1
|
Mundorf A, Merklein SA, Rice LC, Desmond JE, Peterburs J. Early Adversity Affects Cerebellar Structure and Function-A Systematic Review of Human and Animal Studies. Dev Psychobiol 2024; 66:e22556. [PMID: 39378310 DOI: 10.1002/dev.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Recent research has highlighted cerebellar involvement in cognition and several psychiatric conditions such as mood and anxiety disorders and schizophrenia. Attention-deficit/hyperactivity disorder and autism spectrum disorder have been linked to reduced cerebellar volume as well. Cerebellar alterations are frequently present after early adversity in humans and animals, but a systematic integration of results is lacking. To this end, a systematic literature search was conducted in PubMed, Web of Science, and EBSCO databases using the keywords "early adversity OR early life stress" AND "cerebellum OR cerebellar." A total of 45 publications met the inclusion criteria: 25 studies investigated human subjects and 20 reported results from animal models. Findings in healthy subjects show bilateral volume reduction and decreased functional connectivity within the cerebellum and between the cerebellum and frontal regions after adversity throughout life, especially when adversity was assessed with the Childhood Trauma Questionnaire. In clinical populations, adults demonstrate increased cerebellar volume and functional connectivity after adversity, whereas pediatric patients show reduced cerebellar volume. Animal findings reveal cerebellar alterations without necessarily co-occurring pathological behavior, highlighting alterations in stress hormone receptor levels, cell density, and neuroinflammation markers. Cerebellar alterations after early adversity are robust findings across human and animal studies and occur independent of clinical symptoms.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sarah A Merklein
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Rice LC, Langan MT, Cheng DT, Sheu YS, Peterburs J, Hua J, Qin Q, Rilee JJ, Faulkner ML, Mathena JR, Munro CA, Wand GS, McCaul ME, Desmond JE. Disrupted executive cerebro-cerebellar functional connectivity in alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:33-47. [PMID: 38206281 PMCID: PMC10784638 DOI: 10.1111/acer.15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) affects 283 million people worldwide and its prevalence is increasing. Despite the role of the cerebellum in executive control and its sensitivity to alcohol, few studies have assessed its involvement in AUD-relevant functional networks. The goal of this study is to compare resting-state functional connectivity (FC) patterns in abstinent adults with a history of AUD and controls (CTL). We hypothesized that group differences in cerebro-cerebellar FC would be present, particularly within the frontoparietal/executive control network (FPN). METHODS Twenty-eight participants completed a resting-state functional magnetic resonance imaging (rsfMRI) study. CTL participants had no history of AUD, comorbid psychological conditions, or recent heavy drinking and/or drug use. AUD participants had a history of AUD, with sobriety for at least 30 days prior to data collection. Multivariate pattern analysis, an agnostic, whole-brain approach, was used to identify regions with significant differences in FC between groups. Seed-based analyses were then conducted to determine the directionality and extent of these FC differences. Associations between FC strength and executive function were assessed using correlations with Wisconsin Card Sorting Test (WCST) performance. RESULTS There were significant group differences in FC in nodes of the FPN, ventral attention network, and default mode network. Post hoc analyses predominantly identified FC differences within the cerebro-cerebellar FPN, with AUD showing significantly less FC within the FPN. In AUD, FC strength between FPN clusters identified in the multivariate pattern analysis (MVPA) analysis (Left Crus II, Right Frontal Cortex) was positively associated with performance on the WCST. CONCLUSIONS Our results show less engagement of the FPN in individuals with AUD than in CTL. FC strength within this network was positively associated with performance on the WCST. These findings suggest that long-term heavy drinking alters cerebro-cerebellar FC, particularly within networks that are involved in executive function.
Collapse
Affiliation(s)
- Laura C. Rice
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Yi-Shin Sheu
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jutta Peterburs
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Germany
| | - Jun Hua
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Qin Qin
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | | | | - Gary S. Wand
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary E. McCaul
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John E. Desmond
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Guerin SP, Melbourne JK, Dang HQ, Shaji CA, Nixon K. Astrocyte Reactivity and Neurodegeneration in the Female Rat Brain Following Alcohol Dependence. Neuroscience 2023; 529:183-199. [PMID: 37598836 PMCID: PMC10810177 DOI: 10.1016/j.neuroscience.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Recent evidence suggests that alcohol use disorder (AUD) may manifest itself differently in women compared to men. Women experience AUDs on an accelerated timeline and may have certain regional vulnerabilities. In male rats, neuronal cell death and astrocyte reactivity are noted following induction of alcohol dependence in an animal model of an AUD. However, the regional and temporal patterns of neurodegeneration and astrocyte reactivity have yet to be fully examined in females using this model. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by different periods of abstinence. Histological markers for FluoroJade B, a label of degenerating neurons, and vimentin, a marker for reactive astrocytes, were utilized. The expression of these markers in cortical and limbic regions was quantified immediately after their last dose (e.g., T0), or 2, 7, and 14 days later. Significant neuronal cell death was noted in the entorhinal cortex and the hippocampus, similar to previous reports in males, but also in several cortical regions not previously observed. Vimentin immunoreactivity was noted in the same regions as previously reported, in addition to three novel regions. Vimentin immunoreactivity also occurred at earlier and later time points in some cortical and hippocampal regions. These data suggest that both neuronal cell death and astrocyte reactivity could be more widespread in females compared to males. Therefore, this study provides a framework for specific regions and time points which should be examined in future studies of alcohol-induced damage that include female rats.
