1
|
Mohamed NA, Mohamed YA, Ali TA, Gabow AA, Hilowle FM. Prevalence and Risk Factors Associated with Depressive Symptoms Among Healthcare Professionals at a Tertiary Care Hospital in Mogadishu, Somalia: A Cross-Sectional Study. Risk Manag Healthc Policy 2024; 17:2573-2585. [PMID: 39493377 PMCID: PMC11529346 DOI: 10.2147/rmhp.s488303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Background Depression, a prevalent mental health issue, can significantly impact healthcare workers (HCWs), leading to decreased productivity, increased turnover, and high medical errors. However, there is a dearth of information regarding depression among healthcare professionals in Somalia. Therefore, this study aimed to assess the magnitude and risk factors associated with depressive symptoms among healthcare professionals in Mogadishu, Somalia. Methods A hospital-based cross-sectional study was conducted among HCWs at Erdogan Hospital, in the capital city of Somalia. Data was collected using questionnaires on socio demographic, work-related characteristics and Patient Health Questionnaire-9 (PHQ-9). Bivariate and multivariate logistic regression analyses were conducted to identify variables associated with depressive symptoms. A p-values of 0.05 as a cutoff for a significant association. Results The prevalence of depressive symptoms among healthcare professionals was 48.9% (95% CI: 45.4-56.9%). In multivariable analysis, being female (AOR = 2.05; 95% CI: 1.17-3.60), being a nurse (AOR = 3.11; 95% CI: 1.14-8.48), unmarried (AOR = 1.83; 95% CI: 1.04-3.21), having insufficient sleep (AOR = 2.61; 95% CI: 1.45-4.70), a family history of mental illness (AOR = 3.31; 95% CI: 1.49-7.36), lack of physical activity (AOR = 2.59; 95% CI: 1.19-5.62), and having low social support (AOR = 3.06; 95% CI: 1.17-7.98) were all associated with increased odds of experiencing depressive symptoms. Conclusion The study showed that nearly half of healthcare professionals experienced depressive symptoms. The study underscores the importance of efficient screening methods for identifying psychological symptoms in healthcare professionals, which is essential for enhancing their mental health and patient care. Therefore, we recommend that healthcare institutions and policymakers develop and implement screening measures to identify and improve the mental health well-being of HCWs, as well as provide high-quality patient care.
Collapse
Affiliation(s)
- Nur Adam Mohamed
- Mogadishu Somali Turkiye Recep Tayyip Erdogan Training and Research Hospital, Department of Psychiatry and Behavioral Sciences, Mogadishu, Somalia
| | - Yusuf Abdirisak Mohamed
- Mogadishu Somali Turkiye Recep Tayyip Erdogan Training and Research Hospital, Department of Psychiatry and Behavioral Sciences, Mogadishu, Somalia
- Faculty of Medicine and Surgery, Somali National University, Mogadishu, Somalia
| | - Tigad Abdisad Ali
- Mogadishu Somali Turkiye Recep Tayyip Erdogan Training and Research Hospital, Department of Infection Prevention Control, Mogadishu, Somalia
| | - Adan Ali Gabow
- Mogadishu Somali Turkiye Recep Tayyip Erdogan Training and Research Hospital, Department of Psychiatry and Behavioral Sciences, Mogadishu, Somalia
| | - Fartun Mohamed Hilowle
- Mogadishu Somali Turkiye Recep Tayyip Erdogan Training and Research Hospital, Department of Education, Mogadishu, Somalia
| |
Collapse
|
2
|
Xu YH, Wu F, Yu S, Guo YN, Zhao RR, Zhang RL. Therapeutic sleep deprivation for major depressive disorder: A randomized controlled trial. J Affect Disord 2024; 361:10-16. [PMID: 38844163 DOI: 10.1016/j.jad.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/01/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is treated primarily using antidepressant drugs, but clinical effects may be delayed for weeks to months. This study investigated the efficacy of brief therapeutic sleep deprivation (TSD) for inducing rapid improvements in MDD symptoms. METHODS From November 2020 to February 2023, 54 inpatients with MDD were randomly allocated to TSD and Control groups. The TSD group (23 cases) remained awake for 36 h, while the Control group (31 cases) maintained regular sleep patterns. All participants continued regular drug therapy. Mood was assessed using the 24-item Hamilton Depression Scale (HAMD-24) at baseline and post-intervention in both groups. In the TSD group, the Visual Analogue Scale (VAS) was utilized to evaluate subjective mood during and after the intervention. Cognitive function was assessed at baseline and post-intervention using the Montreal Cognitive Assessment (MoCA). Objective sleep parameters were recorded in the TSD group by polysomnography. The follow-up period spanned one week. RESULTS HAMD-24 scores did not differ between groups at baseline or post-intervention. However, the clinical response rate was 34.8 % higher in the TSD group on day 3 post-intervention compared to the Control group (3.2 %), but not sustained by day 7. Moreover, responders demonstrated a faster improvement in the VAS score during TSD than non-responders (p = 0.047). There were no significant differences in MoCA scores or objective sleep parameters between the groups. LIMITATIONS Small sample size and notable attrition rate. CONCLUSIONS Therapeutic sleep deprivation can rapidly improve MDD symptoms without influencing sleep parameters or cognitive functions. Assessment of longer-term effects and identification of factors predictive of TSD response are warranted.
Collapse
Affiliation(s)
- Ya-Hui Xu
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China.
| | - Fang Wu
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| | - Shuai Yu
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| | - Ya-Nan Guo
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| | - Rong-Rong Zhao
- Psychiatry Department, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Rui-Ling Zhang
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| |
Collapse
|
3
|
Siteneski A, Gómez Mieles VS, Romero Riaño PA, Montes Escobar K, Lapo-Talledo GJ, Dueñas-Rodriguez AV, Palma Cedeño MA, Villacis Lascano YC, Echeverria Zurita LO. High levels of anxiety and depression in women farmers from Ecuador: A cross-section study in Coastal and Highlands regions. Int J Soc Psychiatry 2024; 70:1138-1154. [PMID: 38915219 DOI: 10.1177/00207640241260017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Previous studies have shown that women farmers are particularly vulnerable to mental health disorders such as depression and anxiety. AIMS This study aimed to investigate the prevalence of anxiety and depression in women farmers from Ecuador Coastal and Highlands regions. METHOD General Anxiety Disorder‑7 (GAD‑7) and Patient Health Questionnaire‑9 (PHQ‑9) were applied. In addition, self-reported number of children, days off, hours of work, pesticide use, sleep habits and years of work in agriculture, were also collected. This cross-sectional study occurred during 2023 with 443 women, for Coastal (197) and Highlands (246), respectively. Multivariable binary logistic regression models were performed to obtained adjusted odds ratios (aOR) and their 95% confidence intervals (95% CI). RESULTS 34.5% of Coastal women had depression, while 27.2% of Highlands women had depression. 20.3% of coastal women farmers had anxiety, while in the Highlands 24.8% had anxiety. Coastal mestizo and montubio women exhibited lower probability of depression, but this was not significant in the Highlands. Coastal women farmers that did not have children showed lower odds of depression (aOR 0.05, 95% CI [0.01, 0.34]). A lower likelihood of depression was observed in coastal women that worked more than 8 hours (aOR 0.22, 95% CI [0.07, 0.72]). Women from the Highlands that had shortened sleep duration exhibited lower odds of depression and anxiety. CONCLUSIONS A higher proportion of depressed women farmers was observed in the Coast region and slightly higher numbers of anxiety cases in the Highlands. The number of children may cause workload and is correlated with depression in Coastal women.
