1
|
Liu C, Filbey FM. Unlocking the age-old secrets of reward and substance use. Pharmacol Biochem Behav 2024; 239:173766. [PMID: 38604456 DOI: 10.1016/j.pbb.2024.173766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Although substance use is widespread across the lifespan from early adolescence to older adulthood, the prevalence of substance use disorder (SUD) differs between age groups. These age differences in SUD rates necessitate an investigation into how age moderates reward sensitivity, and consequently influences the risks and consequences related to substance use. This theoretical review integrates evidence from the literature to address the dynamic interplay between age and reward in the context of substance use. Overall, increasing evidence demonstrates that age moderates reward sensitivity and underlying reward system neurobiology. Reward sensitivity undergoes a non-linear trajectory across the lifespan. Low levels of reward sensitivity are associated with childhood and late adulthood. In contrast, high levels are associated with early to late adolescence, followed by a decline in the twenties. These fluctuations in reward sensitivity across the lifespan contribute to complex associations with substance use. This lends support to adolescence and young adulthood as vulnerable periods for the risk of subsequent SUD. More empirical research is needed to investigate reward sensitivity during SUD maintenance and recovery. Future research should also involve larger sample sizes and encompass a broader range of age groups, including older adults.
Collapse
Affiliation(s)
- Che Liu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America.
| | - Francesca M Filbey
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America
| |
Collapse
|
2
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
3
|
English A, Uittenbogaard F, Torrens A, Sarroza D, Slaven AVE, Piomelli D, Bruchas MR, Stella N, Land BB. A preclinical model of THC edibles that produces high-dose cannabimimetic responses. eLife 2024; 12:RP89867. [PMID: 38214701 PMCID: PMC10945583 DOI: 10.7554/elife.89867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
No preclinical experimental approach enables the study of voluntary oral consumption of high-concentration Δ9-tetrahydrocannabinol (THC) and its intoxicating effects, mainly owing to the aversive response of rodents to THC that limits intake. Here, we developed a palatable THC formulation and an optimized access paradigm in mice to drive voluntary consumption. THC was formulated in chocolate gelatin (THC-E-gel). Adult male and female mice were allowed ad libitum access for 1 and 2 hr. Cannabimimetic responses (hypolocomotion, analgesia, and hypothermia) were measured following access. Levels of THC and its metabolites were measured in blood and brain tissue. Acute acoustic startle responses were measured to investigate THC-induced psychotomimetic behavior. When allowed access for 2 hr to THC-E-gel on the second day of a 3-day exposure paradigm, adult mice consumed up to ≈30 mg/kg over 2 hr, which resulted in robust cannabimimetic behavioral responses (hypolocomotion, analgesia, and hypothermia). Consumption of the same gelatin decreased on the following third day of exposure. Pharmacokinetic analysis shows that THC-E-gel consumption led to parallel accumulation of THC and its psychoactive metabolite, 11-OH-THC, in the brain, a profile that contrasts with the known rapid decline in brain 11-OH-THC levels following THC intraperitoneal (i.p.) injections. THC-E-gel consumption increased the acoustic startle response in males but not in females, demonstrating a sex-dependent effect of consumption. Thus, while voluntary consumption of THC-E-gel triggered equivalent cannabimimetic responses in male and female mice, it potentiated acoustic startle responses preferentially in males. We built a dose-prediction model that included cannabimimetic behavioral responses elicited by i.p. versus THC-E-gel to test the accuracy and generalizability of this experimental approach and found that it closely predicted the measured acoustic startle results in males and females. In summary, THC-E-gel offers a robust preclinical experimental approach to study cannabimimetic responses triggered by voluntary consumption in mice, including sex-dependent psychotomimetic responses.
Collapse
Affiliation(s)
- Anthony English
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| | - Fleur Uittenbogaard
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| | - Alexa Torrens
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
| | - Dennis Sarroza
- Departments of Pharmacology, University of WashingtonSeattleUnited States
| | - Anna Veronica Elizabeth Slaven
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
| | - Daniele Piomelli
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
| | - Michael R Bruchas
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
- Department of Anesthesiology, University of WashingtonSeattleUnited States
| | - Nephi Stella
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
- Psychiatry & Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Benjamin Bruce Land
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| |
Collapse
|
4
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Targeting Persistent Changes in Neuroimmune and Epigenetic Signaling in Adolescent Drinking to Treat Alcohol Use Disorder in Adulthood. Pharmacol Rev 2023; 75:380-396. [PMID: 36781218 PMCID: PMC9969522 DOI: 10.1124/pharmrev.122.000710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G Coleman
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A Macht
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Landin JD, Chandler LJ. Adolescent alcohol exposure alters threat avoidance in adulthood. Front Behav Neurosci 2023; 16:1098343. [PMID: 36761697 PMCID: PMC9905129 DOI: 10.3389/fnbeh.2022.1098343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Adolescent binge-like alcohol exposure impairs cognitive function and decision making in adulthood and may be associated with dysfunction of threat avoidance, a critical mechanism of survival which relies upon executive function. The present study investigated the impact of binge-like alcohol exposure during adolescence on active avoidance in adulthood. Male and female rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation and then tested in adulthood using a platform-mediated avoidance task. After training to press a lever to receive a sucrose reward, the rats were conditioned to a tone that co-terminated with a foot-shock. A motivational conflict was introduced by the presence of an escape platform that isolated the rat from the shock, but also prevented access to the sucrose reward while the rat was on the platform. During the task training phase, both male and female rats exhibited progressive increases in active avoidance (platform escape) in response to the conditioned tone, whereas innate fear behavior (freezing) remained relatively constant over training days. A history of AIE exposure did not impact either active avoidance or freezing behavior during task acquisition. On the test day following platform acquisition training, female rats exhibited higher levels of both active avoidance and freezing compared to male rats, while AIE-exposed male but not female rats exhibited significantly greater levels of active avoidance compared to controls. In contrast, neither male nor female AIE-exposed rats exhibited alterations in freezing compared to controls. Following 5 days of extinction training, female rats continued to display higher levels of active avoidance and freezing during tone presentation compared to males. Male AIE-exposed rats also had higher levels of both active avoidance and freezing compared to the male control rats. Together, the results demonstrate that female rats exhibit elevated levels of active avoidance and freezing compared to males and further reveal a sex-specific impact of AIE on threat responding in adulthood.
Collapse
|
6
|
Asarch AM, Kruse LC, Schindler AG, Phillips PEM, Clark JJ. Sexually dimorphic development of the mesolimbic dopamine system is associated with nuanced sensitivity to adolescent alcohol use. Front Behav Neurosci 2023; 17:1124979. [PMID: 36910128 PMCID: PMC9992416 DOI: 10.3389/fnbeh.2023.1124979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Alcohol use remains a major public health concern and is especially prevalent during adolescence. Adolescent alcohol use has been linked to several behavioral abnormalities in later life, including increased risk taking and impulsivity. Accordingly, when modeled in animals, male rats that had moderate alcohol consumption during adolescence exhibit multiple effects in adulthood, including increased risk taking, altered incentive learning, and greater release of dopamine in the mesolimbic pathway. It has been proposed that alcohol arrests neural development, "locking in" adolescent physiological, and consequent behavioral, phenotypes. Here we examined the feasibility that the elevated dopamine levels following adolescent alcohol exposure are a "locked in" phenotype by testing mesolimbic dopamine release across adolescent development. We found that in male rats, dopamine release peaks in late adolescence, returning to lower levels in adulthood, consistent with the notion that high dopamine levels in adolescence-alcohol-exposed adults were due to arrested development. Surprisingly, dopamine release in females was stable across the tested developmental window. This result raised a quandary that arrested dopamine levels would not differ from normal development in females and, therefore, may not contribute to pathological behavior. However, the aforementioned findings related to risk-based decision-making have only been performed in male subjects. When we tested females that had undergone adolescent alcohol use, we found that neither risk attitude during probabilistic decision-making nor mesolimbic dopamine release was altered. These findings suggest that different developmental profiles of the mesolimbic dopamine system across sexes result in dimorphic susceptibility to alcohol-induced cognitive and motivational anomalies exposure.
