1
|
Keller A, Bosk EA, Mendez A, Greenfield B, Flynn C, Everett DelJones G, Julien F, Michael M. Exploring perceptions of genetic risk and the transmission of substance use disorders. Addict Sci Clin Pract 2024; 19:57. [PMID: 39095898 PMCID: PMC11295387 DOI: 10.1186/s13722-024-00470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/06/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Substance use disorders (SUDs) have been consistently shown to exhibit moderate intergenerational continuity (1-3). While much research has examined genetic and social influences on addiction, less attention has been paid to clients' and lay persons' perceptions of genetic influences on the heritability of SUD (4) and implications for treatment. METHODS For this qualitative study, twenty-six structured Working Model of the Child Interviews (WMCI) were conducted with mothers receiving inpatient SUD treatment. These interviews were thematically analyzed for themes related to maternal perceptions around intergenerational transmission of substance use behaviours. RESULTS Findings show that over half of the mothers in this sample were preoccupied with their children's risk factors for addictions. Among this group, 29% spontaneously expressed concerns about their children's genetic risk for addiction, 54% shared worries about their children's propensity for addiction without mentioning the word gene or genetic. Additionally, 37% had challenges in even discussing their children's future when prompted. These concerns mapped onto internal working models of attachment in unexpected ways, with parents who were coded with balanced working models being more likely to discuss intergenerational risk factors and parents with disengaged working models displaying difficulties in discussing their child's future. CONCLUSION This research suggests that the dominant discourse around the brain-disease model of addictions, in its effort to reduce stigma and self-blame, may have unintended downstream consequences for parents' mental models about their children's risks for future addiction. Parents receiving SUD treatment, and the staff who deliver it, may benefit from psychoeducation about the intergenerational transmission of SUD as part of treatment.
Collapse
Affiliation(s)
- Amanda Keller
- McGill University School of Social Work, 550 Sherbrooke Ouest Suite 100, Tour Est Montreal, Montreal, H3A 1B9, QC, Canada.
| | - Emily A Bosk
- Rutgers University, 390 George St., Room 713, New Brunswick, NJ, USA
| | - Alicia Mendez
- School of Social Work, Boston University, 264 Bay State Rd, 02215, Boston, MA, USA
| | - Brett Greenfield
- School of Social Work, Rutgers University, 390 George St, New Brunswick, NJ, 08901, USA
| | - Carolynn Flynn
- The Center for Great Expectations, Somerset, NJ, 08873, USA
| | | | - Fabrys Julien
- McGill University School of Social Work, 550 Sherbrooke Ouest Suite 100, Tour Est Montreal, Montreal, H3A 1B9, QC, Canada
| | - MacKenzie Michael
- Research Chair in Child Well-Being, McGill University School of Social Work, 550 Sherbrooke Ouest Suite 100, Tour Est Montreal, Montreal, H3A 1B9, QC, Canada
| |
Collapse
|
2
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Fujino K, Nishio T, Fujioka K, Yoshikawa Y, Kenmotsu T, Yoshikawa K. Activation/Inhibition of Gene Expression Caused by Alcohols: Relationship with the Viscoelastic Property of a DNA Molecule. Polymers (Basel) 2022; 15:polym15010149. [PMID: 36616499 PMCID: PMC9823369 DOI: 10.3390/polym15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alcohols are used in the life sciences because they can condense and precipitate DNA. Alcohol consumption has been linked to many diseases and can alter genetic activity. In the present report, we carried out experiments to make clear how alcohols affect the efficiency of transcription-translation (TX-TL) and translation (TL) by adapting cell-free gene expression systems with plasmid DNA and RNA templates, respectively. In addition, we quantitatively analyzed intrachain fluctuations of single giant DNA molecules based on the fluctuation-dissipation theorem to gain insight into how alcohols affect the dynamical property of a DNA molecule. Ethanol (2-3%) increased gene expression levels four to five times higher than the control in the TX-TL reaction. A similar level of enhancement was observed with 2-propanol, in contrast to the inhibitory effect of 1-propanol. Similar alcohol effects were observed for the TL reaction. Intrachain fluctuation analysis through single DNA observation showed that 1-propanol markedly increased both the spring and damping constants of single DNA in contrast to the weak effects observed with ethanol, whereas 2-propanol exhibits an intermediate effect. This study indicates that the activation/inhibition effects of alcohol isomers on gene expression correlate with the changes in the viscoelastic mechanical properties of DNA molecules.
