1
|
Johnson EC, Austin-Zimmerman I, Thorpe HHA, Levey DF, Baranger DAA, Colbert SMC, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Di Forti M, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. Neuropsychopharmacology 2024; 49:1655-1665. [PMID: 38906991 PMCID: PMC11399264 DOI: 10.1038/s41386-024-01886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz; European ancestry N = 161,405; African ancestry N = 15,846), cannabis use disorder (CanUD; European ancestry N = 886,025; African ancestry N = 120,208), and ever-regular tobacco smoking (Smk; European ancestry N = 805,431; African ancestry N = 24,278) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17-0.62). Genetic instrumental variable analyses suggested the presence of shared heritable factors, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for these shared genetic factors. We identified 327 pleiotropic loci with 439 lead SNPs in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both shared genetic factors and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sarah M C Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Thorpe HHA, Fontanillas P, Meredith JJ, Jennings MV, Cupertino RB, Pakala S, Elson SL, Khokhar JY, Davis LK, Johnson EC, Palmer AA, Sanchez-Roige S. Genome-wide association studies of lifetime and frequency cannabis use in 131,895 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308946. [PMID: 38947071 PMCID: PMC11213095 DOI: 10.1101/2024.06.14.24308946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cannabis is one of the most widely used drugs globally. Decriminalization of cannabis is further increasing cannabis consumption. We performed genome-wide association studies (GWASs) of lifetime (N=131,895) and frequency (N=73,374) of cannabis use. Lifetime cannabis use GWAS identified two loci, one near CADM2 (rs11922956, p=2.40E-11) and another near GRM3 (rs12673181, p=6.90E-09). Frequency of use GWAS identified one locus near CADM2 (rs4856591, p=8.10E-09; r2 =0.76 with rs11922956). Both traits were heritable and genetically correlated with previous GWASs of lifetime use and cannabis use disorder (CUD), as well as other substance use and cognitive traits. Polygenic scores (PGSs) for lifetime and frequency of cannabis use associated cannabis use phenotypes in AllofUs participants. Phenome-wide association study of lifetime cannabis use PGS in a hospital cohort replicated associations with substance use and mood disorders, and uncovered associations with celiac and infectious diseases. This work demonstrates the value of GWASs of CUD transition risk factors.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shreya Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024:10.1038/s41380-024-02547-z. [PMID: 38811691 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Veerappa A, Guda C. Coordination among frequent genetic variants imparts substance use susceptibility and pathogenesis. Front Neurosci 2024; 18:1332419. [PMID: 38660223 PMCID: PMC11041639 DOI: 10.3389/fnins.2024.1332419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Determining the key genetic variants is a crucial step to comprehensively understand substance use disorders (SUDs). In this study, utilizing whole exome sequences of five multi-generational pedigrees with SUDs, we used an integrative omics-based approach to uncover candidate genetic variants that impart susceptibility to SUDs and influence addition traits. We identified several SNPs and rare, protein-function altering variants in genes, GRIA3, NCOR1, and SHANK1; compound heterozygous variants in LNPEP, LRP1, and TBX2, that play a significant role in the neurotransmitter-neuropeptide axis, specifically in the dopaminergic circuits. We also noted a greater frequency of heterozygous and recessive variants in genes involved in the structural and functional integrity of synapse receptors, CHRNA4, CNR2, GABBR1, DRD4, NPAS4, ADH1B, ADH1C, OPRM1, and GABBR2. Variant analysis in upstream promoter regions revealed regulatory variants in NEK9, PRRX1, PRPF4B, CELA2A, RABGEF1, and CRBN, crucial for dopamine regulation. Using family-and pedigree-based data, we identified heterozygous recessive alleles in LNPEP, LRP1 (4 frameshift deletions), and TBX2 (2 frameshift deletions) linked to SUDs. GWAS overlap identified several SNPs associated with SUD susceptibility, including rs324420 and rs1229984. Furthermore, miRNA variant analysis revealed notable variants in mir-548 U and mir-532. Pathway studies identified the presence of extensive coordination among these genetic variants to impart substance use susceptibility and pathogenesis. This study identified variants that were found to be overrepresented among genes of dopaminergic circuits participating in the neurotransmitter-neuropeptide axis, suggesting pleiotropic influences in the development and sustenance of chronic substance use. The presence of a diverse set of haploinsufficient variants in varying frequencies demonstrates the existence of extraordinary coordination among them in attributing risk and modulating severity to SUDs.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
So HC, Xue X, Ma Z, Sham PC. SumVg: Total Heritability Explained by All Variants in Genome-Wide Association Studies Based on Summary Statistics with Standard Error Estimates. Int J Mol Sci 2024; 25:1347. [PMID: 38279346 PMCID: PMC10816209 DOI: 10.3390/ijms25021347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Genome-wide association studies (GWAS) are commonly employed to study the genetic basis of complex traits/diseases, and a key question is how much heritability could be explained by all single nucleotide polymorphisms (SNPs) in GWAS. One widely used approach that relies on summary statistics only is linkage disequilibrium score regression (LDSC); however, this approach requires certain assumptions about the effects of SNPs (e.g., all SNPs contribute to heritability and each SNP contributes equal variance). More flexible modeling methods may be useful. We previously developed an approach recovering the "true" effect sizes from a set of observed z-statistics with an empirical Bayes approach, using only summary statistics. However, methods for standard error (SE) estimation are not available yet, limiting the interpretation of our results and the applicability of the approach. In this study, we developed several resampling-based approaches to estimate the SE of SNP-based heritability, including two jackknife and three parametric bootstrap methods. The resampling procedures are performed at the SNP level as it is most common to estimate heritability from GWAS summary statistics alone. Simulations showed that the delete-d-jackknife and parametric bootstrap approaches provide good estimates of the SE. In particular, the parametric bootstrap approaches yield the lowest root-mean-squared-error (RMSE) of the true SE. We also explored various methods for constructing confidence intervals (CIs). In addition, we applied our method to estimate the SNP-based heritability of 12 immune-related traits (levels of cytokines and growth factors) to shed light on their genetic architecture. We also implemented the methods to compute the sum of heritability explained and the corresponding SE in an R package SumVg. In conclusion, SumVg may provide a useful alternative tool for calculating SNP heritability and estimating SE/CI, which does not rely on distributional assumptions of SNP effects.