Collapse
Affiliation(s)
- Ari M Asarch
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Lauren C Kruse
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Abigail G Schindler
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,VA Puget Sound Health Care System, Seattle, WA, United States
| | - Paul E M Phillips
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jeremy J Clark
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Khan KM, Bierlein-De La Rosa G, Biggerstaff N, Pushpavathi Selvakumar G, Wang R, Mason S, Dailey ME, Marcinkiewcz CA. Adolescent ethanol drinking promotes hyperalgesia, neuroinflammation and serotonergic deficits in mice that persist into adulthood. Brain Behav Immun 2023; 107:419-431. [PMID: 35907582 PMCID: PMC10289137 DOI: 10.1016/j.bbi.2022.07.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Adolescent alcohol use can permanently alter brain function and lead to poor health outcomes in adulthood. Emerging evidence suggests that alcohol use can predispose individuals to pain disorders or exacerbate existing pain conditions, but the underlying neural mechanisms are currently unknown. Here we report that mice exposed to adolescent intermittent access to ethanol (AIE) exhibit increased pain sensitivity and depressive-like behaviors that persist for several weeks after alcohol cessation and are accompanied by elevated CD68 expression in microglia and reduced numbers of serotonin (5-HT)-expressing neurons in the dorsal raphe nucleus (DRN). 5-HT expression was also reduced in the thalamus, anterior cingulate cortex (ACC) and amygdala as well as the lumbar dorsal horn of the spinal cord. We further demonstrate that chronic minocycline administration after AIE alleviated hyperalgesia and social deficits, while chemogenetic activation of microglia in the DRN of ethanol-naïve mice reproduced the effects of AIE on pain and social behavior. Chemogenetic activation of microglia also reduced tryptophan hydroxylase 2 (Tph2) expression and was negatively correlated with the number of 5-HT-immunoreactive cells in the DRN. Taken together, these results indicate that microglial activation in the DRN may be a primary driver of pain, negative affect, and 5-HT depletion after AIE.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Natalie Biggerstaff
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Suzanne Mason
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Michael E Dailey
- Iowa Neuroscience Institute, University of Iowa, United States; Department of Biology, University of Iowa, United States
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, United States; Iowa Neuroscience Institute, University of Iowa, United States.
| |
Collapse
|
8
|
Age-related differences in the effect of chronic alcohol on cognition and the brain: a systematic review. Transl Psychiatry 2022; 12:345. [PMID: 36008381 PMCID: PMC9411553 DOI: 10.1038/s41398-022-02100-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Adolescence is an important developmental period associated with increased risk for excessive alcohol use, but also high rates of recovery from alcohol use-related problems, suggesting potential resilience to long-term effects compared to adults. The aim of this systematic review is to evaluate the current evidence for a moderating role of age on the impact of chronic alcohol exposure on the brain and cognition. We searched Medline, PsycInfo, and Cochrane Library databases up to February 3, 2021. All human and animal studies that directly tested whether the relationship between chronic alcohol exposure and neurocognitive outcomes differs between adolescents and adults were included. Study characteristics and results of age-related analyses were extracted into reference tables and results were separately narratively synthesized for each cognitive and brain-related outcome. The evidence strength for age-related differences varies across outcomes. Human evidence is largely missing, but animal research provides limited but consistent evidence of heightened adolescent sensitivity to chronic alcohol's effects on several outcomes, including conditioned aversion, dopaminergic transmission in reward-related regions, neurodegeneration, and neurogenesis. At the same time, there is limited evidence for adolescent resilience to chronic alcohol-induced impairments in the domain of cognitive flexibility, warranting future studies investigating the potential mechanisms underlying adolescent risk and resilience to the effects of alcohol. The available evidence from mostly animal studies indicates adolescents are both more vulnerable and potentially more resilient to chronic alcohol effects on specific brain and cognitive outcomes. More human research directly comparing adolescents and adults is needed despite the methodological constraints. Parallel translational animal models can aid in the causal interpretation of observed effects. To improve their translational value, future animal studies should aim to use voluntary self-administration paradigms and incorporate individual differences and environmental context to better model human drinking behavior.
Collapse
|
9
|
Towner TT, Papastrat KM, Spear LP, Varlinskaya EI, Werner DF. Impact of adolescent intermittent ethanol exposure in male and female rats on social drinking and neuropeptide gene expression. Alcohol Clin Exp Res 2022; 46:979-993. [PMID: 35470441 DOI: 10.1111/acer.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol use during adolescence can alter maturational changes that occur in brain regions associated with social and emotional responding. Our previous studies have shown that adult male, but not female rats demonstrate social anxiety-like alterations and enhanced sensitivity to ethanol-induced social facilitation following adolescent intermittent ethanol exposure (AIE). These consequences of AIE may influence adult social drinking in a sex-specific manner. METHODS To test the effects of AIE on social drinking, male and female Sprague-Dawley rats exposed to water or ethanol (0 or 4 g/kg, intragastrically, every other day, between postnatal day [P] 25 and 45) were tested as adults (P72-83) in a social drinking paradigm (30-minute access to a 10% ethanol solution in supersac or supersac alone in groups of three same-sex littermates across two 4-day cycles separated by 4 days off). Social behavior was assessed during the last drinking session, along with assessment of oxytocin (OXT), oxytocin receptor (OXTR), vasopressin (AVP), and vasopressin receptors 1a and 1b (AVPR1a, AVPR1b) in the hypothalamus and lateral septum. RESULTS Males exposed to AIE consumed more ethanol than water-exposed controls during the second drinking cycle, whereas AIE did not affect supersac intake in males. AIE-exposed females consumed less ethanol and more supersac than water-exposed controls. Water-exposed females drinking ethanol showed more social investigation and significantly higher hypothalamic OXTR, AVP, and AVPR1b gene expression than their counterparts ingesting supersac and AIE females drinking ethanol. In males, hypothalamic AVPR1b gene expression was affected by drinking solution, with significantly higher expression evident in males drinking ethanol than those consuming supersac. CONCLUSIONS Collectively, these findings provide new evidence regarding sex-specific effects of AIE on social drinking and suggest that the hypothalamic OXT and AVP systems are implicated in the effects of ingested ethanol on social behavior in a sex- and adolescent-exposure-dependent manner.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Kimberly M Papastrat
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Linda P Spear
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
10
|
Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021; 45:1908-1926. [PMID: 34486128 PMCID: PMC8793635 DOI: 10.1111/acer.14694] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.
Collapse
Affiliation(s)
- Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Wille-Bille A, Marengo L, Godino A, Pautassi RM. Effects of escalating versus fixed ethanol exposure on ∆FosB expression in the mesocorticolimbic pathway in adolescent and adult rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:569-580. [PMID: 34383595 DOI: 10.1080/00952990.2021.1954188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: We have reported induction of ∆FosB in adolescent rats that drank less ethanol than adults yet exhibited a progressive increase in ethanol intake.Objective: To test the hypothesis that an escalating pattern of ethanol exposure is more effective to induce ∆FosB expression [at prelimbic cortex (PrL), nucleus accumbens core and shell, striatum, basolateral amygdala (BLA) and central amygdala (CeC)] than a pattern equated for number of exposures yet employing a fixed ethanol dose.Methods: Adolescent and adult (Exp. 1, n = 48) male and female (n = 24 of each sex) or only adult male (Exp. 2, n = 36) Wistar rats were intermittently intubated with vehicle, escalating (from 0.5 to 2.5 g/kg) or fixed (2.0 g/kg) doses of ethanol, across 18 sessions. ∆FosB induction was assessed using immunohistochemistry. Ethanol intake, anxiety and risk-taking were assessed (in adults only) via two-bottles tests and the multivariate concentric square field.Results: Both patterns heightened ∆FosB levels similarly in adolescents and adults and in males and females. Fixed dosing induced ∆FosB in all areas (p < .05) except the CeC, whereas the escalating pattern induced ∆FosB in the PrL and BLA only (p < .05). Ethanol intake was initially lower in ethanol pre-exposed subjects than in control subjects (p < .05). Rats exposed to the fixed pattern exhibited enhanced risk-taking behavior (p < .05).Conclusions: The results agree with studies showing ethanol-mediated induction of ∆FosB in reward areas and indicate that, following ethanol intubations, this induction is similar in adolescents and adults. The induction of ∆FosB seems not necessarily associated with susceptibility for ethanol intake.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Leonardo Marengo
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Andrea Godino
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo Marcos Pautassi
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
12
|
Robinson DL, Amodeo LR, Chandler LJ, Crews FT, Ehlers CL, Gómez-A A, Healey KL, Kuhn CM, Macht VA, Marshall SA, Swartzwelder HS, Varlinskaya EI, Werner DF. The role of sex in the persistent effects of adolescent alcohol exposure on behavior and neurobiology in rodents. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:305-340. [PMID: 34696877 DOI: 10.1016/bs.irn.2021.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol drinking is often initiated during adolescence, and this frequently escalates to binge drinking. As adolescence is also a period of dynamic neurodevelopment, preclinical evidence has highlighted that some of the consequences of binge drinking can be long lasting with deficits persisting into adulthood in a variety of cognitive-behavioral tasks. However, while the majority of preclinical work to date has been performed in male rodents, the rapid increase in binge drinking in adolescent female humans has re-emphasized the importance of addressing alcohol effects in the context of sex as a biological variable. Here we review several of the consequences of adolescent ethanol exposure in light of sex as a critical biological variable. While some alcohol-induced outcomes, such as non-social approach/avoidance behavior and sleep disruption, are generally consistent across sex, others are variable across sex, such as alcohol drinking, sensitivity to ethanol, social anxiety-like behavior, and induction of proinflammatory markers.