Collapse
Affiliation(s)
- Kohei Fujino
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307 Dresden, Germany
- Correspondence: (T.N.); (K.Y.)
| | - Keita Fujioka
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Correspondence: (T.N.); (K.Y.)
| |
Collapse
|
4
|
Bowen MT, George O, Muskiewicz DE, Hall FS. FACTORS CONTRIBUTING TO THE ESCALATION OF ALCOHOL CONSUMPTION. Neurosci Biobehav Rev 2022; 132:730-756. [PMID: 34839930 PMCID: PMC8892842 DOI: 10.1016/j.neubiorev.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Understanding factors that contribute to the escalation of alcohol consumption is key to understanding how an individual transitions from non/social drinking to AUD and to providing better treatment. In this review, we discuss how the way ethanol is consumed as well as individual and environmental factors contribute to the escalation of ethanol consumption from intermittent low levels to consistently high levels. Moreover, we discuss how these factors are modelled in animals. It is clear a vast array of complex, interacting factors influence changes in alcohol consumption. Some of these factors act early in the acquisition of ethanol consumption and initial escalation, while others contribute to escalation of ethanol consumption at a later stage and are involved in the development of alcohol dependence. There is considerable need for more studies examining escalation associated with the formation of dependence and other hallmark features of AUD, especially studies examining mechanisms, as it is of considerable relevance to understanding and treating AUD.
Collapse
Affiliation(s)
- Michael T. Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, 2050, Australia,The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, 2006, Australia,Corresponding Author: Michael T. Bowen, Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia,
| | - Olivier George
- Department of Psychology, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Dawn E. Muskiewicz
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| | - F. Scott Hall
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, OH, USA
| |
Collapse
|
5
|
Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu S, Miles MF, Vladimirov VI. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addict Biol 2021; 26:e13071. [PMID: 34164896 PMCID: PMC8590811 DOI: 10.1111/adb.13071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Our lab and others have shown that chronic alcohol use leads to gene and miRNA expression changes across the mesocorticolimbic (MCL) system. Circular RNAs (circRNAs) are noncoding RNAs that form closed-loop structures and are reported to alter gene expression through miRNA sequestration, thus providing a potentially novel neurobiological mechanism for the development of alcohol dependence (AD). Genome-wide expression of circRNA was assessed in the nucleus accumbens (NAc) from 32 AD-matched cases/controls. Significant circRNAs (unadj. p ≤ 0.05) were identified via regression and clustered in circRNA networks via weighted gene co-expression network analysis (WGCNA). CircRNA interactions with previously generated mRNA and miRNA were detected via correlation and bioinformatic analyses. Significant circRNAs (N = 542) clustered in nine significant AD modules (FWER p ≤ 0.05), within which we identified 137 circRNA hubs. We detected 23 significant circRNA-miRNA-mRNA interactions (FDR ≤ 0.10). Among these, circRNA-406742 and miR-1200 significantly interact with the highest number of mRNA, including genes associated with neuronal functioning and alcohol addiction (HRAS, PRKCB, HOMER1, and PCLO). Finally, we integrate genotypic information that revealed 96 significant circRNA expression quantitative trait loci (eQTLs) (unadj. p ≤ 0.002) that showed significant enrichment within recent alcohol use disorder (AUD) and smoking genome-wide association study (GWAS). To our knowledge, this is the first study to examine the role of circRNA in the neuropathology of AD. We show that circRNAs impact mRNA expression by interacting with miRNA in the NAc of AD subjects. More importantly, we provide indirect evidence for the clinical importance of circRNA in the development of AUD by detecting a significant enrichment of our circRNA eQTLs among GWAS of substance abuse.