Collapse
Affiliation(s)
- Aline Siteneski
- School of Medicine, Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
- Research Institute, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | | | - Paola Andrea Romero Riaño
- Faculty of Health Sciences and Human Well-being, Universidad Indoamerica, Ambato, Tungurahua, Ecuador
| | - Karime Montes Escobar
- Department of Mathematics and Statistics, Faculty of Basic Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - German Josuet Lapo-Talledo
- School of Medicine, Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | | | | | | | | |
Collapse
|
4
|
Mauracher L, Serebriakova J, Niederstätter H, Parson W, Schurr T, Deisenhammer EA. Subclinical hypomanic experiences in young adults after sleep deprivation are independent of depressive disorders, chronotype or 5-HTTLPR polymorphism. World J Biol Psychiatry 2024; 25:384-392. [PMID: 39126213 DOI: 10.1080/15622975.2024.2382697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION The acute antidepressant effect of sleep deprivation (SD) in patients with depressive disorders has been studied for more than 60 years. However, hypomanic mood swings after partial or total SD have also been described in people without diagnosed mental disorders. Studying this phenomenon in the general population may yield insights about the mechanisms of therapeutic SD, mania and bipolar disorders. METHODS A cross-sectional sample of young adults was recruited and classified into those who described having regularly occurring subclinical hypomanic experiences (ROHE) after SD and those who did not. History of psychiatric and physical illness, with screening for depression and mania, as well as alcohol or drug consumption, family history of depressive disorders or suicide, 5-HTTLPR polymorphism, and MEQ-SA chronotype were collected. RESULTS A total of 251 participants were included; 39.0% indicated regularly having subclinical hypomanic experiences after SD. These experiences were not associated with depressive or mania screening, history of psychiatric illness, family history, 5-HTTLPR polymorphism, or MEQ-SA chronotype. CONCLUSIONS ROHE after non-therapeutic SD seem to be a relatively common phenomenon in young adults, independent of depressive mood state. Our results suggest that therapeutic SD may depend on a physiological phenomenon of subclinical affective disturbance after SD that affects a part of the general population, independent of psychiatric diagnosis. Further studies could elucidate associated factors and contribute to our understanding of (hypo-)manic mood states.
Collapse
Affiliation(s)
- Laurin Mauracher
- University Hospital for Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| | - Jana Serebriakova
- University Hospital for Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Niederstätter
- Institute of Forensic Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Forensic Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Timo Schurr
- University Hospital for Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| | - Eberhard A Deisenhammer
- University Hospital for Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
- University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Georgoudas M, Moraitou D, Poptsi E, Tsardoulias E, Kesanli D, Papaliagkas V, Tsolaki M. The Mixed Role of Sleep and Time of Day in Working Memory Performance of Older Adults with Mild Cognitive Impairment. Healthcare (Basel) 2024; 12:1622. [PMID: 39201180 PMCID: PMC11353340 DOI: 10.3390/healthcare12161622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The importance of night sleep for maintaining good physical and cognitive health is well documented as well as its negative changes during aging. Since Mild Cognitive Impairment (MCI) patients bear additional disturbances in their sleep, this study aimed at examining whether there are potential mixed effects of sleep and afternoon time of day (ToD) on the storage, processing, and updating components of working memory (WM) capacity in older adults with MCI. In particular, the study compared patients' performance in the three working memory components, in two-time conditions: "early in the morning and after night sleep", and "in the afternoon and after many hours since night sleep". The Working Memory Capacity & Updating Task from the R4Alz battery was administered twice to 50 older adults diagnosed with MCI. The repeated measures analysis showed statistically significant higher performance in the morning condition for the working memory updating component (p < 0.001). Based on the findings, it seems that the afternoon ToD condition negatively affects tasks with high cognitive demands such as the WM updating task in MCI patients. These findings could determine the optimal timing for cognitive rehabilitation programs for MCI patients and the necessary sleep duration when they are engaged in cognitively demanding daily activities.
Collapse
Affiliation(s)
- Michael Georgoudas
- IPPS “Neuroscience and Neurodegeneration”, Faculty of Medicine, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
| | - Despina Moraitou
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (D.M.); (E.P.)
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece;
- Day Center “Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD)”, 54643 Thessaloniki, Greece
| | - Eleni Poptsi
- Laboratory of Psychology, Department of Cognition, Brain and Behavior, School of Psychology, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece; (D.M.); (E.P.)
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece;
- Day Center “Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD)”, 54643 Thessaloniki, Greece
| | - Emmanouil Tsardoulias
- School of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| | - Despina Kesanli
- School of Psychology, Faculty of Philosophy, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Magda Tsolaki
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece;
- Day Center “Greek Association of Alzheimer’s Disease and Related Disorders (GAADRD)”, 54643 Thessaloniki, Greece
| |
Collapse
|
6
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Rothenberg M, Nussbaumer-Streit B, Pjrek E, Winkler D. Lifestyle modification as intervention for seasonal affective disorder: A systematic review. J Psychiatr Res 2024; 174:209-219. [PMID: 38653029 DOI: 10.1016/j.jpsychires.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Bright light therapy (BLT) and pharmacological therapies currently represent the first line treatments for patients with seasonal affective disorder (SAD). Lifestyle modifications offer a diverse field of additional intervention options. Since it is unclear, if lifestyle modifications are effective in SAD patients, this systematic review aims to synthesize the current evidence on their effectiveness and safety. We systematically searched for randomized controlled trials (RCTs) assessing lifestyle modifications (nutrition, exercise, staying outdoors, sleep, social aspects, mindfulness methods) in SAD patients. We defined the primary outcome as the post-therapeutic extent of depressive symptoms, measured by validated psychiatric symptom scales. Due to the insufficient number of studies and the high heterogeneity of the interventions we were not able to calculate a meta-analysis. We identified 6 studies from the following areas of lifestyle modification: diet, exercise, staying outdoors, sleep and music therapy. All studies showed improvements of depression scores in the intervention as well as in the control groups. The risk of bias was rated as high for all studies and the certainty of evidence was rated as very low. The results point towards the possible effectiveness of the interventions examined, but due to the small number of studies found, too small sample sizes and methodological limitations, we cannot draw a valid conclusion about the effectiveness of lifestyle-modifying measures in SAD patients. Larger, high-quality RCTs are needed to make evidence-based recommendations and thus to expand the range of therapeutic options for SAD.
Collapse
Affiliation(s)
- Max Rothenberg
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria; Division of Psychiatry and Psychotherapeutic Medicine, University Hospital Tulln, Alter Ziegelweg 10, 3430, Tulln, Austria
| | - Barbara Nussbaumer-Streit
- Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Austria
| | - Edda Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
8
|
Nunes A, Singh S. A computational model to characterize the time-course of response to rapid antidepressant therapies. PLoS One 2024; 19:e0297708. [PMID: 38306352 PMCID: PMC10836665 DOI: 10.1371/journal.pone.0297708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Our objective is to propose a method capable of disentangling the magnitude, the speed, and the duration or decay rate of the time course of response to rapid antidepressant therapies. To this end, we introduce a computational model of the time course of response to a single treatment with a rapid antidepressant. Numerical simulation is used to evaluate whether model parameters can be accurately estimated from observed data. Finally, we compare our computational modelling-based approach with linear mixed effects modelling in terms of their ability to detect changes in the magnitude and time-course of response to rapid antidepressant therapies in simulated randomized trials. Simulation experiments show that the parameters of our computational model can be accurately recovered using nonlinear least squares. Parameter estimation accuracy is stable over noise levels reaching as high as 25% of the true antidepressant effect magnitude. Comparison of our approach to mixed effects modelling using simulated randomized controlled trial data demonstrates an inability of linear mixed models to disentangle effect magnitude and time course, while our computational model accurately separates these response components. Our modelling approach may accurately identify the (A) magnitude, (B) speed, and (C) durability or decay rate of response to rapid antidepressant therapies. Future studies should fit this model to data from real clinical trials, and use resulting parameter estimates to uncover predictors and causes of different elements of the temporal course of antidepressant response.
