1
|
Oh DS, Kim E, Normand R, Lu G, Shook LL, Lyall A, Jasset O, Demidkin S, Gilbert E, Kim J, Akinwunmi B, Tantivit J, Tirard A, Arnold BY, Slowikowski K, Goldberg MB, Filbin MR, Hacohen N, Nguyen LH, Chan AT, Yu XG, Li JZ, Yonker L, Fasano A, Perlis RH, Pasternak O, Gray KJ, Choi GB, Drew DA, Sen P, Villani AC, Edlow AG, Huh JR. SARS-CoV-2 infection elucidates features of pregnancy-specific immunity. Cell Rep 2024; 43:114933. [PMID: 39504241 DOI: 10.1016/j.celrep.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Pregnancy is a risk factor for increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory infections, but the mechanisms underlying this risk are poorly understood. To gain insight into the role of pregnancy in modulating immune responses at baseline and upon SARS-CoV-2 infection, we collected peripheral blood mononuclear cells and plasma from 226 women, including 152 pregnant individuals and 74 non-pregnant women. We find that SARS-CoV-2 infection is associated with altered T cell responses in pregnant women, including a clonal expansion of CD4-expressing CD8+ T cells, diminished interferon responses, and profound suppression of monocyte function. We also identify shifts in cytokine and chemokine levels in the sera of pregnant individuals, including a robust increase of interleukin-27, known to drive T cell exhaustion. Our findings reveal nuanced pregnancy-associated immune responses, which may contribute to the increased susceptibility of pregnant individuals to viral respiratory infection.
Collapse
Affiliation(s)
- Dong Sun Oh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; BK21 Graduate Program, Department of Biomedical Sciences and Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Rachelly Normand
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Guangqing Lu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia L Shook
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Olyvia Jasset
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stepan Demidkin
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily Gilbert
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joon Kim
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Babatunde Akinwunmi
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Y Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Marcia B Goldberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael R Filbin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lael Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roy H Perlis
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn J Gray
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pritha Sen
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Andrea G Edlow
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Krupa P, Wein H, Zemmrich LS, Zygmunt M, Muzzio DO. Pregnancy-related factors induce immune tolerance through regulation of sCD83 release. Front Immunol 2024; 15:1452879. [PMID: 39328416 PMCID: PMC11424458 DOI: 10.3389/fimmu.2024.1452879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
A well-balanced maternal immune system is crucial to maintain fetal tolerance in case of infections during pregnancy. Immune adaptations include an increased secretion of soluble mediators to protect the semi-allogeneic fetus from excessive pro-inflammatory response. B lymphocytes acquire a higher capacity to express CD83 and secrete soluble CD83 (sCD83) upon exposure to bacteria-derived components such as LPS. CD83 possesses immune modulatory functions and shows a promising therapeutic potential against inflammatory conditions. The administration of sCD83 to pregnant mice reduces LPS-induced abortion rates. The increased CD83 expression by endometrial B cells as compared to peripheral blood B cells suggests its modulatory role in the fetal tolerance, especially in the context of infection. We postulate that in pregnancy, CD83 expression and release is controlled by pregnancy-related hormones. The intra- and extracellular expression of CD83 in leukocytes from peripheral blood or decidua basalis and parietalis at term were analyzed by flow cytometry. After treatment with pregnancy-related hormones and LPS, ELISA and qPCR were performed to study sCD83 release and CD83 gene expression, respectively. Cleavage prediction analysis was used to find potential proteases targeting CD83. Expression of selected proteases was analyzed by ELISA. Higher levels of CD83 were found in CD11c+ dendritic cells, CD3+ T cells and CD19+ B cells from decidua basalis and decidua parietalis after LPS-stimulation in vitro. An increase of intracellular expression of CD83 was also detected in CD19+ B cells from both compartments. Stimulated B cells displayed significantly higher percentages of CD83+ cells than dendritic cells and T cells from decidua basalis and peripheral blood. Treatment of B lymphocytes with pregnancy-related molecules (E2, P4, TGF-β1 and hCG) enhanced the LPS-mediated increase of CD83 expression, while dexamethasone led to a reduction. Similarly, the release of sCD83 was increased under TGF-β1 treatment but decreased upon dexamethasone stimulation. Finally, we found that the hormonal regulation of CD83 expression is likely a result from a balance between gene transcription from CD83 and the modulation of the metalloproteinase MMP-7. Thus, data supports and complements our previous murine studies on hormonal regulation of CD83 expression, reinforcing its immunomodulatory relevance in anti-bacterial responses during pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University Medicine
Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Chen X, Li X, Yang K, Fang J. Maternal periodontitis may cause lower birth weight in children: genetic evidence from a comprehensive Mendelian randomization study on periodontitis and pregnancy. Clin Oral Investig 2024; 28:194. [PMID: 38441677 PMCID: PMC10914849 DOI: 10.1007/s00784-024-05591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES This study aims to comprehensively investigate the potential genetic link between periodontitis and adverse pregnancy outcomes using a two-sample Mendelian Randomization approach. MATERIALS AND METHODS We employed robust genetic instruments for chronic periodontitis as exposure data from the FinnGen database. Data encompassing various pregnancy stage outcomes, including pre-pregnancy conditions (irregular menstruation, endometriosis, abnormal reproductive bleeding, and female infertility), pregnancy complications (hemorrhage, spontaneous miscarriage, and abnormalities in products), and post-pregnancy factors (single spontaneous delivery, labor duration, and birth weight of the child), were obtained from the UK Biobank. The random-effects inverse-variance weighted (IVW) method was utilized to compute primary estimates while diligently assessing potential directional pleiotropy and heterogeneity. RESULTS Our findings indicate a negative association between periodontitis and labor duration (odds ratio [OR] = 0.999; 95% confidence interval [CI]: 0.999 to 1.000; P = 0.017). Individuals with periodontitis are more likely to deliver lower-weight infants (OR = 0.983; 95% CI: 0.972 to 0.995; P = 0.005). We found no evidence of pleiotropy or heterogeneity in aforementioned two associations. We did not observe casual links with pre-pregnancy conditions and pregnancy complications. CONCLUSIONS This Mendelian Randomization study underscores the genetic influence of periodontitis on specific adverse pregnancy outcomes, particularly concerning labor duration and lower birth weight deliveries. CLINICAL RELEVANCE Our study emphasizes the critical importance of maintaining periodontal health during pregnancy and offers genetic evidence supporting these associations. Further investigation is required to delve deeper into the specific underlying mechanisms.
Collapse
Affiliation(s)
- Xixiong Chen
- Department of Stomatology, First people's Hospital of Linping District, No. 365 Yingbing Road, Hangzhou, 310000, China.
| | - Xiao Li
- Department of Stomatology, First people's Hospital of Linping District, No. 365 Yingbing Road, Hangzhou, 310000, China
| | - Kun Yang
- Department of Stomatology, First people's Hospital of Yuhang District, Hangzhou, China
| | - Jinlin Fang
- Department of Nursing, Shaoxing Seventh people's Hospital, Shaoxing, China
| |
Collapse
|
5
|
Meriç P, Silbereisen A, Emingil G, Öztürk VÖ, Bostanci N. Clinical, oral immunological and microbiological shifts during and after pregnancy. Clin Oral Investig 2023; 28:60. [PMID: 38157038 PMCID: PMC10756889 DOI: 10.1007/s00784-023-05408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Physiological changes and shifts in the oral microbiota composition during pregnancy may affect the maternal immune system. Uncomplicated pregnancy is associated with a T-helper (Th) 2 predominant cytokine regulation (anti-inflammatory), while oral health deterioration during pregnancy is reflected by severe gingival inflammation, a primarily Th1 cytokine phenotype (pro-inflammatory), and oral microbiome alterations. This prospective observational study aimed to evaluate Th cytokine shifts and changes in the oral microbiota composition in saliva of women before and after birth. MATERIAL AND METHODS Saliva (n = 96) was collected before and 6 months after birth, and medical, oral health, and periodontal status were assessed. In a multiplex immunoassay, 10 cytokines were simultaneously analyzed and cumulative Th1 and Th2 cytokine levels and Th1/Th2 ratio were calculated for all groups. Putative periodontal pathogens (n = 6) were evaluated by quantitative real-time polymerase chain reaction. RESULTS Th2 cytokine levels were significantly lower (p = 0.014) while pro-inflammatory cytokine levels were significantly higher (p < 0.01) during pregnancy than postpartum. Similar Th1 levels were found between the groups (p = 0.143). Th1 and Th2 cytokines positively correlated with periodontal parameters (p < 0.001) and levels of studied bacteria during pregnancy (p < 0.05). CONCLUSIONS This study identified a significantly increased Th1/Th2 cytokine ratio during pregnancy and a positive association with putative periodontal pathogens. This immunological and microbiological deregulation in the oral milieu during pregnancy is suggestive of a destructive inflammatory periodontal profile. STUDY REGISTRATION Clinical Trials.gov (Record BAP-2015). CLINICAL RELEVANCE Understanding altered oral immunological and microbiological regulation patterns during pregnancy may help improve the inflammatory periodontal profile in pregnant women.
