1
|
Vancolen S, Chevin M, Robaire B, Sébire G. Exposure to Group B Streptococcus-induced chorioamnionitis alters the proteome of placental extracellular vesicles. Placenta 2025:S0143-4004(25)00018-9. [PMID: 39864996 DOI: 10.1016/j.placenta.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Group B Streptococcus (GBS) is an opportunistic pathogen that can induce chorioamnionitis (CA), increasing the risk of neurodevelopmental disorders (NDDs) in the offspring. The placenta facilitates maternal-fetal communication through the release of extracellular vesicles (EVs), which may carry inflammatory molecules such as interleukin (IL)-1. Although the role of EVs in immune modulation is well established, their specific characterization in the context of GBS-induced CA has not yet been investigated. Understanding placental-derived EVs could further define how IL-1 and other inflammatory factors contribute to NDDs. METHODS We used an established rat model of GBS-induced CA. EVs from control and GBS infected dams were isolated from placentas and characterized using nanoparticle tracking analysis and transmission electron microscopy. The protein content was assessed via mass spectrometry, followed by subsequent pathway analysis. ELISA was used to quantify cytokine levels. RESULTS GBS-infected placentas exhibited calcification and increased weight, while fetal weight decreased. Analysis of the proteome from control versus GBS placental EVs revealed distinct profiles, with many proteins involved in the innate immune response, including alarmins (S100A8/9), complement pathways, and cytokine signaling pathways. Pathway analysis highlighted IL-1α and IL-1β identified as key upstream regulators. Notably, EVs from GBS-infected males showed a 44-fold increase in intracellular IL-1β compared to controls. DISCUSSION These findings indicate that GBS-induced CA alters the protein content of EVs from placental cells. Our findings of increased IL-1β-associated EVs highlight the need for further investigation into the role of these cytokines from GBS-exposed placentas and their role in brain injuries leading to NDDs.
Collapse
Affiliation(s)
- Seline Vancolen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Mathilde Chevin
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Sébire
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Faure-Bardon V, Beghin D, Latour M, Coulm B, Vauzelle C, Elefant E, Marin B. [Use of anti-IL-1 drugs during pregnancy]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024; 52:657-662. [PMID: 38621625 DOI: 10.1016/j.gofs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Anti-Interleukin-1 (Anti-IL-1) drugs are used to treat some chronic rheumatic diseases that can affect young people, including women of childbearing age. Two anti-IL-1 drugs are available in France: anakinra and canakinumab. Data on their use during pregnancy are still limited. Based on the published literature, we carried out a review of the use of these anti-IL-1 therapies during pregnancy: therapeutic indications, pharmacological profiles and assessment of embryonic, fetal and neonatal risks. Based on this analysis, and given the absence of any reported concern, it is possible to consider the use of these two treatments during pregnancy if the clinical situation so requires and under certain conditions. Based on the data available to date, anakinra should be preferred to canakinumab whenever possible.
Collapse
Affiliation(s)
- Valentine Faure-Bardon
- Service de gynécologie-obstétrique, DMU ORIGYNE Femmes-Mères-Enfants, hôpital Pitié-Salpêtrière, AP-HP, Sorbonne université, Paris, France; URP 7328 FETUS, fédération pour la recherche en explorations et thérapeutiques innovantes in utero, université Paris Cité, Paris, France.
| | - Delphine Beghin
- Département de Santé publique, centre de référence sur les agents tératogènes (CRAT), hôpital Trousseau, AP-HP, Sorbonne université, 75012 Paris, France
| | - Mathilde Latour
- Département de Santé publique, centre de référence sur les agents tératogènes (CRAT), hôpital Trousseau, AP-HP, Sorbonne université, 75012 Paris, France
| | - Benedicte Coulm
- Département de Santé publique, centre de référence sur les agents tératogènes (CRAT), institut Pierre-Louis d'épidémiologie et de Santé publique, Sorbonne université, Inserm, hôpital Trousseau, AP-HP, 75012 Paris, France
| | - Catherine Vauzelle
- Département de Santé publique, centre de référence sur les agents tératogènes (CRAT), hôpital Trousseau, AP-HP, Sorbonne université, 75012 Paris, France
| | - Elisabeth Elefant
- Département de Santé publique, centre de référence sur les agents tératogènes (CRAT), hôpital Trousseau, AP-HP, Sorbonne université, 75012 Paris, France
| | - Benoit Marin
- Département de Santé publique, centre de référence sur les agents tératogènes (CRAT), institut Pierre-Louis d'épidémiologie et de Santé publique, Sorbonne université, Inserm, hôpital Trousseau, AP-HP, 75012 Paris, France
| |
Collapse
|
3
|
Osman HC, Moreno R, Rose D, Rowland ME, Ciernia AV, Ashwood P. Impact of maternal immune activation and sex on placental and fetal brain cytokine and gene expression profiles in a preclinical model of neurodevelopmental disorders. J Neuroinflammation 2024; 21:118. [PMID: 38715090 PMCID: PMC11077729 DOI: 10.1186/s12974-024-03106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.
Collapse
Affiliation(s)
- Hadley C Osman
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Rachel Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Megan E Rowland
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Annie Vogel Ciernia
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA.
