of 39 active compounds were extracted from a pool of 639 compounds in SBE. Through a matching process with the Aging Alta, 88 target proteins associated with the aging process were identified. Impressively, 80 out of these 88 proteins were found to be targeted by flavonoids. Subsequently, an analysis using CT methodology highlighted 11 top bioactive flavonoids. Notably, core aging-related proteins, including AKT1, MAPK3, TP53, VEGFA, IL6, and HSP90AA1, emerged through the PPI network analysis. Moreover, three flavonoids, namely quercetin, kaempferol, and luteolin, exhibited interactions with over 100 aging-related proteins. Molecular docking studies were conducted on these flavonoids with their shared three target proteins, namely AKT1, HSP90AA1, and IL6, to assess their binding activities. Finally, the antioxidant properties of SBE were validated using an in vitro model of senescent cells. CONCLUSION This study offers novel insights into SBE's anti-aging attributes, providing evidence of its molecular mechanisms. It enhances our understanding of traditional remedies in anti-aging research.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zehua Zeng
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yubang Shan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhuan Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Roshan Shah
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luna Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Shen L, Liu J, Luo A, Wang S. The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities. J Ovarian Res 2023; 16:237. [PMID: 38093329 PMCID: PMC10717903 DOI: 10.1186/s13048-023-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
For decades, most studies of ovarian aging have focused on its functional units, known as follicles, which include oocytes and granulosa cells. However, in the ovarian stroma, there are a variety of somatic components that bridge the gap between general aging and ovarian senescence. Physiologically, general cell types, microvascular structures, extracellular matrix, and intercellular molecules affect folliculogenesis and corpus luteum physiology alongside the ovarian cycle. As a result of damage caused by age-related metabolite accumulation and external insults, the microenvironment of stromal cells is progressively remodeled, thus inevitably perturbing ovarian physiology. With the established platforms for follicle cryopreservation and in vitro maturation and the development of organoid research, it is desirable to develop strategies to improve the microenvironment of the follicle by targeting the perifollicular environment. In this review, we summarize the role of stromal components in ovarian aging, describing their age-related alterations and associated effects. Moreover, we list some potential techniques that may mitigate ovarian aging based on their effect on the stromal microenvironment.
Collapse
Affiliation(s)
- Lu Shen
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junfeng Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
Martyshkina YS, Tereshchenko VP, Bogdanova DA, Rybtsov SA. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int J Mol Sci 2023; 24:15653. [PMID: 37958640 PMCID: PMC10647376 DOI: 10.3390/ijms242115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The phenomenon of accumulation of senescent adaptive immunity cells in the elderly is attracting attention due to the increasing risk of global epidemics and aging of the global population. Elderly people are predisposed to various infectious and age-related diseases and are at higher risk of vaccination failure. The accumulation of senescent cells increases age-related background inflammation, "Inflammaging", causing lymphocyte exhaustion and cardiovascular, neurodegenerative, autoimmune and cancer diseases. Here, we present a comprehensive contemporary review of the mechanisms and phenotype of senescence in the adaptive immune system. Although modern research has not yet identified specific markers of aging lymphocytes, several sets of markers facilitate the separation of the aging population based on normal memory and exhausted cells for further genetic and functional analysis. The reasons for the higher predisposition of CD8+ T-lymphocytes to senescence compared to the CD4+ population are also discussed. We point out approaches for senescent-lymphocyte-targeting markers using small molecules (senolytics), antibodies and immunization against senescent cells. The suppression of immune senescence is the most relevant area of research aimed at developing anti-aging and anti-cancer therapy for prolonging the lifespan of the global population.
Collapse
Affiliation(s)
- Yuliya S. Martyshkina
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Valeriy P. Tereshchenko
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Stanislav A. Rybtsov
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| |
Collapse
|
20
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
21
|
Farrukh S, Baig S. Parental telomeres implications on immune senescence of newborns. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:81-86. [PMID: 38022874 PMCID: PMC10658162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Telomere, the biological chronometer, and its effect on the immune system considerably varies among individuals. During pregnancy, multiple risk factors affect telomere reprogramming during fetal life which can lead to health disparities in newborns. These changes may cause a long-term impact on the telomere genetics of the newborn and become a reason for lifelong health implications and immune senescence. Therefore, telomere shortening in parents due to genetic variation may act as a hallmark of immune senescence and aging in their newborns.
Collapse
Affiliation(s)
- Sadia Farrukh
- Department of Biochemistry, Ziauddin University Karachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University Karachi, Pakistan
| |
Collapse
|
22
|
Wei L, Yang X, Wang J, Wang Z, Wang Q, Ding Y, Yu A. H3K18 lactylation of senescent microglia potentiates brain aging and Alzheimer's disease through the NFκB signaling pathway. J Neuroinflammation 2023; 20:208. [PMID: 37697347 PMCID: PMC10494370 DOI: 10.1186/s12974-023-02879-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Cellular senescence serves as a fundamental and underlying activity that drives the aging process, and it is intricately associated with numerous age-related diseases, including Alzheimer's disease (AD), a neurodegenerative aging-related disorder characterized by progressive cognitive impairment. Although increasing evidence suggests that senescent microglia play a role in the pathogenesis of AD, their exact role remains unclear. In this study, we quantified the levels of lactic acid in senescent microglia, and hippocampus tissues of naturally aged mice and AD mice models (FAD4T and APP/PS1). We found lactic acid levels were significantly elevated in these cells and tissues compared to their corresponding counterparts, which increased the level of pan histone lysine lactylation (Kla). We aslo identified all histone Kla sites in senescent microglia, and found that both the H3K18 lactylation (H3K18la) and Pan-Kla were significantly up-regulated in senescent microglia and hippocampus tissues of naturally aged mice and AD modeling mice. We demonstrated that enhanced H3K18la directly stimulates the NFκB signaling pathway by increasing binding to the promoter of Rela (p65) and NFκB1(p50), thereby upregulating senescence-associated secretory phenotype (SASP) components IL-6 and IL-8. Our study provides novel insights into the physiological function of Kla and the epigenetic regulatory mechanism that regulates brain aging and AD. Specifically, we have identified the H3K18la/NFκB axis as a critical player in this process by modulating IL-6 and IL-8. Targeting this axis may be a potential therapeutic strategy for delaying aging and AD by blunting SASP.