Collapse
Affiliation(s)
- Donita L Robinson
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Leslie R Amodeo
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Psychology, California State University, San Bernardino, CA, United States
| | - L Judson Chandler
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Fulton T Crews
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cindy L Ehlers
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Neuroscience, Scripps Research, La Jolla, CA, United States
| | - Alexander Gómez-A
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kati L Healey
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, United States
| | - Cynthia M Kuhn
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria A Macht
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - S Alexander Marshall
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Biological and Biomedical Sciences Department, North Carolina Central University, Durham, NC, United States
| | - H Scott Swartzwelder
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, United States
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
13
|
McNamara TA, Ito R. Relationship between voluntary ethanol drinking and approach-avoidance biases in the face of motivational conflict: novel sex-dependent associations in rats. Psychopharmacology (Berl) 2021; 238:1817-1832. [PMID: 33783557 DOI: 10.1007/s00213-021-05810-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
RATIONALE Aberrant approach-avoidance conflict processing may contribute to compulsive seeking that characterizes addiction. Exploration of the relationship between drugs of abuse and approach-avoidance behavior remains limited, especially with ethanol. OBJECTIVES To investigate the effects of voluntary ethanol consumption on approach-avoidance conflict behavior and to examine the potential approach/avoidance bias to predict drinking in male and female rats. METHODS Long-Evans rats consumed ethanol for 5 weeks under the intermittent access two-bottle choice (IA2BC) paradigm. Approach-avoidance tendencies were assessed before and after IA2BC drinking using a previously established cued approach-avoidance conflict maze task and the elevated plus maze (EPM). RESULTS Female rats displayed higher consumption of and preference for ethanol than males. In the conflict task, males showed greater approach bias towards cues predicting conflict than females. In females only, a median split and regression analysis of cued-conflict preference scores revealed that the more conflict-avoidant group displayed higher intake and preference for ethanol in the first few weeks of drinking. In both sexes, ethanol drinking did not affect cued-conflict preference, but ethanol exposure led to increased time spent in the central hub in the males only. Finally, anxiety levels in EPM predicted subsequent onset of ethanol drinking in males only. CONCLUSIONS Our results highlight sex and individual differences in both drinking and approach-avoidance bias in the face of cued conflict and further suggest that cued-conflict preference should be examined as a potential predictor of ethanol drinking. Ethanol exposure may also affect the timing of decision-making in the face of conflict.
Collapse
Affiliation(s)
- Tanner A McNamara
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada. .,Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
14
|
Shields CN, Gremel CM. Review of Orbitofrontal Cortex in Alcohol Dependence: A Disrupted Cognitive Map? Alcohol Clin Exp Res 2020; 44:1952-1964. [PMID: 32852095 PMCID: PMC8261866 DOI: 10.1111/acer.14441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Alcoholism is a persistent worldwide problem associated with long-lasting impairments to decision making processes. Some aspects of dysfunction are thought to reflect alcohol-induced changes to relevant brain areas such as the orbitofrontal cortex (OFC). In this review, we will examine how chronic alcohol exposure alters OFC function to potentially contribute to maladaptive decision making, and explore experimental behavioral approaches that may be better suited to test whether alcohol dependence disrupts OFC's function. We argue that although past works suggest impairments in aspects of OFC function, more information may be gained by specifically targeting tasks to the broader function of OFC as put forth by the recent hypothesis of OFC as a "cognitive map" of task space. Overall, we suggest that such a focus could provide a better understanding of how OFC function changes in alcohol dependence, and could inform better assessment tools and treatment options for clinicians working with this population.
Collapse
Affiliation(s)
- Chloe N. Shields
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Abstract
Increased motivation towards alcohol use and suboptimal behavioral control are suggested to predispose adolescents to alcohol use disorders (AUDs). Paradoxically however, most adolescent AUDs resolve over time without any formal intervention, suggesting adolescent resilience to AUDs. Importantly, studies directly comparing adolescent and adult alcohol use are largely missing. We therefore aimed to unravel the moderating role of age in the relation between alcohol use and motivational and control-related cognitive processes in 45 adolescent drinkers compared to 45 adults. We found that enhancement drinking motives and impulsivity related positively to alcohol use. Although enhancement drinking motives and impulsivity were higher in adolescents, the strength of the relation between these measures and alcohol use did not differ between age groups. None of the alcohol use-related motivational measures (i.e., craving, attentional bias, and approach bias) and behavioral control measures (i.e., interference control, risky decision making, and working-memory) were associated with alcohol use or differed between age groups. These findings support the role of impulsivity and affective sensitivity in adolescent drinking but question the moderating role of age therein. The current study contributes towards understanding the role of age in the relation between alcohol use and cognition.
Collapse
|
16
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
17
|
Abraham AD, Leung EJY, Wong BA, Rivera ZMG, Kruse LC, Clark JJ, Land BB. Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. Neuropsychopharmacology 2020; 45:1105-1114. [PMID: 31812152 PMCID: PMC7235274 DOI: 10.1038/s41386-019-0585-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Chronic pain affects a significant percentage of the United States population, and available pain medications like opioids have drawbacks that make long-term use untenable. Cannabinoids show promise in the management of pain, but long-term treatment of pain with cannabinoids has been challenging to implement in preclinical models. We developed a voluntary, gelatin oral self-administration paradigm that allowed male and female mice to consume ∆9-tetrahydrocannabinol, cannabidiol, or morphine ad libitum. Mice stably consumed these gelatins over 3 weeks, with detectable serum levels. Using a real-time gelatin measurement system, we observed that mice consumed gelatin throughout the light and dark cycles, with animals consuming less THC-gelatin than the other gelatin groups. Consumption of all three gelatins reduced measures of allodynia in a chronic, neuropathic sciatic nerve injury model, but tolerance to morphine developed after 1 week while THC or CBD reduced allodynia over three weeks. Hyperalgesia gradually developed after sciatic nerve injury, and by the last day of testing, THC significantly reduced hyperalgesia, with a trend effect of CBD, and no effect of morphine. Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine. This study demonstrates that mice voluntarily consume both cannabinoids and opioids via gelatin, and that cannabinoids provide long-term relief of chronic pain states. In addition, ultrasonic clicks may objectively represent mouse pain status and could be integrated into future pain models.
Collapse
Affiliation(s)
- Antony D Abraham
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Edward J Y Leung
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Brenden A Wong
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Zeena M G Rivera
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Lauren C Kruse
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Jeremy J Clark
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Benjamin B Land
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.
| |
Collapse
|
18
|
Mauro KL, Goncalves SF, Sinha R, Ansell E, Chaplin TM. Does Alcohol Initiation in Early-To-Middle Adolescence Predict Changes in Reward Motivation? Evidence of Sex Differences. Alcohol Clin Exp Res 2020; 44:1420-1430. [PMID: 32463517 DOI: 10.1111/acer.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/21/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Reward motivation has been cross-sectionally correlated with adolescent alcohol use, but the temporal nature of this relationship remains unclear. This project sought to determine whether adolescent alcohol initiation longitudinally predicted changes in reward motivation and behavioral inhibition from early to middle adolescence, and explored the role of adolescent sex in this prediction. METHODS A total of 180 11- to 14-year-olds were recruited and then followed for 3 years to age 14 to 17. Participants self-reported their alcohol use at all time points. We selected participants who were alcohol-naïve at Baseline (early adolescence) and then grouped them based on whether or not they reported alcohol initiation by Year 3 (Y3: middle adolescence). Adolescents completed self-report and experimental (delay discounting) measures of reward motivation and self-report measures of behavioral inhibition at Baseline and Y3. RESULTS Adolescents' alcohol initiation significantly predicted higher Y3 self-reported reward motivation on one measure. Additionally, a significant sex × alcohol initiation interaction was found predicting Y3 task-based reward motivation (delay discounting), with boys' alcohol initiation predicting increased bias toward immediate reward at Y3. There was also a sex × alcohol initiation interaction predicting behavioral inhibition, with girls' alcohol initiation predicting higher behavioral inhibition at Y3. CONCLUSIONS Results suggest that alcohol initiation among adolescents might precede changes in reward motivation, and the effects of alcohol on reward and behavioral inhibition may differ by adolescent sex.
Collapse
Affiliation(s)
- Kelsey L Mauro
- From the, Youth Emotion Lab, (KLM, SFG, TMC), George Mason University, Fairfax, Virginia
| | - Stefanie F Goncalves
- From the, Youth Emotion Lab, (KLM, SFG, TMC), George Mason University, Fairfax, Virginia
| | - Rajita Sinha
- Yale Stress Center, (RS), Yale University School of Medicine, New Haven, Connecticut
| | - Emily Ansell
- Biobehavioral Health, (EA), Pennsylvania State University, University Park, Pennsylvania
| | - Tara M Chaplin
- From the, Youth Emotion Lab, (KLM, SFG, TMC), George Mason University, Fairfax, Virginia
| |
Collapse
|
19
|
Arinze I, Moorman DE. Selective impact of lateral orbitofrontal cortex inactivation on reinstatement of alcohol seeking in male Long-Evans rats. Neuropharmacology 2020; 168:108007. [PMID: 32092436 PMCID: PMC10373069 DOI: 10.1016/j.neuropharm.2020.108007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
The orbitofrontal cortex (OFC) plays a fundamental role in motivated behavior and decision-making. In humans, OFC structure and function is significantly disrupted in drug using and dependent individuals, including those exhibiting chronic alcohol use and alcoholism. In animal models, the OFC has been shown to significantly influence the seeking of non-alcohol drugs of abuse. However direct investigations of the OFC during alcohol seeking and use have been more limited. In the studies reported here, we inactivated lateral (lOFC) or medial OFC (mOFC) subregions in rats during multiple stages of alcohol seeking. After one month of intermittent access to homecage 20% ethanol (EtOH), rats were trained to self-administer EtOH under an FR3 schedule and implanted with cannulae directed to lOFC or mOFC. We inactivated OFC subregions with baclofen/muscimol during EtOH self-administration, extinction, cue-induced reinstatement, and progressive ratio testing to broadly characterize the influence of these subregions on alcohol seeking. There were no significant effects of mOFC or lOFC inactivation during FR3 self-administration, extinction, or progressive ratio self-administration. However, lOFC, and not mOFC, inactivation significantly decreased cue-induced reinstatement of EtOH seeking. These findings contribute new information to the specific impact of OFC manipulation on operant alcohol seeking, support previous studies investigating the role of OFC in seeking and consumption of alcohol and other drugs of abuse, and indicate a specific role for lOFC vs. mOFC in reinstatement.