Collapse
Affiliation(s)
- Eric Vornholt
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Integrative Life Sciences Doctoral ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Drake
- Department of Psychiatry and Behavioral SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gowon McMichael
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Zachary N. Taylor
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Silviu‐Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU‐Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of NeurologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Biomarker Research and Precision MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Physiology & BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Lieber Institute for Brain DevelopmentJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
6
|
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nat Rev Genet 2021; 22:712-729. [PMID: 34211176 PMCID: PMC9210391 DOI: 10.1038/s41576-021-00377-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUDs) are conditions in which the use of legal or illegal substances, such as nicotine, alcohol or opioids, results in clinical and functional impairment. SUDs and, more generally, substance use are genetically complex traits that are enormously costly on an individual and societal basis. The past few years have seen remarkable progress in our understanding of the genetics, and therefore the biology, of substance use and abuse. Various studies - including of well-defined phenotypes in deeply phenotyped samples, as well as broadly defined phenotypes in meta-analysis and biobank samples - have revealed multiple risk loci for these common traits. A key emerging insight from this work establishes a biological and genetic distinction between quantity and/or frequency measures of substance use (which may involve low levels of use without dependence), versus symptoms related to physical dependence.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| |
Collapse
|
7
|
Q P, KC W, CL E. Common genetic substrates of alcohol and substance use disorder severity revealed by pleiotropy detection against GWAS catalog in two populations. Addict Biol 2021; 26:e12877. [PMID: 32027075 PMCID: PMC7415504 DOI: 10.1111/adb.12877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/15/2019] [Accepted: 01/11/2020] [Indexed: 12/01/2022]
Abstract
Alcohol and other substance use disorders (AUD and SUD) are complex diseases that are postulated to have a polygenic inheritance and are often comorbid with other disorders. The comorbidities may arise partially through genetic pleiotropy. Identification of specific gene variants accounting for large parts of the variance in these disorders has yet to be accomplished. We describe a flexible strategy that takes a variant-trait association database and determines if a subset of disease/straits are potentially pleiotropic with the disorder under study. We demonstrate its usage in a study of use disorders in two independent cohorts: alcohol, stimulants, cannabis (CUD), and multi-substance use disorders (MSUD) in American Indians (AI) and AUD and CUD in Mexican Americans (MA). Using a machine learning method with variants in GWAS catalog, we identified 229 to 246 pleiotropic variants for AI and 153 to 160 for MA for each SUD. Inflammation was the most enriched for MSUD and AUD in AIs. Neurological disorder was the most significantly enriched for CUD in both cohorts, and for AUD and stimulants in AIs. Of the select pleiotropic genes shared among substances-cohorts, multiple biological pathways implicated in SUD and other psychiatric disorders were enriched, including neurotrophic factors, immune responses, extracellular matrix, and circadian regulation. Shared pleiotropic genes were significantly up-regulated in brain regions playing important roles in SUD, down-regulated in esophagus mucosa, and differentially regulated in adrenal gland. This study fills a gap for pleiotropy detection in understudied admixed populations and identifies pleiotropic variants that may be potential targets of interest for SUD.
Collapse
Affiliation(s)
- Peng Q
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Wilhelmsen KC
- Department of Genetics and Neurology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Ehlers CL
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037 USA
| |
Collapse
|
8
|
Blum K, Baron D, Jalali R, Modestino EJ, Steinberg B, Elman I, Badgaiyan RD, Gold MS. Polygenic and multi locus heritability of alcoholism: Novel therapeutic targets to overcome psychological deficits. ACTA ACUST UNITED AC 2020; 7. [PMID: 34707891 PMCID: PMC8547332 DOI: 10.15761/jsin.1000240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Pomona, CA, USA.,Institute of Psychology, ELTE Eotvos Lorand University, Budapest, Hungary.,Division of Nutrigenomics, Genomic Testing Center Geneus Health, LLC, San Antonio, TX, USA.,Department of Psychiatry, University of Vermont, VT, USA.,Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH., USA.,The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | - David Baron
- Western University Health Sciences, Pomona, CA, USA
| | - Rehan Jalali
- The Kenneth Blum Behavioral Neurogenetic Institute (Division of iVitalize Inc.), Austin, Tx, USA
| | | | | | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge, MA, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy I Memorial VA Hospital, San Antonio, TX. and Long School of Medicine, University of Texas Medical Center, San Antonio TX, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo. USA
| |
Collapse
|
9
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Thompson A, Cook J, Choquet H, Jorgenson E, Yin J, Kinnunen T, Barclay J, Morris AP, Pirmohamed M. Functional validity, role, and implications of heavy alcohol consumption genetic loci. SCIENCE ADVANCES 2020; 6:eaay5034. [PMID: 31998841 PMCID: PMC6962045 DOI: 10.1126/sciadv.aay5034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
High alcohol consumption is a risk factor for morbidity and mortality, yet few genetic loci have been robustly associated with alcohol intake. Here, we use U.K. Biobank (n = 125,249) and GERA (n = 47,967) datasets to determine genetic factors associated with extreme population-level alcohol consumption and examine the functional validity of outcomes using model organisms and in silico techniques. We identified six loci attaining genome-wide significant association with alcohol consumption after meta-analysis and meeting our criteria for replication: ADH1B (lead SNP: rs1229984), KLB (rs13130794), BTF3P13 (rs144198753), GCKR (rs1260326), SLC39A8 (rs13107325), and DRD2 (rs11214609). A conserved role in phenotypic responses to alcohol was observed for all genetic targets available for investigation (ADH1B, GCKR, SLC39A8, and KLB) in Caenorhabditis elegans. Evidence of causal links to lung cancer, and shared genetic architecture with gout and hypertension was also found. These findings offer insight into genes, pathways, and relationships for disease risk associated with high alcohol consumption.