Collapse
Affiliation(s)
- Lin Wei
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Central Laboratory of Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Laboratory Medicine, Hubei University of Medicine, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaowen Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Laboratory Medicine, Hubei University of Medicine, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Jie Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Laboratory Medicine, Hubei University of Medicine, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Zhixiao Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Laboratory Medicine, Hubei University of Medicine, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Qiguang Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Laboratory Medicine, Hubei University of Medicine, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Laboratory Medicine, Hubei University of Medicine, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China.
| | - Aiqing Yu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Central Laboratory of Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410000, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Laboratory Medicine, Hubei University of Medicine, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
23
|
Tian D, Meng J, Li L, Xue H, Geng Q, Miao Y, Xu M, Wang R, Zhang X, Wu Y. Hydrogen sulfide ameliorates senescence in vascular endothelial cells through ameliorating inflammation and activating PPARδ/SGLT2/STAT3 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1358-1369. [PMID: 37587757 PMCID: PMC10520484 DOI: 10.3724/abbs.2023156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence demonstrates that hydrogen sulfide (H 2S) promotes anti-inflammatory molecules and inhibits pro-inflammatory cytokines in endothelial cells (ECs). This study aims to investigate the favorable action of H 2S on endothelial function in senescence by inhibiting the production of inflammatory molecules. Senescent ECs exhibit a reduction in H 2S, endothelial nitric oxide synthase (eNOS) and peroxisome proliferator-activated receptor δ (PPARδ), coupled with increased inflammatory molecules, sodium glucose transporter type 2 (SGLT2) and phosphorylation of STAT3, which could be reversed by the administration of a slow but sustained release agent of H 2S, GYY4137. Decreased production of eNOS and upregulated p-STAT3 and SGLT2 levels in senescent ECs are reversed by replenishment of the SGLT2 inhibitor EMPA and the PPARδ agonist GW501516. The PPARδ antagonist GSK0660 attenuates eNOS expression and increases the production of p-STAT3 and SGLT2. However, supplementation with GYY4137 has no beneficial effect on GSK0660-treated ECs. GYY4137, GW501516 and EMPA preserve endothelial-dependent relaxation (EDR) in D-gal-treated aortae, while GSK0660 destroys aortic relaxation even with GYY4137 supplementation. In summary, senescent ECs manifest aggravated the expressions of the inflammatory molecules SGLT2 and p-STAT3 and decreased the productions of PPARδ, eNOS and CSE. H 2S ameliorates endothelial dysfunction through the anti-inflammatory effect of the PPARδ/SGLT2/p-STAT3 signaling pathway in senescent ECs and may be a potential therapeutic target for anti-ageing treatment.
Collapse
Affiliation(s)
- Danyang Tian
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Jinqi Meng
- Department of SportsHebei Medical UniversityShijiazhuang050017China
| | - Lin Li
- College of PharmacyHebei Medical UniversityShijiazhuang050017China
| | - Hongmei Xue
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Qi Geng
- Hebei Key Lab of Laboratory Animal ScienceHebei Medical UniversityShijiazhuang050017China
| | - Yuxin Miao
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Meng Xu
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Ru Wang
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang050017China
| | - Yuming Wu
- Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang050017China
- The Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuang050017China
| |
Collapse
|
24
|
Maya J. Surveying the Metabolic and Dysfunctional Profiles of T Cells and NK Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2023; 24:11937. [PMID: 37569313 PMCID: PMC10418326 DOI: 10.3390/ijms241511937] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Millions globally suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The inflammatory symptoms, illness onset, recorded outbreak events, and physiological variations provide strong indications that ME/CFS, at least sometimes, has an infectious origin, possibly resulting in a chronic unidentified viral infection. Meanwhile, studies exposing generalized metabolic disruptions in ME/CFS have stimulated interest in isolated immune cells with an altered metabolic state. As the metabolism dictates the cellular function, dissecting the biomechanics of dysfunctional immune cells in ME/CFS can uncover states such as exhaustion, senescence, or anergy, providing insights into the consequences of these phenotypes in this disease. Despite the similarities that are seen metabolically between ME/CFS and other chronic viral infections that result in an exhausted immune cell state, immune cell exhaustion has not yet been verified in ME/CFS. This review explores the evidence for immunometabolic dysfunction in ME/CFS T cell and natural killer (NK) cell populations, comparing ME/CFS metabolic and functional features to dysfunctional immune cell states, and positing whether anergy, exhaustion, or senescence could be occurring in distinct immune cell populations in ME/CFS, which is consistent with the hypothesis that ME/CFS is a chronic viral disease. This comprehensive review of the ME/CFS immunometabolic literature identifies CD8+ T cell exhaustion as a probable contender, underscores the need for further investigation into the dysfunctional state of CD4+ T cells and NK cells, and explores the functional implications of molecular findings in these immune-cell types. Comprehending the cause and impact of ME/CFS immune cell dysfunction is critical to understanding the physiological mechanisms of ME/CFS, and developing effective treatments to alleviate the burden of this disabling condition.