Collapse
Affiliation(s)
- Pınar Meriç
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Angelika Silbereisen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, Huddinge, 14104, Stockholm, Sweden
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Veli-Özgen Öztürk
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, Huddinge, 14104, Stockholm, Sweden.
| |
Collapse
|
6
|
Wen B, Liao H, Lin W, Li Z, Ma X, Xu Q, Yu F. The Role of TGF-β during Pregnancy and Pregnancy Complications. Int J Mol Sci 2023; 24:16882. [PMID: 38069201 PMCID: PMC10706464 DOI: 10.3390/ijms242316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, is one of the most important inflammatory cytokines closely related to pregnancy. It plays significant roles in hormone secretion, placental development, and embryonic growth during pregnancy. TGF-β is implicated in embryo implantation and inhibits the invasion of extraepithelial trophoblast cells. It also moderates the mother-fetus interaction by adjusting the secretion pattern of immunomodulatory factors in the placenta, consequently influencing the mother's immune cells. The TGF-β family regulates the development of the nervous, respiratory, and cardiovascular systems by regulating gene expression. Furthermore, TGF-β has been associated with various pregnancy complications. An increase in TGF-β levels can induce the occurrences of pre-eclampsia and gestational diabetes mellitus, while a decrease can lead to recurrent miscarriage due to the interference of the immune tolerance environment. This review focuses on the role of TGF-β in embryo implantation and development, providing new insights for the clinical prevention and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Baohong Wen
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Huixin Liao
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Weilin Lin
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Zhikai Li
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Xiaoqing Ma
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Feiyuan Yu
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
7
|
Chasman DA, Welch Schwartz R, Vazquez J, Chavarria M, Jenkins ET, Lopez GE, Tyler CT, Stanic AK, Ong IM. Proteogenomic and V(D)J Analysis of Human Decidual T Cells Highlights Unique Transcriptional Programming and Clonal Distribution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:154-162. [PMID: 37195197 PMCID: PMC10330249 DOI: 10.4049/jimmunol.2200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Immunological tolerance toward the semiallogeneic fetus is one of many maternal adaptations required for a successful pregnancy. T cells are major players of the adaptive immune system and balance tolerance and protection at the maternal-fetal interface; however, their repertoire and subset programming are still poorly understood. Using emerging single-cell RNA sequencing technologies, we simultaneously obtained transcript, limited protein, and receptor repertoire at the single-cell level, from decidual and matched maternal peripheral human T cells. The decidua maintains a tissue-specific distribution of T cell subsets compared with the periphery. We find that decidual T cells maintain a unique transcriptome programming, characterized by restraint of inflammatory pathways by overexpression of negative regulators (DUSP, TNFAIP3, ZFP36) and expression of PD-1, CTLA-4, TIGIT, and LAG3 in some CD8 clusters. Finally, analyzing TCR clonotypes demonstrated decreased diversity in specific decidual T cell populations. Overall, our data demonstrate the power of multiomics analysis in revealing regulation of fetal-maternal immune coexistence.
Collapse
Affiliation(s)
- Deborah A. Chasman
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Rene Welch Schwartz
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jessica Vazquez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Melina Chavarria
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Eryne T. Jenkins
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Gladys E. Lopez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Chanel T. Tyler
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Aleksandar K. Stanic
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Irene M. Ong
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
8
|
Dines V, Suvakov S, Kattah A, Vermunt J, Narang K, Jayachandran M, Abou Hassan C, Norby AM, Garovic VD. Preeclampsia and the Kidney: Pathophysiology and Clinical Implications. Compr Physiol 2023; 13:4231-4267. [PMID: 36715282 DOI: 10.1002/cphy.c210051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Preeclampsia and other hypertensive disorders of pregnancy are major contributors to maternal morbidity and mortality worldwide. This group of disorders includes chronic hypertension, gestational hypertension, preeclampsia, preeclampsia superimposed on chronic hypertension, and eclampsia. The body undergoes important physiological changes during pregnancy to allow for normal placental and fetal development. Several mechanisms have been proposed that may lead to preeclampsia, including abnormal placentation and placental hypoxia, impaired angiogenesis, excessive pro-inflammatory response, immune system imbalance, abnormalities of cellular senescence, alterations in regulation and activity of angiotensin II, and oxidative stress, ultimately resulting in upregulation of multiple mediators of endothelial cell dysfunction leading to maternal disease. The clinical implications of preeclampsia are significant as there are important short-term and long-term health consequences for those affected. Preeclampsia leads to increased risk of preterm delivery and increased morbidity and mortality of both the developing fetus and mother. Preeclampsia also commonly leads to acute kidney injury, and women who experience preeclampsia or another hypertensive disorder of pregnancy are at increased lifetime risk of chronic kidney disease and cardiovascular disease. An understanding of normal pregnancy physiology and the pathophysiology of preeclampsia is essential to develop novel treatment approaches and manage patients with preeclampsia and hypertensive disorders of pregnancy. © 2023 American Physiological Society. Compr Physiol 13:4231-4267, 2023.
Collapse
Affiliation(s)
- Virginia Dines
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jane Vermunt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kavita Narang
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander M Norby
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Wen X, Fu X, Zhao C, Yang L, Huang R. The bidirectional relationship between periodontal disease and pregnancy via the interaction of oral microorganisms, hormone and immune response. Front Microbiol 2023; 14:1070917. [PMID: 36778874 PMCID: PMC9908602 DOI: 10.3389/fmicb.2023.1070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Periodontal disease has been suggested to be linked to adverse pregnancy outcomes such as preterm birth, low birth weight, and preeclampsia. Adverse pregnancy outcomes are a significant public health issue with important clinical and societal repercussions. This article systematically reviews the available epidemiological studies involving the relationship between periodontal disease and adverse pregnancy outcomes over the past 15 years, and finds a weak but independent association between adverse pregnancy outcomes and periodontal disease. The bidirectional association and the potential mechanisms are then explored, focusing on three possible mechanisms: inflammatory reaction, oral microorganisms and immune response. Specifically, elevated systemic inflammation and increased periodontal pathogens with their toxic products, along with a relatively suppressed immune system may lead to the disruption of homeostasis within fetal-placental unit and thus induce adverse pregnancy outcomes. This review also explains the possible mechanisms around why women are more susceptible to periodontal disease. In conclusion, pregnant women are more likely to develop periodontal disease due to hormonal changes, and periodontal disease has also been suspected to increase the incidence of adverse pregnancy outcomes. Therefore, in order to lessen the risk of adverse pregnancy outcomes, both obstetricians and dentists should pay attention to the development of periodontal diseases among women during pregnancy.
Collapse
|
10
|
Vélez C, Clauzure M, Williamson D, Koncurat MA, Barbeito C. IFN-γ and IL-10: seric and placental profile during pig gestation Seric and placental cytokines in pig gestation. AN ACAD BRAS CIENC 2023; 95:e20201160. [PMID: 37075349 DOI: 10.1590/0001-3765202320201160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/25/2020] [Indexed: 04/21/2023] Open
Abstract
Concentration of interferon-gamma and interleukin-10 in maternal serum and in maternal and fetal porcine placental extracts from different gestation periods was determined. Crossbred pigs' placental samples of 17, 30, 60, 70, and 114 days gestation and non-pregnant uteri were used. Interferon-gamma concentration was increased at the placental interface at 17 days, in maternal and fetal placenta, and decreased significantly in the remaining gestation periods. Interferon-gamma showed a peak in serum at 60 days. Regarding interleukin-10, placental tissue concentrations were unaltered, there were no significant differences with non-gestating uteri samples. In serum interleukin-10 increased at 17, 60, and 114 days gestation. At 17 days there are uterus structural and molecular changes that allow the embryos implantation and placenta development. The presence of interferon-gamma found at this moment in the interface would favor that placental growth. Moreover, its significant increase in serum at 60 days, would generate a proinflammatory cytokine pattern that facility the placental remodeling characteristic of this moment of porcine gestation. On the other hand, a significant interleukin-10 increase in serum at 17, 60 and 114 days could indicate its immunoregulatory role at a systemic level during pig gestation.
Collapse
Affiliation(s)
- Carolina Vélez
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Delia Williamson
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
| | - Mirta A Koncurat
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
| | - Claudio Barbeito
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
- Laboratory of Descriptive, Comparative and Experimental Histology and Embryology, School of Veterinary Science, National University of La Plata, Av. 60, 118, B1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
11
|
Andrawus M, Sharvit L, Atzmon G. Epigenetics and Pregnancy: Conditional Snapshot or Rolling Event. Int J Mol Sci 2022; 23:12698. [PMID: 36293556 PMCID: PMC9603966 DOI: 10.3390/ijms232012698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetics modification such as DNA methylation can affect maternal health during the gestation period. Furthermore, pregnancy can drive a range of physiological and molecular changes that have the potential to contribute to pathological conditions. Pregnancy-related risk factors include multiple environmental, behavioral, and hereditary factors that can impact maternal DNA methylation with long-lasting consequences. Identification of the epigenetic patterns linked to poor pregnancy outcomes is crucial since changes in DNA methylation patterns can have long-term effects. In this review, we provide an overview of the epigenetic changes that influence pregnancy-related molecular programming such as gestational diabetes, immune response, and pre-eclampsia, in an effort to close the gap in current understanding regarding interactions between the environment, the genetics of the fetus, and the pregnant woman.
Collapse
Affiliation(s)
| | | | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
12
|
A Comprehensive Investigation into the Distribution of Circulating B Cell Subsets in the Third Trimester of Pregnancy. J Clin Med 2022; 11:jcm11113006. [PMID: 35683395 PMCID: PMC9181443 DOI: 10.3390/jcm11113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023] Open
Abstract
Maternal B cells play a crucial role in the development and maintenance of pregnancy, due to their humoral activities and regulatory functions. In the study, we investigated the alterations in the distributions of naïve and memory B cell subsets, as well as regulatory B (Breg) cells, in the third trimester of pregnancy. Peripheral blood from 14 healthy pregnant women in the third trimester and 7 healthy non-pregnant women was collected and examined for the frequencies of B cell subsets, including IgD+CD27− naïve, IgD+CD27+ un-switched memory, IgD−CD27+ switched memory, CD38intCD24int mature–naïve, CD38−CD24hi primarily memory and CD38hiCD24hi transitional B cells by flow cytometry. Breg cell subsets were also characterized based on the expression of CD5, CD1d and IL-10. In pregnant women, the proportions of un-switched memory and transitional B cells were significantly decreased. Additionally, the frequencies of both CD5+CD1d+ Breg and IL-10-producing B10 cells were decreased in pregnancy. Changes in the distribution of transitional B cells as well as Breg cells may be crucial contributors for the development of altered maternal immune responses and tolerance needed for the maintenance of normal pregnancy in the third trimester.