Collapse
Affiliation(s)
- Steven P Guerin
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Jennifer K Melbourne
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Huy Q Dang
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Chinchusha Anasooya Shaji
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Kimberly Nixon
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States.
| |
Collapse
|
4
|
Maggioni E, Rossetti MG, Allen NB, Batalla A, Bellani M, Chye Y, Cousijn J, Goudriaan AE, Hester R, Hutchison K, Li CR, Martin‐Santos R, Momenan R, Sinha R, Schmaal L, Solowij N, Suo C, van Holst RJ, Veltman DJ, Yücel M, Thompson PM, Conrod P, Mackey S, Garavan H, Brambilla P, Lorenzetti V. Brain volumes in alcohol use disorder: Do females and males differ? A whole-brain magnetic resonance imaging mega-analysis. Hum Brain Mapp 2023; 44:4652-4666. [PMID: 37436103 PMCID: PMC10400785 DOI: 10.1002/hbm.26404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/03/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Emerging evidence suggests distinct neurobiological correlates of alcohol use disorder (AUD) between sexes, which however remain largely unexplored. This work from ENIGMA Addiction Working Group aimed to characterize the sex differences in gray matter (GM) and white matter (WM) correlates of AUD using a whole-brain, voxel-based, multi-tissue mega-analytic approach, thereby extending our recent surface-based region of interest findings on a nearly matching sample using a complementary methodological approach. T1-weighted magnetic resonance imaging (MRI) data from 653 people with AUD and 326 controls was analyzed using voxel-based morphometry. The effects of group, sex, group-by-sex, and substance use severity in AUD on brain volumes were assessed using General Linear Models. Individuals with AUD relative to controls had lower GM volume in striatal, thalamic, cerebellar, and widespread cortical clusters. Group-by-sex effects were found in cerebellar GM and WM volumes, which were more affected by AUD in females than males. Smaller group-by-sex effects were also found in frontotemporal WM tracts, which were more affected in AUD females, and in temporo-occipital and midcingulate GM volumes, which were more affected in AUD males. AUD females but not males showed a negative association between monthly drinks and precentral GM volume. Our results suggest that AUD is associated with both shared and distinct widespread effects on GM and WM volumes in females and males. This evidence advances our previous region of interest knowledge, supporting the usefulness of adopting an exploratory perspective and the need to include sex as a relevant moderator variable in AUD.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
| | - Maria G. Rossetti
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca'Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of PsychiatryUniversity of VeronaVeronaItaly
| | | | - Albert Batalla
- Department of PsychiatryUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtthe Netherlands
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of PsychiatryUniversity of VeronaVeronaItaly
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental HealthSchool of Psychological SciencesMelbourneAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Janna Cousijn
- Neuroscience of Addiction Lab, Department of Psychology, Education and Child StudiesErasmus UniversityRotterdamthe Netherlands
| | - Anna E. Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Robert Hester
- School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Kent Hutchison
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - Chiang‐Shan R. Li
- Department of Psychiatry and of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| | - Rocio Martin‐Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of NeuroscienceUniversity of BarcelonaBarcelonaSpain
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Office of the Clinical DirectorNational Institute on Alcohol Abuse and AlcoholismBethesdaMarylandUSA
| | - Rajita Sinha
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Lianne Schmaal
- OrygenParkvilleAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongAustralia
| | - Chao Suo
- Monash Biomedical ImagingMonash UniversityMelbourneAustralia
- Australian Characterisation Commons at Scale (ACCS) ProjectMonash eResearch CentreMelbourneAustralia
| | - Ruth J. van Holst
- Department of Psychiatry, Amsterdam Institute for Addiction ResearchAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Dick J. Veltman
- Department of PsychiatryVU University Medical CenterAmsterdamthe Netherlands
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental HealthSchool of Psychological SciencesMelbourneAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Patricia Conrod
- Department of PsychiatryUniversite de Montreal, CHU Ste Justine HospitalMontrealCanada
| | - Scott Mackey
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Hugh Garavan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Paolo Brambilla
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca'Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health SciencesFaculty of Health Sciences, Australian Catholic UniversityFitzroyVictoriaAustralia
| |
Collapse
|
5
|
Jo Nixon S, Garcia CC, Lewis B. WOMEN'S USE OF ALCOHOL: NEUROBIOBEHAVIORAL CONCOMITANTS AND CONSEQUENCES. Front Neuroendocrinol 2023:101079. [PMID: 37269931 DOI: 10.1016/j.yfrne.2023.101079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
In this narrative review, we draw from historical and contemporary literature to explore the impact of alcohol consumption on brain and behavior among women. We examine three domains: 1) the impact of alcohol use disorder (AUD) on neurobiobehavioral outcomes, 2) its impact on social cognition/emotion processing, and 3) alcohol's acute effects in older women. There is compelling evidence of alcohol-related compromise in neuropsychological function, neural activation, and brain structure. Investigations of social cognition and alcohol effects in older women represent emerging areas of study. Initial analyses suggest that women with AUD show significant deficits in emotion processing, a finding also observed in older women who have consumed a moderate dose of alcohol. Critically, despite the long-recognized need for programmatic interrogation of alcohol's effect in women, studies with sufficient numbers of women for meaningful analysis represent a small proportion of the literature, constraining interpretation and generalization.