Collapse
Affiliation(s)
- Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Selena Singh
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Ramfjord LS, Kahn N, Langsrud K, Halvorsen JØØ, Morken G, Saksvik S, Engvik LSS, Lydersen S, Kallestad H. Chronotherapy for patients with a depressive episode treated in a public outpatient mental healthcare clinic in Norway: protocol for a randomised controlled trial. BMJ Open 2024; 14:e076039. [PMID: 38171633 PMCID: PMC10773329 DOI: 10.1136/bmjopen-2023-076039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Depression is highly prevalent in outpatients receiving treatment for mental disorders. Treatment as usual (TAU) usually consists of either psychotherapy and/or antidepressant medication and often takes several weeks before clinical effect. Chronotherapy, consisting of sleep deprivation, sleep-wake phase advancement and stabilisation, and light therapy, is a possible addition to TAU that may decrease the time to treatment response. This randomised controlled trial will examine the benefits of adding chronotherapy to TAU compared with TAU alone. METHODS AND ANALYSIS The trial will include 76 participants with a depressive episode who initiate outpatient treatment at a secondary mental healthcare outpatient clinic at St. Olavs University Hospital. Participants will be randomly allocated 1:1 to either chronotherapy in addition to TAU or TAU alone. Assessments will be performed at baseline, day 3, day 4, day 7, day 14 and weeks 4, 8, 24 and 52, in addition to longer-term follow ups. The main outcome is difference in levels of depressive symptoms after week 1 using the Inventory of Depressive Symptomatology Self-Report. Secondary outcomes include levels of depressive symptoms at other time points, as well as anxiety, health-related quality of life and sleep assessed through subjective and objective measures. ETHICS AND DISSEMINATION The study protocol has been approved by the Regional Committee for Medical Research Ethics Central Norway (ref: 480812) and preregistered at ClinicalTrials.gov (ref: NCT05691647). Results will be published via peer-reviewed publications, presentations at research conferences and presentations for clinicians and other relevant groups. The main outcomes will be provided separately from exploratory analysis. TRIAL REGISTRATION NUMBER NCT05691647.
Collapse
Affiliation(s)
- Lina Stålesen Ramfjord
- Department of Mental Health Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Trøndelag, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Nikolaj Kahn
- Department of Mental Health Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Trøndelag, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Knut Langsrud
- Department of Mental Health Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Trøndelag, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Joar Øveraas Øveraas Halvorsen
- Department of Mental Health Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Trøndelag, Norway
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Gunnar Morken
- Department of Mental Health Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Trøndelag, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Simen Saksvik
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Liv Sigrun Sættem Engvik
- Department of Mental Health Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Trøndelag, Norway
| | - Stian Lydersen
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| | - Håvard Kallestad
- Department of Mental Health Care, St Olavs Hospital Trondheim University Hospital, Trondheim, Trøndelag, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Trøndelag, Norway
| |
Collapse
|
10
|
Shapiro B, Fang Y, Sen S, Forger D. Unraveling the interplay of circadian rhythm and sleep deprivation on mood: A Real-World Study on first-year physicians. PLOS DIGITAL HEALTH 2024; 3:e0000439. [PMID: 38295082 PMCID: PMC10829990 DOI: 10.1371/journal.pdig.0000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
The interplay between circadian rhythms, time awake, and mood remains poorly understood in the real-world. Individuals in high-stress occupations with irregular schedules or nighttime shifts are particularly vulnerable to depression and other mood disorders. Advances in wearable technology have provided the opportunity to study these interactions outside of a controlled laboratory environment. Here, we examine the effects of circadian rhythms and time awake on mood in first-year physicians using wearables. Continuous heart rate, step count, sleep data, and daily mood scores were collected from 2,602 medical interns across 168,311 days of Fitbit data. Circadian time and time awake were extracted from minute-by-minute wearable heart rate and motion measurements. Linear mixed modeling determined the relationship between mood, circadian rhythm, and time awake. In this cohort, mood was modulated by circadian timekeeping (p<0.001). Furthermore, we show that increasing time awake both deteriorates mood (p<0.001) and amplifies mood's circadian rhythm nonlinearly. These findings demonstrate the contributions of both circadian rhythms and sleep deprivation to underlying mood and show how these factors can be studied in real-world settings using Fitbits. They underscore the promising opportunity to harness wearables in deploying chronotherapies for psychiatric illness.
Collapse
Affiliation(s)
- Benjamin Shapiro
- Department of Psychiatry, Dartmouth Health, Hanover, New Hampshire, United States of America
- Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Yu Fang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
11
|
Sochal M, Ditmer M, Białasiewicz P, Turkiewicz S, Karuga FF, Gabryelska A. Evaluation of cognitive and psychomotor faculties in relation to mood-related symptoms under the conditions of sleep deprivation. Front Psychiatry 2023; 14:1332831. [PMID: 38188046 PMCID: PMC10770828 DOI: 10.3389/fpsyt.2023.1332831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Deprivation of sleep (DS) has been associated with changes in mood and cognitive function, rapidly but transiently improving the severity of depression symptoms. However, it remains unclear whether there are differences in performance between DS responders and non-responders. The relationship between DS, mood, cognitive, and psychomotor function is also poorly understood. Methods Participants (n = 77) underwent a baseline assessment of sleep under the control of polysomnography (PSG). Later they were subjected to DS with actigraphy monitoring. Evaluation of mood as well as completing a battery of tests assessing cognitive functions and eye-hand coordination was conducted four times, pre/post PSG and DS. Participants were further divided into respondents (RE, n = 48) and non-respondents (NR, n = 29) depending on alleviation of depression symptoms severity following DS. Results All participants exhibited increased response speed to visual triggers after DS compared to baseline (p = 0.024). Psychomotor vigilance test (PVT) results remained intact in the RE, whereas it was increased in the NR (p = 0.008). Exposure time in the eye-hand coordination test improved in both groups, but total error duration was reduced only in RE individuals (p < 0.001, p = 0.009 for RE and NR, respectively). All subjects were more proficient at trail-making test (p ≤ 0.001 for Part 1 and 2 in all, NR, RE). Stroop test also improved regardless of mood changes after DS (p = 0.007, p = 0.008 for Part 1 and 2, respectively); cognitive interference remained at a similar level within groups (p = 0.059, p = 0.057 for NR and RE, respectively). A positive correlation was observed between the difference in PSG morning/DS morning depression severity and vigilance (R = 0.37, p = 0.001, R = 0.33, p = 0.005, for error duration eye-hand coordination test and PVT total average score, respectively). Conclusion RE tend to maintain or improve cognitive function after DS, oppositely to NR. Vigilance in particular might be tightly associated with changes in depression symptoms after DS. Future studies should examine the biological basis behind the response to sleep loss.
Collapse
Affiliation(s)
- Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Zhao Y, Huang B, Yu Y, Luan J, Huang S, Liu Y, Yang H, Chen Y, Yang R, Dong J, Shi H. Exercise to prevent the negative effects of sleep deprivation: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105433. [PMID: 37898446 DOI: 10.1016/j.neubiorev.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Ample sleep is an important basis for maintaining health, however with the pace of life accelerating in modern society, more people are using sacrificial sleep to cope with these social changes. Sleep deprivation can have negative effects on cognitive performance and psychosomatic health. It is well known that exercise, as a beneficial intervention strategy for human health, has been increasingly used in the clinic. But it's not clear if it can prevent the negative effects of sleep deprivation. In this meta-analysis, we reviewed 23 articles from PubMed and Web of Science to investigate whether moderate physical exercise can prevent the negative effects of sleep deprivation in rodents. Our findings suggest that exercise can prevent sleep deprivation-induced cognitive impairment and anxiety-like behaviors through multiple pathways. We also discuss possible molecular mechanisms involved in this protective effect, highlighting the potential of exercise as a preventive or therapeutic strategy for sleep deprivation-induced negative effects.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yang Yu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiage Luan
- Nursing School, Hebei Medical University, Shijiazhuang 050017, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Ye Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Huiping Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jing Dong
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan 430000, Hubei, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
13
|
Shi S, Zhang M, Xie W, Ju P, Chen N, Wang F, Lyu D, Wang M, Hong W. Sleep deprivation alleviates depression-like behaviors in mice via inhibiting immune and inflammatory pathways and improving neuroplasticity. J Affect Disord 2023; 340:100-112. [PMID: 37543111 DOI: 10.1016/j.jad.2023.07.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Sleep deprivation (SD) has been suggested to have a rapid antidepressant effect. There is substantial evidence that neuroinflammation and neuroplasticity play critical roles in the pathophysiology and treatment of depression. Here, we investigated the mechanisms of SD to alleviate depression-like behaviors of mice, and the role of neuroinflammation and neuroplasticity in it. METHODS Adult male C57BL/6 J mice were subjected to chronic restraint stress (CRS) for 6 weeks, and 6 h of SD were administrated. Behavioral tests were performed to measure depression-like behaviors. RNA-sequencing and bioinformatic analysis were performed in the anterior cingulate cortex (ACC). The differentially expressed genes were confirmed by quantitative real-time polymerase chain reaction (RT-qPCR). Neuroinflammation and neuroplasticity were measured by western blotting and immunofluorescence staining. RESULTS Behavioral tests demonstrated that SD swiftly attenuated the depression-like behaviors induced by CRS. RNA-sequencing identified the upregulated immune and inflammatory pathways after CRS exposure were downregulated by SD. Furthermore, SD reversed the levels of immune and inflammation-related mRNA, pro-inflammatory factors and microglia activation in ACC. Additionally, the impaired neuroplasticity elicited by CRS in the prefrontal cortex (PFC) and ACC were improved by SD. LIMITATIONS More in-depth studies are required to determine the role of different SD protocols in depressive symptoms and their underlying mechanisms. CONCLUSIONS Our study revealed the rapid antidepressant effect of SD on CRS mice through the reduction of the neuroinflammatory response in ACC and the improvement of neuroplasticity in PFC and ACC, providing a theoretical basis for the clinical application of SD as a rapid antidepressant treatment.