Collapse
|
13
|
Schmidt PMDS, Longoni A, Pinheiro RT, Assis AMD. Postpartum depression in maternal thyroidal changes. Thyroid Res 2022; 15:6. [PMID: 35351167 PMCID: PMC8966368 DOI: 10.1186/s13044-022-00124-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Evidence in the literature has suggested that there may be an association between thyroid antibodies and depression during pregnancy and in the postpartum period. Thus, this study aims to conduct a systematic review on the prevalence of postpartum depression (PPD) in women with thyroid abnormalities during pregnancy or in the postpartum period. For this review, we used four databases (PubMed, Lilacs, Scielo, and Scopus). Fifteen studies were selected; one study used a case–control design, four used a cross-sectional design and ten utilized prospective cohort designs. All studies were restricted to up to 1 year postpartum, and 46.7% focused on a period between immediate postpartum and 6 months postpartum. Estimates of the prevalence of PPD in pregnant women with thyroid disorders ranged between 8.3% and 36.0%. For follow-up studies, the cumulative incidence of self-reported depression from the primary episode in the first postpartum year was 6.3% in a high-city survey. Although some authors consider the status of positive anti-TPO antibodies to be a possible marker of vulnerability to depression , it is not yet possible to conclude whether thyroid function in the pregnancy-puerperal cycle is involved with the development of PPD.
Collapse
Affiliation(s)
- Paula Michele da Silva Schmidt
- Center of Health Science, Postgraduate Program in Health and Behavior, Universidade Católica de Pelotas - UCPel, Pelotas, RS, 96015-560, Brazil
| | - Aline Longoni
- Center of Health Science, Postgraduate Program in Health and Behavior, Universidade Católica de Pelotas - UCPel, Pelotas, RS, 96015-560, Brazil
| | - Ricardo Tavares Pinheiro
- Center of Health Science, Postgraduate Program in Health and Behavior, Universidade Católica de Pelotas - UCPel, Pelotas, RS, 96015-560, Brazil
| | - Adriano Martimbianco de Assis
- Center of Health Science, Postgraduate Program in Health and Behavior, Universidade Católica de Pelotas - UCPel, Pelotas, RS, 96015-560, Brazil.
| |
Collapse
|
14
|
Duan L, Reisch B, Iannaccone A, Hadrovic E, Wu Y, Vogtmann R, Winterhager E, Kimmig R, Köninger A, Mach P, Gellhaus A. Abnormal expression of the costimulatory molecule B7-H4 in placental chorionic villous and decidual basalis tissues of patients with preeclampsia and HELLP syndrome. Am J Reprod Immunol 2021; 86:e13430. [PMID: 33864713 DOI: 10.1111/aji.13430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND B7-H4, a checkpoint molecule of the B7 family, regulates a broad spectrum such as T-cell activation, cytokine secretion, tumour progression, and invasion capacities. Our previous data revealed that soluble B7-H4 (sB7-H4) blood serum levels are elevated in women at high risk for the hypertensive pregnancy disorder preeclampsia (PE) in the first trimester, as well as in patients with confirmed early/late-onset PE. AIM We here aim to investigate the expression pattern of B7-H4 in placental tissues of PE and HELLP Syndrome versus control group. METHODS B7-H4 protein expression and localization were investigated by immunoblotting and co-immunohistochemistry in placental chorionic villous and decidual basalis tissues. RESULTS B7-H4 protein was prominently expressed at the cell membrane, in the cytoplasm of the syncytiotrophoblast (STB) and interstitial extravillous trophoblast (EVT). B7-H4 protein levels in placental chorionic villous tissue were significantly higher in women with early-onset/late-onset PE and HELLP, while it was decreased in decidual basalis tissues of early-onset PE and HELLP compared with controls. CONCLUSION B7-H4 was inversely expressed in placental chorionic villous and decidual basalis tissues of PE and HELLP patients. The increase in B7-H4 in the STB in PE and HELLP may lead to excessive apical expression and release of soluble B7-H4 in the maternal circulation. In contrast, the decrease in B7-H4 in decidual basalis tissues could be related to the decrease in invasion ability of the EVT in PE. Thus, the current results strongly suggest that B7-H4 is involved in the pathogenesis of PE and HELLP.
Collapse
Affiliation(s)
- Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Beatrix Reisch
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Elina Hadrovic
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Yuqing Wu
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Rebekka Vogtmann
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany.,Department of Gynecology and Obstetrics, Clinic of the Order of St. John, St. Hedwigs Clinic, Regensburg, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Campanile G, Baruselli PS, Limone A, D'Occhio MJ. Local action of cytokines and immune cells in communication between the conceptus and uterus during the critical period of early embryo development, attachment and implantation - Implications for embryo survival in cattle: A review. Theriogenology 2021; 167:1-12. [PMID: 33743503 DOI: 10.1016/j.theriogenology.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Early embryo development, implantation and pregnancy involve a complex dialogue between the embryo and mother. In cattle this dialogue starts as early as days 3-4 when the embryo is still in the oviduct, and it continues to implantation. Immunological processes involving cytokines, mast cells and macrophages form an important part of this dialogue. Amongst the cytokines, interleukin-6 (Il-6) and leukemia inhibitory factor (LIF) are secreted by both the embryo and uterine endometrium and form part of an ongoing and reciprocating dialogue. Mast cells and macrophages populate the uterine endometrium during embryo development and are involved in achieving the correct balance between inflammatory and anti-inflammatory reactions at the uterus that are associated with embryo attachment and implantation. Embryo loss is the major cause of reproductive wastage in cattle, and livestock generally. A deeper understanding of immunological processes during early embryo development will help to achieve the next step change in the efficiency of natural and assisted breeding.
Collapse
Affiliation(s)
- Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| | - Antonio Limone
- Instituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
16
|
Cinicola B, Conti MG, Terrin G, Sgrulletti M, Elfeky R, Carsetti R, Fernandez Salinas A, Piano Mortari E, Brindisi G, De Curtis M, Zicari AM, Moschese V, Duse M. The Protective Role of Maternal Immunization in Early Life. Front Pediatr 2021; 9:638871. [PMID: 33996688 PMCID: PMC8113393 DOI: 10.3389/fped.2021.638871] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
With birth, the newborn is transferred from a quasi-sterile environment to the outside world. At this time, the neonatal immune system is inexperienced and continuously subject to a process of development as it encounters different antigenic stimuli after birth. It is initially characterized by a bias toward T helper 2 phenotype, reduced T helper 1, and cytotoxic responses to microbial stimuli, low levels of memory, and effector T and B cells and a high production of suppressive T regulatory cells. The aim of this setting, during fetal life, is to maintain an anti-inflammatory state and immune-tolerance. Maternal antibodies are transferred during pregnancy through the placenta and, in the first weeks of life of the newborn, they represent a powerful tool for protection. Thus, optimization of vaccination in pregnancy represents an important strategy to reduce the burden of neonatal infections and sepsis. Beneficial effects of maternal immunization are universally recognized, although the optimal timing of vaccination in pregnancy remains to be defined. Interestingly, the dynamic exchange that takes place at the fetal-maternal interface allows the transfer not only of antibodies, but also of maternal antigen presenting cells, probably in order to stimulate the developing fetal immune system in a harmless way. There are still controversial effects related to maternal immunization including the so called "immunology blunting," i.e., a dampened antibody production following infant's vaccination in those infants who received placentally transferred maternal immunity. However, clinical relevance of this phenomenon is still not clear. This review will provide an overview of the evolution of the immune system in early life and discuss the benefits of maternal vaccination. Current maternal vaccination policies and their rationale will be summarized on the road to promising approaches to enhance immunity in the neonate.