Collapse
Affiliation(s)
- Sara Jo Nixon
- University of Florida, Department of Psychiatry, Gainesville, FL; University of Florida, Department of Psychology, Gainesville, FL; University of Florida, Department of Neuroscience, Gainesville; University of Florida, Center for Addiction Research & Education, Gainesville, FL.
| | - Christian C Garcia
- University of Florida, Department of Psychiatry, Gainesville, FL; University of Florida, Center for Addiction Research & Education, Gainesville, FL
| | - Ben Lewis
- University of Florida, Department of Psychiatry, Gainesville, FL; University of Florida, Department of Psychology, Gainesville, FL; University of Florida, Department of Neuroscience, Gainesville; University of Florida, Center for Addiction Research & Education, Gainesville, FL
| |
Collapse
|
6
|
Müller-Oehring EM, Schulte T, Pfefferbaum A, Sullivan EV. Disruption of cerebellar-cortical functional connectivity predicts balance instability in alcohol use disorder. Drug Alcohol Depend 2022; 235:109435. [PMID: 35395501 PMCID: PMC9106918 DOI: 10.1016/j.drugalcdep.2022.109435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND A neural substrate of alcohol-related instability of gait and balance is the cerebellum. Whether disruption of neural communication between cerebellar and cortical brain regions exerts an influence on ataxia in alcohol use disorder (AUD) was the focus of this study. METHODS Study groups comprised 32 abstinent AUD participants and 22 age- and sex-matched healthy controls (CTL). All participants underwent clinical screening, motor testing, and resting-state functional MR imaging analyzed for functional connectivity (FC) among 90 regions across the whole cerebrum and cerebellum. Ataxia testing quantified gait and balance with the Fregly-Graybiel Ataxia Battery conducted with and without vision. RESULTS The AUD group achieved lower scores than the CTL group on balance performance, which was disproportionately worse for eyes open than eyes closed in the AUD relative to the CTL group. Differences in ataxia were accompanied by differences in FC marked by cerebellar-frontal and cerebellar-parietal hyperconnectivity and cortico-cortical hypoconnectivity in the AUD relative to the control group. Lifetime alcohol consumption correlated significantly with AUD-related FC aberrations, which explained upwards of 69% of the AUD ataxia score variance. CONCLUSION Heavy, chronic alcohol consumption is associated with disorganized neural communication among cerebellar-cortical regions and contributes to ataxia in AUD. Ataxia, which is known to accelerate with age and be exacerbated with AUD, can threaten functional independence. Longitudinal studies are warranted to address whether extended sobriety quells ataxia and normalizes aberrant FC contributing to instability.
Collapse
Affiliation(s)
- Eva M Müller-Oehring
- Neuroscience Program, SRI International, Menlo Park, CA, United States; Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Tilman Schulte
- Neuroscience Program, SRI International, Menlo Park, CA, United States; Clinical Psychology, Palo Alto University, Palo Alto, CA, United States
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA, United States; Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Edith V Sullivan
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Maleki N, Sawyer KS, Levy S, Harris GJ, Oscar-Berman M. Intrinsic brain functional connectivity patterns in alcohol use disorder. Brain Commun 2022; 4:fcac290. [PMID: 36419966 PMCID: PMC9679426 DOI: 10.1093/braincomms/fcac290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/28/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol use disorder is associated with damaging effects to the brain. This study aimed to examine differences in static and dynamic intrinsic functional connectivity patterns in individuals with a history of alcohol use disorder in comparison to those with no history of alcohol abuse. A total of 55 participants consisting of 23 patients and 32 control individuals underwent neuropsychological assessments and resting-state functional magnetic resonance imaging on a 3 Tesla MRI scanner. Differences in functional connectivity between the two groups were determined using static and dynamic independent component analysis. Differences in static functional connectivity between the two groups were identified in the default mode network, attention network, frontoparietal network, frontal cortical network and cerebellar network. Furthermore, the analyses revealed specific differences in the dynamic temporal characteristics of functional connectivity between the two groups of participants, in a cluster involving key regions in reward, sensorimotor and frontal cortical functional networks, with some connections correlating with the length of sobriety and some others with the severity of drinking. The findings altogether suggest dysregulation in the intrinsic connectivity of cortico-basal ganglia-thalamo-cortical loops that may reflect persistent alcohol use disorder-related network abnormalities, compensatory recovery-related processes whereby additional neural resources are recruited to achieve normal levels of performance, or a predisposition toward developing alcohol use disorder.
Collapse
Affiliation(s)
- Nasim Maleki
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.,Psychology Research Service, VA Healthcare System, Jamaica Plain Campus, Boston, MA 02130, USA
| | - Kayle S Sawyer
- Psychology Research Service, VA Healthcare System, Jamaica Plain Campus, Boston, MA 02130, USA.,Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.,Sawyer Scientific, LLC, Boston, MA 02130, USA
| | - Sarah Levy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Marlene Oscar-Berman
- Psychology Research Service, VA Healthcare System, Jamaica Plain Campus, Boston, MA 02130, USA.,Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
8
|
Cornish JL, Prasad AA. Sex Differences in Substance Use Disorders: A Neurobiological Perspective. Front Glob Womens Health 2021; 2:778514. [PMID: 34957467 PMCID: PMC8692274 DOI: 10.3389/fgwh.2021.778514] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
Clinical studies provide fundamental knowledge of substance use behaviors (substance of abuse, patterns of use, relapse rates). The combination of neuroimaging approaches reveal correlation between substance use disorder (SUD) and changes in neural structure, function, and neurotransmission. Here, we review these advances, placing special emphasis on sex specific findings from structural neuroimaging studies of those dependent on alcohol, nicotine, cannabis, psychostimulants, or opioids. Recent clinical studies in SUD analyzing sex differences reveal neurobiological changes that are differentially impacted in common reward processing regions such as the striatum, hippocampus, amygdala, insula, and corpus collosum. We reflect on the contribution of sex hormones, period of drug use and abstinence, and the potential impact of these factors on the interpretation of the reported findings. With the overall recognition that SUD impacts the brains of females and males differentially, it is of fundamental importance that future research is designed with sex as a variable of study in this field. Improved understanding of neurobiological changes in males and females in SUD will advance knowledge underlying sex-specific susceptibility and the neurobiological impact in these disorders. Together these findings will inform future treatments that are tailor designed for improved efficacy in females and males with SUD.