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA.
| |
Collapse
|
4
|
Manti S, Spoto G, Nicotera AG, Di Rosa G, Piedimonte G. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: current knowledge. Front Neurosci 2024; 17:1320319. [PMID: 38260010 PMCID: PMC10800711 DOI: 10.3389/fnins.2023.1320319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Brain development is a complex process that begins during pregnancy, and the events occurring during this sensitive period can affect the offspring's neurodevelopmental outcomes. Respiratory viral infections are frequently reported in pregnant women, and, in the last few decades, they have been related to numerous neuropsychiatric sequelae. Respiratory viruses can disrupt brain development by directly invading the fetal circulation through vertical transmission or inducing neuroinflammation through the maternal immune activation and production of inflammatory cytokines. Influenza virus gestational infection has been consistently associated with psychotic disorders, such as schizophrenia and autism spectrum disorder, while the recent pandemic raised some concerns regarding the effects of severe acute respiratory syndrome coronavirus 2 on neurodevelopmental outcomes of children born to affected mothers. In addition, emerging evidence supports the possible role of respiratory syncytial virus infection as a risk factor for adverse neuropsychiatric consequences. Understanding the mechanisms underlying developmental dysfunction allows for improving preventive strategies, early diagnosis, and prompt interventions.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
5
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
6
|
Ma J, Trushenski JT, Jones EM, Bruce TJ, McKenney DG, Kurath G, Cain KD. Characterization of maternal immunity following vaccination of broodstock against IHNV or Flavobacterium psychrophilum in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108749. [PMID: 37062435 DOI: 10.1016/j.fsi.2023.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
Infectious hematopoietic necrosis (IHN) is a significant viral disease affecting salmonids, whereas Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD), remains one of the most significant bacterial pathogens of salmonids. We explored maternal immunity in the context of IHN and BCWD management in rainbow trout (Oncorhynchus mykiss) aquaculture. Two experimental trials were conducted where different groups of female broodstock were immunized prior to spawning with an IHNV DNA vaccine or a live attenuated F. psychrophilum (Fp B.17-ILM) vaccine alone, or in combination. Progeny were challenged with either a low or high dose of IHNV at 13 days post hatch (dph) and 32 dph or challenged with F. psychrophilum at 13 dph. Mortality following a low-dose IHNV challenge at 13 dph was significantly lower in progeny from vaccinated broodstock vs. unvaccinated broodstock, but no significant differences were observed at 32 dph. Mortality due to BCWD was also significantly reduced in 13 dph fry that originated from broodstock immunized with the Fp B.17-ILM vaccine. After vaccination broodstock developed specific or neutralizing antibodies respectively to F. psychrophilum and IHNV; however, antibody titers in eggs and fry were undetectable. In the eggs and fry mRNA transcripts of the complement components C3 and C5 were detected at much higher levels in progeny from vaccinated broodstock and showed a significantly increased and rapid response post-challenge compared with unvaccinated broodstock. After challenges pro-inflammatory cytokine expression was immediately and considerably elevated in the fry from vaccinated broodstock vs. unvaccinated broodstock, whereas adaptive immune genes were elevated to a lesser degree. Results suggest that maternal transfer of innate and adaptive factors at the transcript level occurred because development of lymphomyeloid organs is not complete in such young fry. In addition to documenting maternally derived immunity in teleosts, this study demonstrates that broodstock vaccination can confer some degree of protection to progeny against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | | | - Evan M Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Doug G McKenney
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
7
|
Maternal P2X7 receptor inhibition prevents autism-like phenotype in male mouse offspring through the NLRP3-IL-1β pathway. Brain Behav Immun 2022; 101:318-332. [PMID: 35065198 DOI: 10.1016/j.bbi.2022.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/29/2021] [Accepted: 01/16/2022] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition caused by interactions of environmental and genetic factors. Recently we showed that activation of the purinergic P2X7 receptors is necessary and sufficient to convert maternal immune activation (MIA) to ASD-like features in male offspring mice. Our aim was to further substantiate these findings and identify downstream signaling pathways coupled to P2X7 upon MIA. Maternal treatment with the NLRP3 antagonist MCC950 and a neutralising IL-1β antibody during pregnancy counteracted the development of autistic characteristics in offspring mice. We also explored time-dependent changes of a widespread cytokine and chemokine profile in maternal blood and fetal brain samples of poly(I:C)/saline-treated dams. MIA-induced increases in plasma IL-1β, RANTES, MCP-1, and fetal brain IL-1β, IL-2, IL-6, MCP-1 concentrations are regulated by the P2X7/NLRP3 pathway. Offspring treatment with the selective P2X7 receptor antagonist JNJ47965567 was effective in the prevention of autism-like behavior in mice using a repeated dosing protocol. Our results highlight that in addition to P2X7, NLRP3, as well as inflammatory cytokines, may also be potential biomarkers and therapeutic targets of social deficits and repetitive behaviors observed in autism spectrum disorder.
Collapse
|
8
|
Vanderplow AM, Kermath BA, Bernhardt CR, Gums KT, Seablom EN, Radcliff AB, Ewald AC, Jones MV, Baker TL, Watters JJ, Cahill ME. A feature of maternal sleep apnea during gestation causes autism-relevant neuronal and behavioral phenotypes in offspring. PLoS Biol 2022; 20:e3001502. [PMID: 35113852 PMCID: PMC8812875 DOI: 10.1371/journal.pbio.3001502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Mounting epidemiologic and scientific evidence indicates that many psychiatric disorders originate from a complex interplay between genetics and early life experiences, particularly in the womb. Despite decades of research, our understanding of the precise prenatal and perinatal experiences that increase susceptibility to neurodevelopmental disorders remains incomplete. Sleep apnea (SA) is increasingly common during pregnancy and is characterized by recurrent partial or complete cessations in breathing during sleep. SA causes pathological drops in blood oxygen levels (intermittent hypoxia, IH), often hundreds of times each night. Although SA is known to cause adverse pregnancy and neonatal outcomes, the long-term consequences of maternal SA during pregnancy on brain-based behavioral outcomes and associated neuronal functioning in the offspring remain unknown. We developed a rat model of maternal SA during pregnancy by exposing dams to IH, a hallmark feature of SA, during gestational days 10 to 21 and investigated the consequences on the offspring's forebrain synaptic structure, synaptic function, and behavioral phenotypes across multiples stages of development. Our findings represent a rare example of prenatal factors causing sexually dimorphic behavioral phenotypes associated with excessive (rather than reduced) synapse numbers and implicate hyperactivity of the mammalian target of rapamycin (mTOR) pathway in contributing to the behavioral aberrations. These findings have implications for neuropsychiatric disorders typified by superfluous synapse maintenance that are believed to result, at least in part, from largely unknown insults to the maternal environment.
