1
|
Kincaide E, Brenner A, Hall R, Keyt H, Hitchman K, Klein K. Treatment Response of Donor Specific Antibodies and Forced Expiratory Volume in Lung Transplant Recipients With Antibody Mediated Rejection. Transplant Proc 2024; 56:2242-2249. [PMID: 39632198 DOI: 10.1016/j.transproceed.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) is an evolving diagnosis in lung transplantation. The presence of anti-human leukocyte antigen (HLA) donor-specific antibodies (DSAs) does not always correlate with clinical picture, leading to variation in treatment. This study sought to examine anti-HLA DSA response and lung allograft stabilization following AMR treatment. METHODS A single-center, retrospective case series was conducted in adult lung transplant recipients treated for clinical and subclinical AMR. The primary outcome was anti-HLA DSA reduction (≥ 25% decrease in mean fluorescence intensity [MFI]). The secondary outcome was forced expiratory volume (FEV1) stabilization (≤ 10% decline) at peak FEV1 and at 6-months post-treatment. RESULTS Fifteen bilateral lung transplant recipients were included. Eight (53%) patients achieved the primary outcome with median MFI reduction of -56.7% (interquartile range [IQR] = -41.3 to -69.5). Statistical significance was found on matched pairs analysis between 3 and 6 months post-treatment for anti-HLA DSA reduction. Of the subjects with available data, 7 of 9 (78%) patients had FEV1 stabilization from diagnosis to peak FEV1, and 5 of 7 (71%) patients had stabilization from diagnosis to 6 months post-treatment. A statistically significant decline was found from peak FEV1 post-treatment to 6 months post-treatment (-0.4 L ± 0.2, P = .05). Univariate analysis did not identify predictors affecting anti-HLA DSA response. CONCLUSIONS Anti-HLA DSA response was achieved in approximately half the cohort. A statistically significant decline in FEV1 was seen from peak FEV1 post-treatment but stabilized in most patients by 6 months. These results highlight the difficulty of DSA management and recovering lung function once lost, however, the finding of FEV1 stabilization after treatment is notable.
Collapse
Affiliation(s)
- Elisabeth Kincaide
- University Health, University Health Transplant Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; The University of Texas at Austin, College of Pharmacy, Pharmacotherapy Division, Austin, Texas.
| | - Alicia Brenner
- University Health, University Health Transplant Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; The University of Texas at Austin, College of Pharmacy, Pharmacotherapy Division, Austin, Texas
| | - Reed Hall
- University Health, University Health Transplant Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; The University of Texas at Austin, College of Pharmacy, Pharmacotherapy Division, Austin, Texas
| | - Holly Keyt
- University Health, University Health Transplant Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kelley Hitchman
- University Health, University Health Transplant Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kelsey Klein
- University Health, University Health Transplant Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas; The University of Texas at Austin, College of Pharmacy, Pharmacotherapy Division, Austin, Texas
| |
Collapse
|
2
|
Martin PJP, Willicombe M, Roufosse C. Angiotensin II Type-1 Receptor Antibody in Solid Organ Transplantation - Is It Time to Test? Transpl Int 2024; 37:13280. [PMID: 39606688 PMCID: PMC11598415 DOI: 10.3389/ti.2024.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Angiotensin II type-1 receptor antibody (AT1R-Ab) has been mooted as a potential effector of both acute and chronic antibody mediated rejection (AMR). A growing body of literature on the topic is now coming under scrutiny in the context of the evolving Banff AMR diagnostic classification system and refinement of recommendations for histocompatibility testing by the Sensitization in Transplantation Assessment of Risk (STAR) workgroup. This mini-review discusses the latest understanding of pathophysiological mechanisms, clinical evidence for the pathogenicity of AT1R-Ab, and methods of laboratory testing.
Collapse
Affiliation(s)
- Paul James Patrick Martin
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, United Kingdom
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Michelle Willicombe
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, United Kingdom
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Candice Roufosse
- Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, United Kingdom
- Department of Histopathology, Northwest London Pathology NHS Trust, Charing Cross Hospital, London, United Kingdom
| |
Collapse
|
3
|
Aburahma K, de Manna ND, Kuehn C, Salman J, Greer M, Ius F. Pushing the Survival Bar Higher: Two Decades of Innovation in Lung Transplantation. J Clin Med 2024; 13:5516. [PMID: 39337005 PMCID: PMC11432129 DOI: 10.3390/jcm13185516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Survival after lung transplantation has significantly improved during the last two decades. The refinement of the already existing extracorporeal life support (ECLS) systems, such as extracorporeal membrane oxygenation (ECMO), and the introduction of new techniques for donor lung optimization, such as ex vivo lung perfusion (EVLP), have allowed the extension of transplant indication to patients with end-stage lung failure after acute respiratory distress syndrome (ARDS) and the expansion of the donor organ pool, due to the better evaluation and optimization of extended-criteria donor (ECD) lungs and of donors after circulatory death (DCD). The close monitoring of anti-HLA donor-specific antibodies (DSAs) has allowed the early recognition of pulmonary antibody-mediated rejection (AMR), which requires a completely different treatment and has a worse prognosis than acute cellular rejection (ACR). As such, the standardization of patient selection and post-transplant management has significantly contributed to this positive trend, especially at high-volume centers. This review focuses on lung transplantation after ARDS, on the role of EVLP in lung donor expansion, on ECMO as a principal cardiopulmonary support system in lung transplantation, and on the diagnosis and therapy of pulmonary AMR.