Collapse
Affiliation(s)
- Jennifer L Cornish
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Asheeta A Prasad
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Lannoy S, Sullivan EV. Trajectories of brain development reveal times of risk and factors promoting resilience to alcohol use during adolescence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:85-116. [PMID: 34696880 PMCID: PMC10657639 DOI: 10.1016/bs.irn.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is recognized as harmful for the developing brain. Numerous studies have sought environmental and genetic risk factors that predict the development of AUD, but recently identified resilience factors have emerged as protective. This chapter reviews normal processes of brain development in adolescence and emerging adulthood, delineates disturbed growth neurotrajectories related to heavy drinking, and identifies potential endogenous, experiential, and time-linked brain markers of resilience. For example, concurrent high dorsolateral prefrontal activation serving inhibitory control and low nucleus accumbens activation serving reward functions engender positive adaptation and low alcohol use. Also discussed is the role that moderating factors have in promoting risk for or resilience to AUD. Longitudinal research on the effects of all levels of alcohol drinking on the developing brain remains crucial and should be pursued in the context of resilience, which is a promising direction for identifying protective biomarkers against developing AUDs.
Collapse
Affiliation(s)
- S Lannoy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Department of Psychiatry, Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, United States
| | - E V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States.
| |
Collapse
|
10
|
Brain responsivity to emotional faces differs in men and women with and without a history of alcohol use disorder. PLoS One 2021; 16:e0248831. [PMID: 34106934 PMCID: PMC8189468 DOI: 10.1371/journal.pone.0248831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/08/2021] [Indexed: 12/02/2022] Open
Abstract
Inclusion of women in research on Alcohol Use Disorder (AUD) has shown that gender differences contribute to unique profiles of cognitive, emotional, and neuropsychological dysfunction. We employed functional magnetic resonance imaging (fMRI) of abstinent individuals with a history of AUD (21 women [AUDw], 21 men [AUDm]) and demographically similar non-AUD control (NC) participants without AUD (21 women [NCw], 21 men [NCm]) to explore how gender and AUD interact to influence brain responses during emotional processing and memory. Participants completed a delayed match-to-sample emotional face memory fMRI task, and brain activation contrasts between a fixation stimulus and pictures of emotional face elicited a similar overall pattern of activation for all four groups. Significant Group by Gender interactions revealed two activation clusters. A cluster in an anterior portion of the middle and superior temporal gyrus, elicited lower activation to the fixation stimulus than to faces for the AUDw as compared to the NCw; that abnormality was more pronounced than the one observed for men. Another cluster in the medial portion of the superior frontal cortex elicited higher activation to the faces by AUDm than NCm, a difference that was more evident than the one observed for women. Together, these findings have added new evidence of AUD-related gender differences in neural responses to facial expressions of emotion.
Collapse
|
11
|
Rossetti MG, Patalay P, Mackey S, Allen NB, Batalla A, Bellani M, Chye Y, Cousijn J, Goudriaan AE, Hester R, Hutchison K, Li CSR, Martin-Santos R, Momenan R, Sinha R, Schmaal L, Sjoerds Z, Solowij N, Suo C, van Holst RJ, Veltman DJ, Yücel M, Thompson PM, Conrod P, Garavan H, Brambilla P, Lorenzetti V. Gender-related neuroanatomical differences in alcohol dependence: findings from the ENIGMA Addiction Working Group. NEUROIMAGE-CLINICAL 2021; 30:102636. [PMID: 33857771 PMCID: PMC8065340 DOI: 10.1016/j.nicl.2021.102636] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
We tested gender differences in brain volumes of alcohol dependent vs control groups. Group differences in brain volumes emerged as gross and widespread. Group-by-gender effects emerged in selected brain regions (cerebellum, amygdala) In dependent users, greater alcohol use predicted smaller amygdala and larger cerebellum GM volume. Our results highlight the need to account for gender differences in MRI studies of alcohol dependence.
Gender-related differences in the susceptibility, progression and clinical outcomes of alcohol dependence are well-known. However, the neurobiological substrates underlying such differences remain unclear. Therefore, this study aimed to investigate gender differences in the neuroanatomy (i.e. regional brain volumes) of alcohol dependence. We examined the volume of a priori regions of interest (i.e., orbitofrontal cortex, hippocampus, amygdala, nucleus accumbens, caudate, putamen, pallidum, thalamus, corpus callosum, cerebellum) and global brain measures (i.e., total grey matter (GM), total white matter (WM) and cerebrospinal fluid). Volumes were compared between 660 people with alcohol dependence (228 women) and 326 controls (99 women) recruited from the ENIGMA Addiction Working Group, accounting for intracranial volume, age and education years. Compared to controls, individuals with alcohol dependence on average had (3–9%) smaller volumes of the hippocampus (bilateral), putamen (left), pallidum (left), thalamus (right), corpus callosum, total GM and WM, and cerebellar GM (bilateral), the latter more prominently in women (right). Alcohol-dependent men showed smaller amygdala volume than control men, but this effect was unclear among women. In people with alcohol dependence, more monthly standard drinks predicted smaller amygdala and larger cerebellum GM volumes. The neuroanatomical differences associated with alcohol dependence emerged as gross and widespread, while those associated with a specific gender may be confined to selected brain regions. These findings warrant future neuroscience research to account for gender differences in alcohol dependence to further understand the neurobiological effects of alcohol dependence.