Collapse
Affiliation(s)
- Jessica Maya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
25
|
Kell L, Simon AK, Alsaleh G, Cox LS. The central role of DNA damage in immunosenescence. FRONTIERS IN AGING 2023; 4:1202152. [PMID: 37465119 PMCID: PMC10351018 DOI: 10.3389/fragi.2023.1202152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ageing is the biggest risk factor for the development of multiple chronic diseases as well as increased infection susceptibility and severity of diseases such as influenza and COVID-19. This increased disease risk is linked to changes in immune function during ageing termed immunosenescence. Age-related loss of immune function, particularly in adaptive responses against pathogens and immunosurveillance against cancer, is accompanied by a paradoxical gain of function of some aspects of immunity such as elevated inflammation and increased incidence of autoimmunity. Of the many factors that contribute to immunosenescence, DNA damage is emerging as a key candidate. In this review, we discuss the evidence supporting the hypothesis that DNA damage may be a central driver of immunosenescence through senescence of both immune cells and cells of non-haematopoietic lineages. We explore why DNA damage accumulates during ageing in a major cell type, T cells, and how this may drive age-related immune dysfunction. We further propose that existing immunosenescence interventions may act, at least in part, by mitigating DNA damage and restoring DNA repair processes (which we term "genoprotection"). As such, we propose additional treatments on the basis of their evidence for genoprotection, and further suggest that this approach may provide a viable therapeutic strategy for improving immunity in older people.
Collapse
Affiliation(s)
- Loren Kell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Orillard E, Spehner L, Mansi L, Bouard A, Falcoz A, Lepiller Q, Renaude E, Pallandre JR, Vienot A, Kroemer M, Borg C. The presence of senescent peripheral T-cells is negatively correlated to COVID-19 vaccine-induced immunity in cancer patients under 70 years of age. Front Immunol 2023; 14:1160664. [PMID: 37334387 PMCID: PMC10272422 DOI: 10.3389/fimmu.2023.1160664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose Cancer patients are at risk of severe COVID-19 infection, and vaccination is recommended. Nevertheless, we observe a failure of COVID-19 vaccines in this vulnerable population. We hypothesize that senescent peripheral T-cells alter COVID-19 vaccine-induced immunity. Methods We performed a monocentric prospective study and enrolled cancer patients and healthy donors before the COVID-19 vaccination. The primary objective was to assess the association of peripheral senescent T-cells (CD28-CD57+KLRG1+) with COVID-19 vaccine-induced immunity. Results Eighty cancer patients have been included, with serological and specific T-cell responses evaluated before and at 3 months post-vaccination. Age ≥ 70 years was the principal clinical factor negatively influencing the serological (p=0.035) and specific SARS-CoV-2 T-cell responses (p=0.047). The presence of senescent T-cells was correlated to lower serological (p=0.049) and specific T-cell responses (p=0.009). Our results sustained the definition of a specific cut-off for senescence immune phenotype (SIP) (≥ 5% of CD4 and ≥ 39.5% of CD8 T-cells), which was correlated to a lower serological response induced by COVID-19 vaccination for CD4 and CD8 SIPhigh (p=0.039 and p=0.049 respectively). While CD4 SIP level had no impact on COVID-19 vaccine efficacy in elderly patients, our results unraveled a possible predictive role for CD4 SIPhigh T-cell levels in younger cancer patients. Conclusions Elderly cancer patients have a poor serological response to vaccination; specific strategies are needed in this population. Also, the presence of a CD4 SIPhigh affects the serological response in younger patients and seems to be a potential biomarker of no vaccinal response.
Collapse
Affiliation(s)
- E. Orillard
- Department of Oncology, University Hospital of Besançon, Besançon, France
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
| | - L. Spehner
- Department of Oncology, University Hospital of Besançon, Besançon, France
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
| | - L. Mansi
- Department of Oncology, University Hospital of Besançon, Besançon, France
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
| | - A. Bouard
- ITAC Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - A. Falcoz
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
- Methodology and Quality of Life Unit in Oncology, University Hospital of Besançon, Besançon, France
| | - Q. Lepiller
- Department of Virology, University Hospital of Besançon, Besançon, France
- Research Unit EA3181, Université de Franche Comté, Besançon, France
| | - E. Renaude
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
| | - JR. Pallandre
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
- ITAC Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - A. Vienot
- Department of Oncology, University Hospital of Besançon, Besançon, France
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
| | - M. Kroemer
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
- ITAC Platform, University of Bourgogne Franche-Comté, Besançon, France
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - C. Borg
- Department of Oncology, University Hospital of Besançon, Besançon, France
- Bourgogne Franche-Comté University, INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie cellulaire et Génique, Besançon, France
- ITAC Platform, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
27
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
28
|
Sun Y, Weng J, Chen X, Ma S, Zhang Y, Zhang F, Zhang Z, Wang F, Shao J, Zheng S. Oroxylin A activates ferritinophagy to induce hepatic stellate cell senescence against hepatic fibrosis by regulating cGAS-STING pathway. Biomed Pharmacother 2023; 162:114653. [PMID: 37086511 DOI: 10.1016/j.biopha.2023.114653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023] Open
Abstract
In recent study, the pathological mechanism of liver fibrosis has been associated with hepatic stellate cell (HSC) senescence. Targeted induction of HSC senescence is considered as a new strategy to remove activated HSC. Nevertheless, little is known about the role of ferritinophagy in cell senescence. In this study, we reported that Oroxylin A from Scutellaria baicalensis Georgi can regulate HSC senescence induced by ferritinophagy through the cGAS-STING pathway to reduce liver fibrosis. We first found that Oroxylin A treatment alleviated the pathological changes of liver fibrosis, reduced collagen deposition, and significantly inhibited liver fibrosis. Interestingly, Oroxylin A treatment can activate HSC ferritinophagy and further induce HSC senescence. It is noteworthy that ferritinophagy is mediated by nuclear receptor coactivator 4 (NCOA4), an important selective mediator for ferritin degradation. NCOA4 siRNA causes Oroxylin A to reduce the degree of telomerase activity in HSCs and induce the expression of senescence markers, such as SA-β-Gal and related marker proteins. Importantly, the cGAS-STING pathway is crucial to the activation of HSC ferritinophagy by Oroxylin A. Specifically, Oroxylin A can promote the secretion of cytokines like IFN-β by the cGAS-STING pathway to regulate ferritinophagy. cGAS siRNA resulted in a dose-dependent decrease in the expression of NCOA4, a significant reduction in the expression level of autophagy-related phenotype, and a decrease in the content of ROS and iron ions in HSCs. In conclusion, we identified the new role of ferritinophagy and the GAS-STING pathway in Oroxylin A -mediated anti-hepatic fibrosis.