Collapse
Affiliation(s)
- Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (X.X.); (Z.M.)
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao Xue
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (X.X.); (Z.M.)
| | - Zhijie Ma
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (X.X.); (Z.M.)
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
6
|
Johnson EC, Austin-Zimmerman I, Thorpe HH, Levey DF, Baranger DA, Colbert SM, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Forti MD, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301430. [PMID: 38293235 PMCID: PMC10827265 DOI: 10.1101/2024.01.17.24301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz), cannabis use disorder (CanUD), and ever-regular tobacco smoking (Smk) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17 - 0.62). Causal inference analyses suggested the presence of horizontal pleiotropy, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for horizontal pleiotropy. We identified 439 pleiotropic loci in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both horizontal pleiotropy and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley Ha Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David Aa Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO USA
| | - Sarah Mc Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
7
|
Zhao Y, Han X, Zheng ZL. Analysis of the brain transcriptome for substance-associated genes: An update on large-scale genome-wide association studies. Addict Biol 2023; 28:e13332. [PMID: 37753566 PMCID: PMC10539015 DOI: 10.1111/adb.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Substance use disorder (SUD) arises from the initiation to subsequent regular, irregular and harmful use of substances such as alcohol, tobacco/nicotine and cannabis. While thousands of genetic variants have been identified from recent large-scale genome-wide association studies (GWAS), understanding their functions in substance involvement and investigating the mechanisms by which they act in the addiction circuits remains challenging. In this study, we re-analysed the brain regional transcriptome data from the most comprehensive postmortem transcriptomic study, with a focus on up- or down-regulation of substance-associated protein-coding genes in the addiction circuit-related brain regions (AddictRegions), including six cortical and 11 subcortical regions. We found that substance-associated genes were overrepresented in AddictRegions. Interestingly, we observed a greater degree of genetic overlap between initiation and use and between use and SUD than between initiation and SUD. Moreover, substance initiation, use and SUD-associated genes tend to shift their enriched AddictRegions from the cortical for initiation and, to a lesser extent, substance use to subcortical regions for SUD (e.g., thalamus, substantia nigra and ventral tegmental area). We also uncovered a pattern of coordinated cortical up-regulation and subcortical down-regulation for the genes associated with tobacco initiation and alcohol use. Moreover, the Gene Ontology terms of glutamate receptor activity and neurotransmitter binding were most significantly overrepresented in AddictRegion-upregulated, substance-associated genes, with the strongest enrichment for those involved in common substance use behaviours. Overall, our analysis provides a resource of AddictRegion-related transcriptomes for studying substance-associated genes and generates intriguing insights into the genetic control of substance initiation, use and SUD.
Collapse
Affiliation(s)
- Yihong Zhao
- Columbia University School of Nursing, New York, NY 10032, USA
| | - Xuewei Han
- Columbia University School of Nursing, New York, NY 10032, USA
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10068, USA
| |
Collapse
|
8
|
Hillmer A, Chawar C, Lamri A, Hudson J, Kapczinski F, Minuzzi L, Marsh DC, Thabane L, Paterson AD, Samaan Z. Genetics of cannabis use in opioid use disorder: A genome-wide association and polygenic risk score study. PLoS One 2023; 18:e0289059. [PMID: 37494403 PMCID: PMC10370765 DOI: 10.1371/journal.pone.0289059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Individuals with an Opioid Use Disorder (OUD) have increased rates of cannabis use in comparison to the general population. Research on the short- and long-term impacts of cannabis use in OUD patients has been inconclusive. A genetic component may contribute to cannabis cravings. AIMS Identify genetic variants associated with cannabis use through Genome-wide Association Study (GWAS) methods and investigate a Polygenic Risk Score (PRS). In addition, we aim to identify any sex differences in effect size for genetic variants reaching or nearing genome-wide significance in the GWAS. METHODS The study outcomes of interest were: regular cannabis use (yes/no) (n = 2616), heaviness of cannabis use (n = 1293) and cannabis cravings (n = 836). Logistic and linear regressions were preformed, respectively, to test the association between genetic variants and each outcome, regular cannabis use and heaviness of cannabis use. GWAS summary statistics from a recent large meta-GWAS investigating cannabis use disorder were used to conduct PRS's. Findings are limited to a European ancestry sample. RESULTS No genome-wide significant associations were found. Rs1813412 (chromosome 17) for regular cannabis use and rs62378502 (chromosome 5) for heaviness of cannabis use were approaching genome-wide significance. Both these SNPs were nominally significant (p<0.05) within males and females, however sex did not modify the association. The PRS identified statistically significant association with cannabis cravings. The variance explained by all PRSs were less than 1.02x10-2. CONCLUSION This study provides promising results in understanding the genetic contribution to cannabis use in individuals living with OUD.