Collapse
Affiliation(s)
- Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Praveetha Patalay
- Centre for Longitudinal Studies and MRC Unit for Lifelong Health and Ageing, IOE and Population Health Sciences, UCL, United Kingdom
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, & Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - Janna Cousijn
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Robert Hester
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Kent Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Rocio Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Zsuzsika Sjoerds
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, & Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - Ruth J van Holst
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Dick J Veltman
- Department of Psychiatry, University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, & Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Patricia Conrod
- Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Montreal, Quebec, Canada
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, United States
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Sawyer KS, Adra N, Salz DM, Kemppainen MI, Ruiz SM, Harris GJ, Oscar-Berman M. Hippocampal subfield volumes in abstinent men and women with a history of alcohol use disorder. PLoS One 2020; 15:e0236641. [PMID: 32776986 PMCID: PMC7416961 DOI: 10.1371/journal.pone.0236641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/10/2020] [Indexed: 12/05/2022] Open
Abstract
Alcohol Use Disorder (AUD) has been associated with abnormalities in hippocampal volumes, but these relationships have not been fully explored with respect to sub-regional volumes, nor in association with individual characteristics such as age, gender differences, drinking history, and memory. The present study examined the impact of those variables in relation to hippocampal subfield volumes in abstinent men and women with a history of AUD. Using Magnetic Resonance Imaging at 3 Tesla, we obtained brain images from 67 participants with AUD (31 women) and 64 nonalcoholic control (NC) participants (31 women). The average duration of the most recent period of sobriety for AUD participants was 7.1 years. We used Freesurfer 6.0 to segment the hippocampus into 12 regions. These were imputed into statistical models to examine the relationships of brain volume with AUD group, age, gender, memory, and drinking history. Interactions with gender and age were of particular interest. Compared to the NC group, the AUD group had approximately 5% smaller subiculum, CA1, molecular layer, and hippocampal tail regions. Age was negatively associated with volumes for the AUD group in the subiculum and the hippocampal tail, but no significant interactions with gender were identified. The relationships for delayed and immediate memory with hippocampal tail volume differed for AUD and NC groups: Higher scores on tests of immediate and delayed memory were associated with smaller volumes in the AUD group, but larger volumes in the NC group. Length of sobriety was associated with decreasing CA1 volume in women (0.19% per year) and increasing volume size in men (0.38% per year). The course of abstinence on CA1 volume differed for men and women, and the differential relationships of subfield volumes to age and memory could indicate a distinction in the impact of AUD on functions of the hippocampal tail. These findings confirm and extend evidence that AUD, age, gender, memory, and abstinence differentially impact volumes of component parts of the hippocampus.
Collapse
Affiliation(s)
- Kayle S. Sawyer
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
- Sawyer Scientific, LLC, Boston, MA, United States of America
| | - Noor Adra
- VA Boston Healthcare System, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Daniel M. Salz
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Maaria I. Kemppainen
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Susan M. Ruiz
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Gordon J. Harris
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Marlene Oscar-Berman
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
13
|
Zhao Q, Pfefferbaum A, Podhajsky S, Pohl KM, Sullivan EV. Accelerated aging and motor control deficits are related to regional deformation of central cerebellar white matter in alcohol use disorder. Addict Biol 2020; 25:e12746. [PMID: 30932270 DOI: 10.1111/adb.12746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
The World Health Organization estimates a 12-month prevalence rate of 8+% for an alcohol use disorder (AUD) diagnosis in people age 15 years and older in the United States and Europe, presenting significant health risks that have the potential of accelerating age-related functional decline. According to neuropathological studies, white matter systems of the cerebellum are vulnerable to chronic alcohol dependence. To pursue the effect of AUD on white matter structure and functions in vivo, this study used T1-weighted, magnetic resonance imaging (MRI) to quantify the total corpus medullare of the cerebellum and a finely grained analysis of its surface in 135 men and women with AUD (mean duration of abstinence, 248 d) and 128 age- and sex-matched control participants; subsets of these participants completed motor testing. We identified an AUD-related volume deficit and accelerated aging in the total corpus medullare. Novel deformation-based surface morphometry revealed regional shrinkage of surfaces adjacent to lobules I-V, lobule IX, and vermian lobule X. In addition, accelerated aging was detected in the regional surface areas adjacent to lobules I-V, lobule VI, lobule VIIB, and lobules VIII, IX, and X. Sex differences were not identified for any measure. For both volume-based and surface-based analyses, poorer performance in gait and balance, manual dexterity, and grip strength were linked to greater regional white matter structural deficits. Our results suggest that local deformation of the corpus medullare has the potential of identifying structurally and functionally segregated networks affected in AUD.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine Stanford CA USA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine Stanford CA USA
- Center for Health SciencesSRI International Menlo Park CA USA
| | - Simon Podhajsky
- Center for Health SciencesSRI International Menlo Park CA USA
| | - Kilian M. Pohl
- Center for Health SciencesSRI International Menlo Park CA USA
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral SciencesStanford University School of Medicine Stanford CA USA
| |
Collapse
|
14
|
Verplaetse TL, Cosgrove KP, Tanabe J, McKee SA. Sex/gender differences in brain function and structure in alcohol use: A narrative review of neuroimaging findings over the last 10 years. J Neurosci Res 2020; 99:309-323. [PMID: 32333417 DOI: 10.1002/jnr.24625] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
Over the last 10 years, rates of alcohol use disorder (AUD) have increased in women by 84% relative to a 35% increase in men. Rates of alcohol use and high-risk drinking have also increased in women by 16% and 58% relative to a 7% and 16% increase in men, respectively, over the last decade. This robust increase in drinking among women highlights the critical need to identify the underlying neural mechanisms that may contribute to problematic alcohol consumption across sex/gender (SG), especially given that many neuroimaging studies are underpowered to detect main or interactive effects of SG on imaging outcomes. This narrative review aims to explore the recent neuroimaging literature on SG differences in brain function and structure as it pertains to alcohol across positron emission tomography, magnetic resonance imaging, and functional magnetic resonance imaging modalities in humans. Additional work using magnetic resonance spectroscopy, diffusion tensor imaging, and event-related potentials to examine SG differences in AUD will be covered. Overall, current research on the neuroimaging of AUD, alcohol consumption, or risk of AUD is limited, and findings are mixed regarding the effect of SG on neurochemical, structural, and functional mechanisms associated with AUD. We address SG disparities in the neuroimaging of AUD and propose a call to action to include women in brain imaging research. Future studies are crucial to our understanding of the neurobiological underpinnings of AUD across neural systems and the vulnerability for AUD among women and men.