Collapse
Affiliation(s)
- Ying Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingdan Weng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaolei Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyao Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
29
|
Walter S, Jung T, Herpich C, Norman K, Pivovarova-Ramich O, Ott C. Determination of the autophagic flux in murine and human peripheral blood mononuclear cells. Front Cell Dev Biol 2023; 11:1122998. [PMID: 36994103 PMCID: PMC10040559 DOI: 10.3389/fcell.2023.1122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The autophagy lysosomal system (ALS) is crucial for cellular homeostasis, contributing to maintain whole body health and alterations are associated with diseases like cancer or cardiovascular diseases. For determining the autophagic flux, inhibition of lysosomal degradation is mandatory, highly complicating autophagy measurement in vivo. To overcome this, herein blood cells were used as they are easy and routinely to isolate. Within this study we provide detailed protocols for determination of the autophagic flux in peripheral blood mononuclear cells (PBMCs) isolated from human and, to our knowledge the first time, also from murine whole blood, extensively discussing advantages and disadvantages of both methods. Isolation of PBMCs was performed using density gradient centrifugation. To minimize changes on the autophagic flux through experimental conditions, cells were directly treated with concanamycin A (ConA) for 2 h at 37°C in their serum or for murine cells in serum filled up with NaCl. ConA treatment decreased lysosomal cathepsins activity and increased Sequestosome 1 (SQSTM1) protein and LC3A/B-II:LC3A/B-I ratio in murine PBMCs, while transcription factor EB was not altered yet. Aging further enhanced ConA-associated increase in SQSTM1 protein in murine PBMCs but not in cardiomyocytes, indicating tissue-specific differences in autophagic flux. In human PBMCs, ConA treatment also decreased lysosomal activity and increased LC3A/B-II protein levels, demonstrating successful autophagic flux detection in human subjects. In summary, both protocols are suitable to determine the autophagic flux in murine and human samples and may facilitate a better mechanistic understanding of altered autophagy in aging and disease models and to further develop novel treatment strategies.
Collapse
Affiliation(s)
- Sophia Walter
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Kristina Norman
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Molecular Nutritional Medicine, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Christiane Ott,
| |
Collapse
|
30
|
Tan Y, Zhang C, Li D, Huang J, Liu Z, Chen T, Zou X, Qin B. Bibliometric and visualization analysis of global research trends on immunosenescence (1970-2021). Exp Gerontol 2023; 173:112089. [PMID: 36646295 DOI: 10.1016/j.exger.2023.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosenescence, the aging of the immune system, leads to a decline in the body's adaptability to the environment and plays an important role in various diseases. Immunosenescence has been widely studied in recent years. However, to date, no relevant bibliometric analyses have been conducted. This study aimed to analyze the foundation and frontiers of immunosenescence research through bibliometric analysis. METHODS Articles and reviews on immunosenescence from 1970 to 2021 were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, references, and keywords were analyzed and visualized using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. RESULTS In total, 3763 publications were included in the study. The global literature on immunosenescence research has increased from 1970 to 2021. The United States was the most productive country with 1409 papers and the highest H-index. Italy had the highest average number of citations per article (58.50). Among the top 10 institutions, 50 % were in the United States. The University of California was the most productive institution, with 159 articles. Kroemer G, Franceschi C, Goronzy JJ, Solana R, and Fulop T were among the top 10 most productive and co-cited authors. Experimental Gerontology (n = 170) published the most papers on immunosenescence. The analysis of keywords found that current research focuses on "inflammaging", "gut microbiota", "cellular senescence", and "COVID-19". CONCLUSIONS Immunosenescence research has increased over the years, and future cooperation and interaction between countries and institutions must be expanded. The connection between inflammaging, gut microbiota, age-related diseases, and immunosenescence is a current research priority. Individualized treatment of immunosenescence, reducing its negative effects, and promoting healthy longevity will become an emerging research direction.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chuanhe Zhang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Tianyu Chen
- Medical Department, Wuxi Second People's Hospital, Wuxi, China
| | - Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| |
Collapse
|
31
|
Iio K, Kabata D, Iio R, Shibamoto S, Watanabe Y, Morita M, Imai Y, Hatanaka M, Omori H, Isaka Y. Decreased thymic output predicts progression of chronic kidney disease. Immun Ageing 2023; 20:8. [PMID: 36788556 PMCID: PMC9926722 DOI: 10.1186/s12979-023-00333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is age-related disease, and decreased renal function is associated with the premature aging of T cells and increased incidence of other age-related diseases. However, the relationship between T cell senescence and CKD progression remains unclear. Here, we investigated the relationship between T cell senescence, as indicated by decreased thymic output and increased proportion of highly differentiated CD28- T cells, and CKD progression. RESULTS A total of 175 patients with non-dialysis-dependent CKD were enrolled in this study. Thymic output was assessed based on the CD45RA+CD31+CD4+ cell (recent thymic emigrant [RTE]) counts (RTEs) (/mm3) and the proportion of RTE among CD4+ T cells (RTE%). Highly differentiated T cells were assessed based on the proportion of CD28- cells among CD4+ T cells (CD28-/CD4+) and CD28- cells among CD8+ T cells (CD28-/CD8+). The primary outcome was estimated glomerular filtration rate (eGFR) decline of ≥40% or initiation of renal replacement therapy. The association between T cell senescence and renal outcomes was examined using Cox proportional hazards models and restricted cubic splines. The median age was 73 years, 33% were women, and the median eGFR was 26 mL/min/1.73 m2. The median RTEs, RTE%, CD28-/CD4+, and CD28-/CD8+ were 97.5/mm3, 16.2, 5.3, and 49.7%, respectively. After a median follow-up of 1.78 years, renal outcomes were observed in 71 patients. After adjusting for age, sex, eGFR, proteinuria, diabetes, and cytomegalovirus seropositivity, decreased RTEs, which corresponded to decreased thymic output, significantly and monotonically increased the risk of poor renal outcome (p = 0.04), and decreased RTE% and increased highly differentiated CD28-/CD4+ T cells also tended to monotonically increase the risk (p = 0.074 and p = 0.056, respectively), but not CD28-/CD8+ T cells. CONCLUSIONS Decreased thymic output in CKD patients, as well as increased highly differentiated CD4+ T cells, predicted renal outcomes. Thus, the identification of patients prone to CKD progression using T cell senescence, particularly decreased RTE as a biomarker, may help to prevent progression to end-stage kidney disease.