Collapse
Affiliation(s)
- Alannah Hillmer
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Caroul Chawar
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Amel Lamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacqueline Hudson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Flavio Kapczinski
- McMaster University, Hamilton, ON, Canada
- Universidade Federal do Rio Grande do Sol, Porto Alegre, Brazil
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | - Lehana Thabane
- Department of Health Research Method, Evidence & Impact, Hamilton, ON, Canada
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Divisions of Biostatistics and Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Kitdumrongthum S, Trachootham D. An Individuality of Response to Cannabinoids: Challenges in Safety and Efficacy of Cannabis Products. Molecules 2023; 28:molecules28062791. [PMID: 36985763 PMCID: PMC10058560 DOI: 10.3390/molecules28062791] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Since legalization, cannabis/marijuana has been gaining considerable attention as a functional ingredient in food. ∆-9 tetrahydrocannabinol (THC), cannabidiol (CBD), and other cannabinoids are key bioactive compounds with health benefits. The oral consumption of cannabis transports much less hazardous chemicals than smoking. Nevertheless, the response to cannabis is biphasically dose-dependent (hormesis; a low-dose stimulation and a high-dose inhibition) with wide individuality in responses. Thus, the exact same dose and preparation of cannabis may be beneficial for some but toxic to others. The purpose of this review is to highlight the concept of individual variations in response to cannabinoids, which leads to the challenge of establishing standard safe doses of cannabis products for the general population. The mechanisms of actions, acute and chronic toxicities, and factors affecting responses to cannabis products are updated. Based on the literature review, we found that the response to cannabis products depends on exposure factors (delivery route, duration, frequency, and interactions with food and drugs), individual factors (age, sex), and susceptibility factors (genetic polymorphisms of cannabinoid receptor gene, N-acylethanolamine-hydrolyzing enzymes, THC-metabolizing enzymes, and epigenetic regulations). Owing to the individuality of responses, the safest way to use cannabis-containing food products is to start low, go slow, and stay low.
Collapse
|
10
|
Verweij KJH, Vink JM, Abdellaoui A, Gillespie NA, Derks EM, Treur JL. The genetic aetiology of cannabis use: from twin models to genome-wide association studies and beyond. Transl Psychiatry 2022; 12:489. [PMID: 36411281 PMCID: PMC9678872 DOI: 10.1038/s41398-022-02215-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cannabis is among the most widely consumed psychoactive substances worldwide. Individual differences in cannabis use phenotypes can partly be explained by genetic differences. Technical and methodological advances have increased our understanding of the genetic aetiology of cannabis use. This narrative review discusses the genetic literature on cannabis use, covering twin, linkage, and candidate-gene studies, and the more recent genome-wide association studies (GWASs), as well as the interplay between genetic and environmental factors. Not only do we focus on the insights that these methods have provided on the genetic aetiology of cannabis use, but also on how they have helped to clarify the relationship between cannabis use and co-occurring traits, such as the use of other substances and mental health disorders. Twin studies have shown that cannabis use is moderately heritable, with higher heritability estimates for more severe phases of use. Linkage and candidate-gene studies have been largely unsuccessful, while GWASs so far only explain a small portion of the heritability. Dozens of genetic variants predictive of cannabis use have been identified, located in genes such as CADM2, FOXP2, and CHRNA2. Studies that applied multivariate methods (twin models, genetic correlation analysis, polygenic score analysis, genomic structural equation modelling, Mendelian randomisation) indicate that there is considerable genetic overlap between cannabis use and other traits (especially other substances and externalising disorders) and some evidence for causal relationships (most convincingly for schizophrenia). We end our review by discussing implications of these findings and suggestions for future work.
Collapse
Affiliation(s)
- Karin J. H. Verweij
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Jacqueline M. Vink
- grid.5590.90000000122931605Behavioural Science Institute, Radboud University Nijmegen, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Abdel Abdellaoui
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Nathan A. Gillespie
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 East Leigh St, Suite 100, Richmond, VA 23219 USA
| | - Eske M. Derks
- grid.1049.c0000 0001 2294 1395Translational Neurogenomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
| | - Jorien L. Treur
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Sakala K, Kasearu K, Katus U, Veidebaum T, Harro J. Association between platelet MAO activity and lifetime drug use in a longitudinal birth cohort study. Psychopharmacology (Berl) 2022; 239:327-337. [PMID: 35001146 DOI: 10.1007/s00213-021-06035-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Platelet monoamine oxidase (MAO) activity, a marker of central serotonergic capacity, has been associated with a variety of problem behaviours. However, studies on platelet MAO activity and addictive drugs have not consistently linked MAO activity with addiction or reported to predict illicit substance use initiation or frequency. OBJECTIVES Platelet MAO activity and illicit drug use was examined in a longitudinal birth cohort study. METHODS The sample included both birth cohorts (original n = 1238) of the Estonian Children Personality Behaviour and Health Study. Longitudinal association from age 15 to 25 years between platelet MAO activity and lifetime drug use was analysed by mixed-effects regression models. Differences at ages 15, 18 and 25 were analysed by t-test. Cox proportional hazard regression analysis was used to assess the association between platelet MAO activity and the age of drug use initiation. RESULTS Male subjects who reported at least one drug use event had lower platelet MAO activity compared to nonusers, both in cross-sectional and longitudinal analyses. Males with low platelet MAO activity had started to use drugs at a younger age. Moreover, in male subjects who had experimented with illicit drugs only once in lifetime, low platelet MAO activity was also associated with higher risk at a younger age. In females, platelet MAO activity was not associated with drug use. CONCLUSION In males, low platelet MAO activity is associated with drug abuse primarily owing to risk-taking at early age.