Collapse
Affiliation(s)
- Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Weijie Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Ningning Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China; Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
14
|
de Leeuw M, Verhoeve SI, van der Wee NJA, van Hemert AM, Vreugdenhil E, Coomans CP. The role of the circadian system in the etiology of depression. Neurosci Biobehav Rev 2023; 153:105383. [PMID: 37678570 DOI: 10.1016/j.neubiorev.2023.105383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Circadian rhythms have evolved in almost all organisms enabling them to anticipate alternating changes in the environment. As a consequence, the circadian clock controls a broad range of bodily functions including appetite, sleep, activity and cortisol levels. The circadian clock synchronizes itself to the external world mainly by environmental light cues and can be disturbed by a variety of factors, including shift-work, jet-lag, stress, ageing and artificial light at night. Interestingly, mood has also been shown to follow a diurnal rhythm. Moreover, circadian disruption has been associated with various mood disorders and patients suffering from depression have irregular biological rhythms in sleep, appetite, activity and cortisol levels suggesting that circadian rhythmicity is crucially involved in the etiology and pathophysiology of depression. The aim of the present review is to give an overview and discuss recent findings in both humans and rodents linking a disturbed circadian rhythm to depression. Understanding the relation between a disturbed circadian rhythm and the etiology of depression may lead to novel therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Max de Leeuw
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands; Mental Health Care Rivierduinen, Bipolar Disorder Outpatient Clinic, PO Box 405, Leiden 2300 AK, the Netherlands.
| | - Sanne I Verhoeve
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Albert M van Hemert
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Erno Vreugdenhil
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Claudia P Coomans
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| |
Collapse
|
15
|
Alitalo O, González-Hernández G, Rosenholm M, Kohtala P, Matsui N, Müller HK, Theilmann W, Klein A, Kärkkäinen O, Rozov S, Rantamäki T, Kohtala S. Linking Hypothermia and Altered Metabolism with TrkB Activation. ACS Chem Neurosci 2023; 14:3212-3225. [PMID: 37551888 PMCID: PMC10485900 DOI: 10.1021/acschemneuro.3c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Many mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity. Both activation of TrkB signaling and hypothermia were recapitulated by administration of inhibitors of glucose and lipid metabolism, supporting a close relationship between metabolic inhibition and neurotrophic signaling. Drug-induced TrkB phosphorylation was independent of electroencephalography slow-wave activity and remained unaltered in knock-in mice with the brain-derived neurotrophic factor (BDNF) Val66Met allele, which have impaired activity-dependent BDNF release, alluding to an activation mechanism independent from BDNF and neuronal activity. Instead, we demonstrated that the active maintenance of body temperature prevents activation of TrkB and other targets associated with antidepressants, including p70S6 kinase downstream of the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3β (GSK3β). Increased TrkB, GSK3β, and p70S6K phosphorylation was also observed during recovery sleep following sleep deprivation, when a physiological temperature drop is known to occur. Our results suggest that the changes in bioenergetics and thermoregulation are causally connected to TrkB activation and may act as physiological regulators of signaling processes involved in neuronal plasticity.
Collapse
Affiliation(s)
- Okko Alitalo
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Gemma González-Hernández
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Marko Rosenholm
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Center
for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Piia Kohtala
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Department
of Psychiatry, Weill Cornell Medicine, New York, New York 10021, United States
| | - Nobuaki Matsui
- Faculty
of Pharmacy, Gifu University of Medical
Science, 4-3-3 Nijigaoka,
Kani, Gifu 509-0293, Japan
| | - Heidi Kaastrup Müller
- Translational
Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Wiebke Theilmann
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Anders Klein
- Novo
Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK-2200, Denmark
- Department
of Drug Design & Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Olli Kärkkäinen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland
- Afekta
Technologies Ltd., Kuopio 70210, Finland
| | - Stanislav Rozov
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Tomi Rantamäki
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
| | - Samuel Kohtala
- Laboratory
of Neurotherapeutics, Drug Research Program, Division of Pharmacology
and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- SleepWell
Research Program, Faculty of Medicine, University
of Helsinki, Helsinki 00014, Finland
- Department
of Psychiatry, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
16
|
Chakrabarti S, Jolly AJ, Singh P, Yadhav N. Role of adjunctive nonpharmacological strategies for treatment of rapid-cycling bipolar disorder. World J Psychiatry 2023; 13:495-510. [PMID: 37701540 PMCID: PMC10494771 DOI: 10.5498/wjp.v13.i8.495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Rapid-cycling bipolar disorder (RCBD) is a phase of bipolar disorder defined by the presence of ≥ 4 mood episodes in a year. It is a common phenomenon characterized by greater severity, a predominance of depression, higher levels of disability, and poorer overall outcomes. It is resistant to treatment by conventional pharmacotherapy. The existing literature underlines the scarcity of evi-dence and the gaps in knowledge about the optimal treatment strategies for RCBD. However, most reviews have considered only pharmacological treatment options for RCBD. Given the treatment-refractory nature of RCBD, nonpharmacological interventions could augment medications but have not been adequately examined. This review carried out an updated and comprehensive search for evidence regarding the role of nonpharmacological therapies as adjuncts to medications in RCBD. We identified 83 reviews and meta-analyses concerning the treatment of RCBD. Additionally, we found 42 reports on adjunctive nonpharmacological treatments in RCBD. Most of the evidence favoured concomitant electroconvulsive therapy as an acute and maintenance treatment. There was pre-liminary evidence to suggest that chronotherapeutic treatments can provide better outcomes when combined with medications. The research on adjunctive psychotherapy was particularly scarce but suggested that psychoeducation, cognitive behavioural therapy, family interventions, and supportive psychotherapy may be helpful. The overall quality of evidence was poor and suffered from several methodological shortcomings. There is a need for more methodologically sound research in this area, although clinicians can use the existing evidence to select and individualize nonpharmacological treatment options for better management of RCBD. Patient summaries are included to highlight some of the issues concerning the implementation of adjunctive nonpharmacological treatments.
Collapse
Affiliation(s)
- Subho Chakrabarti
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh UT, India
| | - Amal J Jolly
- Department of Psychiatry, Black Country Healthcare NHS Foundation Trust, Dudley DY2 8PS, West Midlands, United Kingdom
| | - Pranshu Singh
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur 342005, Rajasthan, India
| | - Nidhi Yadhav
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh UT, India
| |
Collapse
|
17
|
Kroll T, Grözinger M, Matusch A, Elmenhorst D, Novakovic A, Schneider F, Bauer A. Effects of electroconvulsive therapy on cerebral A 1 adenosine receptor availability: a PET study in patients suffering from treatment-resistant major depressive disorder. Front Psychiatry 2023; 14:1228438. [PMID: 37520217 PMCID: PMC10380952 DOI: 10.3389/fpsyt.2023.1228438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Sleep deprivation and electroconvulsive therapy (ECT) effectively ameliorate symptoms in major depressive disorder (MDD). In rodents, both are associated with an enhancement of cerebral adenosine levels, which in turn likely influence adenosinergic receptor expression. The aim of the current study was to investigate cerebral A1 adenosine receptor (A1AR) availability in patients with MDD as a potential mediating factor of antidepressant effects of ECT using [18F]CPFPX and positron emission tomography (PET). Methods Regional A1AR availability was determined before and after a series of ECT applications (mean number ± SD 10.4 ± 1.2) in 14 subjects (4 males, mean age 49.5 ± 11.8 years). Clinical outcome, measured by neuropsychological testing, and ECT parameters were correlated with changes in A1AR availability. Results ECT had a strong antidepressive effect (p < 0.01) while on average cerebral A1AR availability remained unaltered between pre-and post-ECT conditions (F = 0.65, p = 0.42, mean difference ± SD 3.93% ± 22.7%). There was no correlation between changes in clinical outcome parameters and regional A1AR availability, although individual patients showed striking bidirectional alterations of up to 30-40% in A1AR availability after ECT. Solely, for the mean seizure quality index of the applied ECTs a significant association with changes in A1AR availability was found (rs = -0.6, p = 0.02). Discussion In the present study, therapeutically effective ECT treatment did not result in coherent changes of A1AR availability after a series of ECT treatments. These findings do not exclude a potential role for cerebral A1ARs in ECT, but shift attention to rather short-termed and adaptive mechanisms during ECT-related convulsive effects.