Collapse
Affiliation(s)
- Amanda M. Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bailey A. Kermath
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassandra R. Bernhardt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kimberly T. Gums
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin N. Seablom
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail B. Radcliff
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea C. Ewald
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mathew V. Jones
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jyoti J. Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael E. Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Prenatal administration of IL-1Ra attenuate the neurodevelopmental impacts following non-pathogenic inflammation during pregnancy. Sci Rep 2021; 11:23404. [PMID: 34862457 PMCID: PMC8642433 DOI: 10.1038/s41598-021-02927-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Prenatal inflammation negatively affects placental function, subsequently altering fetal development. Pathogen-associated molecular patterns (PAMPs) are used to mimics infections in preclinical models but rarely detected during pregnancy. Our group previously developed an animal model of prenatal exposure to uric acid (endogenous mediator), leading to growth restriction alongside IL-1-driven placental inflammation (Brien et al. in J Immunol 198(1):443–451, 2017). Unlike PAMPs, the postnatal impact of prenatal non-pathogenic inflammation is still poorly understood. Therefore, we investigated the effects of prenatal uric acid exposure on postnatal neurodevelopment and the therapeutic potential of the IL-1 receptor antagonist; IL-1Ra. Uric acid induced growth restriction and placental inflammation, which IL-1Ra protected against. Postnatal evaluation of both structural and functional aspects of the brain revealed developmental changes. Both astrogliosis and microgliosis were observed in the hippocampus and white matter at postnatal day (PND)7 with IL-1Ra being protective. Decreased myelin density was observed at PND21, and reduced amount of neuronal precursor cells was observed in the Dentate Gyrus at PND35. Functionally, motor impairments were observed as evaluated with the increased time to fully turn upward (180 degrees) on the inclined plane and the pups were weaker on the grip strength test. Prenatal exposure to sterile inflammation, mimicking most clinical situation, induced growth restriction with negative impact on neurodevelopment. Targeted anti-inflammatory intervention prenatally could offer a strategy to protect brain development during pregnancy.
Collapse
|
10
|
Doom JR, Rozenman M, Fox KR, Phu T, Subar AR, Seok D, Rivera KM. The Transdiagnostic Origins of Anxiety and Depression During the Pediatric Period: Linking NIMH Research Domain Criteria (RDoC) Constructs to Ecological Systems. Dev Psychopathol 2021; 33:1599-1619. [PMID: 35281333 PMCID: PMC8916713 DOI: 10.1017/s0954579421000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade, an abundance of research has utilized the NIMH Research Domain Criteria (RDoC) framework to examine mechanisms underlying anxiety and depression in youth. However, relatively little work has examined how these mechanistic intrapersonal processes intersect with context during childhood and adolescence. The current paper covers reviews and meta-analyses that have linked RDoC-relevant constructs to ecological systems in internalizing problems in youth. Specifically, cognitive, biological, and affective factors within the RDoC framework were examined. Based on these reviews and some of the original empirical research they cover, we highlight the integral role of ecological factors to the RDoC framework in predicting onset and maintenance of internalizing problems in youth. Specific recommendations are provided for researchers using the RDoC framework to inform future research integrating ecological systems and development. We advocate for future research and research funding to focus on better integration of the environment and development into the RDoC framework.
Collapse
|
11
|
Ji X, Yue H, Li G, Sang N. Maternal smoking-induced lung injuries in dams and offspring via inflammatory cytokines. ENVIRONMENT INTERNATIONAL 2021; 156:106618. [PMID: 33989842 DOI: 10.1016/j.envint.2021.106618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Maternal smoking during pregnancy can induce permanent changes in neonatal inflammation, which will result in lifelong implications. An original study of data from GSE96978, composed of 2 subseries (GSE96976 and GSE96977), investigated genome-wide changes in ELT cells, the lungs of mouse dams and their juvenile offspring and focused on finding an in vitro alternative as a human tissue-based replacement for the use of animals. Therefore, the study only analyzed the similarities of GO terms between ELT cells and dams. However, the relationship between differentially expressed genes (DEGs) in dams and offspring was not investigated. The present study aimed to identify the key molecules involved in maternal smoking-induced dam and offspring lung injuries. Data from GSE96977 were downloaded from Gene Expression Omnibus (GEO) data sets. In our study, differentially expressed genes (DEGs) in dams and offspring were reanalyzed using the limma package. The results of Gene Set Enrichment Analysis (GSEA) showed that the DEGs in the lungs of dams were significantly enriched in immune-related functions and those in the lungs of offspring were enriched in cell growth. Furthermore, a total of 90 DEGs shared in the dam and offspring datasets were screened out. In addition, most of these DEGs were enriched in cytokine and cytokine receptor interaction KEGG pathways. Furthermore, protein-protein interaction (PPI) network analysis screened out 4 core genes in cluster 1. In addition, the miRNAs related to these core genes were predicted, and mmu-miR-1903 was screened out. Taken together, our data indicate that inflammatory responses may play an important role in maternal smoking induced lung injuries in dams and offspring. Furthermore, mmu-miR-1903 is a potential epigenetic biomarker of lung inflammation in the offspring of dams who smoked during pregnancy. In conclusion, by screening shared differential genes, we only need to detect maternal genes to predict maternal smoking-induced lung injuries in offspring.