Collapse
Affiliation(s)
- Kenichiro Iio
- Department of Nephrology, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi Kawachinagano, Osaka, Japan.
| | - Daijiro Kabata
- grid.258799.80000 0004 0372 2033Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Rei Iio
- grid.416985.70000 0004 0378 3952Department of Kidney Disease and Hypertension, Osaka General Medical Center, Osaka, Japan
| | - Shinichi Shibamoto
- grid.471868.40000 0004 0595 994XDepartment of Nephrology, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi Kawachinagano, Osaka, Japan
| | - Yuuki Watanabe
- grid.471868.40000 0004 0595 994XDepartment of Nephrology, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi Kawachinagano, Osaka, Japan
| | - Masashi Morita
- grid.471868.40000 0004 0595 994XDepartment of Nephrology, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi Kawachinagano, Osaka, Japan
| | - Yosuke Imai
- grid.471868.40000 0004 0595 994XDepartment of Nephrology, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi Kawachinagano, Osaka, Japan
| | - Masaki Hatanaka
- grid.471868.40000 0004 0595 994XDepartment of Nephrology, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi Kawachinagano, Osaka, Japan
| | - Hiroki Omori
- grid.471868.40000 0004 0595 994XDepartment of Nephrology, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi Kawachinagano, Osaka, Japan
| | - Yoshitaka Isaka
- grid.136593.b0000 0004 0373 3971Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
32
|
Silva BR, Monteiro FR, Cezário K, do Amaral JB, Paixão V, Almeida EB, dos Santos CAF, Amirato GR, Oliveira DBL, Durigon EL, Aguiar AS, Vieira RP, dos Santos JDMB, Furtado GE, França CN, Shio MT, Bachi ALL. Older Adults Who Maintained a Regular Physical Exercise Routine before the Pandemic Show Better Immune Response to Vaccination for COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1939. [PMID: 36767315 PMCID: PMC9915291 DOI: 10.3390/ijerph20031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In this study, we aimed to investigate the specific-antibody response to the COVID-19 vaccination and the immunophenotyping of T cells in older adults who were engaged or not in an exercise training program before the pandemic. METHODS Ninety-three aged individuals (aged between 60 and 85 years) were separated into 3 groups: practitioners of physical exercise vaccinated with CoronaVac (PE-Co, n = 46), or vaccinated with ChadOx-1 (PE-Ch, n = 23), and non-practitioners vaccinated with ChadOx-1 (NPE-Ch, n = 24). Blood samples were collected before (pre) and 30 days after vaccination with the second vaccine dose. RESULTS Higher IgG levels and immunogenicity were found in the PE-Ch and NPE-Ch groups, whereas increased IgA levels were found only in the PE-Ch group post-vaccination. The PE-Co group showed a positive correlation between the IgA and IgG values, and lower IgG levels post-vaccination were associated with age. Significant alterations in the percentage of naive (CD28+CD57-), double-positive (CD28+CD57+), and senescent (CD28-CD57+) CD4+ T and CD8+ T cells were found post-vaccination, particularly in the PE-Ch group. CONCLUSIONS The volunteers vaccinated with the ChadOx-1 presented not only a better antibody response but also a significant modulation in the percentage of T cell profiles, mainly in the previously exercised group.
Collapse
Affiliation(s)
- Brenda Rodrigues Silva
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | - Kizzy Cezário
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Vitória Paixão
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Ewin Barbosa Almeida
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Carlos André Freitas dos Santos
- Discipline of Geriatrics and Gerontology, Department of Medicine, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo 04020-050, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Gislene Rocha Amirato
- Mane Garrincha Sports Education Center, Sports Department of the Municipality of Sao Paulo (SEME), São Paulo 04039-034, Brazil
| | - Danielle Bruna Leal Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-060, Brazil
| | - Andressa Simões Aguiar
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-060, Brazil
- Infection Control Service, São Luiz Gonzaga Hospital of Santa Casa de Misericordia of São Paulo, São Paulo 02276-140, Brazil
| | - Rodolfo P. Vieira
- Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Universidade Evangélica de Goiás (Unievangelica), Av Universitária km 3,5, Anápolis-Go 75083-515, Brazil
| | | | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - André Luis Lacerda Bachi
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| |
Collapse
|
33
|
Redrado M, Fernández‐Moreira V. The Role of Metallodrugs in Cellular Senescence. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marta Redrado
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Vanesa Fernández‐Moreira
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
34
|
Noppert GA, Stebbins RC, Dowd JB, Aiello AE. Socioeconomic and race/ethnic differences in immunosenescence: Evidence from the Health and Retirement Study. Brain Behav Immun 2023; 107:361-368. [PMID: 36347419 PMCID: PMC9636606 DOI: 10.1016/j.bbi.2022.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has highlighted the urgent need to understand variation in immunosenescence at the population-level. Thus far, population patterns of immunosenescence have not well described. METHODS We characterized measures of immunosenescence from the 2016 Venous Blood Study from the nationally representative U.S Health and Retirement Study (HRS) of individuals ages 50 years and older. RESULTS Median values of the CD8+:CD4+, EMRA:Naïve CD4+ and EMRA:Naïve CD8+ ratios were higher among older participants and were lower in those with additional educational attainment. Generally, minoritized race and ethnic groups had immune markers suggestive of a more aged immune profile: Hispanics had a CD8+:CD4+ median value of 0.37 (95 % CI: 0.35, 0.39) compared to 0.30 in non-Hispanic Whites (95 % CI: 0.29, 0.31). Non-Hispanic Blacks had the highest median value of the EMRA:Naïve CD4+ ratio (0.08; 95 % CI: 0.07, 0.09) compared to non-Hispanic Whites (0.03; 95 % CI: 0.028, 0.033). In regression analyses, race/ethnicity and education were associated with large differences in the immune ratio measures after adjustment for age and sex. CONCLUSIONS Lower educational attainment and minoritized racial ethnic status were associated with higher levels of immunosenescence. This population variation may have important implications for both risk of age-related disease and vulnerability to emerging pathogens (e.g., SARS-CoV-2).