Collapse
Affiliation(s)
- Katre Sakala
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia.,Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.,School of Natural Sciences and Health, Tallinn University, Narva Road 29, 10120, Tallinn, Estonia
| | - Kairi Kasearu
- Institute of Social Studies, Faculty of Social Sciences, University of Tartu, Lossi 36, 51003, Tartu, Estonia
| | - Urmeli Katus
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, 10120, Tallinn, Estonia. .,Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia.
| |
Collapse
|
12
|
Genomic and Personalized Medicine Approaches for Substance Use Disorders (SUDs) Looking at Genome-Wide Association Studies. Biomedicines 2021; 9:biomedicines9121799. [PMID: 34944615 PMCID: PMC8698472 DOI: 10.3390/biomedicines9121799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Drug addiction, or substance use disorder (SUD), is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviour persist despite serious negative consequences. Drug abuse represents a problem that deserves great attention from a social point of view, and focuses on the importance of genetic studies to help in understanding the genetic basis of addiction and its medical treatment. Despite the complexity of drug addiction disorders, and the high number of environmental variables playing a role in the onset, recurrence, and duration of the symptoms, several studies have highlighted the non-negligible role of genetics, as demonstrated by heritability and genome-wide association studies. A correlation between the relative risk of addiction to specific substances and heritability has been recently observed, suggesting that neurobiological mechanisms may be, at least in part, inherited. All these observations point towards a scenario where the core neurobiological factors of addiction, involving the reward system, impulsivity, compulsivity, stress, and anxiety response, are transmitted, and therefore, genes and mutations underlying their variation might be detected. In the last few years, the development of new and more efficient sequencing technologies has paved the way for large-scale studies in searching for genetic and epigenetic factors affecting drug addiction disorders and their treatments. These studies have been crucial to pinpoint single nucleotide polymorphisms (SNPs) in genes that affect the reaction to medical treatments. This is critically important to identify pharmacogenomic approaches for substance use disorder, such as OPRM1 SNPs and methadone required doses for maintenance treatment (MMT). Nevertheless, despite the promising results obtained by genome-wide association and pharmacogenomic studies, specific studies related to population genetics diversity are lacking, undermining the overall applicability of the preliminary findings, and thus potentially affecting the portability and the accuracy of the genetic studies. In this review, focusing on cannabis, cocaine and heroin use, we report the state-of-the-art genomics and pharmacogenomics of SUDs, and the possible future perspectives related to medical treatment response in people that ask for assistance in solving drug-related problems.
Collapse
|
13
|
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nat Rev Genet 2021; 22:712-729. [PMID: 34211176 PMCID: PMC9210391 DOI: 10.1038/s41576-021-00377-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUDs) are conditions in which the use of legal or illegal substances, such as nicotine, alcohol or opioids, results in clinical and functional impairment. SUDs and, more generally, substance use are genetically complex traits that are enormously costly on an individual and societal basis. The past few years have seen remarkable progress in our understanding of the genetics, and therefore the biology, of substance use and abuse. Various studies - including of well-defined phenotypes in deeply phenotyped samples, as well as broadly defined phenotypes in meta-analysis and biobank samples - have revealed multiple risk loci for these common traits. A key emerging insight from this work establishes a biological and genetic distinction between quantity and/or frequency measures of substance use (which may involve low levels of use without dependence), versus symptoms related to physical dependence.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| |
Collapse
|
14
|
Hillmer A, Chawar C, Sanger S, D’Elia A, Butt M, Kapoor R, Kapczinski F, Thabane L, Samaan Z. Genetic basis of cannabis use: a systematic review. BMC Med Genomics 2021; 14:203. [PMID: 34384432 PMCID: PMC8359088 DOI: 10.1186/s12920-021-01035-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND With the increase in cannabis use rates, cannabis use disorder is being reported as one of the most common drug use disorders globally. Cannabis use has several known physical, psychological, and social adverse events, such as altered judgement, poor educational outcomes, and respiratory symptoms. The propensity for taking cannabis and the development of a cannabis use disorder may be genetically influenced for some individuals. Heritability estimates suggest a genetic basis for cannabis use, and several genome-wide association studies (GWASs) have identified possible regions of association, albeit with inconsistent findings. This systematic review aims to summarize the findings from GWASs investigating cannabis use and cannabis use disorder. METHODS This systematic review incorporates articles that have performed a GWAS investigating cannabis use or cannabis use disorder. MEDLINE, Web of Science, EMBASE, CINAHL, GWAS Catalog, GWAS Central, and NIH Database of Genotype and Phenotype were searched using a comprehensive search strategy. All studies were screened in duplicate, and the quality of evidence was assessed using the quality of genetic association studies (Q-Genie) tool. All studies underwent qualitative synthesis; however, quantitative analysis was not feasible. RESULTS Our search identified 5984 articles. Six studies met our eligibility criteria and were included in this review. All six studies reported results that met our significance threshold of p ≤ 1.0 × 10-7. In total 96 genetic variants were identified. While meta-analysis was not possible, this review identified the following genes, ANKFN1, INTS7, PI4K2B, CSMD1, CST7, ACSS1, and SCN9A, to be associated with cannabis use. These regions were previously reported in different mental health conditions, however not in relation to cannabis use. CONCLUSION This systematic review summarized GWAS findings within the field of cannabis research. While a meta-analysis was not possible, the summary of findings serves to inform future candidate gene studies and replication efforts. Systematic Review Registration PROSPERO CRD42020176016.
Collapse
Affiliation(s)
- Alannah Hillmer
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Caroul Chawar
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Stephanie Sanger
- Health Science Library, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Alessia D’Elia
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Mehreen Butt
- Integrated Science Program, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Raveena Kapoor
- Michael G. DeGroote School of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Flavio Kapczinski
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| | - Lehana Thabane
- Department of Health Research Method, Evidence and Impact, 1280 Main St. W., Hamilton, ON L8S 4L8 Canada
| | - Zainab Samaan
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON L8N 3K7 Canada
| |
Collapse
|
15
|
Influence of Cannabinoid Receptor 1 Genetic Variants on the Subjective Effects of Smoked Cannabis. Int J Mol Sci 2021; 22:ijms22147388. [PMID: 34299009 PMCID: PMC8307475 DOI: 10.3390/ijms22147388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
As many jurisdictions consider relaxing cannabis legislation and usage is increasing in North America and other parts of the world, there is a need to explore the possible genetic differences underlying the subjective effects of cannabis. This pilot study investigated specific genetic variations within the cannabinoid receptor 1 (CNR1) gene for association with the subjective effects of smoked cannabis. Data were obtained from a double-blinded, placebo-controlled clinical trial studying the impact of cannabis intoxication on driving performance. Participants randomized to the active cannabis group who consented to secondary genetic analysis (n = 52) were genotyped at the CNR1 rs1049353 and rs2023239 polymorphic areas. Maximum value and area under the curve (AUC) analyses were performed on subjective measures data. Analysis of subjective effects by genotype uncovered a global trend towards greater subjective effects for rs1049353 T-allele- and rs2023239 C-allele-carrying subjects. However, significant differences attributed to allelic identity were only documented for a subset of subjective effects. Our findings suggest that rs1049353 and rs2023239 minor allele carriers experience augmented subjective effects during acute cannabis intoxication.