Collapse
Affiliation(s)
- Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
12
|
Coler BS, Shynlova O, Boros-Rausch A, Lye S, McCartney S, Leimert KB, Xu W, Chemtob S, Olson D, Li M, Huebner E, Curtin A, Kachikis A, Savitsky L, Paul JW, Smith R, Adams Waldorf KM. Landscape of Preterm Birth Therapeutics and a Path Forward. J Clin Med 2021; 10:2912. [PMID: 34209869 PMCID: PMC8268657 DOI: 10.3390/jcm10132912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Preterm birth (PTB) remains the leading cause of infant morbidity and mortality. Despite 50 years of research, therapeutic options are limited and many lack clear efficacy. Tocolytic agents are drugs that briefly delay PTB, typically to allow antenatal corticosteroid administration for accelerating fetal lung maturity or to transfer patients to high-level care facilities. Globally, there is an unmet need for better tocolytic agents, particularly in low- and middle-income countries. Although most tocolytics, such as betamimetics and indomethacin, suppress downstream mediators of the parturition pathway, newer therapeutics are being designed to selectively target inflammatory checkpoints with the goal of providing broader and more effective tocolysis. However, the relatively small market for new PTB therapeutics and formidable regulatory hurdles have led to minimal pharmaceutical interest and a stagnant drug pipeline. In this review, we present the current landscape of PTB therapeutics, assessing the history of drug development, mechanisms of action, adverse effects, and the updated literature on drug efficacy. We also review the regulatory hurdles and other obstacles impairing novel tocolytic development. Ultimately, we present possible steps to expedite drug development and meet the growing need for effective preterm birth therapeutics.
Collapse
Affiliation(s)
- Brahm Seymour Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Oksana Shynlova
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Adam Boros-Rausch
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
| | - Stephen Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Stephen McCartney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Kelycia B. Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
| | - Sylvain Chemtob
- Departments of Pediatrics, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - David Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Department of Biological Sciencies, Columbia University, New York, NY 10027, USA
| | - Emily Huebner
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Anna Curtin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Alisa Kachikis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Leah Savitsky
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Jonathan W. Paul
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (J.W.P.); (R.S.)
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (J.W.P.); (R.S.)
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Kristina M. Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Andrade CBV, Monteiro VRDS, Coelho SVA, Gomes HR, Sousa RPC, Nascimento VMDO, Bloise FF, Matthews SG, Bloise E, Arruda LB, Ortiga-Carvalho TM. ZIKV Disrupts Placental Ultrastructure and Drug Transporter Expression in Mice. Front Immunol 2021; 12:680246. [PMID: 34093581 PMCID: PMC8176859 DOI: 10.3389/fimmu.2021.680246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital Zika virus (ZIKV) infection can induce fetal brain abnormalities. Here, we investigated whether maternal ZIKV infection affects placental physiology and metabolic transport potential and impacts the fetal outcome, regardless of viral presence in the fetus at term. Low (103 PFU-ZIKVPE243; low ZIKV) and high (5x107 PFU-ZIKVPE243; high ZIKV) virus titers were injected into immunocompetent (ICompetent C57BL/6) and immunocompromised (ICompromised A129) mice at gestational day (GD) 12.5 for tissue collection at GD18.5 (term). High ZIKV elicited fetal death rates of 66% and 100%, whereas low ZIKV induced fetal death rates of 0% and 60% in C57BL/6 and A129 dams, respectively. All surviving fetuses exhibited intrauterine growth restriction (IUGR) and decreased placental efficiency. High-ZIKV infection in C57BL/6 and A129 mice resulted in virus detection in maternal spleens and placenta, but only A129 fetuses presented virus RNA in the brain. Nevertheless, pregnancies in both strains produced fetuses with decreased head sizes (p<0.05). Low-ZIKV-A129 dams had higher IL-6 and CXCL1 levels (p<0.05), and their placentas showed increased CCL-2 and CXCL-1 contents (p<0.05). In contrast, low-ZIKV-C57BL/6 dams had an elevated CCL2 serum level and increased type I and II IFN expression in the placenta. Notably, less abundant microvilli and mitochondrial degeneration were evidenced in the placental labyrinth zone (Lz) of ICompromised and high-ZIKV-ICompetent mice but not in low-ZIKV-C57BL/6 mice. In addition, decreased placental expression of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and the lipid transporter Abca1 was detected in all ZIKV-infected groups, but Bcrp and Abca1 were only reduced in ICompromised and high-ZIKV ICompetent mice. Our data indicate that gestational ZIKV infection triggers specific proinflammatory responses and affects placental turnover and transporter expression in a manner dependent on virus concentration and maternal immune status. Placental damage may impair proper fetal-maternal exchange function and fetal growth/survival, likely contributing to congenital Zika syndrome.