Collapse
Affiliation(s)
- Grace A Noppert
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Rebecca C Stebbins
- Social, Genetic, & Developmental Psychiatry Centre, Institute for Psychiatry, Psychology, and Neuroscience; King's College London, London, UK.
| | - Jennifer Beam Dowd
- Leverhulme Centre for Demographic Science, Department of Sociology, University of Oxford, UK
| | - Allison E Aiello
- Department of Epidemiology and Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
35
|
Domen A, Deben C, Verswyvel J, Flieswasser T, Prenen H, Peeters M, Lardon F, Wouters A. Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res 2022; 41:360. [PMID: 36575462 PMCID: PMC9793681 DOI: 10.1186/s13046-022-02555-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cellular senescence is a state of stable cell-cycle arrest with secretory features in response to cellular stress. Historically, it has been considered as an endogenous evolutionary homeostatic mechanism to eliminate damaged cells, including damaged cells which are at risk of malignant transformation, thereby protecting against cancer. However, accumulation of senescent cells can cause long-term detrimental effects, mainly through the senescence-associated secretory phenotype, and paradoxically contribute to age-related diseases including cancer. Besides its role as tumor suppressor, cellular senescence is increasingly being recognized as an in vivo response in cancer patients to various anticancer therapies. Its role in cancer is ambiguous and even controversial, and senescence has recently been promoted as an emerging hallmark of cancer because of its hallmark-promoting capabilities. In addition, the prognostic implications of cellular senescence have been underappreciated due to the challenging detection and sparse in and ex vivo evidence of cellular senescence in cancer patients, which is only now catching up. In this review, we highlight the approaches and current challenges of in and ex vivo detection of cellular senescence in cancer patients, and we discuss the prognostic implications of cellular senescence based on in and ex vivo evidence in cancer patients.
Collapse
Affiliation(s)
- Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium.
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium.
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Jasper Verswyvel
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| |
Collapse
|
36
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
37
|
Granic A, Martin-Ruiz C, Rimmer L, Dodds RM, Robinson LA, Spyridopoulos I, Kirkwood TBL, von Zglinicki T, Sayer AA. Immunosenescence profiles of lymphocyte compartments and multiple long-term conditions (multimorbidity) in very old adults: The Newcastle 85+ Study. Mech Ageing Dev 2022; 208:111739. [PMID: 36152894 DOI: 10.1016/j.mad.2022.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 09/18/2022] [Indexed: 12/30/2022]
Abstract
Immunosenescence, a decline in immune system function, has been linked to several age-related diseases and ageing syndromes. Very old adults (aged ≥ 85 years) live with multiple long-term conditions (MLTC, also known as multimorbidity)-a complex phenomenon of poor health defined by either counts, indices, or patterns, but little is known about the relationship between an ageing immune system and MLTC in this age group. We utilised baseline data from the Newcastle 85+ Study to investigate the associations between previously defined immunosenescence profiles of lymphocyte compartments and MLTC counts and patterns (from 16 chronic diseases/ageing syndromes). Seven hundred and three participants had MLTC and complete data for all 16 conditions, a median and mean of 5 (range 2-11) and 62.2% had ≥ 5 conditions. Three distinct MLTC patterns emerged by clustering: Cluster 1 ('Low frequency cardiometabolic-cerebrovascular diseases', n = 209), Cluster 2 ('High ageing syndromes-arthritis', n = 240), and Cluster 3 ('Hypertensive-renal impairment', n = 254). Although having a more senescent phenotype, characterised by higher frequency of CD4 and CD8 senescence-like effector memory cells and lower CD4/CD8 ratio, was not associated with MLTC compared with less senescent phenotype, the results warrant further investigation, including whether immunosenescence drives change in MLTC and influences MLTC severity in late adulthood.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- Bio Screening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy Rimmer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard M Dodds
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louise A Robinson
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ioakim Spyridopoulos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas B L Kirkwood
- National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
38
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
39
|
The ABC-associated Immunosenescence and Lifestyle Interventions in Autoimmune Disease. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:128-135. [PMID: 36788975 PMCID: PMC9895871 DOI: 10.2478/rir-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 02/16/2023]
Abstract
Aging-associated immune changes, termed immunosenescence, occur with impaired robust immune responses. This immune response is closely related to a greater risk of development of autoimmune disease (AID), which results in increased levels of autoantibodies and increased morbidity and mortality. In addition, lifestyle-related risk factors play a pivotal role in AID, which may be probable via senescence-related immune cell subsets. Age-associated B cell (ABC) subsets have been observed in those who have rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and multiple sclerosis (MS). Here, this review aims to highlight the mechanisms of ABCs with lifestyle interventions in AID, especially how immunosenescence affects the pathogenesis of AID and the future of aging-associated lifestyle interventions in immunosenescence of AID.