Collapse
Affiliation(s)
- Bianca Cinicola
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy.,Ph.D. Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, United Kingdom.,Infection, Immunity & Inflammation Department, Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ane Fernandez Salinas
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Brindisi
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mario De Curtis
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy.,Department Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Marzia Duse
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Marques-Santos C, Avila WS, Carvalho RCMD, Lucena AJGD, Freire CMV, Alexandre ERG, Campanharo FF, Rivera MAMR, Costa MENC, Castro MLD. Position Statement on COVID-19 and Pregnancy in Women with Heart Disease Department of Women Cardiology of the Brazilian Society of Cardiology - 2020. Arq Bras Cardiol 2020; 115:975-986. [PMID: 33295471 PMCID: PMC8452224 DOI: 10.36660/abc.20201063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Walkiria Samuel Avila
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de medicina da Universidade de são Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | | | - Maria Elizabeth Navegantes Caetano Costa
- Cardio Diagnóstico, Belém, PA - Brasil
- Centro Universitário Metropolitano da Amazônia (UNIFAMAZ), Belém, PA - Brasil
- Centro Universitário do Estado Pará (CESUPA), Belém, PA - Brasil
- UNIMED, Belém, PA - Brasil
| | | |
Collapse
|
18
|
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol 2020; 11:575197. [PMID: 33133091 PMCID: PMC7579415 DOI: 10.3389/fimmu.2020.575197] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christina Michalski
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Sarapultsev A, Sarapultsev P. Immunological environment shifts during pregnancy may affect the risk of developing severe complications in COVID-19 patients. Am J Reprod Immunol 2020; 84:e13285. [PMID: 32516444 PMCID: PMC7300503 DOI: 10.1111/aji.13285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/15/2023] Open
Affiliation(s)
- Alexey Sarapultsev
- Institute of Immunology and PhysiologyUral Division of the Russian Academy of SciencesEkaterinburgRussia
| | - Petr Sarapultsev
- Institute of Immunology and PhysiologyUral Division of the Russian Academy of SciencesEkaterinburgRussia
| |
Collapse
|
20
|
Jafarpour R, Pashangzadeh S, Mehdizadeh S, Bayatipoor H, Shojaei Z, Motallebnezhad M. Functional significance of lymphocytes in pregnancy and lymphocyte immunotherapy in infertility: A comprehensive review and update. Int Immunopharmacol 2020; 87:106776. [PMID: 32682255 DOI: 10.1016/j.intimp.2020.106776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
During pregnancy, the fetal-maternal interface underlies several dynamic alterations to permit the fetus to be cultivated and developed in the uterus, in spite of being identifies by the maternal immune system. A large variety of decidual leukocyte populations, including natural killer cells, NKT cells, innate lymphoid cells, dendritic cells, B cells, T cells, subpopulations of helper T cells play a vital role in controlling the trophoblast invasion, angiogenesis as well as vascular remodeling. In contrast, several regulatory immunosuppressive mechanisms, including regulatory T cells, regulatory B cells, several cytokines and mediators are involved in maintain the homeostasis of immune system in the fetal-maternal interface. Nonetheless, aberrant alterations in the balance of immune inflammatory or immunosuppressive arms have been associated with various pregnancy losses and infertilities. As a result, numerous strategies have been developed to revers dysregulated balance of immune players to increase the chance of successful pregnancy. Lymphocyte immunotherapy has been developed through utilization of peripheral white blood cells of the husband or others and administered into the mother to confer an immune tolerance for embryo's antigens. However, the results have not always been promising, implying to further investigations to improve the approach. This review attempts to clarify the involvement of lymphocytes in contributing to the pregnancy outcome and the potential of lymphocyte immunotherapy in treatment of infertilities with dysregulated immune system basis.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Vazquez-Pagan A, Honce R, Schultz-Cherry S. Impact of influenza virus during pregnancy: from disease severity to vaccine efficacy. Future Virol 2020. [DOI: 10.2217/fvl-2020-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pregnant women are among the individuals at the highest risk for severe influenza virus infection. Infection of the mother during pregnancy increases the probability of adverse fetal outcomes such as small for gestational age, preterm birth and fetal death. Animal models of syngeneic and allogeneic mating can recapitulate the increased disease severity observed in pregnant women and are used to define the mechanism(s) of that increased severity. This review focuses on influenza A virus pathogenesis, the unique immunological landscape during pregnancy, the impact of maternal influenza virus infection on the fetus and the immune responses at the maternal–fetal interface. Finally, we summarize the importance of immunization and antiviral treatment in this population and highlight issues that warrant further investigation.
Collapse
Affiliation(s)
- Ana Vazquez-Pagan
- Graduate School of Biomedical Sciences, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
22
|
Luo L, Zeng X, Huang Z, Luo S, Qin L, Li S. Reduced frequency and functional defects of CD4 +CD25 highCD127 low/- regulatory T cells in patients with unexplained recurrent spontaneous abortion. Reprod Biol Endocrinol 2020; 18:62. [PMID: 32522204 PMCID: PMC7285476 DOI: 10.1186/s12958-020-00619-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Unexplained recurrent spontaneous abortion (URSA) is defined as two or more consecutive pregnancy losses, generally of unknown cause; it is related to a failure of fetal-maternal immunological tolerance. Regulatory T cells (Tregs) exert immunosuppressive effects, which are essential to maintain fetal-maternal immunological tolerance and regulate immune balance. In this study, we used the specific cell-surface phenotype of CD4+CD25highCD127low/- Tregs to investigate the number and suppressive function of Tregs isolated from the peripheral blood of patients with URSA with the aim of expanding our understanding of their role in URSA. METHODS We isolated a relatively pure population of peripheral CD4+CD25highCD127low/- Tregs and CD4+CD25- responder T cells (Tresps) from the patients with URSA and normal fertile nonpregnant control women via fluorescence-activated cell sorting. We compared the frequency, suppressive capacity, and forkhead box transcription factor P3 (FOXP3) expression of Tregs in the peripheral blood between patients with URSA and normal controls. RESULTS The frequency of CD4+CD25highCD127low/- Tregs in the peripheral blood was lower in URSA patients than in the controls (P < 0.05). The mean fluorescence intensity of FOXP3 and FOXP3 mRNA expression in Tregs was also significantly lower in the URSA patients (P < 0.01). Tregs suppressed the activity of autologous Tresps stimulated with anti-CD3/CD28 beads in a concentration-dependent manner, with the strongest suppression occurring in cocultures with a 1:1 Treg:Tresp ratio in both groups; however, patient-derived Tregs exhibited a poorer capacity to suppress the proliferation of autologous Tresps than the Tregs from normal controls (P < 0.01). Moreover, Tregs isolated from URSA patients inhibited the proliferation of Tresps from normal controls less potently than the Tregs from normal controls (P < 0.01), and Tresps from URSA patients were less effectively suppressed by autologous Tregs than by those from normal controls (P < 0.01). Tresp activity were intact in both groups. CONCLUSIONS We observed a lower frequency of peripheral CD4+CD25highCD127low/- Tregs with lower FOXP3 expression in the peripheral blood of URSA patients. In addition, highly purified Tregs from patients with URSA exhibited impaired suppressive effects. The defect in immune regulation in URSA patients appears to be primarily related to impaired Tregs, and not to increased resistance of Tresps to suppression. Our findings reveal a potential novel therapeutic target for URSA.
Collapse
Affiliation(s)
- Li Luo
- grid.461863.e0000 0004 1757 9397Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- grid.13291.380000 0001 0807 1581Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xun Zeng
- grid.461863.e0000 0004 1757 9397Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- grid.13291.380000 0001 0807 1581Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhongying Huang
- grid.461863.e0000 0004 1757 9397Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- grid.13291.380000 0001 0807 1581Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shan Luo
- grid.461863.e0000 0004 1757 9397Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- grid.13291.380000 0001 0807 1581Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lang Qin
- grid.461863.e0000 0004 1757 9397Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- grid.13291.380000 0001 0807 1581Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shangwei Li
- grid.461863.e0000 0004 1757 9397Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- grid.13291.380000 0001 0807 1581Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
23
|
Gomez-Lopez N, Romero R, Hassan SS, Bhatti G, Berry SM, Kusanovic JP, Pacora P, Tarca AL. The Cellular Transcriptome in the Maternal Circulation During Normal Pregnancy: A Longitudinal Study. Front Immunol 2019; 10:2863. [PMID: 31921132 PMCID: PMC6928201 DOI: 10.3389/fimmu.2019.02863] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Pregnancy represents a unique immunological state in which the mother adapts to tolerate the semi-allogenic conceptus; yet, the cellular dynamics in the maternal circulation are poorly understood. Using exon-level expression profiling of up to six longitudinal whole blood samples from 49 pregnant women, we undertook a systems biology analysis of the cellular transcriptome dynamics and its correlation with the plasma proteome. We found that: (1) chromosome 14 was the most enriched in transcripts differentially expressed throughout normal pregnancy; (2) the strongest expression changes followed three distinct longitudinal patterns, with genes related to host immune response (e.g., MMP8, DEFA1B, DEFA4, and LTF) showing a steady increase in expression from 10 to 40 weeks of gestation; (3) multiple biological processes and pathways related to immunity and inflammation were modulated during gestation; (4) genes changing with gestation were among those specific to T cells, B cells, CD71+ erythroid cells, natural killer cells, and endothelial cells, as defined based on the GNF Gene Expression Atlas; (5) the average expression of mRNA signatures of T cells, B cells, and erythroid cells followed unique patterns during gestation; (6) the correlation between mRNA and protein abundance was higher for mRNAs that were differentially expressed throughout gestation than for those that were not, and significant mRNA-protein correlations were observed for genes part of the T-cell signature. In summary, unique changes in immune-related genes were discovered by longitudinally assessing the cellular transcriptome in the maternal circulation throughout normal pregnancy, and positive correlations were noted between the cellular transcriptome and plasma proteome for specific genes/proteins. These findings provide insights into the immunobiology of normal pregnancy.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Detroit Medical Center, Detroit, MI, United States
- Department of Obstetrics & Gynecology, Florida International University, Miami, FL, United States
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Stanley M. Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| |
Collapse
|
24
|
Sanchez TW, Li B, Molinaro C, Casiano CA, Bellinger DL, Mata-Greenwood E. Maternal plasma proteomics in a rat model of pregnancy complications reveals immune and pro-coagulant gene pathway activation. Am J Reprod Immunol 2019; 83:e13205. [PMID: 31677200 DOI: 10.1111/aji.13205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
PROBLEM The Brown Norway (BN) rat is a model of T-helper 2 immune diseases, and also a model of pregnancy disorders that include placental insufficiency, fetal loss, and pre-eclampsia-like symptoms. The aim of this study was to investigate the plasma proteomic/cytokine profile of pregnant BN rats in comparison to that of the Lewis (LEW) rat strain. METHOD OF STUDY Plasma proteomics differences were studied at day 13 of pregnancy in pooled plasma samples by differential in-gel electrophoresis, and protein identification was performed by mass spectrometry. Key protein findings and predicted cytokine differences were validated by ELISA using plasma from rats at various pregnancy stages. Proteomics data were used for ingenuity pathway analysis (IPA). RESULTS In-gel analysis revealed 74 proteins with differential expression between BN and LEW pregnant dams. ELISA studies confirmed increased maternal plasma levels of complement 4, prothrombin, and C-reactive protein in BN compared to LEW pregnancies. LEW pregnancies showed higher maternal plasma levels of transthyretin and haptoglobin than BN pregnancies. Ingenuity pathway analysis revealed that BN pregnancies are characterized by activation of pro-coagulant, reactive oxygen species, and immune-mediated chronic inflammation pathways, and suggested increased interleukin 6 and decreased transforming growth factor-β1 as potential upstream events. Plasma cytokine analysis revealed that pregnant BN dams have a switch from anti- to pro-inflammatory cytokines with the opposite switch observed in pregnant LEW dams. CONCLUSION Brown Norway rats show a maternal pro-inflammatory response to pregnancy that likely contributes to the reproductive outcomes observed in this rat strain.