Collapse
Affiliation(s)
| | | | | | - Hanailly Ribeiro Gomes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronny Paiva Campos Sousa
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Flavia Fonseca Bloise
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen Giles Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Barros Arruda
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
14
|
Chudnovets A, Liu J, Narasimhan H, Liu Y, Burd I. Role of Inflammation in Virus Pathogenesis during Pregnancy. J Virol 2020; 95:e01381-19. [PMID: 33115865 PMCID: PMC7944452 DOI: 10.1128/jvi.01381-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral infections during pregnancy lead to a spectrum of maternal and fetal outcomes, ranging from asymptomatic disease to more critical conditions presenting with severe maternal morbidity, stillbirth, preterm birth, intrauterine growth restriction, and fetal congenital anomalies, either apparent at birth or later in life. In this article, we review the pathogenesis of several viral infections that are particularly relevant in the context of pregnancy and intrauterine inflammation. Understanding the diverse mechanisms employed by viral pathogens as well as the repertoire of immune responses induced in the mother may help to establish novel therapeutic options to attenuate changes in the maternal-fetal interface and prevent adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harish Narasimhan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Bush NR, Wakschlag LS, LeWinn KZ, Hertz-Picciotto I, Nozadi SS, Pieper S, Lewis J, Biezonski D, Blair C, Deardorff J, Neiderhiser JM, Leve LD, Elliott AJ, Duarte CS, Lugo-Candelas C, O’Shea TM, Avalos LA, Page GP, Posner J. Family Environment, Neurodevelopmental Risk, and the Environmental Influences on Child Health Outcomes (ECHO) Initiative: Looking Back and Moving Forward. Front Psychiatry 2020; 11:547. [PMID: 32636769 PMCID: PMC7318113 DOI: 10.3389/fpsyt.2020.00547] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
The family environment, with all its complexity and diverse components, plays a critical role in shaping neurodevelopmental outcomes in children. Herein we review several domains of the family environment (family socioeconomic status, family composition and home environment, parenting behaviors and interaction styles, parental mental health and functioning, and parental substance use) and discuss how these domains influence neurodevelopment, with particular emphasis on mental health outcomes. We also highlight a new initiative launched by the National Institutes of Health, the Environmental influences on Child Health Outcomes (ECHO) program. We discuss the role that ECHO will play in advancing our understanding of the impact of the family environment on children's risk for psychiatric outcomes. Lastly, we conclude with important unanswered questions and controversies in this area of research, highlighting how ECHO will contribute to resolving these gaps in our understanding, clarifying relationships between the family environment and children's mental health.
Collapse
Affiliation(s)
- Nicole R. Bush
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, CA, United States
| | - Lauren S. Wakschlag
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, Il, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Sara S. Nozadi
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Sarah Pieper
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Dominik Biezonski
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - Clancy Blair
- Department of Population Health, New York University, New York, NY, United States
| | - Julianna Deardorff
- Community Health Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Jenae M. Neiderhiser
- Department of Psychology, Penn State University, University Park, PA, United States
| | - Leslie D. Leve
- Prevention Science Institute, University of Oregon, Eugene, OR, United States
| | - Amy J. Elliott
- Center for Pediatric and Community Research, Avera Research Institute, Sioux Falls, SD, United States
| | - Cristiane S. Duarte
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - Claudia Lugo-Candelas
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lyndsay A. Avalos
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Grier P. Page
- Department of Biostatistics and Epidemiology, RTI, Atlanta, GA, United States
| | - Jonathan Posner
- Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
16
|
Knutson AO, Watters JJ. All roads lead to inflammation: Is maternal immune activation a common culprit behind environmental factors impacting offspring neural control of breathing? Respir Physiol Neurobiol 2019; 274:103361. [PMID: 31874263 DOI: 10.1016/j.resp.2019.103361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Despite numerous studies investigating how prenatal exposures impact the developing brain, there remains very little known about how these in utero exposures impact the life-sustaining function of breathing. While some exposures such as alcohol and drugs of abuse are well-known to alter respiratory function, few studies have evaluated other common maternal environmental stimuli, such as maternal infection, inhalation of diesel exhaust particles prevalent in urban areas, or obstructive sleep apnea during pregnancy, just to name a few. The goals of this review article are thus to: 1) highlight data on gestational exposures that impair respiratory function, 2) discuss what is known about the potential role of inflammation in the effects of these maternal exposures, and 3) identify less studied but potential in utero exposures that could negatively impact CNS regions important in respiratory motor control, perhaps by impacting maternal or fetal inflammation. We highlight gaps in knowledge, summarize evidence related to the possible contributions of inflammation, and discuss the need for further studies of life-long offspring respiratory function both at baseline and after respiratory challenge.