Collapse
Affiliation(s)
- Tina Kroll
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Ana Novakovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Frank Schneider
- University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
18
|
Chu C, Holst SC, Elmenhorst EM, Foerges AL, Li C, Lange D, Hennecke E, Baur DM, Beer S, Hoffstaedter F, Knudsen GM, Aeschbach D, Bauer A, Landolt HP, Elmenhorst D. Total Sleep Deprivation Increases Brain Age Prediction Reversibly in Multisite Samples of Young Healthy Adults. J Neurosci 2023; 43:2168-2177. [PMID: 36804738 PMCID: PMC10039745 DOI: 10.1523/jneurosci.0790-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
Sleep loss pervasively affects the human brain at multiple levels. Age-related changes in several sleep characteristics indicate that reduced sleep quality is a frequent characteristic of aging. Conversely, sleep disruption may accelerate the aging process, yet it is not known what will happen to the age status of the brain if we can manipulate sleep conditions. To tackle this question, we used an approach of brain age to investigate whether sleep loss would cause age-related changes in the brain. We included MRI data of 134 healthy volunteers (mean chronological age of 25.3 between the age of 19 and 39 years, 42 females/92 males) from five datasets with different sleep conditions. Across three datasets with the condition of total sleep deprivation (>24 h of prolonged wakefulness), we consistently observed that total sleep deprivation increased brain age by 1-2 years regarding the group mean difference with the baseline. Interestingly, after one night of recovery sleep, brain age was not different from baseline. We also demonstrated the associations between the change in brain age after total sleep deprivation and the sleep variables measured during the recovery night. By contrast, brain age was not significantly changed by either acute (3 h time-in-bed for one night) or chronic partial sleep restriction (5 h time-in-bed for five continuous nights). Together, the convergent findings indicate that acute total sleep loss changes brain morphology in an aging-like direction in young participants and that these changes are reversible by recovery sleep.SIGNIFICANCE STATEMENT Sleep is fundamental for humans to maintain normal physical and psychological functions. Experimental sleep deprivation is a variable-controlling approach to engaging the brain among different sleep conditions for investigating the responses of the brain to sleep loss. Here, we quantified the response of the brain to sleep deprivation by using the change of brain age predictable with brain morphologic features. In three independent datasets, we consistently found increased brain age after total sleep deprivation, which was associated with the change in sleep variables. Moreover, no significant change in brain age was found after partial sleep deprivation in another two datasets. Our study provides new evidence to explain the brainwide effect of sleep loss in an aging-like direction.
Collapse
Affiliation(s)
- Congying Chu
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Sebastian C Holst
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna L Foerges
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, 52074 Aachen, Germany
| | - Changhong Li
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Denise Lange
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Eva Hennecke
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Diego M Baur
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Simone Beer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02115
- Institute of Experimental Epileptology and Cognition Research, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Neurological Department, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Division of Medical Psychology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, 53127 Germany
| |
Collapse
|
19
|
He C, Xiao L, Xu J, Cui Y, Huang Y, Li Y, Tang Y, Xu S, Wang H, Cai Y, Guo X, Su T. Effect of sleep deprivation plus existing therapies on depression: A systematic review and meta-analysis of randomized controlled trials. Int J Psychophysiol 2023; 184:1-11. [PMID: 36481460 DOI: 10.1016/j.ijpsycho.2022.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/06/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Depression is the most common mental disorder in the world. Sleep deprivation (SD) is a well-known antidepressant. Several recombination protocols (including medications, bright light treatment [BLT], cognitive-behavioral therapy, sleep phrase advance/sleep phrase delay [SPA/SPD], and repetitive transcranial magnetic stimulation [rTMS]) have been developed to improve and maintain the effect of SD. However, relapse after recovery sleep has been reported, and different recombination protocols result in different outcomes. METHODS The Embase, Cochrane, PubMed, CBM, Web of Science, and CINAHL databases were searched for clinical trials assessing depression and SD. Three independent reviewers classified forty-three abstracts. The Hamilton Depression Rating Scale was used to assess the outcomes. RESULTS Compared with existing therapy, patients receiving SD displayed a significant improvement in clinician-rated depressive symptoms (MD -1.48 [95 % CI -2.60, -0.37], p < 0.05). A significant decrease was found in the subgroups of SD plus SPA/SPD (odds ratio 3.90 [95 % CI 1.66, 9.17], p < 0.05), total sleep deprivation[TSD] plus BLT (MD -3.28 [95 % CI -5.06, -1.50], p < 0.05), and partial sleep deprivation[PSD] plus rTMS (MD -7.94 [95 % CI -11.44, -4.45], p < 0.05). No significant differences were observed in the other subgroups. CONCLUSIONS Adding SD to existing therapies showed a positive outcome in improving depression treatment, which provides evidence for the use of SD in treating depression. Further studies are needed to determine the precise effects of SD plus other interventions.
Collapse
Affiliation(s)
- Chen He
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Lei Xiao
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Jingzhou Xu
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yi Cui
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yujia Huang
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yinan Li
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yunxiang Tang
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Shuyu Xu
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Hao Wang
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yili Cai
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Xin Guo
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Tong Su
- Department of Psychology, Naval Medical University, Shanghai, China.
| |
Collapse
|
20
|
Adaptive Solutions to the Problem of Vulnerability During Sleep. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1007/s40806-022-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSleep is a behavioral state whose quantity and quality represent a trade-off between the costs and benefits this state provides versus the costs and benefits of wakefulness. Like many species, we humans are particularly vulnerable during sleep because of our reduced ability to monitor the external environment for nighttime predators and other environmental dangers. A number of variations in sleep characteristics may have evolved over the course of human history to reduce this vulnerability, at both the individual and group level. The goals of this interdisciplinary review paper are (1) to explore a number of biological/instinctual features of sleep that may have adaptive utility in terms of enhancing the detection of external threats, and (2) to consider relatively recent cultural developments that improve vigilance and reduce vulnerability during sleep and the nighttime. This paper will also discuss possible benefits of the proposed adaptations beyond vigilance, as well as the potential costs associated with each of these proposed adaptations. Finally, testable hypotheses will be presented to evaluate the validity of these proposed adaptations.