Collapse
Affiliation(s)
- Tino W Sanchez
- School of Medicine, Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Bo Li
- School of Medicine, Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, California
| | - Christine Molinaro
- Division of Anatomy, Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, California
| | - Carlos A Casiano
- School of Medicine, Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Denise L Bellinger
- Division of Anatomy, Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, California
| | - Eugenia Mata-Greenwood
- School of Medicine, Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, California
| |
Collapse
|
25
|
Cyprian F, Lefkou E, Varoudi K, Girardi G. Immunomodulatory Effects of Vitamin D in Pregnancy and Beyond. Front Immunol 2019; 10:2739. [PMID: 31824513 PMCID: PMC6883724 DOI: 10.3389/fimmu.2019.02739] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
In addition to its role in calcium homeostasis and bone formation, a modulatory role of the active form of vitamin D on cells of the immune system, particularly T lymphocytes, has been described. The effects of vitamin D on the production and action of several cytokines has been intensively investigated in recent years. In this connection, deficiency of vitamin D has been associated with several autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), antiphospholipid syndrome (APS), Hashimoto Thyroiditis (HT), and multiple sclerosis (MS). In a successful pregnancy, the maternal immune response needs to adapt to accommodate the semiallogeneic fetus. Disturbances in maternal tolerance are implicated in infertility and pregnancy complications such as miscarriages (RM) and preeclampsia (PE). It is well-known that a subset of T lymphocytes, regulatory T cells (Tregs) exhibit potent suppressive activity, and have a crucial role in curtailing the destructive response of the immune system during pregnancy, and preventing autoimmune diseases. Interestingly, vitamin D deficiency is common in pregnant women, despite the widespread use of prenatal vitamins, and adverse pregnancy outcomes such as RM, PE, intrauterine growth restriction have been linked to hypovitaminosis D during pregnancy. Research has shown that autoimmune diseases have a significant prevalence within the female population, and women with autoimmune disorders are at higher risk for adverse pregnancy outcomes. Provocatively, dysregulation of T cells plays a crucial role in the pathogenesis of autoimmunity, and adverse pregnancy outcomes where these pathologies are also associated with vitamin D deficiency. This article reviews the immunomodulatory role of vitamin D in autoimmune diseases and pregnancy. In particular, we will describe the role of vitamin D from conception until delivery, including the health of the offspring. This review highlights an observational study where hypovitaminosis D was correlated with decreased fertility, increased disease activity, placental insufficiency, and preeclampsia in women with APS.
Collapse
Affiliation(s)
- Farhan Cyprian
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Eleftheria Lefkou
- Institute of Obstetric Hematology, Perigenesis, Thessaloniki, Greece
| | - Katerina Varoudi
- Institute of Obstetric Hematology, Perigenesis, Thessaloniki, Greece
| | - Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Placental bed research: II. Functional and immunological investigations of the placental bed. Am J Obstet Gynecol 2019; 221:457-469. [PMID: 31288009 DOI: 10.1016/j.ajog.2019.07.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/01/2019] [Accepted: 07/02/2019] [Indexed: 01/14/2023]
Abstract
Research on the placenta as the interface between the mother and the fetus has been undertaken for some 150 years, and in 2 subsequent reviews, we attempted to summarize the situation. In the first part, we described the discovery of unique physiological modifications of the uteroplacental spiral arteries, enabling them to cope with a major increase in blood flow necessary to ensure proper growth of the fetus. These consist of an invasion of the arterial walls by trophoblast and a progressive disappearance of its normal structure. Researchers then turned to the pathophysiology of the placental bed and in particular to its maternal vascular tree. This yielded vital information for a better understanding of the so-called great obstetrical syndromes (preeclampsia, fetal growth restriction, premature labor and delivery, placenta accreta). Systematic morphological investigations of the uteroplacental vasculature showed that preeclampsia is associated with decreased or failed transformation of spiral arteries and the persistence of endothelial and smooth muscle cells in segments of their myometrial portion. Here we report on recent functional investigations of the placental bed, including in situ biophysical studies of uteroplacental blood flow and vascular resistance, and manipulation of uteroplacental perfusion. These new methodologies have provided a novel way of identifying pregnancies in which remodeling is impaired. In animals it is now possible to manipulate uteroplacental blood flow, leading to an enhancement of fetal growth; this opens the way to trials in abnormal human pregnancies. In this second part, we explored a new, extremely important area of research that deals with the role of specific subsets of leukocytes and macrophages in the placental bed. The human first-trimester decidua is rich in leukocytes called uterine natural killer cells. Both macrophages and uterine natural killer cells increase in number from the secretory endometrium to early pregnancy and play a critical role in mediating the process of spiral artery transformation by inducing initial structural changes. It seems therefore that vascular remodeling of spiral arteries is initiated independently of trophoblast invasion. Dysregulation of the immune system may lead to reproductive failure or pregnancy complications, and in this respect, recent studies have advanced our understanding of the mechanisms regulating immunological tolerance during pregnancy, with several mechanisms being proposed for the development of tolerance to the semiallogeneic fetus. In particular, these include several strategies by which the trophoblast avoids maternal recognition. Finally, an important new dimension is being explored: the likelihood that pregnancy syndromes and impaired uteroplacental vascular remodeling may be linked to future maternal and even the child's cardiovascular disease risk. The functional evidence underlying these observations will be discussed.
Collapse
|
27
|
Lower activation of CD4+ memory T cells in preeclampsia compared to healthy pregnancies persists postpartum. J Reprod Immunol 2019; 136:102613. [DOI: 10.1016/j.jri.2019.102613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022]
|
28
|
Persson G, Ekmann JR, Hviid TVF. Reflections upon immunological mechanisms involved in fertility, pregnancy and parasite infections. J Reprod Immunol 2019; 136:102610. [PMID: 31479960 DOI: 10.1016/j.jri.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
During a pregnancy, the mother accepts her semi-allogeneic fetus with no signs of immunological rejection. Therefore, some modulation of the maternal immune system must occur. Similarly, changes in the host's immune system occurs during infections with parasites. In a study conducted in an endemic area in Bolivia, it has been reported that women infected with either the helminthic parasite roundworm or hookworm were estimated to give birth to either two more, or three fewer, children than uninfected, endemic women, respectively. Immune regulation by helminthic parasites is a rather well-researched concept, but there are few reports on the effects on human fecundity. The current review focuses on mechanisms of possible importance for especially the increased fertility rates in women infected with roundworm. The host immune response to roundworm has been hypothesized to be more favourable for a successful pregnancy because it bears resemblance to the anti-inflammatory immunological responses observed in pregnancy, steering the immunological response away from a pro-inflammatory state that seem to suppress fecundity. Further research into parasitic worm interactions, fertility, and the molecular mechanisms that they unfold may widen our understanding of the immunomodulatory pathways in both helminthic infections and in fertility and pregnancy.
Collapse
Affiliation(s)
- Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Josephine Roth Ekmann
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark.
| |
Collapse
|
29
|
Kaminski VDL, Ellwanger JH, Chies JAB. Extracellular vesicles in host-pathogen interactions and immune regulation - exosomes as emerging actors in the immunological theater of pregnancy. Heliyon 2019; 5:e02355. [PMID: 31592031 PMCID: PMC6771614 DOI: 10.1016/j.heliyon.2019.e02355] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/30/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
This review correlates and summarizes the role of the maternal-fetal interface in the immune tolerance of the fetus and the processes that lead to infection avoidance, emphasizing the participation of exosomes and other extracellular vesicles in both situations. Exosomes are released into the extracellular medium by several cell types and are excellent carriers of biomolecules. Host-derived exosomes and the transport of pathogen-derived molecules by exosomes impact infections in different ways. The interactions of exosomes with the maternal immune system are pivotal to a favorable gestational outcome. In this review, we highlight the potential role of exosomes in the establishment of an adequate milieu that enables embryo implantation and discuss the participation of exosomes released at the maternal-fetal interface during the establishment of an immune-privileged compartment for fetal development. The placenta is a component where important strategies are used to minimize the risk of infection. To present a contrast, we also discuss possible mechanisms used by pathogens to cross the maternal-fetal interface. We review the processes, mechanisms, and potential consequences of dysregulation in all of the abovementioned phenomena. Basic information about exosomes and their roles in viral immune evasion is also presented. The interactions between extracellular vesicles and bacteria, fungi, parasites and proteinaceous infectious agents are addressed. The discovery of the placental microbiota and the implications of this new microbiota are also discussed, and current proposals that explain fetal/placental colonization by both pathogenic and commensal microbes are addressed. The comprehension of such interactions will help us to understand the immune dynamics of human pregnancy and the mechanisms of immune evasion used by different pathogens.
Collapse
Affiliation(s)
| | | | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Exhausted and Senescent T Cells at the Maternal-Fetal Interface in Preterm and Term Labor. J Immunol Res 2019; 2019:3128010. [PMID: 31263712 PMCID: PMC6556261 DOI: 10.1155/2019/3128010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.