Collapse
Affiliation(s)
- Andrew O Knutson
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
17
|
Almendros I, Martínez-Ros P, Farré N, Rubio-Zaragoza M, Torres M, Gutiérrez-Bautista ÁJ, Carrillo-Poveda JM, Sopena-Juncosa JJ, Gozal D, Gonzalez-Bulnes A, Farré R. Placental oxygen transfer reduces hypoxia-reoxygenation swings in fetal blood in a sheep model of gestational sleep apnea. J Appl Physiol (1985) 2019; 127:745-752. [PMID: 31369330 DOI: 10.1152/japplphysiol.00303.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA), characterized by events of hypoxia-reoxygenation, is highly prevalent in pregnancy, negatively affecting the gestation process and particularly the fetus. Whether the consequences of OSA for the fetus and offspring are mainly caused by systemic alterations in the mother or by a direct effect of intermittent hypoxia in the fetus is unknown. In fact, how apnea-induced hypoxemic swings in OSA are transmitted across the placenta remains to be investigated. The aim of this study was to test the hypothesis, based on a theoretical background on the damping effect of oxygen transfer in the placenta, that oxygen partial pressure (Po2) swings resulting from obstructive apneas mimicking OSA are mitigated in the fetal circulation. To this end, four anesthetized ewes close to term pregnancy were subjected to obstructive apneas consisting of 25-s airway obstructions. Real-time Po2 was measured in the maternal carotid artery and in the umbilical vein with fast-response fiber-optic oxygen sensors. The amplitudes of Po2 swings in the umbilical vein were considerably smaller [3.1 ± 1.0 vs. 21.0 ± 6.1 mmHg (mean ± SE); P < 0.05]. Corresponding estimated swings in fetal and maternal oxyhemoglobin saturation tracked Po2 swings. This study provides novel insights into fetal oxygenation in a model of gestational OSA and highlights the importance of further understanding the impact of sleep-disordered breathing on fetal and offspring development.NEW & NOTEWORTHY This study in an airway obstruction sheep model of gestational sleep apnea provides novel data on how swings in oxygen partial pressure (Po2) translate from maternal to fetal blood. Real-time simultaneous measurement of Po2 in maternal artery and in umbilical vein shows that placenta transfer attenuates the magnitude of oxygenation swings. These data prompt further investigation of the extent to which maternal apneas could induce similar direct oxidative stress in fetal and maternal tissues.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Paula Martínez-Ros
- Animal Production and Health Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Nuria Farré
- Department of Cardiology, Hospital del Mar, Barcelona, Spain.,Heart Diseases Biomedical Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Rubio-Zaragoza
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,García Cugat Foundation for Biomedical Research, Barcelona, Spain
| | - Marta Torres
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Servei de Pneumologia, Hospital Clínic, Barcelona, Spain
| | - Álvaro J Gutiérrez-Bautista
- Anaesthesia Unit, Veterinary Teaching Hospital, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José M Carrillo-Poveda
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,García Cugat Foundation for Biomedical Research, Barcelona, Spain
| | - Joaquín J Sopena-Juncosa
- Bioregenerative Medicine and Applied Surgery Research Group, Animal Medicine and Surgery Department, Veterinary Faculty, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.,García Cugat Foundation for Biomedical Research, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
| | - Antonio Gonzalez-Bulnes
- Department of Animal Reproduction, Deputy Directorate General of Research and Technology-Spanish National Institute for Agricultural and Food Research and Technology, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| |
Collapse
|
18
|
Kitano T, Takagi K, Arai I, Yasuhara H, Ebisu R, Ohgitani A, Minowa H. Elevated C-reactive protein in umbilical cord blood: Neonatal case review. Pediatr Int 2019; 61:583-586. [PMID: 30993850 DOI: 10.1111/ped.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/06/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND C-reactive protein (CRP) has limited placental transportability. Relying on CRP level in umbilical cord blood alone is an inaccurate way to predict early onset neonatal sepsis, and we retrospectively reviewed the clinical courses of neonates with elevated CRP in umbilical cord blood. METHODS This study was a retrospective case review of neonates with elevated CRP in umbilical cord blood (>0.5 mg/dL) in the Nara Prefecture General Medical Center, Nara, Japan between February 2013 and August 2017. We investigated the association of maternal and neonatal factors with neonatal clinical course. Then, we compared the cases of neonates with and without elevated CRP in umbilical cord blood. RESULTS The subjects consisted of a total of 22 neonates with elevated CRP in umbilical cord blood and 344 neonates without elevated CRP in umbilical cord blood. Of the 22 neonates with elevated CRP, 18 had some symptoms of sepsis at birth, but the symptoms of 85% of the symptomatic patients resolved ≤24 h after birth. Two neonates with elevated CRP in umbilical cord blood had bacteremia, and they had poor prognoses. Elevated CRP in umbilical cord blood was associated with length of antimicrobials (P = 0.021), immature/total neutrophil ratio (P = 0.017), and pathological chorioamnionitis (CAM; P = 0.028) on multivariable logistic regression analysis. CONCLUSION Elevated CRP in umbilical cord blood was associated with pathological CAM. Most symptoms of sepsis resolved <24 h after birth.
Collapse
Affiliation(s)
- Taito Kitano
- Department of Neonatal Intensive Care Unit, Nara Prefecture General Medical Center, Nara, Japan.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumiko Takagi
- Department of Neonatal Intensive Care Unit, Nara Prefecture General Medical Center, Nara, Japan
| | - Ikuyo Arai
- Department of Neonatal Intensive Care Unit, Nara Prefecture General Medical Center, Nara, Japan
| | - Hajime Yasuhara
- Department of Neonatal Intensive Care Unit, Nara Prefecture General Medical Center, Nara, Japan
| | - Reiko Ebisu
- Department of Neonatal Intensive Care Unit, Nara Prefecture General Medical Center, Nara, Japan
| | - Ayako Ohgitani
- Department of Neonatal Intensive Care Unit, Nara Prefecture General Medical Center, Nara, Japan
| | - Hideki Minowa
- Department of Neonatal Intensive Care Unit, Nara Prefecture General Medical Center, Nara, Japan
| |
Collapse
|
19
|
Abstract
BACKGROUND HIV-exposed-uninfected (HEU) infants have increased infectious morbidity and mortality; little is known about their levels of inflammation and monocyte activation. METHODS Plasma samples obtained at birth and 6 months from 86 HEU mother-infant pairs enrolled in the National Institute of Child Health and Human Development cohorts in Brazil were compared with 88 HIV-unexposed mother-infant pairs. HIV-infected mothers received antiretroviral therapy during pregnancy, their infants received zidovudine prophylaxis and were not breastfed. IL-6, soluble TNFα receptor I (sTNF-RI) and II, soluble CD14, soluble CD163, IFN-γ-induced protein 10 (IP-10), vascular cell adhesion molecule, oxidized LDL, D-dimer and high-sensitivity C-reactive protein were assayed by ELISA at birth and at 6 months. sTNF-RI and IL-6 were considered coprimary endpoints. RESULTS Among HIV-infected mothers, 79% had HIV-RNA less than 400 copies/ml prior to delivery. Compared with HIV-unexposed, HEU infants had a lower mean gestational age (38.7 vs. 39.3 weeks) and weight (3.1 vs. 3.3 kg); and reached lower weight (5.9 vs. 8.5 kg) and height (53.6 vs. 68.8 cm) at 6 months. With the exception of vascular cell adhesion molecule, inflammatory markers were generally higher (P ≤ 0.005) in HEU at birth, but at 6 months only sTNF-RI and IL-6 remained higher. For HEU pairs, only IP-10 was associated with maternal levels at birth (P < 0.001). In HEU, elevated levels of high-sensitivity C-reactive protein and IP-10 at birth were associated with lower weight at birth (P = 0.04) and at 6 months (P = 0.04). CONCLUSION HIV-exposed infants have heightened inflammation and monocyte activation at birth, which for some markers persisted to 6 months of life and was not related to maternal inflammatory status. Inflammation may contribute to the increased HEU infectious morbidity and poor growth.