Collapse
|
16
|
Krueger RF, Hobbs KA, Conway CC, Dick DM, Dretsch MN, Eaton NR, Forbes MK, Forbush KT, Keyes KM, Latzman RD, Michelini G, Patrick CJ, Sellbom M, Slade T, South S, Sunderland M, Tackett J, Waldman I, Waszczuk MA, Wright AG, Zald DH, Watson D, Kotov R. Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): II. Externalizing superspectrum. World Psychiatry 2021; 20:171-193. [PMID: 34002506 PMCID: PMC8129870 DOI: 10.1002/wps.20844] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Hierarchical Taxonomy of Psychopathology (HiTOP) is an empirical effort to address limitations of traditional mental disorder diagnoses. These include arbitrary boundaries between disorder and normality, disorder co-occurrence in the modal case, heterogeneity of presentation within dis-orders, and instability of diagnosis within patients. This paper reviews the evidence on the validity and utility of the disinhibited externalizing and antagonistic externalizing spectra of HiTOP, which together constitute a broad externalizing superspectrum. These spectra are composed of elements subsumed within a variety of mental disorders described in recent DSM nosologies, including most notably substance use disorders and "Cluster B" personality disorders. The externalizing superspectrum ranges from normative levels of impulse control and self-assertion, to maladaptive disinhibition and antagonism, to extensive polysubstance involvement and personality psychopathology. A rich literature supports the validity of the externalizing superspectrum, and the disinhibited and antagonistic spectra. This evidence encompasses common genetic influences, environmental risk factors, childhood antecedents, cognitive abnormalities, neural alterations, and treatment response. The structure of these validators mirrors the structure of the phenotypic externalizing superspectrum, with some correlates more specific to disinhibited or antagonistic spectra, and others relevant to the entire externalizing superspectrum, underlining the hierarchical structure of the domain. Compared with traditional diagnostic categories, the externalizing superspectrum conceptualization shows improved utility, reliability, explanatory capacity, and clinical applicability. The externalizing superspectrum is one aspect of the general approach to psychopathology offered by HiTOP and can make diagnostic classification more useful in both research and the clinic.
Collapse
Affiliation(s)
| | - Kelsey A. Hobbs
- Department of PsychologyUniversity of MinnesotaMinneapolisMNUSA
| | | | - Danielle M. Dick
- Department of PsychologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Michael N. Dretsch
- US Army Medical Research Directorate ‐ WestWalter Reed Army Institute of Research, Joint Base Lewis‐McChordWAUSA
| | | | - Miriam K. Forbes
- Centre for Emotional Health, Department of PsychologyMacquarie UniversitySydneyNSWAustralia
| | | | | | | | - Giorgia Michelini
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | | | - Martin Sellbom
- Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Tim Slade
- Matilda Centre for Research in Mental Health and Substance UseUniversity of SydneySydneyNSWAustralia
| | - Susan C. South
- Department of Psychological SciencesPurdue UniversityWest LafayetteINUSA
| | - Matthew Sunderland
- Matilda Centre for Research in Mental Health and Substance UseUniversity of SydneySydneyNSWAustralia
| | | | - Irwin Waldman
- Department of PsychologyEmory UniversityAtlantaGAUSA
| | | | | | - David H. Zald
- Department of PsychologyVanderbilt UniversityNashvilleTNUSA
| | - David Watson
- Department of PsychologyUniversity of Notre DameNotre DameINUSA
| | - Roman Kotov
- Department of PsychiatryStony Brook UniversityStony BrookNYUSA
| | | |
Collapse
|
17
|
Thorpe HHA, Talhat MA, Khokhar JY. High genes: Genetic underpinnings of cannabis use phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110164. [PMID: 33152387 DOI: 10.1016/j.pnpbp.2020.110164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabis is one of the most widely used substances across the globe and its use has a substantial heritable component. However, the heritability of cannabis use varies according to substance use phenotype, suggesting that a unique profile of gene variants may contribute to the different stages of use, such as age of use onset, lifetime use, cannabis use disorder, and withdrawal and craving during abstinence. Herein, we review a subset of genes identified by candidate gene, family-based linkage, and genome-wide association studies related to these cannabis use phenotypes. We also describe their relationships with other substances, and their functions at the neurobiological, cognitive, and behavioral levels to hypothesize the role of these genes in cannabis use risk. Delineating genetic risk factors in the various stages of cannabis use will provide insight into the biological mechanisms related to cannabis use and highlight points of intervention prior to and following the development of dependence, as well as identify targets to aid drug development for treating problematic cannabis use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
18
|
Hillmer A, Chawar C, Sanger S, D'Elia A, Butt M, Kapoor R, Kapczinski F, Pare G, Thabane L, Samaan Z. Genetic determinants of cannabis use: a systematic review protocol. Syst Rev 2020; 9:190. [PMID: 32819433 PMCID: PMC7441561 DOI: 10.1186/s13643-020-01442-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the legalization of cannabis in Canada, there is an increase trend in use. Cannabis has been known to have several health implications, one of which is the development of cannabis use disorder (CUD). CUD is more common in males than females, as well as in certain ethnic groups such as Native Americans. Additionally, both environmental and genetic risk factors have been found for cannabis use. The objective of this systematic review will be to summarize the genetic variants associated with cannabis use which have reached borderline genome-wide significance. METHODS This systematic review will incorporate articles that have performed a genome-wide association study (GWAS) investigating cannabis use. MEDLINE, Web of Science, EMBASE, GWAS Catalog, GWAS Central, and NIH Database of Genotype and Phenotype will be searched using a comprehensive search strategy. The quality of genetic association studies (Q-Genie) tool will be utilized to assess the quality of the included studies. All screening and data extraction will occur independently by two authors. If feasible, a random-effects meta-analysis will be conducted on pooled odds ratios of single nucleotide polymorphisms reaching borderline genome-wide significance. DISCUSSION This systematic review will synthesize available GWAS on cannabis use. Results from this review will inform and direct further investigation of genetic variants associated with cannabis use. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020176016.