Collapse
|
21
|
Zhao Y, Zhang H, Zhang Y, Fang Z, Xu C. Rapid Eye Movement Sleep Deprivation Enhances Adenosine Receptor Activation and the CREB1/YAP1/c-Myc Axis to Alleviate Depressive-like Behaviors in Rats. ACS Chem Neurosci 2022; 13:2298-2308. [PMID: 35838172 DOI: 10.1021/acschemneuro.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As neuromodulators, adenosine and its receptors are mediators of sleep-wake regulation. A putative correlation between CREB1 and depression has been predicted in our bioinformatics analyses, and its expression was also predicted to be upregulated in response to sleep deprivation. Therefore, this study aims to elaborate the A1 and A2A adenosine receptors and CREB1-associated mechanism underlying the antidepressant effect of rapid eye movement sleep deprivation (REMSD) in rats with chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors. The modeled rats were injected with adenosine A1 receptor antagonist DPCPX or adenosine A2A receptor antagonist ZM241385 to assess the role of adenosine receptors in depression. In addition, ectopic expression and depletion experiments of CREB1 and YAP1 were also conducted in vivo and in vitro. It was found that REMSD alleviated depressive-like behaviors in CUMS rats, as shown by increased spontaneous activity, sucrose consumption and percentage, and shortened escape latency and immobility duration. Meanwhile, A1 or A2A adenosine receptor antagonists negated the antidepressant effect of REMSD. REMSD enhanced adenosine receptor activation and promoted the phosphorylation of CREB1, thus increasing the expression of CREB1. In addition, the overexpression of CREB1 activated the YAP1/c-Myc axis and consequently alleviated depressive-like behaviors. Collectively, our results provide new mechanistic insights for an understanding of the antidepressant effect of REMSD, which is associated with the activation of adenosine receptors and the CREB1/YAP1/c-Myc axis.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Handi Zhang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Yinnan Zhang
- Rehabilitation Division, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Zeman Fang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Chongtao Xu
- Shantou University Mental Health Center, Shantou 515041, Guangdong, P. R. China
| |
Collapse
|
22
|
Rosson S, de Filippis R, Croatto G, Collantoni E, Pallottino S, Guinart D, Brunoni AR, Dell'Osso B, Pigato G, Hyde J, Brandt V, Cortese S, Fiedorowicz JG, Petrides G, Correll CU, Solmi M. Brain stimulation and other biological non-pharmacological interventions in mental disorders: An umbrella review. Neurosci Biobehav Rev 2022; 139:104743. [PMID: 35714757 DOI: 10.1016/j.neubiorev.2022.104743] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The degree of efficacy, safety, quality, and certainty of meta-analytic evidence of biological non-pharmacological treatments in mental disorders is unclear. METHODS We conducted an umbrella review (PubMed/Cochrane Library/PsycINFO-04-Jul-2021, PROSPERO/CRD42020158827) for meta-analyses of randomized controlled trials (RCTs) on deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electro-convulsive therapy (ECT), and others. Co-primary outcomes were standardized mean differences (SMD) of disease-specific symptoms, and acceptability (for all-cause discontinuation). Evidence was assessed with AMSTAR/AMSTAR-Content/GRADE. RESULTS We selected 102 meta-analyses. Effective interventions compared to sham were in depressive disorders: ECT (SMD=0.91/GRADE=moderate), TMS (SMD=0.51/GRADE=moderate), tDCS (SMD=0.46/GRADE=low), DBS (SMD=0.42/GRADE=very low), light therapy (SMD=0.41/GRADE=low); schizophrenia: ECT (SMD=0.88/GRADE=moderate), tDCS (SMD=0.45/GRADE=very low), TMS (prefrontal theta-burst, SMD=0.58/GRADE=low; left-temporoparietal, SMD=0.42/GRADE=low); substance use disorder: TMS (high frequency-dorsolateral-prefrontal-deep (SMD=1.16/GRADE=moderate), high frequency-left dorsolateral-prefrontal (SMD=0.77/GRADE=very low); OCD: DBS (SMD=0.89/GRADE=moderate), TMS (SMD=0.64/GRADE=very low); PTSD: TMS (SMD=0.46/GRADE=moderate); generalized anxiety disorder: TMS (SMD=0.68/GRADE=low); ADHD: tDCS (SMD=0.23/GRADE=moderate); autism: tDCS (SMD=0.97/GRADE=very low). No significant differences for acceptability emerged. Median AMSTAR/AMSTAR-Content was 8/2 (suggesting high-quality meta-analyses/low-quality RCTs), GRADE low. DISCUSSION Despite limited certainty, biological non-pharmacological interventions are effective and safe for numerous mental conditions. Results inform future research, and guidelines. FUNDING None.
Collapse
Affiliation(s)
- Stella Rosson
- Department of Mental Health, Azienda ULSS 3 Serenissima, Venice, Italy; Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Neurosciences, University of Padua, Padua, Italy
| | - Renato de Filippis
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giovanni Croatto
- Department of Mental Health, Azienda ULSS 3 Serenissima, Venice, Italy; Department of Neurosciences, University of Padua, Padua, Italy
| | | | | | - Daniel Guinart
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Institut Hospital del Mard'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation (SIN), Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, Brazil; Departamentos de Clínica Médica e Psiquiatria, Faculdade de Medicina da USP, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, Brazil
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, Stanford, CA, USA; Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Giorgio Pigato
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Joshua Hyde
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA
| | - Jess G Fiedorowicz
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada
| | - Georgios Petrides
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Division of ECT, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA
| | - Christoph U Correll
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Germany
| | - Marco Solmi
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK; Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Germany; Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
23
|
Iinuma Y, Nobukawa S, Nishimura H, Takahashi T. Dynamic Characteristics of State Transitions Composed of Neural Activity in the Brain by Circadian Rhythms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:152-157. [PMID: 36085992 DOI: 10.1109/embc48229.2022.9871057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, as a treatment for mental disorders in addition to drug treatment, a non-drug treatment called chronotherapy has been attracting attention. However, the achievement of optimized chronotherapy for each subject's condition requires that the disturbance of the patient's circadian rhythm must be captured over a long duration. Therefore, it is necessary to develop biomarkers that are easy to measure, quantitative, and continuously measured. Complexity analysis of electroencephalograms revealed specific patterns related to circadian rhythms. However, such complexity analysis cannot capture variability in spatial patterns, although moment-to-moment temporal dynamic characteristics can be captured. Therefore, it is necessary to evaluate the dynamic characteristics of the interaction of neural activity throughout the brain. To evaluate the dynamic whole-brain interaction, we proposed a new microstate approach based on the instantaneous frequency distribution. In this context, we hypothesized that it would be possible to detect circadian rhythms using the microstate approach. In this study, to clarify the dynamic interactions of the entire neural network of the brain by circadian rhythms, we measured EEG data at day and night, and detected dynamic state transitions based on the instantaneous frequency distribution of the whole brain from EEG. The results showed the probability of transition among region-specific phase-leading states related to circadian rhythms. This finding might be widely utilized to detect circadian rhythms in healthy and pathological conditions.
Collapse
|
24
|
Mitter P, De Crescenzo F, Loo Yong Kee K, Xia J, Roberts S, Kurtulumus A, Kyle SD, Geddes JR, Cipriani A. Sleep deprivation as a treatment for major depressive episodes: a systematic review and meta-analysis. Sleep Med Rev 2022; 64:101647. [DOI: 10.1016/j.smrv.2022.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
25
|
Canazei M, Weninger J, Pohl W, Marksteiner J, Weiss EM. Effects of dynamic bedroom lighting on measures of sleep and circadian rest-activity rhythm in inpatients with major depressive disorder. Sci Rep 2022; 12:6137. [PMID: 35414714 PMCID: PMC9005730 DOI: 10.1038/s41598-022-10161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
Bright light therapy is an effective treatment option for seasonal and non-seasonal affective disorders. However up to now, no study has investigated effects of dynamic bedroom lighting in hospitalized patients with major depression. A bedroom lighting system, which automatically delivered artificial dawn and dusk and blue-depleted nighttime lighting (DD-N lighting) was installed in a psychiatric ward. Patients with moderate to severe depression were randomly assigned to stay in bedrooms with the new lighting or standard lighting system. Patients wore wrist actimeters during the first two treatment weeks. Additionally, hospitalization duration and daily psychotropic medication were retrieved from patients' medical charts. Data from thirty patients, recorded over a period of two weeks, were analyzed. Patients under DD-N lighting generally woke up earlier (+ 20 min), slept longer (week 1: + 11 min; week 2: + 27 min) and showed higher sleep efficiency (+ 2.4%) and shorter periods of nighttime awakenings (- 15 min). In the second treatment week, patients started sleep and the most active 10-h period earlier (- 33 min and - 64 min, respectively). This pilot study gives first evidence that depressed patients' sleep and circadian rest/activity system may benefit from bedroom lighting when starting inpatient treatment.