Collapse
|
20
|
Abstract
Substance use is strongly associated with gambling, but the nature of this association can be difficult to determine. Rodents offer the opportunity to test causal models of these relationships through isolation of individual variables of interest. This review describes recent research in rodents showing: a) predisposing factors for both gambling-like behavior and substance use; b) exposure to drugs of abuse increasing gambling-like behavior; c) experience with gambling-like behavior increasing substance use; and d) links between gambling-like behavior and substance use in models of Parkinson's disease therapies. These findings reveal novel relationships between gambling and substance use, and highlight the utility of rodent models for future work in this area.
Collapse
|
21
|
Abstract
Drug consumption is driven by a drug's pharmacological effects, which are experienced as rewarding, and is influenced by genetic, developmental, and psychosocial factors that mediate drug accessibility, norms, and social support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the extended amygdala result in negative emotional states that perpetuate drug taking as an attempt to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consumption is associated with an attenuated dopamine increase in brain reward regions, which might contribute to drug-taking behavior to compensate for the difference between the magnitude of the expected reward triggered by the conditioning to drug cues and the actual experience of it. Combined, these effects result in an enhanced motivation to "seek the drug" (energized by dopamine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced interoceptive awareness of "drug hunger." Treatment interventions intended to reverse these neuroadaptations show promise as therapeutic approaches for addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Michael Michaelides
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Ruben Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Ottenheimer DJ, Wang K, Haimbaugh A, Janak PH, Richard JM. Recruitment and disruption of ventral pallidal cue encoding during alcohol seeking. Eur J Neurosci 2019; 50:3428-3444. [PMID: 31338915 DOI: 10.1111/ejn.14527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
Abstract
A critical area of inquiry in the neurobiology of alcohol abuse is the mechanism by which cues gain the ability to elicit alcohol use. Previously, we found that cue-evoked activity in rat ventral pallidum robustly encodes the value of sucrose cues trained under both Pavlovian and instrumental contingencies, despite a stronger relationship between cue-evoked activity and behavioral latency after instrumental training (Richard et al., 2018, Elife, 7, e33107). Here, we assessed: (a) ventral pallidal representations of Pavlovian versus instrumental cues trained with alcohol reward, and (b) the impact of non-associative alcohol exposure on ventral pallidal representations of sucrose cues. Decoding of cue identity based on ventral pallidum firing was blunted for the Pavlovian alcohol cue in comparison to both the instrumental cue trained with alcohol and either cue type trained with sucrose. Further, non-associative alcohol exposure had opposing effects on ventral pallidal encoding of sucrose cues trained on instrumental versus Pavlovian associations, enhancing decoding accuracy for an instrumental discriminative stimulus and reducing decoding accuracy for a Pavlovian conditioned stimulus. These findings suggest that alcohol exposure can drive biased engagement of specific reward-related signals in the ventral pallidum.
Collapse
Affiliation(s)
- David J Ottenheimer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Karen Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Alexandria Haimbaugh
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia H Janak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Crews FT, Robinson DL, Chandler LJ, Ehlers CL, Mulholland PJ, Pandey SC, Rodd ZA, Spear LP, Swartzwelder HS, Vetreno RP. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol Clin Exp Res 2019; 43:1806-1822. [PMID: 31335972 PMCID: PMC6758927 DOI: 10.1111/acer.14154] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L Judson Chandler
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zachary A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda P Spear
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Hosová D, Spear LP. Voluntary elevated ethanol consumption in adolescent Sprague-Dawley rats: Procedural contributors and age-specificity. Alcohol 2019; 78:1-12. [PMID: 30797832 DOI: 10.1016/j.alcohol.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 12/31/2022]
Abstract
Alcohol consumption is typically initiated during adolescence, with the incidence of binge drinking (production of blood ethanol concentrations [BECs] > 80 mg/dL) peaking during this stage of development. Studies in outbred rats investigating the consequences of adolescent ethanol exposure have typically employed intragastric, vapor, or intraperitoneal administration to attain BECs in this range. While these procedures have yielded valuable data regarding the consequences of adolescent exposure, they are varyingly stressful, administer the full dose at once, and/or bypass digestion. Consequently, we have worked to develop a model of voluntary elevated ethanol consumption in outbred adolescent Sprague-Dawley males and females, building on our previous work (see Hosová & Spear, 2017). This model utilizes daily 30-min access to 10% ethanol (v/v) in chocolate Boost® from postnatal day (P)28-41. Experiment 1 compared intake levels between (1a) animals given either ball-bearing or open-ended sipper tube tips for solution access, (1b) animals separated from their cage mate by wire mesh or isolated to a separate cage during solution access, (1c) animals given solution access with or without simultaneous access to banana-flavored sugar pellets, and (1d) animals that were either moderately food-restricted or fed ad libitum. Experiment 2 compared intake levels between animals given daily solution access and animals given access only on a "Monday-Wednesday-Friday" intermittent schedule. Experiment 3 compared adolescent and adult (P70-83) consumption using the finalized procedure as based on the results of Experiments 1 and 2. As in our previous work, consumptions well within the binge range were produced on some days, with high-consumption days typically followed by several days of lower consumption before increasing again. Sipper tube type (1a) and simultaneous pellet access (1c) did not affect consumption, while intake was significantly higher in non-isolated (1b), food-restricted (1d), daily-access (2), and adolescent (3) animals. However, although ethanol intake was higher in food-restricted animals, the resulting BECs were equivalent or higher in non-restricted animals, likely due to a hepatoprotective effect of moderate food restriction. Post-consumption intoxication ratings correlated with BECs and were notably higher in adults than adolescents, despite the lower voluntary consumption levels of adults, confirming prior reports of the attenuated sensitivity of adolescents to ethanol intoxication relative to adults. The final model utilized ball-bearing sipper tube tips to provide daily access to 10% ethanol in chocolate Boost® to free-feeding adolescent animals separated from their cage mate by wire mesh, with no food provided during solution access. This easy-to-implement model is effective in producing elevated voluntary ethanol consumption in adolescent, but not adult, Sprague-Dawley rats.
Collapse
Affiliation(s)
- Dominika Hosová
- Binghamton University, Binghamton, NY, 13902, United States.
| | | |
Collapse
|
25
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
26
|
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 2018; 19:197-214. [PMID: 29467469 DOI: 10.1038/nrn.2018.10] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Per occasion, alcohol consumption is higher in adolescents than in adults in both humans and laboratory animals, with changes in the adolescent brain probably contributing to this elevated drinking. This Review examines the contributors to and consequences of the use of alcohol in adolescents. Human adolescents with a history of alcohol use differ neurally and cognitively from other adolescents; some of these differences predate the commencement of alcohol consumption and serve as potential risk factors for later alcohol use, whereas others emerge from its use. The consequences of alcohol use in human adolescents include alterations in attention, verbal learning, visuospatial processing and memory, along with altered development of grey and white matter volumes and disrupted white matter integrity. The functional consequences of adolescent alcohol use emerging from studies of rodent models of adolescence include decreased cognitive flexibility, behavioural inefficiencies and elevations in anxiety, disinhibition, impulsivity and risk-taking. Rodent studies have also showed that adolescent alcohol use can impair neurogenesis, induce neuroinflammation and epigenetic alterations, and lead to the persistence of adolescent-like neurobehavioural phenotypes into adulthood. Although only a limited number of studies have examined comparable measures in humans and laboratory animals, the available data provide evidence for notable across-species similarities in the neural consequences of adolescent alcohol exposure, providing support for further translational efforts in this context.