Collapse
Affiliation(s)
- Alannah Hillmer
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3 K7, Canada
| | - Caroul Chawar
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3 K7, Canada
| | - Stephanie Sanger
- Health Science Library, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4 L8, Canada
| | - Alessia D'Elia
- Neuroscience Graduate Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3 K7, Canada
| | - Mehreen Butt
- Integrated Science Program, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4 L8, Canada
| | - Raveena Kapoor
- Health Sciences Program, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4 L8, Canada
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3 K7, Canada
| | - Guillaume Pare
- Population Health Research Institute, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4 L8, Canada
| | - Lehana Thabane
- Department of Health Research Method, Evidence & Impact, 1280 Main St. W, Hamilton, ON, L8S 4 L8, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3 K7, Canada.
| |
Collapse
|
19
|
Hickman M, Hines LA, Gage SH. Assessing the public health effects of cannabis use: can legalization improve the evidence base? World Psychiatry 2020; 19:197-198. [PMID: 32394547 PMCID: PMC7215078 DOI: 10.1002/wps.20744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lindsey A Hines
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Suzie H Gage
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Wendt FR, Pathak GA, Tylee DS, Goswami A, Polimanti R. Heterogeneity and Polygenicity in Psychiatric Disorders: A Genome-Wide Perspective. ACTA ACUST UNITED AC 2020; 4:2470547020924844. [PMID: 32518889 PMCID: PMC7254587 DOI: 10.1177/2470547020924844] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have been performed for many psychiatric disorders and revealed a complex polygenic architecture linking mental and physical health phenotypes. Psychiatric diagnoses are often heterogeneous, and several layers of trait heterogeneity may contribute to detection of genetic risks per disorder or across multiple disorders. In this review, we discuss these heterogeneities and their consequences on the discovery of risk loci using large-scale genetic data. We primarily highlight the ways in which sex and diagnostic complexity contribute to risk locus discovery in schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorder, posttraumatic stress disorder, major depressive disorder, obsessive-compulsive disorder, Tourette’s syndrome and chronic tic disorder, anxiety disorders, suicidality, feeding and eating disorders, and substance use disorders. Genetic data also have facilitated discovery of clinically relevant subphenotypes also described here. Collectively, GWAS of psychiatric disorders revealed that the understanding of heterogeneity, polygenicity, and pleiotropy is critical to translate genetic findings into treatment strategies.
Collapse
Affiliation(s)
- Frank R Wendt
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Aranyak Goswami
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and VA CT Healthcare Center, West Haven, CT, USA
| |
Collapse
|
21
|
Chang LH, Ong JS, An J, Verweij KJH, Vink JM, Pasman J, Liu M, MacGregor S, Cornelis MC, Martin NG, Derks EM. Investigating the genetic and causal relationship between initiation or use of alcohol, caffeine, cannabis and nicotine. Drug Alcohol Depend 2020; 210:107966. [PMID: 32276208 DOI: 10.1016/j.drugalcdep.2020.107966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Caffeine, alcohol, nicotine and cannabis are commonly used psychoactive substances. While the use of these substances has been previously shown to be genetically correlated, causality between these substance use traits remains unclear. We aimed to revisit the genetic relationships among different measures of SU using genome-wide association study (GWAS) summary statistics from the UK Biobank, International Cannabis Consortium, and GWAS & Sequencing Consortium of Alcohol and Nicotine use. METHODS We obtained GWAS summary statistics from the aforementioned consortia for ten substance use traits including various measures of alcohol consumption, caffeine consumption, cannabis initiation and smoking behaviours. We then conducted SNP-heritability (h2) estimation for individual SU traits, followed by genetic correlation analyses and two-sample Mendelian randomisation (MR) studies between substance use trait pairs. RESULTS SNP h2 of the ten traits ranged from 0.03 to 0.11. After multiple testing correction, 29 of the 45 trait pairs showed evidence of being genetically correlated. MR analyses revealed that most SU traits were not causally associated with each other. However, we found evidence for an MR association between regular smoking initiation and caffeine consumption 40.17 mg; 95 % CI: [24.01, 56.33] increase in caffeine intake per doubling of odds in smoking initiation). Our findings were robust against horizontal pleiotropy, SNP-outliers, and the direction of causality was consistent in all MR analyses. CONCLUSIONS Most of the substance traits were genetically correlated but there is little evidence to establish causality apart from the relationship between smoking initiation and caffeine consumption.
Collapse
Affiliation(s)
- Lun-Hsien Chang
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Jiyuan An
- Statistical Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 5, 1105 AZ, Amsterdam, the Netherlands.
| | - Jacqueline M Vink
- Behavioural Science Institute, Developmental Psychopathology, Radboud University, Postbus 9104 6500 HE Nijmegen, the Netherlands.
| | - Joëlle Pasman
- Behavioural Science Institute, Developmental Psychopathology, Radboud University, Postbus 9104 6500 HE Nijmegen, the Netherlands.
| | - Mengzhen Liu
- Institute for Behavioural Genetics, University of Colorado, Boulder, CO, 80309-0447, United States.