Collapse
|
31
|
Kieffer TEC, Laskewitz A, Scherjon SA, Faas MM, Prins JR. Memory T Cells in Pregnancy. Front Immunol 2019; 10:625. [PMID: 31001255 PMCID: PMC6455355 DOI: 10.3389/fimmu.2019.00625] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptations of the maternal immune response are necessary for pregnancy success. Insufficient immune adaption is associated with pregnancy pathologies such as infertility, recurrent miscarriage, fetal growth restriction, spontaneous preterm birth, and preeclampsia. The maternal immune system is continuously exposed to paternal-fetal antigens; through semen exposure from before pregnancy, through fetal cell exposure in pregnancy, and through microchimerism after pregnancy. This results in the generation of paternal-fetal antigen specific memory T cells. Memory T cells have the ability to remember previously encountered antigens to elicit a quicker, more substantial and focused immune response upon antigen reencounter. Such fetal antigen specific memory T cells could be unfavorable in pregnancy as they could potentially drive fetal rejection. However, knowledge on memory T cells in pregnancy has shown that these cells might play a favorable role in fetal-maternal tolerance rather than rejection of the fetus. In recent years, various aspects of immunologic memory in pregnancy have been elucidated and the relevance and working mechanisms of paternal-fetal antigen specific memory T cells in pregnancy have been evaluated. The data indicate that a delicate balance of memory T cells seems necessary for reproductive success and that immunologic memory in reproduction might not be harmful for pregnancy. This review provides an overview of the different memory T cell subtypes and their function in the physiology and in complications of pregnancy. Current findings in the field and possible therapeutic targets are discussed. The findings of our review raise new research questions for further studies regarding the role of memory T cells in immune-associated pregnancy complications. These studies are needed for the identification of possible targets related to memory mechanisms for studies on preventive therapies.
Collapse
Affiliation(s)
- Tom E C Kieffer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne Laskewitz
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Leng Y, Romero R, Xu Y, Galaz J, Slutsky R, Arenas-Hernandez M, Garcia-Flores V, Motomura K, Hassan SS, Reboldi A, Gomez-Lopez N. Are B cells altered in the decidua of women with preterm or term labor? Am J Reprod Immunol 2019; 81:e13102. [PMID: 30768818 DOI: 10.1111/aji.13102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM The immunophenotype of B cells at the maternal-fetal interface (decidua) in labor at term and preterm labor is poorly understood. METHOD OF STUDY Decidual tissues were obtained from women with preterm or term labor and from non-labor gestational age-matched controls. Immunophenotyping of decidual B cells was performed using multicolor flow cytometry. RESULTS (a) In the absence of acute or chronic chorioamnionitis, total B cells were more abundant in the decidua parietalis of women who delivered preterm than in those who delivered at term, regardless of the presence of labor; (b) decidual transitional and naïve B cells were the most abundant B-cell subsets; (c) decidual B1 B cells were increased in women with either labor at term or preterm labor and chronic chorioamnionitis compared to those without this placental lesion; (d) decidual transitional B cells were reduced in women with preterm labor compared to those without labor; (e) naïve, class-switched, and non-class-switched B cells in the decidual tissues underwent mild alterations with the process of preterm labor; (f) decidual plasmablasts seemed to increase in women with either labor at term or preterm labor with chronic chorioamnionitis; and (g) decidual B cells expressed high levels of interleukin (IL)-12, IL-6, and/or IL-35. CONCLUSION Total B cells are not increased with the presence of preterm or term labor; yet, specific subsets (B1 and plasmablasts) undergo alterations in women with chronic chorioamnionitis. Therefore, B cells are solely implicated in the pathological process of preterm labor in a subset of women with chronic inflammation of the placenta. These findings provide insight into the immunology of the maternal-fetal interface in preterm and term labor.
Collapse
Affiliation(s)
- Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
33
|
Tsuda S, Nakashima A, Shima T, Saito S. New Paradigm in the Role of Regulatory T Cells During Pregnancy. Front Immunol 2019; 10:573. [PMID: 30972068 PMCID: PMC6443934 DOI: 10.3389/fimmu.2019.00573] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Semi-allogenic fetuses are not rejected by the maternal immune system because feto-maternal tolerance induced by CD4+CD25+FoxP3+ regulatory T (Treg) cells is established during pregnancy. Paternal antigen-specific Treg cells accumulate during pregnancy, and seminal plasma priming plays an important role in expanding paternal antigen-specific Treg cells in mouse models. Although paternal-antigen specific Treg cells have not been identified in humans, recent studies suggest that antigen-specific Treg cells exist and expand at the feto-maternal interface in humans. Studies have also revealed that reduction of decidual functional Treg cells occurs during miscarriage with normal fetal chromosomal content, whereas insufficient clonal expansion of decidual Treg cells is observed in preeclampsia. In this review, we will discuss the recent advances in the investigation of mechanisms underlying Treg cell-dependent maintenance of feto-maternal tolerance.
Collapse
Affiliation(s)
- Sayaka Tsuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| |
Collapse
|
34
|
Esteve-Solé A, Luo Y, Vlagea A, Deyà-Martínez Á, Yagüe J, Plaza-Martín AM, Juan M, Alsina L. B Regulatory Cells: Players in Pregnancy and Early Life. Int J Mol Sci 2018; 19:ijms19072099. [PMID: 30029515 PMCID: PMC6073150 DOI: 10.3390/ijms19072099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Pregnancy and early infancy represent two very particular immunological states. During pregnancy, the haploidentical fetus and the pregnant women develop tolerance mechanisms to avoid rejection; then, just after birth, the neonatal immune system must modulate the transition from the virtually sterile but haploidentical uterus to a world full of antigens and the rapid microbial colonization of the mucosa. B regulatory (Breg) cells are a recently discovered B cell subset thought to play a pivotal role in different conditions such as chronic infections, autoimmunity, cancer, and transplantation among others in addition to pregnancy. This review focuses on the role of Breg cells in pregnancy and early infancy, two special stages of life in which recent studies have positioned Breg cells as important players.
Collapse
Affiliation(s)
- Ana Esteve-Solé
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Yiyi Luo
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Alexandru Vlagea
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Ángela Deyà-Martínez
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Jordi Yagüe
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Ana María Plaza-Martín
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
| | - Manel Juan
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
Abstract
Concern about what is best practice when caring for women with neurologic disease is a common clinical scenario. Therefore, knowledge about women's health issues and their intersection with neurologic disorders is imperative. This review will discuss the appropriate gender-based considerations in epilepsy, multiple sclerosis, migraine, autoimmune disease, sleep disorders, stroke, and paraneoplastic disorders.
Collapse
|
36
|
Zhuang T, Urakawa M, Sato H, Sato Y, Taguchi T, Umino T, Katto S, Tanaka K, Yoshimura K, Takada N, Kobayashi H, Ito M, Rose MT, Kiku Y, Nagasawa Y, Kitazawa H, Watanabe K, Nochi T, Hayashi T, Aso H. Phenotypic and functional analysis of bovine peripheral blood dendritic cells before parturition by a novel purification method. Anim Sci J 2018; 89:1011-1019. [PMID: 29708291 PMCID: PMC6055732 DOI: 10.1111/asj.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are specialized antigen presenting cells specializing in antigen uptake and processing, and play an important role in the innate and adaptive immune response. A subset of bovine peripheral blood DCs was identified as CD172a+/CD11c+/MHC (major histocompatibility complex) class II+ cells. Although DCs are identified at 0.1%–0.7% of peripheral blood mononuclear cells (PBMC), the phenotype and function of DCs remain poorly understood with regard to maintaining tolerance during the pregnancy. All cattle used in this study were 1 month before parturition. We have established a novel method for the purification of DCs from PBMC using magnetic‐activated cell sorting, and purified the CD172a+/CD11c+DCs, with high expression of MHC class II and CD40, at 84.8% purity. There were individual differences in the expressions of CD205 and co‐stimulatory molecules CD80 and CD86 on DCs. There were positive correlations between expression of cytokine and co‐stimulatory molecules in DCs, and the DCs maintained their immune tolerance, evidenced by their low expressions of the co‐stimulatory molecules and cytokine production. These results suggest that before parturition a half of DCs may be immature and tend to maintain tolerance based on the low cytokine production, and the other DCs with high co‐stimulatory molecules may already have the ability of modulating the T‐cell linage.
Collapse
Affiliation(s)
- Tao Zhuang
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Megumi Urakawa
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hidetoshi Sato
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Yuko Sato
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Teruaki Taguchi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tsuyoshi Umino
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shiro Katto
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Koutaro Tanaka
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kozue Yoshimura
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Naokazu Takada
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Hiroko Kobayashi
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Megumi Ito
- Miyagi Prefecture Animal Industry Experiment Station, Iwadeyama, Miyagi, Japan
| | - Michael T Rose
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Cardiganshire, UK
| | - Yoshio Kiku
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Yuya Nagasawa
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kouichi Watanabe
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tomohito Hayashi
- Hokkaido Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
37
|
Abstract
Maternal immunization for prevention of morbidity and mortality of pregnant women and their neonates due to infectious diseases is ongoing worldwide. The complexity of vaccine research and development in this population is challenging. Not only do vaccines for pregnant women require evidence of immunogenicity, potency, stability, and limited reactogenicity, they must also provide efficacy in decreasing morbidity for the pregnant woman, her fetus, and the neonate, demonstrate safety or lack of evidence of harm, and offer benefit or potential benefit of vaccination during pregnancy. Since the 19th century, evidence of protective effects of vaccination during pregnancy has been documented. Pandemic influenza and pertussis outbreaks in recent years have affected a paradigm shift in vaccine research and development as well as current policy regarding immunization in pregnancy. Studies of the immune system in pregnant women and neonates have shown that immune changes associated with pregnancy in women do not interfere with maternal vaccine responses, multiple factors are important in transplacental transfer of antibodies, and maternal antibodies are beneficial to neonates. In recent years, guidelines have been developed by expert panels to help design studies for maternal vaccinations and for harmonization of data collection, analysis, and adverse event reporting. Further research into maternal and neonatal immunology, transplacental antibody transfer, and epidemiology of diseases is needed, especially as new vaccines to respiratory syncytial virus, cytomegalovirus, and Group B streptococcus are developed. Maternal vaccinations have the potential to change the epidemiology of infectious diseases in reproductive health and pediatrics and may lead to new clinical applications to improve global maternal and neonatal health.