Collapse
Affiliation(s)
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale PET Center, New Haven, CT, USA
| | - Jody Tanabe
- Department of Radiology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Sherry A McKee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Sullivan EV, Moore EM, Lane B, Pohl KM, Riley EP, Pfefferbaum A. Graded Cerebellar Lobular Volume Deficits in Adolescents and Young Adults with Fetal Alcohol Spectrum Disorders (FASD). Cereb Cortex 2020; 30:4729-4746. [PMID: 32133485 DOI: 10.1093/cercor/bhaa020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
The extensive prenatal developmental growth period of the cerebellum renders it vulnerable to unhealthy environmental agents, especially alcohol. Fetal alcohol spectrum disorders (FASD) is marked by neurodysmorphology including cerebral and cerebellar volume deficits, but the cerebellar lobular deficit profile has not been delineated. Legacy MRI data of 115 affected and 59 unaffected adolescents and young adults were analyzed for lobular gray matter volume and revealed graded deficits supporting a spectrum of severity. Graded deficits were salient in intracranial volume (ICV), where the fetal alcohol syndrome (FAS) group was smaller than the fetal alcohol effects (FAE) group, which was smaller than the controls. Adjusting for ICV, volume deficits were present in VIIB and VIIIA of the FAE group and were more widespread in FAS and included lobules I, II, IV, V, VI, Crus II, VIIB, and VIIIA. Graded deficits (FAS < FAE) were consistently present in lobules VI; neither group showed volume deficits in Crus I or IX. Neuroradiological readings blind to diagnosis identified 20 anomalies, 8 involving the cerebellum, 5 of which were in the FAS group. We speculate that the regional cerebellar FASD-related volume deficits may contribute to diagnostically characteristic functional impairment involving emotional control, visuomotor coordination, and postural stability.
Collapse
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eileen M Moore
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Barton Lane
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - Edward P Riley
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
16
|
Sullivan EV, Brumback T, Tapert SF, Brown SA, Baker FC, Colrain IM, Prouty D, De Bellis MD, Clark DB, Nagel BJ, Pohl KM, Pfefferbaum A. Disturbed Cerebellar Growth Trajectories in Adolescents Who Initiate Alcohol Drinking. Biol Psychiatry 2020; 87:632-644. [PMID: 31653477 PMCID: PMC7061065 DOI: 10.1016/j.biopsych.2019.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The cerebellum is a target of alcoholism-related brain damage in adults, yet no study has prospectively tracked deviations from normal cerebellar growth trajectories in adolescents before and after initiating drinking. METHODS Magnetic resonance imaging tracked developmental volume trajectories of 10 cerebellar lobule and vermis tissue constituents in 548 no/low drinking youths age 12 to 21 years at induction into this 5-site, NCANDA (National Consortium on Alcohol and NeuroDevelopment in Adolescence) study. Over the 3- to 4-year longitudinal examination yielding 2043 magnetic resonance imaging scans, 328 youths remained no/low drinkers, whereas 220 initiated substantial drinking after initial neuroimaging. RESULTS Normal growth trajectories derived from no/low drinkers indicated that gray matter volumes of lobules V and VI, crus II, lobule VIIB, and lobule X declined faster with age in male youths than in female youths, whereas white matter volumes in crus I and crus II and lobules VIIIA and VIIIB expanded faster in female youths than in male youths; cerebrospinal fluid volume expanded faster in most cerebellar regions of male youths than female youths. Drinkers exhibited accelerated gray matter decline in anterior lobules and vermis, accelerated vermian white matter expansion, and accelerated cerebrospinal fluid volumes expansion of anterior lobules relative to youths who remained no/low drinkers. Analyses including both alcohol and marijuana did not support an independent role for marijuana in alcohol effects on cerebellar gray matter trajectories. CONCLUSIONS Alcohol use-related cerebellar growth trajectory differences from normal involved anterior lobules and vermis of youths who initiated substantial drinking. These regions are commonly affected in alcohol-dependent adults, raising the possibility that cerebellar structures affected by youthful drinking may be vulnerable to age-alcohol interactions in later adulthood.