Collapse
Affiliation(s)
- Linda P Spear
- Developmental Exposure Alcohol Research Center (DEARC) and Behavioural Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
27
|
Ahmed SH. Individual decision-making in the causal pathway to addiction: contributions and limitations of rodent models. Pharmacol Biochem Behav 2018; 164:22-31. [DOI: 10.1016/j.pbb.2017.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
|
28
|
Labots M, Cousijn J, Jolink LA, Kenemans JL, Vanderschuren LJMJ, Lesscher HMB. Age-Related Differences in Alcohol Intake and Control Over Alcohol Seeking in Rats. Front Psychiatry 2018; 9:419. [PMID: 30233434 PMCID: PMC6129585 DOI: 10.3389/fpsyt.2018.00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022] Open
Abstract
Alcohol use disorder (AUD) is characterized by excessive and persistent alcohol use, despite adverse consequences. AUD often originates during adolescence, as do other substance use disorders. However, despite periods of excessive alcohol intake, many adolescents reduce their alcohol use by early adulthood. Brain development, social context, personality traits, and genetic makeup are thought to play an important role in these age-dependent fluctuations in alcohol use. However, studies that directly investigate age-related differences in the effects of alcohol exposure on brain and behavior are sparse. Therefore, to better understand the relationship between adolescent alcohol consumption and AUD-like behavior, this study compared the degree of control over alcohol seeking in rats that differed in terms of age of onset of alcohol drinking and in their level of alcohol consumption. We hypothesized that control over alcohol seeking is more prominent in adolescent-onset rats than in adult-onset rats, and that control over alcohol seeking is related to the consumed amount of alcohol. To test this hypothesis, alcohol seeking in the presence of a conditioned aversive stimulus was assessed after 2 months of intermittent alcohol access (IAA) in rats that consumed alcohol from postnatal day 42 (adolescence) or day 77 (adulthood). The rats were subdivided into low (LD), medium (MD), or high (HD) alcohol drinking rats, in order to assess the impact of the extent of alcohol intake on control over alcohol seeking. The adolescent-onset animals consumed slightly, but significantly less alcohol compared to the adult-onset rats. In adult-onset rats, we found that conditioned suppression of alcohol seeking, i.e., reduction of alcohol seeking by presentation of a conditioned aversive stimulus, was most pronounced in LD. By contrast, in the adolescent-onset rats, MD and HD showed increased alcohol seeking compared to LD, which was suppressed by conditioned aversive stimuli. Taken together, these findings reveal a complex relationship between the age of onset and level of alcohol intake with control over alcohol seeking, whereby adolescent rats consume less alcohol than adults. In adult rats, control over alcohol seeking is negatively related to preceding levels of alcohol intake. By contrast, adolescent rats appear to retain control over alcohol seeking, even after a history of high levels of alcohol intake.
Collapse
Affiliation(s)
- Maaike Labots
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Janna Cousijn
- ADAPT-Lab, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Linda A Jolink
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J Leon Kenemans
- Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, Utrecht, Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Reichelt AC, Rank MM. The impact of junk foods on the adolescent brain. Birth Defects Res 2017; 109:1649-1658. [DOI: 10.1002/bdr2.1173] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Amy C. Reichelt
- Discipline of Psychology, School of Health and Biomedical Sciences; RMIT University; Melbourne VIC 3083 Australia
| | - Michelle M. Rank
- Discipline of Psychology, School of Health and Biomedical Sciences; RMIT University; Melbourne VIC 3083 Australia
| |
Collapse
|
30
|
Kruse LC, Schindler AG, Williams RG, Weber SJ, Clark JJ. Maladaptive Decision Making in Adults with a History of Adolescent Alcohol use, in a Preclinical Model, Is Attributable to the Compromised Assignment of Incentive Value during Stimulus-Reward Learning. Front Behav Neurosci 2017; 11:134. [PMID: 28790900 PMCID: PMC5524919 DOI: 10.3389/fnbeh.2017.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 01/22/2023] Open
Abstract
According to recent WHO reports, alcohol remains the number one substance used and abused by adolescents, despite public health efforts to curb its use. Adolescence is a critical period of biological maturation where brain development, particularly the mesocorticolimbic dopamine system, undergoes substantial remodeling. These circuits are implicated in complex decision making, incentive learning and reinforcement during substance use and abuse. An appealing theoretical approach has been to suggest that alcohol alters the normal development of these processes to promote deficits in reinforcement learning and decision making, which together make individuals vulnerable to developing substance use disorders in adulthood. Previously we have used a preclinical model of voluntary alcohol intake in rats to show that use in adolescence promotes risky decision making in adulthood that is mirrored by selective perturbations in dopamine network dynamics. Further, we have demonstrated that incentive learning processes in adulthood are also altered by adolescent alcohol use, again mirrored by changes in cue-evoked dopamine signaling. Indeed, we have proposed that these two processes, risk-based decision making and incentive learning, are fundamentally linked through dysfunction of midbrain circuitry where inputs to the dopamine system are disrupted by adolescent alcohol use. Here, we test the behavioral predictions of this model in rats and present the findings in the context of the prevailing literature with reference to the long-term consequences of early-life substance use on the vulnerability to develop substance use disorders. We utilize an impulsive choice task to assess the selectivity of alcohol’s effect on decision-making profiles and conditioned reinforcement to parse out the effect of incentive value attribution, one mechanism of incentive learning. Finally, we use the differential reinforcement of low rates of responding (DRL) task to examine the degree to which behavioral disinhibition may contribute to an overall decision-making profile. The findings presented here support the proposition that early life alcohol use selectively alters risk-based choice behavior through modulation of incentive learning processes, both of which may be inexorably linked through perturbations in mesolimbic circuitry and may serve as fundamental vulnerabilities to the development of substance use disorders.
Collapse
Affiliation(s)
- Lauren C Kruse
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States
| | - Abigail G Schindler
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States.,Geriatric Research Education and Clinical Center, VA Puget Sound Health Care SystemSeattle, WA, United States
| | - Rapheal G Williams
- Graduate Program in Neuroscience, University of WashingtonSeattle, WA, United States
| | - Sophia J Weber
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States
| | - Jeremy J Clark
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States
| |
Collapse
|
31
|
Miller KM, Risher ML, Acheson SK, Darlow M, Sexton HG, Schramm-Sapyta N, Swartzwelder HS. Behavioral Inefficiency on a Risky Decision-Making Task in Adulthood after Adolescent Intermittent Ethanol Exposure in Rats. Sci Rep 2017; 7:4680. [PMID: 28680108 PMCID: PMC5498633 DOI: 10.1038/s41598-017-04704-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/18/2017] [Indexed: 11/08/2022] Open
Abstract
Adolescence is a period of development in neural circuits that are critical for adult functioning. There is a relationship between alcohol exposure and risky decision-making, though the enduring effects of adolescent ethanol exposure on risky decision-making in adulthood have not been fully explored. Studies using positive reinforcement have shown that adolescent intermittent ethanol (AIE) exposure results in higher levels of risky decision-making in adulthood, but the effects of AIE on punishment-mediated decision-making have not been explored. Adolescent rats were exposed to AIE or saline vehicle across a 16-day period, and then allowed to mature into adulthood. They were then trained to lever press for food reward and were assessed for risky decision-making by pairing increased levels of food reward with the probability of footshock punishment. AIE did not alter punishment-mediated risky decision-making. However, it did result in a significant increase in the delay to lever pressing. This finding is consistent with previous reports, using other behavioral tasks, which show decreased behavioral efficiency in adulthood after AIE. These findings indicate that AIE increases behavioral inefficiency, but not punishment-mediated risk-taking, in adulthood. Thus they contribute to a more nuanced understanding of the long-term effects of AIE on adult behavior.
Collapse
Affiliation(s)
- Kelsey M Miller
- Neurobiology Research Laboratory, Durham VA Medical Center, Durham, NC, 27705, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mary-Louise Risher
- Neurobiology Research Laboratory, Durham VA Medical Center, Durham, NC, 27705, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shawn K Acheson
- Neurobiology Research Laboratory, Durham VA Medical Center, Durham, NC, 27705, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Matthew Darlow
- Neurobiology Research Laboratory, Durham VA Medical Center, Durham, NC, 27705, USA
- McGovern Medical School, Houston, TX, 77030, USA
| | - Hannah G Sexton
- Neurobiology Research Laboratory, Durham VA Medical Center, Durham, NC, 27705, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - H S Swartzwelder
- Neurobiology Research Laboratory, Durham VA Medical Center, Durham, NC, 27705, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
32
|
Wong A, Dogra VR, Reichelt AC. High-sucrose diets in male rats disrupt aspects of decision making tasks, motivation and spatial memory, but not impulsivity measured by operant delay-discounting. Behav Brain Res 2017; 327:144-154. [DOI: 10.1016/j.bbr.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
|
33
|
Centanni SW, Burnett EJ, Trantham-Davidson H, Chandler LJ. Loss of δ-GABA A receptor-mediated tonic currents in the adult prelimbic cortex following adolescent alcohol exposure. Addict Biol 2017; 22:616-628. [PMID: 26804056 DOI: 10.1111/adb.12353] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/29/2015] [Accepted: 11/24/2015] [Indexed: 11/30/2022]
Abstract
Delayed maturation of the adolescent prefrontal cortex may render it particularly vulnerable to insults, including those associated with drugs of abuse. Using a rat model of binge alcohol exposure, the present study examined the effect of adolescent intermittent ethanol (AIE) exposure during postnatal days 28-42 on γ-aminobutyric acid (GABA)ergic neurotransmission in the prelimbic cortex. In control rats, patch-clamp electrophysiology in acute slices obtained at different postnatal ages revealed a developmental increase in the GABAA receptor-mediated tonic current in layer V pyramidal neurons but no change in layers II/III when measured in the adult. In slices from AIE-exposed rats, the amplitude of the tonic current was significantly reduced compared with controls when tested at postnatal days 45, 60 and 90-120. This AIE-induced reduction in tonic current was found to reflect attenuation of currents mediated by δ-subunit containing receptors. Consistent with this, facilitation of the tonic current by bath application of either ethanol or allopregnanolone was attenuated in slices from AIE-exposed adult rats compared with control rats. However, expression of this facilitation as a percent of the amplitude of the total current mediated by δ-GABAA receptors revealed that AIE did not alter their sensitivity to either agonist. Lastly, immunohistochemistry and Western blot analysis revealed no change in the expression of δ-GABAA subunits or their surface expression. Taken together, these studies reveal that AIE exposure results in persistent deficits in δ-GABAA tonic currents in the adult prelimbic cortex that may contribute to deficits in decision-making and behavioral control in adulthood.