Collapse
Affiliation(s)
- Andrew Thompson
- Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Liverpool Centre for Alcohol Research University of Liverpool, Liverpool, UK
| | - James Cook
- Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Tarja Kinnunen
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Jeff Barclay
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew P. Morris
- Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Liverpool Centre for Alcohol Research University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Deak JD, Gizer IR, Otto JM, Bizon C, Wilhelmsen KC. Effects of Common and Rare Chromosome 4 GABAergic Gene Variation on Alcohol Use and Antisocial Behavior. J Stud Alcohol Drugs 2019; 80:585-593. [PMID: 31790348 PMCID: PMC6900988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Epidemiological estimates suggest that nearly half of individuals diagnosed with alcohol use disorder will be diagnosed with another mental health disorder, with strong associations involving other externalizing disorders. Molecular genetic studies investigating the relation between alcohol use disorder and externalizing behaviors (e.g., antisocial behavior) have focused on a cluster of chromosome 4 γ-aminobutyric acid (GABA) receptor genes (GABRG1-A2-A4-B1) but have generated varying results. METHOD The current study examined associations between common and rare variation in this region with alcohol use disorder and antisocial behavior using genetic sequencing data. Specifically, the University of California at San Francisco Family Alcoholism Sample (n = 1,610; 62% female) was used to conduct common and rare variant association tests in the GABRG1-A2-A4-B1 cluster with DSM-5 alcohol use disorder symptom counts, antisocial behavior, and a product term representing their interaction. RESULTS Gene-based analyses of rare variation resulted in a significant association between rare GABRA2 variation and the interaction term. Single-variant analysis yielded only nominally significant associations. The strongest association for alcohol use disorder (rs3756007) was located in GABRA2, the strongest association for antisocial behavior (rs11941860) was located in GABRG1, and the interaction term yielded top associations in GABRA2 (rs2119183) and the intergenic region between GABRA2 and GABRG1 (rs536599). Common and rare variant associations for the interaction remained similar when covarying for the effects of the other type of variation, suggesting that the significant rare variant signal is independent of common variant contributions. CONCLUSIONS The present study suggests that both rare and common variant associations in GABRA2 confer risk for alcohol use disorder and antisocial behaviors, indicating a potential liability toward externalizing behavior more broadly.
Collapse
Affiliation(s)
- Joseph D. Deak
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Jacqueline M. Otto
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Chris Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kirk C. Wilhelmsen
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics and Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
13
|
Grantham EK, Farris SP. Bioinformatic and biological avenues for understanding alcohol use disorder. Alcohol 2019; 74:65-71. [PMID: 30144960 PMCID: PMC8939236 DOI: 10.1016/j.alcohol.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
Alcohol Use Disorder (AUD) is a multifarious psychiatric condition resulting from complex relationships between genetics, gene expression, neuroadaptations, and environmental influences. Understanding these complex relationships is essential to uncovering the mechanisms involved in the development and progression of AUD, with the ultimate goal of devising effective behavioral and therapeutic interventions. Technical advances in the fields of omics-based research and bioinformatics have yielded insights into gene interactions, biological networks, and cellular responses across humans and animal models. This review highlights several of the newly developed sequencing methodologies and resultant discoveries in neuroscience, as well as the importance of a multi-faceted and integrative approach for determining causal factors in AUD.
Collapse
Affiliation(s)
- Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-1095, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-1095, United States.
| |
Collapse
|
14
|
Deak JD, Miller AP, Gizer IR. Genetics of alcohol use disorder: a review. Curr Opin Psychol 2018; 27:56-61. [PMID: 30170251 DOI: 10.1016/j.copsyc.2018.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023]
Abstract
Alcohol use disorder (AUD) represents a significant and ongoing public health concern with 12-month prevalence estimates of ∼5.6%. Quantitative genetic studies suggest a heritability of approximately 50% for AUD, and as a result, significant efforts have been made to identify specific variation within the genome related to the etiology of AUD. Given the limited number of replicable findings that have emerged from genome-wide linkage and candidate gene association studies, more recent efforts have focused on the use of genome-wide association studies (GWAS). These studies have suggested that hundreds of variants across the genome, most of small effect (R2 < 0.002), contribute to the genetic etiology of AUD. The present review describes the initial, though limited, successes of GWAS to identify loci related to risk for AUD as well as other etiologically relevant traits (e.g. alcohol consumption). In addition, 'Post-GWAS' approaches that rely on GWAS data to estimate the heritability and co-heritability of traits, test causal relations between traits, and aid in gene discovery are described. Together, the described research findings illustrate the importance of molecular genetic research on AUD as we seek to better understand the mechanisms through which genetic variation leads to increased risk for AUD.
Collapse
Affiliation(s)
- Joseph D Deak
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO 65211, USA
| | - Alex P Miller
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO 65211, USA
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO 65211, USA.
| |
Collapse
|