Collapse
Affiliation(s)
- Edith V. Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA,Correspondence Edith V. Sullivan, Ph.D., Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA 94305-5723, phone: (650) 859-2880, FAX: (650) 859-2743,
| | - Ty Brumback
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY
| | - Susan F. Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Sandra A. Brown
- Department of Psychiatry, University of California, San Diego, La Jolla, CA,Department of Psychology, University of California, San Diego, La Jolla, CA
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - Ian M. Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - Michael D. De Bellis
- Healthy Childhood Brain Development Research Program, Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC
| | - Duncan B. Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Bonnie J. Nagel
- Department of Psychiatry and Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR
| | - Kilian M. Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA,Center for Health Sciences, SRI International, Menlo Park, CA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA,Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
17
|
Convergence of three parcellation approaches demonstrating cerebellar lobule volume deficits in Alcohol Use Disorder. NEUROIMAGE-CLINICAL 2019; 24:101974. [PMID: 31419768 PMCID: PMC6704050 DOI: 10.1016/j.nicl.2019.101974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
Recent advances in robust and reliable methods of MRI-derived cerebellar lobule parcellation volumetry present the opportunity to assess effects of Alcohol Use Disorder (AUD) on selective cerebellar lobules and relations with indices of nutrition and motor functions. In pursuit of this opportunity, we analyzed high-resolution MRI data acquired in 24 individuals with AUD and 20 age- and sex-matched controls with a 32-channel head coil using three different atlases: the online automated analysis pipeline volBrain Ceres, SUIT, and the Johns Hopkins atlas. Participants had also completed gait and balance examination and hematological analysis of nutritional and liver status, enabling testing of functional meaningfulness of each cerebellar parcellation scheme. Compared with controls, each quantification approach yielded similar patterns of group differences in regional volumes: All three approaches identified AUD-related deficits in total tissue and total gray matter, but only Ceres identified a total white matter volume deficit. Convergent volume differences occurred in lobules I-V, Crus I, VIIIB, and IX. Coefficients of variation (CVs) were <20% for 46 of 56 regions measured and in general were graded: Ceres<SUIT<Hopkins. The most robust correlations were identified between poorer stability in balancing on one leg and smaller lobule VI and Crus I volumes from the Ceres atlas. Lower values of two essential vitamins-thiamine (vitamin B1) and serum folate (vitamin B9)-along with lower red blood cell count, which are dependent on adequate levels of B vitamins, correlated with smaller gray matter volumes of lobule VI and Crus I. Higher γ-glutamyl transferase (GGT) levels, possibly reflecting compromised liver function, correlated with smaller volumes of lobules VI and X. These initial results based on high resolution data produced with clinically practical imaging procedures hold promise for expanding our knowledge about the relevance of focal cerebellar morphology in AUD and other neuropsychiatric conditions.
Collapse
|
18
|
Fama R, Le Berre AP, Sassoon SA, Zahr NM, Pohl KM, Pfefferbaum A, Sullivan EV. Relations between cognitive and motor deficits and regional brain volumes in individuals with alcoholism. Brain Struct Funct 2019; 224:2087-2101. [PMID: 31161472 DOI: 10.1007/s00429-019-01894-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/24/2019] [Indexed: 01/24/2023]
Abstract
Despite the common co-occurrence of cognitive impairment and brain structural deficits in alcoholism, demonstration of relations between regional gray matter volumes and cognitive and motor processes have been relatively elusive. In pursuit of identifying brain structural substrates of impairment in alcoholism, we assessed executive functions (EF), episodic memory (MEM), and static postural balance (BAL) and measured regional brain gray matter volumes of cortical, subcortical, and cerebellar structures commonly affected in individuals with alcohol dependence (ALC) compared with healthy controls (CTRL). ALC scored lower than CTRL on all composite scores (EF, MEM, and BAL) and had smaller frontal, cingulate, insular, parietal, and hippocampal volumes. Within the ALC group, poorer EF scores correlated with smaller frontal and temporal volumes; MEM scores correlated with frontal volume; and BAL scores correlated with frontal, caudate, and pontine volumes. Exploratory analyses investigating relations between subregional frontal volumes and composite scores in ALC yielded different patterns of associations, suggesting that different neural substrates underlie these functional deficits. Of note, orbitofrontal volume was a significant predictor of memory scores, accounting for almost 15% of the variance; however, this relation was evident only in ALC with a history of a non-alcohol substance diagnosis and not in ALC without a non-alcohol substance diagnosis. The brain-behavior relations observed provide evidence that the cognitive and motor deficits in alcoholism are likely a result of different neural systems and support the hypothesis that a number of identifiable neural systems rather than a common or diffuse neural pathway underlies cognitive and motor deficits observed in chronic alcoholism.
Collapse
Affiliation(s)
- Rosemary Fama
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA, 94305-5723, USA. .,Center for Health Sciences, SRI International, Menlo Park, CA, USA.
| | - Anne-Pascale Le Berre
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA, 94305-5723, USA
| | | | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA, 94305-5723, USA.,Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Kilian M Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA, 94305-5723, USA.,Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA, 94305-5723, USA.,Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA, 94305-5723, USA
| |
Collapse
|
19
|
Sawyer KS, Maleki N, Urban T, Marinkovic K, Karson S, Ruiz SM, Harris GJ, Oscar-Berman M. Alcoholism gender differences in brain responsivity to emotional stimuli. eLife 2019; 8:e41723. [PMID: 31038125 PMCID: PMC6491039 DOI: 10.7554/elife.41723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/29/2019] [Indexed: 11/20/2022] Open
Abstract
Men and women may use alcohol to regulate emotions differently, with corresponding differences in neural responses. We explored how the viewing of different types of emotionally salient stimuli impacted brain activity observed through functional magnetic resonance imaging (fMRI) from 42 long-term abstinent alcoholic (25 women) and 46 nonalcoholic (24 women) participants. Analyses revealed blunted brain responsivity in alcoholic compared to nonalcoholic groups, as well as gender differences in those activation patterns. Brain activation in alcoholic men (ALCM) was significantly lower than in nonalcoholic men (NCM) in regions including rostral middle and superior frontal cortex, precentral gyrus, and inferior parietal cortex, whereas activation was higher in alcoholic women (ALCW) than in nonalcoholic women (NCW) in superior frontal and supramarginal cortical regions. The reduced brain reactivity of ALCM, and increases for ALCW, highlighted divergent brain regions and gender effects, suggesting possible differences in the underlying basis for development of alcohol use disorders.