Collapse
Affiliation(s)
- Samuel W. Centanni
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Elizabeth J. Burnett
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | - L. Judson Chandler
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
34
|
Binge-Like Alcohol Exposure During Adolescence Disrupts Dopaminergic Neurotransmission in the Adult Prelimbic Cortex. Neuropsychopharmacology 2017; 42:1024-1036. [PMID: 27620551 PMCID: PMC5506791 DOI: 10.1038/npp.2016.190] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/05/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022]
Abstract
Repeated binge-like exposure to alcohol during adolescence has been reported to perturb prefrontal cortical development, yet the mechanisms underlying these effects are unknown. Here we report that adolescent intermittent ethanol exposure induces cellular and dopaminergic abnormalities in the adult prelimbic cortex (PrL-C). Exposing rats to alcohol during early-mid adolescence (PD28-42) increased the density of long/thin dendritic spines of layer 5 pyramidal neurons in the adult PrL-C. Interestingly, although AIE exposure did not alter the expression of glutamatergic proteins in the adult PrL-C, there was a pronounced reduction in dopamine (DA) D1 receptor modulation of both intrinsic firing and evoked NMDA currents in pyramidal cells, whereas D2 receptor function was unaltered. Recordings from fast-spiking interneurons also revealed that AIE reduced intrinsic excitability, glutamatergic signaling, and D1 receptor modulation of these cells. Analysis of PrL-C tissue of AIE-exposed rats further revealed persistent changes in the expression of DA-related proteins, including reductions in the expression of tyrosine hydroxylase and catechol-O-methyltransferase (COMT). AIE exposure was associated with hypermethylation of the COMT promoter at a conserved CpG site in exon II. Taken together, these findings demonstrate that AIE exposure disrupts DA and GABAergic transmission in the adult medial prefrontal cortex (mPFC). As DA and GABA work in concert to shape and synchronize neuronal ensembles in the PFC, these alterations could contribute to deficits in behavioral control and decision-making in adults who abused alcohol during adolescence.
Collapse
|
35
|
Hosová D, Spear LP. Voluntary Binge Consumption of Ethanol in a Sweetened, Chocolate-Flavored Solution by Male and Female Adolescent Sprague Dawley Rats. Alcohol Clin Exp Res 2017; 41:541-550. [PMID: 28195335 DOI: 10.1111/acer.13315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/17/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The still maturing adolescent brain may be particularly vulnerable to lasting consequences of ethanol (EtOH) exposure. Yet, human adolescents are the age group most likely to engage in binge drinking (a pattern of drinking leading to blood EtOH concentrations (BECs) of 80 mg/dl or greater). Most studies to date assessing the long-term effects of adolescent EtOH exposure in outbred rodent populations have either used experimenter-administered EtOH to produce BECs in the binge range or assessed voluntary intake of EtOH at well below binge levels. Beginning with a modified schedule-induced polydipsia (SIP) procedure, this study examined the suitability of several approaches to induce voluntary binge-like consumption during adolescence in an outbred rat strain. METHODS Adolescent male and female Sprague Dawley rats were food deprived to 85% projected free-feeding weights beginning on postnatal day (P) 24 and were given 30 minutes of access to 10% EtOH in chocolate Boost® or Boost® alone daily from P28 to P41 (followed later by their daily allocation of food). Animals were tested within operant chambers (Exp. 1a, 1b and Exp. 2) or home and novel cages (Exp. 3). Animals received either scheduled delivery of banana pellets to examine SIP (Exp. 1a,b) or massed pellet presentation (Exp. 2 and Exp. 3). Blood samples were collected via the lateral tail vein on P33 and P41. RESULTS Intakes produced BECs frequently in the binge range (>80 mg/dl) and modeled binge-like consumption patterns, with high consumption days typically followed by 1 to 2 days of lower consumption; this variability was less evident with Boost® alone. Consumption was not schedule induced and was generally high across all studies, although consumption in males appeared to be particularly pronounced when animals were tested in the presence of their cage mate. CONCLUSIONS Binge-like patterns of EtOH consumption were produced using these procedures in adolescent Sprague Dawley rats of both sexes and may prove to be a useful model for work examining the short- and long-term consequences of high levels of voluntary EtOH intake in adolescence.
Collapse
Affiliation(s)
- Dominika Hosová
- Department of Psychology, Binghamton University, Binghamton, New York
| | - Linda Patia Spear
- Department of Psychology, Binghamton University, Binghamton, New York
| |
Collapse
|
36
|
Spoelder M, Flores Dourojeanni JP, de Git KCG, Baars AM, Lesscher HMB, Vanderschuren LJMJ. Individual differences in voluntary alcohol intake in rats: relationship with impulsivity, decision making and Pavlovian conditioned approach. Psychopharmacology (Berl) 2017; 234:2177-2196. [PMID: 28417164 PMCID: PMC5486936 DOI: 10.1007/s00213-017-4617-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/30/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE Alcohol use disorder (AUD) has been associated with suboptimal decision making, exaggerated impulsivity, and aberrant responses to reward-paired cues, but the relationship between AUD and these behaviors is incompletely understood. OBJECTIVES This study aims to assess decision making, impulsivity, and Pavlovian-conditioned approach in rats that voluntarily consume low (LD) or high (HD) amounts of alcohol. METHODS LD and HD were tested in the rat gambling task (rGT) or the delayed reward task (DRT). Next, the effect of alcohol (0-1.0 g/kg) was tested in these tasks. Pavlovian-conditioned approach (PCA) was assessed both prior to and after intermittent alcohol access (IAA). Principal component analyses were performed to identify relationships between the most important behavioral parameters. RESULTS HD showed more optimal decision making in the rGT. In the DRT, HD transiently showed reduced impulsive choice. In both LD and HD, alcohol treatment increased optimal decision making in the rGT and increased impulsive choice in the DRT. PCA prior to and after IAA was comparable for LD and HD. When PCA was tested after IAA only, HD showed a more sign-tracking behavior. The principal component analyses indicated dimensional relationships between alcohol intake, impulsivity, and sign-tracking behavior in the PCA task after IAA. CONCLUSIONS HD showed a more efficient performance in the rGT and DRT. Moreover, alcohol consumption enhanced approach behavior to reward-predictive cues, but sign-tracking did not predict the level of alcohol consumption. Taken together, these findings suggest that high levels of voluntary alcohol intake are associated with enhanced cue- and reward-driven behavior.
Collapse
Affiliation(s)
- Marcia Spoelder
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands ,0000 0004 0444 9382grid.10417.33Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jacques P. Flores Dourojeanni
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands ,0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kathy C. G. de Git
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands ,0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemarie M. Baars
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands
| | - Heidi M. B. Lesscher
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands
| | - Louk J. M. J. Vanderschuren
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands
| |
Collapse
|
37
|
Reichelt AC. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits. Front Behav Neurosci 2016; 10:189. [PMID: 27790098 PMCID: PMC5061823 DOI: 10.3389/fnbeh.2016.00189] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex (PFC), a critical region for behavioral control and self-regulation, is enduring, not reaching functional maturity until the early 20 s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviors such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of “junk foods”. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioral control compared to the mature adult brain, appears to be a risk for aberrant eating behaviors that may underpin the development of obesity. This review explores the neurodevelopmental changes in the PFC and mesocortical dopamine signaling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet-induced cognitive deficits.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
38
|
Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior. Pharmacol Rev 2016; 68:1074-1109. [PMID: 27677720 PMCID: PMC5050442 DOI: 10.1124/pr.115.012138] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Margaret A Broadwater
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
39
|
Yates JR, Breitenstein KA, Gunkel BT, Hughes MN, Johnson AB, Rogers KK, Shape SM. Effects of NMDA receptor antagonists on probability discounting depend on the order of probability presentation. Pharmacol Biochem Behav 2016; 150-151:31-38. [PMID: 27642050 DOI: 10.1016/j.pbb.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
Risky decision making can be measured using a probability-discounting procedure, in which animals choose between a small, certain reinforcer and a large, uncertain reinforcer. Recent evidence has identified glutamate as a mediator of risky decision making, as blocking the N-methyl-d-aspartate (NMDA) receptor with MK-801 increases preference for a large, uncertain reinforcer. Because the order in which probabilities associated with the large reinforcer can modulate the effects of drugs on choice, the current study determined if NMDA receptor ligands alter probability discounting using ascending and descending schedules. Sixteen rats were trained in a probability-discounting procedure in which the odds against obtaining the large reinforcer increased (n=8) or decreased (n=8) across blocks of trials. Following behavioral training, rats received treatments of the NMDA receptor ligands MK-801 (uncompetitive antagonist; 0, 0.003, 0.01, or 0.03mg/kg), ketamine (uncompetitive antagonist; 0, 1.0, 5.0, or 10.0mg/kg), and ifenprodil (NR2B-selective non-competitive antagonist; 0, 1.0, 3.0, or 10.0mg/kg). Results showed discounting was steeper (indicating increased risk aversion) for rats on an ascending schedule relative to rats on the descending schedule. Furthermore, the effects of MK-801, ketamine, and ifenprodil on discounting were dependent on the schedule used. Specifically, the highest dose of each drug decreased risk taking in rats in the descending schedule, but only MK-801 (0.03mg/kg) increased risk taking in rats on an ascending schedule. These results show that probability presentation order modulates the effects of NMDA receptor ligands on risky decision making.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, USA.