Collapse
|
40
|
Mao Y, Xu J, Xu X, Qiu J, Hu Z, Jiang F, Zhou G. Comprehensive analysis for cellular senescence-related immunogenic characteristics and immunotherapy prediction of acute myeloid leukemia. Front Pharmacol 2022; 13:987398. [PMID: 36225590 PMCID: PMC9548549 DOI: 10.3389/fphar.2022.987398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023] Open
Abstract
In malignancies, cellular senescence is critical for carcinogenesis, development, and immunological regulation. Patients with acute myeloid leukemia (AML) have not investigated a reliable cellular senescence-associated profile and its significance in outcomes and therapeutic response. Cellular senescence-related genes were acquired from the CellAge database, while AML data were obtained from the GEO and TCGA databases. The TCGA-AML group served as a training set to construct a prognostic risk score signature, while the GSE71014 set was used as a testing set to validate the accuracy of the signature. Through exploring the expression profiles of cellular senescence-related genes (SRGs) in AML patients, we used Lasso and Cox regression analysis to establish the SRG-based signature (SRGS), which was validated as an independent prognostic predictor for AML patients via clinical correlation. Survival analysis showed that AML patients in the low-risk score group had a longer survival time. Tumor immune infiltration and functional enrichment analysis demonstrated that AML patients with low-risk scores had higher immune infiltration and active immune-related pathways. Meanwhile, drug sensitivity analysis and the TIDE algorithm showed that the low-risk score group was more susceptible to chemotherapy and immunotherapy. Cell line analysis in vitro further confirmed that the SRGs in the proposed signature played roles in the susceptibility to cytarabine and YM155. Our results indicated that SRGS, which regulates the immunological microenvironment, is a reliable predictor of the clinical outcome and immunotherapeutic response in AML.
Collapse
Affiliation(s)
- Yan Mao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinwen Xu
- Department of Pediatric Nephrology, Wuxi Children’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xuejiao Xu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayun Qiu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyun Hu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatrics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Guoping Zhou, ; Feng Jiang,
| | - Guoping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Guoping Zhou, ; Feng Jiang,
| |
Collapse
|
41
|
The Severity of COVID-19 Affects the Plasma Soluble Levels of the Immune Checkpoint HLA-G Molecule. Int J Mol Sci 2022; 23:ijms23179736. [PMID: 36077133 PMCID: PMC9456149 DOI: 10.3390/ijms23179736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 12/11/2022] Open
Abstract
The non-classical histocompatibility antigen G (HLA-G) is an immune checkpoint molecule that has been implicated in viral disorders. We evaluated the plasma soluble HLA-G (sHLA-G) in 239 individuals, arranged in COVID-19 patients (n = 189) followed up at home or in a hospital, and in healthy controls (n = 50). Increased levels of sHLA-G were observed in COVID-19 patients irrespective of the facility care, gender, age, and the presence of comorbidities. Compared with controls, the sHLA-G levels increased as far as disease severity progressed; however, the levels decreased in critically ill patients, suggesting an immune exhaustion phenomenon. Notably, sHLA-G exhibited a positive correlation with other mediators currently observed in the acute phase of the disease, including IL-6, IL-8 and IL-10. Although sHLA-G levels may be associated with an acute biomarker of COVID-19, the increased levels alone were not associated with disease severity or mortality due to COVID-19. Whether the SARS-CoV-2 per se or the innate/adaptive immune response against the virus is responsible for the increased levels of sHLA-G are questions that need to be further addressed.
Collapse
|
42
|
Perspectives on using bacteriophages in biogerontology research and interventions. Chem Biol Interact 2022; 366:110098. [PMID: 35995258 DOI: 10.1016/j.cbi.2022.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
With the development of materials engineering, gerontology-related research on new tools for diagnostic and therapeutic applications, including precision and personalised medicine, has expanded significantly. Using nanotechnology, drugs can be precisely delivered to organs, tissues, cells, and cell organelles, thereby enhancing their therapeutic effects. Here, we discuss the possible use of bacteriophages as nanocarriers that can improve the safety, efficiency, and sensitivity of conventional medical therapies. Phages are a new class of targeted-delivery vectors, which can carry high concentrations of cargo and protect other nontargeted cells from the senescent cell killing effects of senolytics. Bacteriophages can also be subjected to chemical and/or genetic modifications that would acquire novel properties and improve their ability to detect senescent cells and deliver senolytics. Phage research in experimental biogerontology will also develop strategies to efficiently deliver senolytics, target senescent cells, activate extrinsic apoptosis pathways in senescent cells, trigger immune cells to recognise senescent cells, induce autophagy, promote cell and tissue regeneration, inhibit senescence-associated secretory phenotype (SASP) by senomorphic activity, stimulate the properties of mild stress-inducing hormetic agents and hormetins, and modulate the gut microbiome.
Collapse
|
43
|
Frankowska N, Lisowska K, Witkowski JM. Proteolysis dysfunction in the process of aging and age-related diseases. FRONTIERS IN AGING 2022; 3:927630. [PMID: 35958270 PMCID: PMC9361021 DOI: 10.3389/fragi.2022.927630] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
In this review, we discuss in detail the most relevant proteolytic systems that together with chaperones contribute to creating the proteostasis network that is kept in dynamic balance to maintain overall functionality of cellular proteomes. Data accumulated over decades demonstrate that the effectiveness of elements of the proteostasis network declines with age. In this scenario, failure to degrade misfolded or faulty proteins increases the risk of protein aggregation, chronic inflammation, and the development of age-related diseases. This is especially important in the context of aging-related modification of functions of the immune system.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Katarzyna Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
44
|
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol 2022; 13:942796. [PMID: 35983061 PMCID: PMC9379926 DOI: 10.3389/fimmu.2022.942796] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Aging induces a series of immune related changes, which is called immunosenescence, playing important roles in many age-related diseases, especially neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and coronavirus disease 2019(COVID-19). However, the mechanism of immunosenescence, the association with aging and successful aging, and the effects on diseases are not revealed obviously. In order to provide theoretical basis for preventing or controlling diseases effectively and achieve successful aging, we conducted the review and found that changes of aging-related phenotypes, deterioration of immune organ function and alterations of immune cell subsets participated in the process of immunosenescence, which had great effects on the occurrence and development of age-related diseases.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yudian Han
- Information Center, The First People’s Hospital of Nantong City, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| |
Collapse
|
45
|
Zhang Y, Liu J, Jing X, Li F, Mao X, Li M. Monitoring of Intracellular Vesicles in Cultured Neurons at Different Growth Stages Using Intracellular Vesicle Electrochemical Cytometry. ELECTROANAL 2022. [DOI: 10.1002/elan.202100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yueyue Zhang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jiangbo Liu
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xinxin Jing
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiuhai Mao
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
46
|
Wang X, Wang D, Du J, Wei Y, Song R, Wang B, Qiu S, Li B, Zhang L, Zeng Y, Zhao H, Kong Y. High Levels of CD244 Rather Than CD160 Associate With CD8 + T-Cell Aging. Front Immunol 2022; 13:853522. [PMID: 35386693 PMCID: PMC8977780 DOI: 10.3389/fimmu.2022.853522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Aging leads to functional dysregulation of the immune system, especially T cell defects. Previous studies have shown that the accumulation of co-inhibitory molecules plays an essential role in both T cell exhaustion and aging. In the present study, we showed that CD244 and CD160 were both up-regulated on CD8+ T cells of elderly individuals. CD244+CD160- CD8+ T cells displayed the increased activity of β-GAL, higher production of cytokines, and severe metabolic disorders, which were characteristics of immune aging. Notably, the functional dysregulation associated with aging was reversed by blocking CD244 instead of CD160. Meanwhile, CD244+CD160+ CD8+ T cells exhibited features of exhaustion, including lower levels of cytokine, impaired proliferation, and intrinsic transcriptional regulation, compared to CD244+CD160- population. Collectively, our findings demonstrated that CD244 rather than CD160 acts as a prominent regulator involved in T cell aging, providing a solid therapeutic target to improve disorders and comorbidities correlated to immune system aging.