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N Lake Shore Dr Suite 1400, Chicago, IL, 60611, United States.
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Eske M Derks
- Translational Neurogenomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia.
| |
Collapse
|
22
|
Chang LH, Whitfield JB, Liu M, Medland SE, Hickie IB, Martin NG, Verhulst B, Heath AC, Madden PA, Statham DJ, Gillespie NA. Associations between polygenic risk for tobacco and alcohol use and liability to tobacco and alcohol use, and psychiatric disorders in an independent sample of 13,999 Australian adults. Drug Alcohol Depend 2019; 205:107704. [PMID: 31731259 DOI: 10.1016/j.drugalcdep.2019.107704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Substance use, substance use disorders (SUDs), and psychiatric disorders commonly co-occur. Genetic risk common to these complex traits is an important explanation; however, little is known about how polygenic risk for tobacco or alcohol use overlaps the genetic risk for the comorbid SUDs and psychiatric disorders. METHODS We constructed polygenic risk scores (PRSs) using GWAS meta-analysis summary statistics from a large discovery sample, GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN), for smoking initiation (SI; N = 631,564), age of initiating regular smoking (AI; N = 258,251), cigarettes per day (CPD; N = 258,999), smoking cessation (SC; N = 312,273), and drinks per week (DPW; N = 527,402). We then estimated the fixed effect of these PRSs on the liability to 15 phenotypes related to tobacco and alcohol use, substance use disorders, and psychiatric disorders in an independent target sample of Australian adults. RESULTS After adjusting for multiple testing, 10 of 75 combinations of discovery and target phenotypes remained significant. PRS-SI (R2 range: 1.98%-5.09 %) was positively associated with SI, DPW, and with DSM-IV and FTND nicotine dependence, and conduct disorder. PRS-AI (R2: 3.91 %) negatively associated with DPW. PRS-CPD (R2: 1.56 %-1.77 %) positively associated with DSM-IV nicotine dependence and conduct disorder. PRS-DPW (R2: 3.39 %-6.26 %) positively associated with only DPW. The variation of DPW was significantly influenced by sex*PRS-SI, sex*PRS-AI and sex*PRS-DPW. Such interaction effect was not detected in the other 14 phenotypes. CONCLUSIONS Polygenic risks associated with tobacco use are also associated with liability to alcohol consumption, nicotine dependence, and conduct disorder.
Collapse
Affiliation(s)
- Lun-Hsien Chang
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia; Faculty of Medicine, the University of Queensland, 20 Weightman St, Herston QLD 4006, Australia.
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia.
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota Twin Cities, 75 E River Rd, Minneapolis, MN 55455, USA.
| | - Sarah E Medland
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia.
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, 94 Mallett St, Camperdown NSW 2050, USA.
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia.
| | - Brad Verhulst
- Department of psychology, Michigan State University, 316 Physics Road #262, East Lansing, MI 48824, USA.
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Pamela A Madden
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Dixie J Statham
- School of Health and Life Sciences, Federation University, Federation University Australia, PO Box 663, Ballarat, VIC 3353, Australia.
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioural Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
23
|
Gillespie NA, Bates TC, Hickie IB, Medland SE, Verhulst B, Kirkpatrick RM, Kendler KS, Martin NG, Benotsch EG. Genetic and environmental risk factors in the non-medical use of over-the-counter or prescribed analgesics, and their relationship to major classes of licit and illicit substance use and misuse in a population-based sample of young adult twins. Addiction 2019; 114:2229-2240. [PMID: 31313399 PMCID: PMC6868294 DOI: 10.1111/add.14750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/03/2018] [Accepted: 07/09/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS The non-medical use of over-the-counter or prescribed analgesics (NMUA) is a significant public health problem. Little is known about the genetic and environmental etiology of NMUA and how these risks relate to other classes of substance use and misuse. Our aims were to estimate the heritability NMUA and sources of genetic and environmental covariance with cannabis and nicotine use, cannabis and alcohol use disorders and nicotine dependence in Australian twins. DESIGN Biometrical genetic analyses or twin methods using structural equation univariate and multivariate modeling. SETTING Australia. PARTICIPANTS A total of 2007 young adult twins [66% female; μage = 25.9, standard deviation (SD) = 3.6, range = 18-38] from the Brisbane Longitudinal Twin Study retrospectively assessed between 2009 and 2016. MEASUREMENTS Self-reported NMUA (non-opioid or opioid-based), life-time nicotine, cannabis and opioid use, DSM-V cannabis and alcohol use disorders and the Fagerström Test for Nicotine Dependence. FINDINGS Life-time NMUA was reported by 19.4% of the sample. Univariate heritability explained 46% [95% confidence interval (CI) = 0.29-0.57] of the risks in NMUA. Multivariate analyses revealed that NMUA is moderately associated genetically with cannabis (rg = 0.41) and nicotine (rg = 0.45) use and nicotine dependence (rg = 0.34). In contrast, the genetic correlations with cannabis (rg = 0.15) and alcohol (rg = 0.07) use disorders are weak. CONCLUSIONS In young male and female adults in Australia, the non-medical use of over-the-counter or prescribed analgesics appears to have moderate heritability. NMUA is moderately associated with cannabis and nicotine use and nicotine dependence. Its genetic etiology is largely distinct from that of cannabis and alcohol use disorders.