| | | | - Benjamin T Gunkel
- Department of Psychological Science, Northern Kentucky University, USA
| | - Mallory N Hughes
- Department of Psychological Science, Northern Kentucky University, USA
| | - Anthony B Johnson
- Department of Psychological Science, Northern Kentucky University, USA
| | | | - Sara M Shape
- Department of Psychological Science, Northern Kentucky University, USA
| |
Collapse
|
40
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|
41
|
Boutros N, Der-Avakian A, Semenova S, Lee S, Markou A. Risky choice and brain CRF after adolescent ethanol vapor exposure and social stress in adulthood. Behav Brain Res 2016; 311:160-166. [PMID: 27217101 DOI: 10.1016/j.bbr.2016.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 12/27/2022]
Abstract
Adolescent ethanol exposure increases risky choice and alters corticotropin releasing factor (CRF) systems in adulthood. The impact of stress on risky choice after adolescent intermittent ethanol (AIE) exposure is not known. We investigated time-specific effects of AIE vapor exposure during early adolescence on risky choice after stress or no stress in adulthood. Male Wistar rats were exposed to air or AIE vapor on postnatal days 28-42 (adolescence) and were exposed to 10days of social defeat or no stress on postnatal days 172-181 (adulthood). Risky choice was assessed in the probability discounting task under baseline conditions and after days 1 and 10 of social defeat. CRF and CRF receptor 1 (CRFR1) mRNA levels were assessed in the prefrontal cortex (PFC) and the central nucleus of the amygdala (CeA) 24h post-stress to evaluate persistent effects of stress on the brain. AIE exposure had no effect on risky choice either at baseline or after social defeat. Additionally, neither acute nor chronic social defeat affected risky choice in air-exposed rats. In the PFC, chronic social defeat selectively decreased CRF mRNA levels in air-exposed rats and increased CRFR1 mRNA levels in all rats. AIE exposure increased CRF mRNA levels in the CeA with no effect of social stress. Our results indicate no effect of ethanol exposure via vapor during early adolescence on risky choice, while our previous findings indicated that AIE exposure via gavage affected risky choice. Both AIE exposure and social defeat altered CRF and CRFR1 mRNA levels in the brain.
Collapse
Affiliation(s)
| | | | | | - Soon Lee
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Athina Markou
- University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Gerace E, Landucci E, Totti A, Bani D, Guasti D, Baronti R, Moroni F, Mannaioni G, Pellegrini-Giampietro DE. Ethanol Toxicity During Brain Development: Alterations of Excitatory Synaptic Transmission in Immature Organotypic Hippocampal Slice Cultures. Alcohol Clin Exp Res 2016; 40:706-16. [DOI: 10.1111/acer.13006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Elisabetta Gerace
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Elisa Landucci
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Arianna Totti
- Department of Health Sciences; Section of Clinical Pharmacology and Oncology; University of Florence; Florence Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine; Section of Anatomy & Histology; Research Unit of Histology & Embryology; University of Florence; Florence Italy
| | - Daniele Guasti
- Department of Experimental & Clinical Medicine; Section of Anatomy & Histology; Research Unit of Histology & Embryology; University of Florence; Florence Italy
| | - Roberto Baronti
- Clinical Toxicology Laboratory; Local Health Service; Florence Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa); Section of Pharmacology and Toxicology; University of Florence; Florence Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa); Section of Pharmacology and Toxicology; University of Florence; Florence Italy
| | | |
Collapse
|
43
|
Schindler AG, Soden ME, Zweifel LS, Clark JJ. Reversal of Alcohol-Induced Dysregulation in Dopamine Network Dynamics May Rescue Maladaptive Decision-making. J Neurosci 2016; 36:3698-708. [PMID: 27030756 PMCID: PMC4812130 DOI: 10.1523/jneurosci.4394-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Alcohol is the most commonly abused substance among adolescents, promoting the development of substance use disorders and compromised decision-making in adulthood. We have previously demonstrated, with a preclinical model in rodents, that adolescent alcohol use results in adult risk-taking behavior that positively correlates with phasic dopamine transmission in response to risky options, but the underlying mechanisms remain unknown. Here, we show that adolescent alcohol use may produce maladaptive decision-making through a disruption in dopamine network dynamics via increased GABAergic transmission within the ventral tegmental area (VTA). Indeed, we find that increased phasic dopamine signaling after adolescent alcohol use is attributable to a midbrain circuit, including the input from the pedunculopontine tegmentum to the VTA. Moreover, we demonstrate that VTA dopamine neurons from adult rats exhibit enhanced IPSCs after adolescent alcohol exposure corresponding to decreased basal dopamine levels in adulthood that negatively correlate with risk-taking. Building on these findings, we develop a model where increased inhibitory tone on dopamine neurons leads to a persistent decrease in tonic dopamine levels and results in a potentiation of stimulus-evoked phasic dopamine release that may drive risky choice behavior. Based on this model, we take a pharmacological approach to the reversal of risk-taking behavior through normalization of this pattern in dopamine transmission. These results isolate the underlying circuitry involved in alcohol-induced maladaptive decision-making and identify a novel therapeutic target. SIGNIFICANCE STATEMENT One of the primary problems resulting from chronic alcohol use is persistent, maladaptive decision-making that is associated with ongoing addiction vulnerability and relapse. Indeed, studies with the Iowa Gambling Task, a standard measure of risk-based decision-making, have reliably shown that alcohol-dependent individuals make riskier, more maladaptive choices than nondependent individuals, even after periods of prolonged abstinence. Using a preclinical model, in the current work, we identify a selective disruption in dopamine network dynamics that may promote maladaptive decision-making after chronic adolescent alcohol use and demonstrate its pharmacological reversal in adulthood. Together, these results highlight a novel neural mechanism underlying heightened risk-taking behavior in alcohol-dependent individuals and provide a potential therapeutic target for further investigation.
Collapse
Affiliation(s)
| | - Marta E Soden
- Departments of Psychiatry and Behavioral Sciences and Pharmacology, University of Washington, Seattle, Washington 98195
| | - Larry S Zweifel
- Departments of Psychiatry and Behavioral Sciences and Pharmacology, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
44
|
Spoelder M, Tsutsui KT, Lesscher HMB, Vanderschuren LJMJ, Clark JJ. Adolescent Alcohol Exposure Amplifies the Incentive Value of Reward-Predictive Cues Through Potentiation of Phasic Dopamine Signaling. Neuropsychopharmacology 2015; 40:2873-85. [PMID: 25971592 PMCID: PMC4864623 DOI: 10.1038/npp.2015.139] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 11/09/2022]
Abstract
Adolescent alcohol use remains a major public health concern due in part to well-established findings implicating the age of onset in alcohol use in the development of alcohol use disorders and persistent decision-making deficits in adults. We have previously demonstrated that moderate adolescent alcohol consumption in rats promotes suboptimal decision making and an associated perturbation in mesolimbic dopamine transmission in adulthood. Dopamine-dependent incentive learning processes are an integral component of value-based decision making and a fundamental element to many theoretical accounts of addiction. Thus we tested the hypothesis that adolescent alcohol use selectively alters incentive learning processes through perturbation of mesolimbic dopamine systems. To assess incentive learning, behavioral and neurochemical measurements were made during the acquisition, maintenance, extinction, and reacquisition of a Pavlovian conditioned approach procedure in adult rats with a history of adolescent alcohol consumption. We show that moderate adolescent alcohol consumption potentiates stimulus-evoked phasic dopamine transmission, measured in vivo by fast-scan cyclic voltammetry, in adulthood and biases individuals toward a dopamine-dependent incentive learning strategy. Moreover, we demonstrate that animals exposed to alcohol in adolescence are more sensitive to an unexpected variation in reward outcomes. This pattern of phasic dopamine signaling and the associated bias in learning may provide a mechanism for the well-documented vulnerability of individuals with early-life alcohol use for alcohol use disorders in adulthood.