Collapse
Affiliation(s)
- Markus Canazei
- Department of Psychology, University of Innsbruck, Innrain 52f, 6020, Innsbruck, Austria.
| | - Johannes Weninger
- Research Department, Bartenbach GmbH, Rinnerstrasse 14, 6071, Aldrans, Austria
| | - Wilfried Pohl
- Research Department, Bartenbach GmbH, Rinnerstrasse 14, 6071, Aldrans, Austria
| | - Josef Marksteiner
- Abteilung Psychiatrie und Psychotherapie A, Regional Psychiatric Hospital, 6060, Hall in Tirol, Austria
| | - Elisabeth M Weiss
- Department of Psychology, University of Innsbruck, Innrain 52f, 6020, Innsbruck, Austria
| |
Collapse
|
26
|
ECT-Resistant Bipolar Depression Treated with a Single Course of Triple Chronotherapy. Case Rep Psychiatry 2022; 2022:9957190. [PMID: 35198255 PMCID: PMC8860525 DOI: 10.1155/2022/9957190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of sleep deprivation, sleep phase advance, and bright light is termed triple chronotherapy (TCT). TCT is a promising treatment for depression, but it is not clear how effective it is for depression resistant to conventional treatments such as medications. Here, we report a case of triple chronotherapy effectively treating depression resistant to both medication and an extended course of bilateral electroconvulsive therapy. Triple chronotherapy may be a useful method to consider in cases of severe, treatment-resistant depression.
Collapse
|
27
|
Hu B, Liu C, Lv T, Luo F, Qian C, Zhang J, Ye M, Liu Z. Meta-Analysis of Sleep Deprivation Effects on Depression in Rodents. Brain Res 2022; 1782:147841. [DOI: 10.1016/j.brainres.2022.147841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 01/31/2023]
|
28
|
Gammie SC. Evaluation of animal model congruence to human depression based on large-scale gene expression patterns of the CNS. Sci Rep 2022; 12:108. [PMID: 34997033 PMCID: PMC8741816 DOI: 10.1038/s41598-021-04020-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is a complex mental health disorder that is difficult to study. A wide range of animal models exist and for many of these data on large-scale gene expression patterns in the CNS are available. The goal of this study was to evaluate how well animal models match human depression by evaluating congruence and discordance of large-scale gene expression patterns in the CNS between almost 300 animal models and a portrait of human depression created from male and female datasets. Multiple approaches were used, including a hypergeometric based scoring system that rewards common gene expression patterns (e.g., up-up or down-down in both model and human depression), but penalizes opposing gene expression patterns. RRHO heat maps, Uniform Manifold Approximation Plot (UMAP), and machine learning were used to evaluate matching of models to depression. The top ranked model was a histone deacetylase (HDAC2) conditional knockout in forebrain neurons. Also highly ranked were various models for Alzheimer’s, including APPsa knock-in (2nd overall), APP knockout, and an APP/PS1 humanized double mutant. Other top models were the mitochondrial gene HTRA2 knockout (that is lethal in adulthood), a modified acetylcholinesterase, a Huntington’s disease model, and the CRTC1 knockout. Over 30 stress related models were evaluated and while some matched highly with depression, others did not. In most of the top models, a consistent dysregulation of MAP kinase pathway was identified and the genes NR4A1, BDNF, ARC, EGR2, and PDE7B were consistently downregulated as in humans with depression. Separate male and female portraits of depression were also evaluated to identify potential sex specific depression matches with models. Individual human depression datasets were also evaluated to allow for comparisons across the same brain regions. Heatmap, UMAP, and machine learning results supported the hypergeometric ranking findings. Together, this study provides new insights into how large-scale gene expression patterns may be similarly dysregulated in some animals models and humans with depression that may provide new avenues for understanding and treating depression.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
29
|
Steingrímsson S, Odéus E, Cederlund M, Franzén S, Helgesson C, Nyström K, Sondell J, Opheim A. Weighted blanket and sleep medication use among adults with psychiatric diagnosis - a population-based register study. Nord J Psychiatry 2022; 76:29-36. [PMID: 34106812 DOI: 10.1080/08039488.2021.1931713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To measure rate of subscription of common sleep medication and diagnoses of substance use disorder (SUD) before and after receiving a prescribed weighted blanket (WB) among patients with psychiatric diagnoses. MATERIALS AND METHODS Using register-based data of health-related factors in a Swedish region, a total of 1785 adult individuals with a psychiatric diagnosis, received a WB and resided in the region during the study period were identified. Using each individual as their own control, the rate of one-year prior prescription of WB or diagnosed SUD was compared to rate after a half year wash-out after prescription of WB for a full year. RESULTS The number of patients without prescription of sleep medication increased by 3.3% (95% confidence interval (95%CI): 0.2-6.4, p=.04). Furthermore, the proportion without a prescription of benzodiazepine receptor agonist/antihistamines sleep medication increased by 5.5% (95%CI: 2.2-8.8, p=.001). Melatonin prescription increased after WB by 3.6% (95%CI: 1.1-6.2, p=.006). Younger age and unipolar-, anxiety-, attention-deficit/hyperactivity-, and post-traumatic stress disorder was associated with decreased use while psychotic-/bipolar- and personality disorder was not associated with a decrease in the use of sleep medication. The number of alcohol SUD diagnoses did not increase while sedative SUD rate increased statistically significantly by 0.7% (odds ratio = 1.63, p=.02). In a multivariate model, only younger age predicted discontinuation of sleep medication while psychotic-/bipolar- and personality disorder had statistically less decrease. CONCLUSION This observational register study found a statistically significant association between WB use and decreased use of common sleep medication except melatonin that increased slightly.
Collapse
Affiliation(s)
- Steinn Steingrímsson
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Psychiatry, Gothenburg, Sweden.,Sahlgrenska Academy, University of Gothenburg, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Ellen Odéus
- Sahlgrenska Academy, University of Gothenburg, Institute of Neuroscience and Physiology, Gothenburg, Sweden.,Region Västra Götaland, Queen Silvias Children's Hospital, Department of Occupational and Physiotherapy, Sweden
| | - Mats Cederlund
- Region Västra Götaland, Habilitation & Health, Gothenburg, Sweden
| | - Stefan Franzén
- Region Västra Götaland, The Swedish National Diabetes Register, Gothenburg, Sweden.,Health Metrics Unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Helgesson
- Region Västra Götaland, Regional Primary Health Care Unit, Health Care Pharmacy and Medical Aid, Gothenburg, Sweden
| | - Kristina Nyström
- Region Västra Götaland, Habilitation & Health, Gothenburg, Sweden
| | - John Sondell
- Department of Data Management and Analysis, Head Office, Region Västra Götaland, Gothenburg, Sweden
| | - Arve Opheim
- Sahlgrenska Academy, University of Gothenburg, Institute of Neuroscience and Physiology, Gothenburg, Sweden.,Region Västra Götaland, Habilitation & Health, Gothenburg, Sweden
| |
Collapse
|
30
|
Gorgulu Y, Caliyurt O, Kose Cinar R, Sonmez MB. Acute sleep deprivation immediately increases serum GDNF, BDNF and VEGF levels in healthy subjects. Sleep Biol Rhythms 2022; 20:73-79. [PMID: 38469072 PMCID: PMC10897642 DOI: 10.1007/s41105-021-00341-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Acute sleep deprivation upregulates hippocampal neurogenesis. Neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) are mediators of neuronal plasticity and neurogenesis. These neurotrophins are involved in sleep and sleep disorders and are associated with sleep deprivation. In this study, it is aimed to investigate the changes of neurotrophin levels with total sleep deprivation in healthy individuals. Seventeen healthy young adults with a mean age of 19.8 (SD = 1.0) years underwent an experimental protocol consisting of 36 h of total sleep deprivation. Venous blood samples were obtained on Day1 at 09.00, on Day2 at 09.00, and at 21.00. Serum levels of neurotrophins were detected using the ELISA method. The participants were asked to mark the scores corresponding to their subjective energy, happiness, depression, tension levels on the visual analog scale; and sleepiness level on the Epworth Sleepiness Scale; during the course of the study. As a result of 36 h of sleep deprivation, serum GDNF, BDNF, and VEGF levels showed a statistically significant increase compared to the baseline values in the participants included in the study (P < 0.0001). While this increase was evident in 24 h, it continued after 36 h. In parallel, sleepiness levels, subjective depression, and tension levels increased, on the other hand, subjective energy and happiness scores decreased at a statistically significant level at the end of the study compared to basal values (P < 0.0001). The results show that acute sleep deprivation significantly affects and increases serum levels of neurotrophic factors, and it seems that these effects are likely to occur as an immediate response to the stress and disruption caused by sleep deprivation.