Collapse
Affiliation(s)
- Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuang Qiu
- Department of Laboratory, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Bei Li
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leidan Zhang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongqin Zeng
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Witkowski JM, Fulop T, Bryl E. Immunosenescence and COVID-19. Mech Ageing Dev 2022; 204:111672. [PMID: 35378106 PMCID: PMC8975602 DOI: 10.1016/j.mad.2022.111672] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
|
48
|
Pickering H, Schaenman J, Rossetti M, Ahn R, Sunga G, Liang EC, Bunnapradist S, Reed EF. T cell senescence and impaired CMV-specific response are associated with infection risk in kidney transplant recipients. Hum Immunol 2022; 83:273-280. [PMID: 35190203 PMCID: PMC9462879 DOI: 10.1016/j.humimm.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023]
Abstract
Older kidney transplant recipients demonstrate increased rates of infection, and lower rates of rejection, compared with younger kidney transplant recipients. However, the mechanism behind this observation remains unknown. To develop a multifaceted view of age-associated immune dysfunction, we determined the function and phenotype of T cells predisposing to vulnerability to infection on a molecular level. Overlapping peptide pools representing the dominant CMV antigens were used to stimulate PBMC collected from 51 kidney transplant recipients, using cytokine secretion to determine specificity and intensity of response. Staphylococcal endotoxin B (SEB) was analyzed in parallel. To define immune cell subsets, we used single cell RNA sequencing (scRNAseq) to evaluate cellular surface markers and gene expression. We found increased frequency of SEB- and CMV-specific T cells was associated with freedom from infection, especially in older patients. Spatialized t-SNE analysis revealed decreased frequency of naïve T cells, increased frequency of TEMRA cells, and decreased frequency of IFNγ secreting T cells in patients with infection. Application of scRNAseq analysis revealed increased frequency of terminally differentiated T cells expressing NK-associated receptors and inhibitory markers. These findings offer unique insight into the mechanism behind vulnerability to infection in the kidney transplant recipient, revealing a specific T cell subtype of impaired antigen response and terminal effector phenotype as markers of T cell senescence.
Collapse
Affiliation(s)
| | | | | | - Richard Ahn
- Quantitative and Computational Biosciences, USA
| | | | | | - Suphamai Bunnapradist
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
49
|
Morsli S, Doherty GJ, Muñoz-Espín D. Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mech Ageing Dev 2022; 202:111618. [PMID: 34990647 DOI: 10.1016/j.mad.2021.111618] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023]
Abstract
Pharmacologically active compounds that manipulate cellular senescence (senotherapies) have recently shown great promise in multiple pre-clinical disease models, and some of them are now being tested in clinical trials. Despite promising proof-of-principle evidence, there are known on- and off-target toxicities associated with these compounds, and therefore more refined and novel strategies to improve their efficacy and specificity for senescent cells are being developed. Preferential release of drugs and macromolecular formulations within senescent cells has been predominantly achieved by exploiting one of the most widely used biomarkers of senescence, the increase in lysosomal senescence-associated β-galactosidase (SA-β-gal) activity, a common feature of most reported senescent cell types. Galacto-conjugation is a versatile therapeutic and detection strategy to facilitate preferential targeting of senescent cells by using a variety of existing formulations, including modular systems, nanocarriers, activatable prodrugs, probes, and small molecules. We discuss the benefits and drawbacks of these specific senescence targeting tools and how the strategy of galacto-conjugation might be utilised to design more specific and sophisticated next-generation senotherapeutics, as well as theranostic agents. Finally, we discuss some innovative strategies and possible future directions for the field.
Collapse
Affiliation(s)
- Samir Morsli
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Gary J Doherty
- Department of Oncology, Box 193, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| |
Collapse
|
50
|
Pence BD. Growth Differentiation Factor-15 in Immunity and Aging. FRONTIERS IN AGING 2022; 3:837575. [PMID: 35821815 PMCID: PMC9261309 DOI: 10.3389/fragi.2022.837575] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022]
Abstract
Aging increases susceptibility to and severity of a variety of chronic and infectious diseases. Underlying this is dysfunction of the immune system, including chronic increases in low-grade inflammation (inflammaging) and age-related immunosuppression (immunosenescence). Growth differentiation factor-15 (GDF-15) is a stress-, infection-, and inflammation-induced cytokine which is increased in aging and suppresses immune responses. This mini review briefly covers existing knowledge on the immunoregulatory and anti-inflammatory roles of GDF-15, as well as its potential importance in aging and immune function.
Collapse
|