Collapse
Affiliation(s)
- Marcia Spoelder
- Department of Animals in Science and Society, Division of Behavioral Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kimberly T Tsutsui
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioral Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioral Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeremy J Clark
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Box 356560, 1959 NW Pacific Street, Seattle, WA 98195, USA, Tel: +1 206 992 0472, Fax: +1 206 543 9520, E-mail:
| |
Collapse
|
45
|
Shnitko TA, Kennerly LC, Spear LP, Robinson DL. Ethanol reduces evoked dopamine release and slows clearance in the rat medial prefrontal cortex. Alcohol Clin Exp Res 2015; 38:2969-77. [PMID: 25581652 DOI: 10.1111/acer.12587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/18/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ethanol (EtOH) intoxication affects cognitive performance, contributing to attentional deficits and poor decision making, which may occur via actions in the medial prefrontal cortex (mPFC). mPFC function is modulated by the catecholamines dopamine and norepinephrine. In this study, we examine the acute effects of EtOH on electrically evoked dopamine release and clearance in the mPFC of anesthetized rats naïve to alcohol or chronically exposed to alcohol during adolescence. METHODS Dopamine release and clearance was evoked by electrical stimulation of the ventral tegmental area (VTA) and measured in the mPFC of anesthetized rats with fast-scan cyclic voltammetry. In Experiments 1 and 2, effects of a high dose of EtOH (4 g/kg, intraperitoneally) on dopamine neurotransmission in the mPFC of EtOH-naïve rats and rats given EtOH exposure during adolescence were investigated. Effects of cumulative dosing of EtOH (0.5 to 4 g/kg) on the dopamine release and clearance were investigated in Experiment 3. Experiment 4 studied effects of EtOH locally applied to the VTA on the dopamine neurotransmission in the mPFC of EtOH-naïve rats. RESULTS A high dose of EtOH decreased evoked dopamine release within 10 minutes of administration in EtOH-naïve rats. When tested via cumulative dosing from 0.5 to 4 g/kg, both 2 and 4 g/kg EtOH inhibited evoked dopamine release in the mPFC of EtOH-naïve rats, while 4 g/kg EtOH also slowed dopamine clearance. A similar effect on electrically evoked dopamine release in the mPFC was observed after infusion of EtOH into the VTA. Interestingly, intermittent EtOH exposure during adolescence had no effect on observed changes in mPFC dopamine release and clearance induced by acute EtOH administration. CONCLUSIONS Taken together, these data describe EtOH-induced reductions in the dynamics of VTA-evoked mPFC dopamine release and clearance, with the VTA contributing to the attenuation of evoked mPFC dopamine release induced by EtOH.
Collapse
Affiliation(s)
- Tatiana A Shnitko
- Bowles Center for Alcohol Study , University of North Carolina, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
46
|
Cservenka A, Jones SA, Nagel BJ. Reduced cerebellar brain activity during reward processing in adolescent binge drinkers. Dev Cogn Neurosci 2015; 16:110-120. [PMID: 26190276 PMCID: PMC4691369 DOI: 10.1016/j.dcn.2015.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/28/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022] Open
Abstract
Adolescent binge drinkers have reduced cerebellar activity during reward outcome. Average drinks consumed/drinking day was negatively related to brain activity. Salience of rewards may be blunted because of alcohol-induced neurotoxicity.
Due to ongoing development, adolescence may be a period of heightened vulnerability to the neurotoxic effects of alcohol. Binge drinking may alter reward-driven behavior and neurocircuitry, thereby increasing risk for escalating alcohol use. Therefore, we compared reward processing in adolescents with and without a history of recent binge drinking. At their baseline study visit, all participants (age = 14.86 ± 0.88) were free of heavy alcohol use and completed a modified version of the Wheel of Fortune (WOF) functional magnetic resonance imaging task. Following this visit, 17 youth reported binge drinking on ≥3 occasions within a 90 day period and were matched to 17 youth who remained alcohol and substance-naïve. All participants repeated the WOF task during a second visit (age = 16.83 ± 1.22). No significant effects were found in a region of interest analysis of the ventral striatum, but whole-brain analyses showed significant group differences in reward response at the second study visit in the left cerebellum, controlling for baseline visit brain activity (p/α < 0.05), which was negatively correlated with mean number of drinks consumed/drinking day in the last 90 days. These findings suggest that binge drinking during adolescence may alter brain activity during reward processing in a dose-dependent manner.
Collapse
Affiliation(s)
- Anita Cservenka
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Scott A Jones
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
47
|
Bromberg U, Wiehler A, Peters J. Episodic Future Thinking Is Related to Impulsive Decision Making in Healthy Adolescents. Child Dev 2015; 86:1458-68. [PMID: 26110500 DOI: 10.1111/cdev.12390] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Delay discounting is a stable trait measure of impulsivity. Engaging in episodic future thinking (EFT) can reduce discounting, but whether individual differences in discounting are associated with differences in future thinking remains unclear. Here, this association was tested in healthy adolescents (n = 49, age range = 12-16 years, fluent German speakers, from a large German city). Data collection was between December 2011 and December 2012. Vividness of EFT (assessed via the Autobiographical Memory Interview) was negatively correlated with discounting (r = -.41, 95% CI [-.63, -.13], r(2) = .17). Regression analyses confirmed that this association was stable when controlling for additional variables, including hormonal measures of pubertal maturation and intelligence. EFT may attenuate impulsivity in young people at risk of engaging in problematic behavior.
Collapse
Affiliation(s)
| | | | - Jan Peters
- University Medical Center Hamburg-Eppendorf
| |
Collapse
|
48
|
Doherty JM, Gonzales RA. Operant self-administration of sweetened ethanol and time course of blood ethanol levels in adolescent and adult male Long-Evans rats. Alcohol Clin Exp Res 2015; 39:485-95. [PMID: 25702920 DOI: 10.1111/acer.12630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Little is known regarding mechanisms regulating ethanol (EtOH) self-administration during adolescence or if the mechanisms differ from adults. One of the best models of abuse liability is operant self-administration. Therefore, we characterized operant sweetened EtOH self-administration behavior in adolescent and adult rats. METHODS Adolescent (36 days old at first EtOH exposure) and adult male Long-Evans rats were first trained to self-administer 10% sucrose (10S) in an appetitive/consummatory operant model for 1 week, and then the drinking solution was switched to 10% sucrose plus 10% EtOH (10S10E) for 2 weeks. Next, rats were switched to a fixed ratio 2 schedule, and this was followed by 1 session using a progressive ratio schedule of reinforcement. Last, rats were tested for cue-induced reinstatement of lever-pressing behavior under extinction conditions after 13 days of abstinence. Blood EtOH concentration (BEC) of sweetened EtOH (self-administered or intragastric [IG] administration of 1 g/kg) was determined via gas chromatography. Control rats drank only 10S. RESULTS Consumption of sweetened EtOH was not different between adolescents and adults under any schedule tested, reaching 1 g/kg in 20 minutes in the appetitive/consummatory model. Appetitive behavior directed at sweetened EtOH was less focused in adolescents versus adults. No age differences were found in motivation for sweetened EtOH. Cue-induced reinstatement of EtOH-seeking behavior after abstinence also did not differ by age. In control groups, no age difference was found in appetitive behavior or the amount of sucrose consumed, although adults exhibited greater cue-induced reinstatement. BEC after self-administration or IG administration of sweetened EtOH was higher in adults than adolescents. CONCLUSIONS Consumption and motivation for sweetened EtOH are similar in adolescents and adults, although adolescents are more vulnerable to the effects of EtOH consumption on appetitive behavior. The IG results suggest larger volume of distribution and higher first-pass metabolism of sweetened EtOH in adolescents versus adults, which may limit the reinforcing effects of EtOH in some adolescents. Overall, we have begun to establish an operant sweetened EtOH self-administration model in adolescent rats.
Collapse
Affiliation(s)
- James M Doherty
- Waggoner Center for Alcohol and Addiction Research , University of Texas at Austin, Austin, Texas; Department of Pharmacology , College of Pharmacy, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
49
|
Laryea G, Arnett M, Muglia LJ. Ontogeny of hypothalamic glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis in mice. Stress 2015; 18:400-7. [PMID: 26068518 PMCID: PMC5704948 DOI: 10.3109/10253890.2015.1046832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN) are important regulators of negative feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Previous evaluation of endogenous PVN GR function in adult mice demonstrated that mice with loss of GR exon 3 in the PVN (Sim1Cre-GRe3Δ) have a hyperactive HPA axis, growth impairment and metabolic disruptions. Here, we hypothesized that lack of negative feedback inhibition of the HPA axis through PVN GR, as demonstrated through loss of PVN GR early in life, will have developmental-stage-specific consequences. Immunofluorescence revealed that Sim1Cre-GRe3Δ mice display PVN GR loss as early as post-natal day 2 compared to control mice. Sim1Cre-GRe3Δ mice compared to controls also displayed increased corticotropin-releasing hormone (CRH) mRNA in the PVN at post-natal day 10, as shown by in situ hybridization. Corticosterone radioimmunoassay revealed that the disruptions in PVN GR and CRH expression led to elevated basal corticosterone secretion in male Sim1Cre-GRe3Δ mice by early adolescence and increased stress-induced (restraint) corticosterone secretion in late adolescence into adulthood. In comparison, female Sim1Cre-GRe3Δ mice did not display corticosterone disruption until adulthood. Circadian rhythmicity of corticosterone secretion was normal for male and female mice at all age groups regardless of genotype with one exception. In late adolescence, female Sim1Cre-GRe3Δ mice had disrupted circadian corticosterone secretion due to significantly elevated circulating levels at nadir. We conclude that PVN GR function matures at an earlier developmental time point in male than in female mice and thus leads to later differential stress responsiveness between sexes.
Collapse
Affiliation(s)
- Gloria Laryea
- a Neuroscience Graduate Program, School of Medicine, Vanderbilt University , Nashville , TN , USA
- b Center for Preterm Birth Prevention, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA , and
| | - Melinda Arnett
- b Center for Preterm Birth Prevention, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA , and
- c Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Louis J Muglia
- b Center for Preterm Birth Prevention, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA , and
- c Department of Pediatrics , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| |
Collapse
|