Collapse
Affiliation(s)
- Yasemin Gorgulu
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| | - Okan Caliyurt
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| | - Rugul Kose Cinar
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| | - Mehmet Bulent Sonmez
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| |
Collapse
|
31
|
Uchiyama M. Detecting activities of multiple neurotrophins to see the complex effect of acute sleep deprivation on mood and behavior in humans. Sleep Biol Rhythms 2022; 20:1-2. [PMID: 38469071 PMCID: PMC10899923 DOI: 10.1007/s41105-021-00356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
|
33
|
Guerriero G, Wartenberg C, Bernhardsson S, Gunnarsson S, Ioannou M, Liljedahl SI, Magnusson K, Svanberg T, Steingrimsson S. Efficacy of transcutaneous vagus nerve stimulation as treatment for depression: A systematic review. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Fasting Interventions for Stress, Anxiety and Depressive Symptoms: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13113947. [PMID: 34836202 PMCID: PMC8624477 DOI: 10.3390/nu13113947] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Background. Fasting interventions have shown effectiveness in alleviating stress, anxiety and depressive symptoms. However, no quantitative analysis has been carried out thus far. The objective was to determine the effectiveness of fasting interventions on stress, anxiety and depression and if these interventions were associated with increased or decreased fatigue/energy. Methods. Overall, 11 studies and 1436 participants were included in the quantitative analyses. Results. After limiting analyses to randomized controlled trials with low risk of bias, we found that fasting groups had lower anxiety (b = −0.508, p = 0.038), depression levels (b= −0.281, p = 0.012) and body mass index compared to controls without increased fatigue. There was no publication bias and no heterogeneity for these results. These interventions were safe, even in patients with type 2 diabetes. Conclusions. These results should be taken with a caveat. These results are preliminary and encouraging and fasting appears to be a safe intervention. Data are not sufficient to recommend one fasting intervention more than the others. No study was carried out in psychiatric populations and further trials should be carried out in these populations that may be good candidates for fasting interventions.
Collapse
|
35
|
Zhang Y, Dai C, Shao Y, Peng J, Yang Y, Hou Y. Decreased Functional Connectivity in the Reward Network and Its Relationship With Negative Emotional Experience After Total Sleep Deprivation. Front Neurol 2021; 12:641810. [PMID: 34054690 PMCID: PMC8153184 DOI: 10.3389/fneur.2021.641810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) induces a negative emotional experience due to a prolonged time spent awake. However, few studies have focused on the mechanism underlying communication within brain networks or alterations during this emotional deterioration. We propose that negative reward judgment is important in poor emotional processing after SD, which will be reflected in functional connectivity in the reward network. We sought to analyze alterations in functional connectivity within the reward network and cerebral cortex. Furthermore, we analyzed changes in functional connectivity correlation with negative emotional experience after SD. Twenty-six healthy volunteers participated in this study. Two resting-state fMRI scans were obtained from the participants, once during resting wakefulness, and once after 36 h of total SD. The bilateral nucleus accumbens (NAc) was selected as a seed region for region of interest (ROI)-to-ROI functional connectivity analysis. Correlation analyses between functional connectivity alterations within the reward network and negative emotional experience were also performed. We found that SD decreased functional connectivity between the left NAc and anterior cingulate cortex (ACC) compared with resting wakefulness. There was a decreased functional connectivity with the ACC and right inferior frontal gyrus (IFG) after SD in the right NAc. Furthermore, decreased functional connectivity between the right NAc and right IFG, and NAc and ACC was negatively correlated with emotional experience scores. Sleep deprivation decreased functional connectivity within the reward network. This may be associated with the enhanced negative emotional experience that was found after total sleep deprivation.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Psychology Medical, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Stress Disorder Treatment, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jiaxi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yan Yang
- Department of Radiology, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanhong Hou
- Department of Psychology Medical, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Ioannou M, Szabó Z, Widmark-Jensen M, Vyrinis G, Karlsson C, Steingrimsson S. Total Sleep Deprivation Followed by Bright Light Therapy as Rapid Relief for Depression: A Pragmatic Randomized Controlled Trial. Front Psychiatry 2021; 12:705090. [PMID: 34526921 PMCID: PMC8435586 DOI: 10.3389/fpsyt.2021.705090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Total sleep deprivation (TSD) combined with bright light therapy (BLT) has been suggested as a valuable add-on to standard treatment for rapid relief of depression. However, there is a lack of randomized controlled trials in real-life clinical settings. The aim of this pragmatic randomized clinical trial was to investigate the effectiveness, acceptance, and feasibility of TSD combined with BLT as add-on to standard treatment for depression in a real-life clinical setting. Methods: Thirty-three inpatients were randomly assigned to either: a) an intervention group receiving a single-night TSD followed by 6 days BLT (10.000 lux, 30 min/day) as add-on to standard treatment; or b) a control group receiving a short sleep-hygiene consultation in addition to standard treatment. The follow-up period was 1 week. Results: No statistical differences were found in response rates, reduction of depressive and insomnia symptoms, length of stay, readmission rate, and clinical improvement. Both groups reported positive experiences toward the received treatment with low drop-out rates. Conclusions: One-night TSD followed by BLT was not effective as a rapid relief for depression at 1-week follow-up; however, the treatment was feasible and well-tolerated.
Collapse
Affiliation(s)
- Michael Ioannou
- University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, Gothenburg, Sweden.,Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Zoltán Szabó
- Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Widmark-Jensen
- Region Halland, Varberg's Hospital, Anaesthesia and Intensive Care, Varberg, Sweden
| | - Georgios Vyrinis
- Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher Karlsson
- Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Steinn Steingrimsson
- University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, Gothenburg, Sweden.,Region Västra Götaland, Psykiatri Affektiva, Department of Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
37
|
Hu B, Liu C, Mou T, Luo F, Lv T, Qian C, Zhang J, Ye M, Liu Z. Meta-Analysis of Sleep Deprivation Effects on Patients With Depression. Front Psychiatry 2021; 12:783091. [PMID: 34916978 PMCID: PMC8669147 DOI: 10.3389/fpsyt.2021.783091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Depression is a common disorder with a high recurrence rate. Since the effect of sleep deprivation on depression in existing studies were inconsistent, the present study aimed to reassess the effects of SD on patients by performing a meta-analysis of updated research. Methods: PubMed, Embase, the Cochrane Library, and Web of Science were searched for articles before January 20th, 2021. Data on participant characteristics, SD characteristics, adjunctive method and tests for depression were extracted. A comprehensive analysis was conducted to assess the effect of SD on depression and subgroup analysis was used to determine the sources of heterogeneity. Results: In total, 8 articles were included. An SD time of <7 days slightly worsened depression levels [0.24 (-0.21, 0.69); I 2 = 0%; P = 0.43], a time of 7-14 days had antidepressant effects [-1.52 (-2.07, -0.97); I 2 = 19.6%; P = 0.288], and a time of more than 14 days also worsened depression [0.76 (0.12, 1.40); I 2 = 43.7%; P = 0.169]. Conclusion: SD may serve as an effective antidepressant measure in humans when the time was 7-14 days, while a time of <7 days and more than 14 days worsened depression.
Collapse
Affiliation(s)
- Baiqi Hu
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Affiliated Mental Health Center, Medical College of Shaoxing University, Shaoxing, China.,Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, China.,Department of Neurology, Shaoxing Hospital, China Medical University, Shaoxing, China
| | - Chunyan Liu
- Department of Orthopedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Tingting Mou
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, China
| | - Fangyi Luo
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, China
| | - Tingting Lv
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, China
| | - Chao Qian
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Affiliated Mental Health Center, Medical College of Shaoxing University, Shaoxing, China
| | - Jian Zhang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Affiliated Mental Health Center, Medical College of Shaoxing University, Shaoxing, China
| | - Zheng Liu
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, China
| |
Collapse
|