Collapse
Affiliation(s)
- Kayle S Sawyer
- Psychology Research ServiceVA Healthcare SystemBostonUnited States
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUnited States
- Department of RadiologyMassachusetts General HospitalBostonUnited States
- Sawyer Scientific, LLCBostonUnited States
| | - Nasim Maleki
- Psychology Research ServiceVA Healthcare SystemBostonUnited States
- Department of PsychiatryMassachusetts General HospitalBostonUnited States
| | - Trinity Urban
- Department of RadiologyMassachusetts General HospitalBostonUnited States
| | - Ksenija Marinkovic
- Department of PsychologySan Diego State UniversitySan DiegoUnited States
| | - Steven Karson
- Department of Computer ScienceDartmouth CollegeHanoverUnited States
| | - Susan M Ruiz
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUnited States
| | - Gordon J Harris
- Department of RadiologyMassachusetts General HospitalBostonUnited States
- 3D Imaging ServiceMassachusetts General HospitalBostonUnited States
| | - Marlene Oscar-Berman
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUnited States
- Department of PsychiatryBoston University School of MedicineBostonUnited States
- Department of NeurologyBoston University School of MedicineBostonUnited States
| |
Collapse
|
20
|
Rivas-Grajales AM, Sawyer KS, Karmacharya S, Papadimitriou G, Camprodon JA, Harris GJ, Kubicki M, Oscar-Berman M, Makris N. Sexually dimorphic structural abnormalities in major connections of the medial forebrain bundle in alcoholism. Neuroimage Clin 2018; 19:98-105. [PMID: 30035007 PMCID: PMC6051309 DOI: 10.1016/j.nicl.2018.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
Background The mesocorticolimbic system is particularly susceptible to the effects of chronic alcoholism. Disruption of this system has been linked to drug seeking and the development of Reward Deficiency Syndrome, a neurobiological framework for describing the development and relapsing patterns of addictions. In this study, we evaluated the association of alcoholism and sex with major connections of the medial forebrain bundle (MFB), a prominent mesocorticolimbic fiber pathway connecting the ventral tegmental area with the basal forebrain. Given sex differences in clinical consequences of alcohol consumption, we hypothesized that alcoholic men and women would differ in structural abnormalities of the MFB. Methods Diffusion magnetic resonance imaging (dMRI) data were acquired from 30 abstinent long-term alcoholic individuals (ALC; 9 men) and 25 non-alcoholic controls (NC; 8 men). Major connections of the MFB were extracted using multi-tensor tractography. We compared groups on MFB volume, fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD), with hemisphere and sex as independent variables. We also evaluated associations between abnormal structural measures and drinking measures. Results Analyses revealed significant group-by-sex interactions for FA and RD: while ALC men had lower FA and higher RD compared to NC men, ALC women had higher FA and lower RD compared to NC women. We also detected a significant negative association between FA and number of daily drinks in ALC women. Conclusion Alcoholism is associated with sexually dimorphic structural abnormalities in the MFB. The results expand upon other findings of differences in brain reward circuitry of alcoholic men and women.
Collapse
Affiliation(s)
- Ana María Rivas-Grajales
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Kayle S Sawyer
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Sawyer Scientific, LLC, Boston, MA, USA
| | - Sarina Karmacharya
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Papadimitriou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gordon J Harris
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA; Radiology Computer Aided Diagnostics Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA
| | - Marlene Oscar-Berman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Mosher Ruiz S, Oscar-Berman M, Kemppainen MI, Valmas MM, Sawyer KS. Associations Between Personality and Drinking Motives Among Abstinent Adult Alcoholic Men and Women. Alcohol Alcohol 2018; 52:496-505. [PMID: 28379312 DOI: 10.1093/alcalc/agx016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Aims Men and women differ in personality characteristics and may be motivated to use alcohol for different reasons. The goals of the present study were to characterize personality and drinking motives by gender and alcoholism status in adults, and to determine how alcoholism history and gender are related to the associations between personality traits and drinking motivation. Methods Personality characteristics were assessed with the Eysenck Personality Questionnaire, which includes Extraversion, Neuroticism, Psychoticism and Lie (Social Conforming) scales. To evaluate drinking motivation, we asked abstinent long-term alcoholic men and women, and demographically similar nonalcoholic participants to complete the Drinking Motives Questionnaire, which includes Conformity, Coping, Social and Enhancement scales. Results Patterns of personality scale scores and drinking motives differed by alcoholism status, with alcoholics showing higher psychopathology and stronger motives for drinking compared with controls. Divergent gender-specific relationships between personality and drinking motives also were identified, which differed for alcoholics and controls. Conclusion Alcoholic and control men and women differed with respect to the associations between personality traits and motives for drinking. A better understanding of how different personality traits affect drinking motivations for alcoholic men and women can inform individualized relapse prevention strategies. Short Summary Men and women differed in their personality traits and their motivations for drinking, and these relationships differed for abstinent alcoholic and control groups. Additionally, alcoholics scored higher on Neuroticism and Psychoticism personality traits, and had lower Enhancement and Social Conformity drinking motives than nonalcoholic controls.
Collapse
Affiliation(s)
- Susan Mosher Ruiz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.,VA Boston Healthcare System, Boston, MA 02130, USA
| | - Marlene Oscar-Berman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.,VA Boston Healthcare System, Boston, MA 02130, USA.,Departments of Psychiatry and Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maaria I Kemppainen
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.,VA Boston Healthcare System, Boston, MA 02130, USA
| | - Mary M Valmas
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.,VA Boston Healthcare System, Boston, MA 02130, USA
| | - Kayle S Sawyer
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.,VA Boston Healthcare System, Boston, MA 02130, USA
| |
Collapse
|
22
|
Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD. Alcoholism Detection by Data Augmentation and Convolutional Neural Network with Stochastic Pooling. J Med Syst 2017; 42:2. [DOI: 10.1007/s10916-017-0845-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022]
|