Collapse
|
20
|
Brien ME, Baker B, Duval C, Gaudreault V, Jones RL, Girard S. Alarmins at the maternal-fetal interface: involvement of inflammation in placental dysfunction and pregnancy complications 1. Can J Physiol Pharmacol 2018; 97:206-212. [PMID: 30485131 DOI: 10.1139/cjpp-2018-0363] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is known to be associated with placental dysfunction and pregnancy complications. Infections are well known to be a cause of inflammation but they are frequently undetectable in pregnancy complications. More recently, the focus has been extended to inflammation of noninfectious origin, namely caused by endogenous mediators known as "damage-associated molecular patterns (DAMPs)" or alarmins. In this manuscript, we review the mechanism by which inflammation, sterile or infectious, can alter the placenta and its function. We discuss some classical DAMPs, such as uric acid, high mobility group box 1 (HMGB1), cell-free fetal deoxyribonucleic acid (DNA) (cffDNA), S100 proteins, heat shock protein 70 (HSP70), and adenosine triphosphate (ATP) and their impact on the placenta. We focus on the main placental cells (i.e., trophoblast and Hofbauer cells) and describe the placental response to, and release of, DAMPs. We also covered the current state of knowledge about the role of DAMPs in pregnancy complications including preeclampsia, fetal growth restriction, preterm birth, and stillbirth and possible therapeutic strategies to preserve placental function.
Collapse
Affiliation(s)
- Marie-Eve Brien
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,b Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Bernadette Baker
- c Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,d St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Cyntia Duval
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Virginie Gaudreault
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Rebecca L Jones
- c Maternal and Fetal Health Research Centre, University of Manchester, Manchester, M13 9WL, United Kingdom.,d St. Mary's Hospital, Central Manchester University Hospital National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Sylvie Girard
- a Ste-Justine Hospital Research Center, Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC H3T 1J4, Canada.,b Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.,e Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
21
|
Beaudry-Richard A, Nadeau-Vallée M, Prairie É, Maurice N, Heckel É, Nezhady M, Pundir S, Madaan A, Boudreault A, Hou X, Quiniou C, Sierra EM, Beaulac A, Lodygensky G, Robertson SA, Keelan J, Adams Waldorf KM, Olson DM, Rivera JC, Lubell WD, Joyal JS, Bouchard JF, Chemtob S. Antenatal IL-1-dependent inflammation persists postnatally and causes retinal and sub-retinal vasculopathy in progeny. Sci Rep 2018; 8:11875. [PMID: 30089839 PMCID: PMC6082873 DOI: 10.1038/s41598-018-30087-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Antenatal inflammation as seen with chorioamnionitis is harmful to foetal/neonatal organ development including to eyes. Although the major pro-inflammatory cytokine IL-1β participates in retinopathy induced by hyperoxia (a predisposing factor to retinopathy of prematurity), the specific role of antenatal IL-1β associated with preterm birth (PTB) in retinal vasculopathy (independent of hyperoxia) is unknown. Using a murine model of PTB induced with IL-1β injection in utero, we studied consequent retinal and choroidal vascular development; in this process we evaluated the efficacy of IL-1R antagonists. Eyes of foetuses exposed only to IL-1β displayed high levels of pro-inflammatory genes, and a persistent postnatal infiltration of inflammatory cells. This prolonged inflammatory response was associated with: (1) a marked delay in retinal vessel growth; (2) long-lasting thinning of the choroid; and (3) long-term morphological and functional alterations of the retina. Antenatal administration of IL-1R antagonists - 101.10 (a modulator of IL-1R) more so than Kineret (competitive IL-1R antagonist) - prevented all deleterious effects of inflammation. This study unveils a key role for IL-1β, a major mediator of chorioamnionitis, in causing sustained ocular inflammation and perinatal vascular eye injury, and highlights the efficacy of antenatal 101.10 to suppress deleterious inflammation.
Collapse
Affiliation(s)
- Alexandra Beaudry-Richard
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology, Université de Montréal, Montréal, Canada
| | - Élizabeth Prairie
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Noémie Maurice
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Émilie Heckel
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Mohammad Nezhady
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Sheetal Pundir
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Ankush Madaan
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Amarilys Boudreault
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Xin Hou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Estefania Marin Sierra
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Alexandre Beaulac
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Gregory Lodygensky
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynaecology, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jeffrey Keelan
- Div Obstetrics & Gynaecology, University of Western Australia King Edward Memorial Hospital, Perth, Australia
| | | | - David M Olson
- Departments of Obstetrics and Gynaecology, Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada
| | - Jose-Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology, Université de Montréal, Montréal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | | | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada.