Collapse
Affiliation(s)
- Alisa Kachikis
- 1 Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Linda O Eckert
- 1 Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington.,2 Department of Global Health, University of Washington , Seattle, Washington
| | - Janet Englund
- 3 Department of Pediatrics, Pediatric Infectious Diseases, Seattle Children's Hospital, University of Washington , Seattle, Washington
| |
Collapse
|
38
|
Sharma K, Singh R, Kumar M, Gupta U, Rohil V, Bhattacharjee J. First-Trimester Inflammatory Markers for Risk Evaluation of Pregnancy Hypertension. J Obstet Gynaecol India 2018; 68:27-32. [PMID: 29391672 PMCID: PMC5783907 DOI: 10.1007/s13224-017-0988-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/28/2017] [Indexed: 01/30/2023] Open
Abstract
Introduction Hypertension in pregnancy is one of the potential causes of maternal and fetal morbidity and mortality. It complicates 7-10% of pregnancies. As of today, prediction of pregnancy hypertension is not possible. Aim and Objectives Evaluation of pregnancy associated plasma protein-A (PAPP-A), free β-human chorionic gonadotropin, tumor necrosis factor-α (TNF-α) and interferon gamma (INF-γ) in establishing a biomarker or combination of biomarkers for the early identification of pregnancy hypertension. Methodology This prospective study was carried out in two phases. Phase I was a cohort study in which 2000 pregnant women were enrolled in their first trimester (11 + 0 to 13 + 6 weeks of gestation) and followed till delivery. Women who developed hypertension were compared with normotensive cohort (women who remained normotensive till term). Phase II was a case-control study. The women who were diagnosed with hypertension in phase I were cases and their controls were matched for gestational age and sample storage time from normotensive cohort population. Two additional proinflammatory markers TNF-α and INF-γ were evaluated in this case-control population. Results Out of 2000 women, 199 women developed hypertension and 1454 women remained normotensive throughout their pregnancy. Among 199 hypertensive women, 151 (9.13%) cases had gestational hypertension, 45 (2.72%) had preeclampsia (PE) and 3 (0.18%) had eclampsia (E). First trimester mean arterial pressure (MAP) (p < 0.001) and body mass index (BMI) (p < 0.001) were found significantly higher in hypertensive women when compared with normotensive women. Maternal serum levels of PAPP-A (p < 0.001) were significantly low in hypertensive women as compared to normotensive women, while free β-hCG (p = 0.59) was high, but the difference was not statistically significant. TNF-α (p < 0.001) and INF-γ (p = 0.014) both were high in hypertensive women. When all biomarkers were combined we found the positive predictive value (PPV) of 51.6% an negative predictive value (NPV) of 71.4%. Conclusion Increased levels of proinflammatory cytokines suggest the role of underlying inflammation in pathogenesis of pregnancy hypertension, and low PAPP-A may be attributed to impaired implantation. Combining biomarkers may improve the prediction of pregnancy hypertension in the early stages of gestation. NPV of 71.4% depicts that if woman has all biomarkers in normal ranges during first trimester, she will have 71.4% chances of remaining normotensive during pregnancy.
Collapse
Affiliation(s)
- Karuna Sharma
- Biochemistry, Lady Hardinge Medical College, New Delhi, India
| | - Ritu Singh
- Biochemistry, Lady Hardinge Medical College, New Delhi, India
| | - Manisha Kumar
- Obstetrics and Gynecology, Lady Hardinge Medical College, New Delhi, India
| | - Usha Gupta
- ESIC Medical College, Faridabad, Haryana India
| | - Vishwajeet Rohil
- Clinical Biochemistry, Vallabhbhai Patel Chest Institute, New Delhi, India
| | | |
Collapse
|
39
|
Abstract
Sex differences in epidemiological, clinical, and pathological features of multiple sclerosis (MS) have been observed for decades, establishing a foundation for more recent progress in our understanding of their overall impact on the disease. In the ACTRIMS session on Hormones, Sex Chromosomes, and MS: Risk Factors, Biomarkers, and Therapeutic Targets, this progress was summarized in three presentations by pioneers in the field, revealing evidence that sex chromosomes, epigenetic factors, and sex hormones function as interactive determinants of disease risk and phenotype in a fashion dependent upon life stage, from prenatal development, childhood, and adolescence to adulthood and aging. Implications for the effects of puberty, pregnancy, menopause, and andropause on autoimmune and neurodegenerative mechanisms were discussed, along with potential applications of exogenous hormones. Although several limitations in current approaches and concepts were noted, current insights pave the way for future progress in our understanding of this enigmatic disease
Collapse
Affiliation(s)
- Riley Bove
- Department of Neurology and Weill Institute for Neurosciences, University of California–San Francisco, San Francisco, CA, USA
| | - Wendy Gilmore
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Wang Y, Li J, Wang Y, Gu W, Zhu F. Effectiveness and practical uses of 23-valent pneumococcal polysaccharide vaccine in healthy and special populations. Hum Vaccin Immunother 2017; 14:1003-1012. [PMID: 29261406 PMCID: PMC5893217 DOI: 10.1080/21645515.2017.1409316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Streptococcus pneumonia (S. pneumoniae) is responsible for significant morbidity and mortality throughout the world. The 23-valent pneumococcal polysaccharide vaccines (PPV23) have been widely used for many years, but challenges are remaining in some respects, especially for its effectiveness among high-risk populations and older adults. This review aims to summarize recent clinical trials and studies of PPV23 vaccination among healthy people ≥ 2 years of age and those with high-risk conditions such as pregnant women, individuals with immunocompromising diseases and other chronic conditions, and provide health officials in China and other developing countries a comprehensive understanding of the current vaccination strategies for PPV23 and for the combined use of PPV23 and pneumococcal conjugate vaccines (PCVs) in adults.
Collapse
Affiliation(s)
- Yang Wang
- a School of Public Health, Southeast University , Nanjing , PR China
| | - Jingxin Li
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Yuxiao Wang
- a School of Public Health, Southeast University , Nanjing , PR China
| | - Wei Gu
- c School of Public Health, Nanjing Medical University , Nanjing , PR China
| | - Fengcai Zhu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| |
Collapse
|
41
|
Küssel L, Herkner H, Wahrmann M, Eskandary F, Doberer K, Binder J, Pateisky P, Zeisler H, Böhmig GA, Bond G. Longitudinal assessment of HLA and MIC-A antibodies in uneventful pregnancies and pregnancies complicated by preeclampsia or gestational diabetes. Sci Rep 2017; 7:13524. [PMID: 29051520 PMCID: PMC5648869 DOI: 10.1038/s41598-017-13275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022] Open
Abstract
The significance of antibodies directed against paternal epitopes in the context of obstetric disorders is discussed controversially. In this study anti-HLA and anti-MIC-A antibodies were analysed in sera of women with uneventful pregnancy (n = 101), preeclampsia (PE, n = 55) and gestational diabetes (GDM, n = 36) using antigen specific microbeads. While two thirds of the women with uneventful pregnancy or GDM were HLA and MIC-A antibody positive in gestational week 11 to 13 with a modest increase towards the end of pregnancy, women with PE showed an inverse kinetic: 90% were HLA antibody positive in gestational week 11 to 13 and only 10% showed HLA reactivities at the end of the pregnancy. HLA antibody binding strength was more pronounced in gestational week 14 to 17 in patients with PE compared to women with uneventful pregnancy (maximum median fluorescence intensity of the highest ranked positive bead 7403, IQR 2193–7938 vs. 1093, IQR 395–5689; p = 0.04) and was able to predict PE with an AUC of 0.80 (95% CI 0.67–0.93; p = 0.002). Our data suggest a pathophysiological involvement of HLA antibodies in PE. HLA antibody quantification in early pregnancy may provide a useful tool to increase diagnostic awareness in women prone to develop PE.
Collapse
Affiliation(s)
- Lorenz Küssel
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julia Binder
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Petra Pateisky
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Harald Zeisler
- Department for Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
42
|
Abstract
Congenital infections with pathogens such as Zika virus, Toxoplasma gondii, Listeria monocytogenes, Treponema pallidium, parvovirus, HIV, varicella zoster virus, Rubella, Cytomegalovirus, and Herpesviruses are a major cause of morbidity and mortality worldwide. Despite the devastating impact of microbial infections on the developing fetus, relatively little is known about how pathogens associated with congenital disease breach the placental barrier to transit vertically during human pregnancy. In this Review, we focus on transplacental transmission of pathogens during human gestation. We introduce the structure of the human placenta and describe the innate mechanisms by which the placenta restricts microbial access to the intrauterine compartment. Based on current knowledge, we also discuss the potential pathways employed by microorganisms to overcome the placental barrier and prospects for the future.