Collapse
Affiliation(s)
- Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA, USA
- QIMR Berghofer Medical Research Institute, QLD, Australia
| | | | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, NSW, Australia
| | | | - Brad Verhulst
- Psychology Department, Michigan State University, MI, USA
| | - Robert M Kirkpatrick
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA, USA
| | - Kenneth S Kendler
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA, USA
| | | | - Eric G Benotsch
- Psychology Department, Virginia Commonwealth University, VA, USA
| |
Collapse
|
24
|
Avera Twin Register Growing Through Online Consenting and Survey Collection. Twin Res Hum Genet 2019; 22:686-690. [DOI: 10.1017/thg.2019.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe aim of the Avera Twin Register (ATR) is to establish a prospective longitudinal repository of twins, multiples, siblings and family members’ biological samples to study environmental and genetic influences on health and disease. Also, it is our intention to contribute to international genome-wide association study (GWAS) twin consortia when appropriate sample size is achieved within the ATR. The ATR is young compared with existing registers and continues to collect a longitudinal repository of biological specimens, survey data and health information. Data and biological specimens were originally collected via face-to-face appointments or the postal department and consisted of paper-informed consents and questionnaires. Enrollment of the ATR began on May 18, 2016 and is located in Sioux Falls, South Dakota, a rural and frontier area in the Central United States with a regional population of approximately 880,000. The original target area for the ATR was South Dakota and the four surrounding states: Minnesota, Iowa, North Dakota and Nebraska. The ATR has found a need to expand that area based on twin and multiple siblings who live in various areas surrounding these states. A description of the state of the ATR today and its transition to online data collection and informed consent will be presented. The ATR collects longitudinal data on lifestyle, including diet and activity levels, aging, plus complex traits and diseases. All twins and multiples participating in the ATR are genotyped on the Illumina Global Screening Array and receive zygosity results.
Collapse
|
25
|
Trucco EM, Madan B, Villar M. The Impact of Genes on Adolescent Substance Use: A Developmental Perspective. CURRENT ADDICTION REPORTS 2019; 6:522-531. [PMID: 31929960 DOI: 10.1007/s40429-019-00273-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose This review discusses the importance of understanding the impact of genetic factors on adolescent substance use within a developmental framework. Methods for identifying genetic factors, relevant endophenotypes and intermediate phenotypes, and gene-environment interplay effects will be reviewed. Findings Prior work supports the role of polygenic variation on adolescent substance use. Mechanisms through which genes impact adolescent phenotypes consist of differences in neural structure and function, early temperamental differences, and problem behavior. Gene-environment interactions are characterized by increased vulnerability to both maladaptive and adaptive contexts. Summary Developmental considerations in genetic investigations highlight the critical role that polygenic variation has on adolescent substance use. Yet, determining what to do with this information, especially in terms of personalized medicine, poses ethical and logistic challenges.
Collapse
Affiliation(s)
- Elisa M Trucco
- Florida International University, Psychology Department, Center for Children and Families, 11200 SW 8 Street, AHC-1, Miami, FL 33199
| | - Brigitte Madan
- Florida International University, Center for Children and Families, 11200 SW 8 Street, AHC-4, Miami, FL 33199
| | - Michelle Villar
- Florida International University, Center for Children and Families, 11200 SW 8 Street, AHC-1, Miami, FL 33199
| |
Collapse
|
26
|
Chang LH, Couvy-Duchesne B, Liu M, Medland SE, Verhulst B, Benotsch EG, Hickie IB, Martin NG, Gillespie NA. Association between polygenic risk for tobacco or alcohol consumption and liability to licit and illicit substance use in young Australian adults. Drug Alcohol Depend 2019; 197:271-279. [PMID: 30875648 PMCID: PMC11100300 DOI: 10.1016/j.drugalcdep.2019.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/25/2018] [Accepted: 01/19/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Co-morbid substance use is very common. Despite a historical focus using genetic epidemiology to investigate comorbid substance use and misuse, few studies have examined substance-substance associations using polygenic risk score (PRS) methods. METHODS Using summary statistics from the largest substance use GWAS to date (258,797- 632,802 subjects), GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), we constructed PRSs for smoking initiation (PRS-SI), age of initiation of regular smoking (PRS-AI), cigarettes per day (PRS-CPD), smoking cessation (PRS-SC), and drinks per week (PRS-DPW). We then estimated the fixed effect of individual PRSs on 22 lifetime substance use and substance use disorder phenotypes collected in an independent sample of 2463 young Australian adults using genetic restricted maximal likelihood (GREML) in Genome-wide Complex Trait Analysis (GCTA), separately in females, males and both sexes together. RESULTS After accounting for multiple testing, PRS-SI significantly explained variation in the risk of cocaine (0.67%), amphetamine (1.54%), hallucinogens (0.72%), ecstasy (1.66%) and cannabis initiation (0.97%), as well as DSM-5 alcohol use disorder (0.72%). PRS-DPW explained 0.75%, 0.59% and 0.90% of the variation of cocaine, amphetamine and ecstasy initiation respectively. None of the 22 phenotypes including emergent classes of substance use were significantly predicted by PRS-AI, PRS-CPD, and PRS-SC. CONCLUSIONS To our knowledge, this is the first study to report significant genetic overlap between the polygenic risks for smoking initiation and alcohol consumption and the risk of initiating major classes of illicit substances. PRSs constructed from large discovery GWASs allows the detection of novel genetic associations.
Collapse
Affiliation(s)
- Lun-Hsien Chang
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Faculty of Medicine, the University of Queensland, Brisbane, Australia.
| | - Baptiste Couvy-Duchesne
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Institute for Molecular Bioscience, the University of Queensland, Brisbane, Australia
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sarah E Medland
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Brad Verhulst
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Eric G Benotsch
- Psychology Department, Virginia Commonwealth University, VA, USA
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nathan A Gillespie
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia; Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
27
|
Genetic Factors in Cannabinoid Use and Dependence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:129-150. [DOI: 10.1007/978-3-030-21737-2_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|