- Department of Pharmacology, Université de Montréal, Montréal, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| |
Collapse
|
22
|
Nadeau-Vallée M, Chin PY, Belarbi L, Brien MÈ, Pundir S, Berryer MH, Beaudry-Richard A, Madaan A, Sharkey DJ, Lupien-Meilleur A, Hou X, Quiniou C, Beaulac A, Boufaied I, Boudreault A, Carbonaro A, Doan ND, Joyal JS, Lubell WD, Olson DM, Robertson SA, Girard S, Chemtob S. Antenatal Suppression of IL-1 Protects against Inflammation-Induced Fetal Injury and Improves Neonatal and Developmental Outcomes in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:2047-2062. [PMID: 28148737 DOI: 10.4049/jimmunol.1601600] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/30/2016] [Indexed: 01/08/2023]
Abstract
Preterm birth (PTB) is commonly accompanied by in utero fetal inflammation, and existing tocolytic drugs do not target fetal inflammatory injury. Of the candidate proinflammatory mediators, IL-1 appears central and is sufficient to trigger fetal loss. Therefore, we elucidated the effects of antenatal IL-1 exposure on postnatal development and investigated two IL-1 receptor antagonists, the competitive inhibitor anakinra (Kineret) and a potent noncompetitive inhibitor 101.10, for efficacy in blocking IL-1 actions. Antenatal exposure to IL-1β induced Tnfa, Il6, Ccl2, Pghs2, and Mpges1 expression in placenta and fetal membranes, and it elevated amniotic fluid IL-1β, IL-6, IL-8, and PGF2α, resulting in PTB and marked neonatal mortality. Surviving neonates had increased Il1b, Il6, Il8, Il10, Pghs2, Tnfa, and Crp expression in WBCs, elevated plasma levels of IL-1β, IL-6, and IL-8, increased IL-1β, IL-6, and IL-8 in fetal lung, intestine, and brain, and morphological abnormalities: e.g., disrupted lung alveolarization, atrophy of intestinal villus and colon-resident lymphoid follicle, and degeneration and atrophy of brain microvasculature with visual evoked potential anomalies. Late gestation treatment with 101.10 abolished these adverse outcomes, whereas Kineret exerted only modest effects and no benefit for gestation length, neonatal mortality, or placental inflammation. In a LPS-induced model of infection-associated PTB, 101.10 prevented PTB, neonatal mortality, and fetal brain inflammation. There was no substantive deviation in postnatal growth trajectory or adult body morphometry after antenatal 101.10 treatment. The results implicate IL-1 as an important driver of neonatal morbidity in PTB and identify 101.10 as a safe and effective candidate therapeutic.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Peck-Yin Chin
- Department of Obstetrics and Gynecology, Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lydia Belarbi
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Marie-Ève Brien
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Sheetal Pundir
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Martin H Berryer
- Department of Neurosciences, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Alexandra Beaudry-Richard
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Ankush Madaan
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - David J Sharkey
- Department of Obstetrics and Gynecology, Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexis Lupien-Meilleur
- Department of Neurosciences, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Xin Hou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Christiane Quiniou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Alexandre Beaulac
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Ines Boufaied
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Amarilys Boudreault
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Adriana Carbonaro
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Ngoc-Duc Doan
- Department of Chemistry, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Jean-Sebastien Joyal
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - William D Lubell
- Department of Chemistry, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; and.,Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynecology, Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada; .,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; .,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University of Montreal, Montreal, Quebec H3T 1J4, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
23
|
Impact of parental obesity on neonatal markers of inflammation and immune response. Int J Obes (Lond) 2016; 41:30-37. [PMID: 27780976 PMCID: PMC5209273 DOI: 10.1038/ijo.2016.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/25/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022]
Abstract
Background/Objectives Maternal obesity may influence neonatal and childhood morbidities through increased inflammation and/or altered immune response. Less is known about paternal obesity. We hypothesized that excessive parental weight contributes to elevated inflammation and altered immunoglobulin (Ig) profiles in neonates. Subjects/Methods In the Upstate KIDS Study maternal pre-pregnancy body mass index (BMI) was obtained from vital records and paternal BMI from maternal report. Biomarkers were measured from newborn dried blood spots (DBS) among neonates whose parents provided consent. Inflammatory scores were calculated by assigning one point for each of 5 pro-inflammatory biomarkers above the median and one point for an anti-inflammatory cytokine below the median. Linear regression models and generalized estimating equations were used to estimate mean differences (β) and 95% confidence intervals (CI) in the inflammatory score and Ig levels by parental overweight/obesity status compared to normal weight. Results Among 2974 pregnancies, 51% were complicated by excessive maternal weight (BMI>25), 73% by excessive paternal weight, and 28% by excessive gestational weight gain. Maternal BMI categories of overweight (BMI 25.0-29.9) and obese class II/III (BMI≥35) were associated with increased neonatal inflammation scores (β=0.12, 95% CI: 0.02, 0.21; p=0.02, and β=0.13, CI: −0.002, 0.26; p=0.05, respectively) but no increase was observed in the obese class I group (BMI 30-34.9). Mothers with class I and class II/III obesity had newborns with increased IgM levels (β=0.11, CI: 0.04, 0.17; p=0.001 and β=0.12, CI: 0.05, 0.19); p<0.001, respectively). Paternal groups of overweight, obese class I and obese class II/III had decreased neonatal IgM levels (β=−0.08, CI: −0.13,-0.03, p=0.001; β=−0.07, CI: −0.13, −0.01, p=0.029 and β=−0.11, CI:−0.19,-0.04, p=0.003, respectively). Conclusions Excessive maternal weight was generally associated with increased inflammation and IgM supporting previous observations of maternal obesity and immune dysregulation in offspring. The role of paternal obesity requires further study.
Collapse
|