Collapse
Affiliation(s)
- Nitin Arora
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA; Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
43
|
Kieffer TE, Faas MM, Scherjon SA, Prins JR. Pregnancy persistently affects memory T cell populations. J Reprod Immunol 2017; 119:1-8. [DOI: 10.1016/j.jri.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
|
44
|
Doherty M, Schmidt-Ott R, Santos JI, Stanberry LR, Hofstetter AM, Rosenthal SL, Cunningham AL. Vaccination of special populations: Protecting the vulnerable. Vaccine 2016; 34:6681-6690. [PMID: 27876197 DOI: 10.1016/j.vaccine.2016.11.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
Abstract
One of the strategic objectives of the 2011-2020 Global Vaccine Action Plan is for the benefits of immunisation to be equitably extended to all people. This approach encompasses special groups at increased risk of vaccine-preventable diseases, such as preterm infants and pregnant women, as well as those with chronic and immune-compromising medical conditions or at increased risk of disease due to immunosenescence. Despite demonstrations of effectiveness and safety, vaccine uptake in these special groups is frequently lower than expected, even in developed countries with vaccination strategies in place. For example, uptake of the influenza vaccine in pregnancy rarely exceeds 50% in developed countries and, although data are scarce, it appears that only half of preterm infants are up-to-date with routine paediatric vaccinations. Many people with chronic medical conditions or who are immunocompromised due to disease or aging are also under-vaccinated. In the US, coverage among people aged 65years or older was 67% for the influenza vaccine in the 2014-2015 season and 55-60% for tetanus and pneumococcal vaccines in 2013, while the coverage rate for herpes zoster vaccination among those aged 60years or older was only 24%. In most other countries, rates are far lower. Reasons for under-vaccination of special groups include fear of adverse outcomes or illness caused by the vaccine, the inconvenience (and in some settings, cost) of vaccination and lack of awareness of the need for vaccination or national recommendations. There is also evidence that healthcare providers' attitudes towards vaccination are among the most important influences on the decision to vaccinate. It is clear that physicians' adherence to recommendations needs to be improved, particularly where patients receive care from multiple subspecialists and receive little or no care from primary care providers.
Collapse
Affiliation(s)
- Mark Doherty
- GSK Vaccines, Avenue Fleming 20, Parc de la Noire Epine, B-1300 Wavre, Belgium.
| | | | | | - Lawrence R Stanberry
- Columbia University College of Physicians and Surgeons, New York, NY, USA; New York-Presbyterian/Morgan Stanley Children's Hospital, New York, NY, USA.
| | - Annika M Hofstetter
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Susan L Rosenthal
- Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Anthony L Cunningham
- Westmead Institute, The Centre for Virus Research, 176 Hawkesbury Road, NSW 2145, Australia.
| |
Collapse
|
45
|
Zeng W, Liu Z, Zhang S, Ren J, Ma X, Qin C, Tian F, Zhang Y, Lin Y. Characterization of T follicular helper cells in allogeneic normal pregnancy and PDL1 blockage-induced abortion. Sci Rep 2016; 6:36560. [PMID: 27819282 PMCID: PMC5098204 DOI: 10.1038/srep36560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022] Open
Abstract
A deeper understanding of the immunological events during pregnancy will provide novel insights into the pathogenesis of pregnancy complications. The fundamental function of T follicular helper (Tfh) cells is to provide cognate help to B cells. Dysregulations of Tfh-cell function and/or development can result in various immunological diseases. However, the role and characteristics of Tfh cells during pregnancy remain unknown. Herein, an allogeneic-normal-pregnant mouse model was used, and we found that the CD4+ T cells residing at the uterus and placenta (UP) displayed a Tfh-like phenotype; and the UP-derived CD4+CXCR5hiPD-1hi and CD4+CXCR5hiICOShi Tfh cells, which showed a memory/activation phenotype, reached their peak at mid-pregnancy. These Tfh cells were located abundantly in the uterus at mid-pregnancy, but greatly increased in the placenta at late-pregnancy. Furthermore, increased foetal resorption by PDL1 blockade correlated with enhanced accumulation of Tfh cells and upregulated expressions of ICOS and PD-1 on these cells. Collectively, our findings are the first to indicate that an adequate and balanced accumulation of Tfh cells during gestation is likely to help maintaining a successful pregnancy, whereas an excessively high level of these cells could lead to abortion.
Collapse
Affiliation(s)
- Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Zhicui Liu
- Department of Dermatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Siming Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Jiabin Ren
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P. R. China
| | - Xiaoling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Chuanmei Qin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, the International Peace Maternity &Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
46
|
Hyde KJ, Schust DJ. Immunologic challenges of human reproduction: an evolving story. Fertil Steril 2016; 106:499-510. [PMID: 27477190 DOI: 10.1016/j.fertnstert.2016.07.1073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Characterization of the implanting human fetus as an allograft prompted a field of research in reproductive immunology that continues to fascinate and perplex scientists. Paternal- or partner-derived alloantigens are present in the maternal host at multiple times during the reproductive process. They begin with exposure to semen, continue through implantation and placentation, and may persist for decades in the form of fetal microchimerism. Changes in maternal immune responses that allow allogenic fertilization and survival of semiallogenic concepti to delivery must be balanced with a continued need to respond appropriately to pathogenic invaders, commensals, cell or tissue damage, and any tendency toward malignant transformation. This complex and sophisticated balancing act is essential for survival of mother, fetus, and the species itself. We will discuss concepts of alloimmune recognition, tolerance, and ignorance as they pertain to mammalian reproduction with a focus on human reproduction, maternal immune modulation, and the very earliest events in the reproductive process, fertilization and implantation.
Collapse
Affiliation(s)
- Kassie J Hyde
- University of Missouri School of Medicine, Columbia, Missouri
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri.
| |
Collapse
|
47
|
Thyroid peroxidase autoantibodies and perinatal depression risk: A systematic review. J Affect Disord 2016; 198:108-21. [PMID: 27011366 DOI: 10.1016/j.jad.2016.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/15/2016] [Accepted: 03/07/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND While thyroid autoantibodies have been linked to depression in general population samples, it is unclear if the immunological milieu of pregnancy alters this association. As a result, we systematically reviewed the literature to determine if abnormal levels of autoantibodies that target thyroperoxidase (TPO-AB) during the perinatal period are associated with an increased risk of antenatal and postnatal depression. METHODS MEDLINE, EMBASE, PsycINFO, and CINAHL databases were searched through February 2016. Primary studies that examined TPO-AB titers during pregnancy or the postpartum period, and antenatal or postnatal depression were eligible. The quality of each study was assessed using the Newcastle-Ottawa Scale. RESULTS Among the eleven articles selected for synthesis, three of these examined associations between TPO-AB and depression both during pregnancy and in the postpartum period. Three of five studies reported statistically significant associations between elevated TPO-AB titers (TPO-AB+) and concurrent depression at 12-25 weeks gestation. Four of five studies found significant associations between TPO-AB+ status at 12-25 weeks gestation and depression in the postpartum period. Two of four studies found links between postpartum TPO-AB and depression concurrently in the puerperium. LIMITATIONS Lack of adjustment for confounding variables limits causal inference and conclusions about the predictive power of TPO-AB. CONCLUSIONS Studies suggest that TPO-AB+ in early to mid-pregnancy is associated with concurrent depression and may be predictive of depression in the postpartum period. Future studies with improved methodology are required to better understand the full pathophysiological implications and predictive utility of TPO-AB in perinatal depression.
Collapse
|
48
|
Abstract
Immunizing the pregnant woman to protect both the mother and her infant from infection has been utilized increasingly over the last decade. New outbreaks of pandemic influenza and the resurgence of pertussis have resulted in policy changes and shifts in health authority recommendations for a number of vaccines aimed to protect both pregnant women and their infants in the first months of life. The ability of maternal immunoglobulin IgG antibodies to be transported readily across the healthy intact placenta depends on many different factors including gestational age in the pregnancy, nature and timing of the immunization and presence of maternal HIV or malaria infections. In this paper, the history of maternal immunization is described, and specifically the studies that prompted the recommendations for tetanus, influenza, pertussis, and, when needed, meningococcus vaccines in pregnant women are reviewed. Ongoing research may result in new maternal vaccines against other pathogens including respiratory syncytial virus and group B streptococcus. Both scientific and regulatory considerations remain challenging in licensure of vaccines specifically for maternal immunization.
Collapse
|
49
|
Chau A, Markley J, Juang J, Tsen L. Cytokines in the perinatal period – Part I. Int J Obstet Anesth 2016; 26:39-47. [DOI: 10.1016/j.ijoa.2015.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/28/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023]
|
50
|
Han M, Yao Y, Zeng W, Wang Y, Feng L, Zhao J. Complexes of trophoblastic peptides and heat shock protein 70 as a novel contraceptive vaccine in a mouse model. Reprod Biomed Online 2016; 32:457-65. [PMID: 26847794 DOI: 10.1016/j.rbmo.2015.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
The concept of contraceptive vaccines has interested reproductive biologists and immunologists for nearly 2 decades, but no approach has been approved. In this study, a new immunocontraceptive vaccine that targets placental trophoblasts was expored. We demonstrated that after in-vitro binding with heat shock protein 70, trophoblast-derived peptides can activate T cells both in vitro and in vivo. The activated T cells have a Th1 bias and specifically cause cytolysis of trophoblasts, leading to the termination of pregnancy. Such activated T cells seem to have an effect on early gestation, rather than influencing preimplantation. We did not observe side-effects of this vaccine in mice. In conclusion, a novel contraceptive strategy is described that uses heat shock protein 70-trophoblastic peptide complexes to generate a specific T-cell immune response against placental trophoblasts. This type of vaccine targeting the post-implantation phase does not generate a permanent effect but possibly raises an ethical issue.
Collapse
Affiliation(s)
- Mei Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Yao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wangjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanfang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Zhao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|