Collapse
Affiliation(s)
- Khalil Aburahma
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Nunzio Davide de Manna
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Mark Greer
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| |
Collapse
|
4
|
Messika J, Belousova N, Parquin F, Roux A. Antibody-Mediated Rejection in Lung Transplantation: Diagnosis and Therapeutic Armamentarium in a 21st Century Perspective. Transpl Int 2024; 37:12973. [PMID: 39170865 PMCID: PMC11336419 DOI: 10.3389/ti.2024.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Humoral immunity is a major waypoint towards chronic allograft dysfunction in lung transplantation (LT) recipients. Though allo-immunization and antibody-mediated rejection (AMR) are well-known entities, some diagnostic gaps need to be addressed. Morphological analysis could be enhanced by digital pathology and artificial intelligence-based companion tools. Graft transcriptomics can help to identify graft failure phenotypes or endotypes. Donor-derived cell free DNA is being evaluated for graft-loss risk stratification and tailored surveillance. Preventative therapies should be tailored according to risk. The donor pool can be enlarged for candidates with HLA sensitization, with strategies combining plasma exchange, intravenous immunoglobulin and immune cell depletion, or with emerging or innovative therapies such as imlifidase or immunoadsorption. In cases of insufficient pre-transplant desensitization, the effects of antibodies on the allograft can be prevented by targeting the complement cascade, although evidence for this strategy in LT is limited. In LT recipients with a humoral response, strategies are combined, including depletion of immune cells (plasmapheresis or immunoadsorption), inhibition of immune pathways, or modulation of the inflammatory cascade, which can be achieved with photopheresis. Altogether, these innovative techniques offer promising perspectives for LT recipients and shape the 21st century's armamentarium against AMR.
Collapse
Affiliation(s)
- Jonathan Messika
- Thoracic Intensive Care Unit, Foch Hospital, Suresnes, France
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
- Paris Transplant Group, Paris, France
| | - Natalia Belousova
- Paris Transplant Group, Paris, France
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
| | - François Parquin
- Thoracic Intensive Care Unit, Foch Hospital, Suresnes, France
- Paris Transplant Group, Paris, France
| | - Antoine Roux
- Paris Transplant Group, Paris, France
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
5
|
Bogyó LZ, Török K, Illés Z, Szilvási A, Székely B, Bohács A, Pipek O, Madurka I, Megyesfalvi Z, Rényi-Vámos F, Döme B, Bogos K, Gieszer B, Bakos E. Pseudomonas aeruginosa infection correlates with high MFI donor-specific antibody development following lung transplantation with consequential graft loss and shortened CLAD-free survival. Respir Res 2024; 25:262. [PMID: 38951782 PMCID: PMC11218249 DOI: 10.1186/s12931-024-02868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Donor-specific antibodies (DSAs) are common following lung transplantation (LuTx), yet their role in graft damage is inconclusive. Mean fluorescent intensity (MFI) is the main read-out of DSA diagnostics; however its value is often disregarded when analyzing unwanted post-transplant outcomes such as graft loss or chronic lung allograft dysfunction (CLAD). Here we aim to evaluate an MFI stratification method in these outcomes. METHODS A cohort of 87 LuTx recipients has been analyzed, in which a cutoff of 8000 MFI has been determined for high MFI based on clinically relevant data. Accordingly, recipients were divided into DSA-negative, DSA-low and DSA-high subgroups. Both graft survival and CLAD-free survival were evaluated. Among factors that may contribute to DSA development we analyzed Pseudomonas aeruginosa (P. aeruginosa) infection in bronchoalveolar lavage (BAL) specimens. RESULTS High MFI DSAs contributed to clinical antibody-mediated rejection (AMR) and were associated with significantly worse graft (HR: 5.77, p < 0.0001) and CLAD-free survival (HR: 6.47, p = 0.019) compared to low or negative MFI DSA levels. Analysis of BAL specimens revealed a strong correlation between DSA status, P. aeruginosa infection and BAL neutrophilia. DSA-high status and clinical AMR were both independent prognosticators for decreased graft and CLAD-free survival in our multivariate Cox-regression models, whereas BAL neutrophilia was associated with worse graft survival. CONCLUSIONS P. aeruginosa infection rates are elevated in recipients with a strong DSA response. Our results indicate that the simultaneous interpretation of MFI values and BAL neutrophilia is a feasible approach for risk evaluation and may help clinicians when to initiate DSA desensitization therapy, as early intervention could improve prognosis.
Collapse
Affiliation(s)
- Levente Zoltán Bogyó
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Klára Török
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsuzsanna Illés
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Anikó Szilvási
- Hungarian National Blood Transfusion Service, Budapest, Hungary
| | - Bálint Székely
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| | - Anikó Bohács
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Orsolya Pipek
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- Department of Physics of Complex Systems, Eotvos Loránd University, Budapest, Hungary
| | - Ildikó Madurka
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ferenc Rényi-Vámos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - Balázs Döme
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Krisztina Bogos
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Balázs Gieszer
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary.
- National Korányi Institute of Pulmonology, Koranyi Frigyes ut 1, Budapest, 1121, Hungary.
| | - Eszter Bakos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Rath Gyorgy u. 7-9, Budapest, 1122, Hungary
| |
Collapse
|
6
|
Hanks J, Girard C, Sehgal S. Acute rejection post lung transplant. Curr Opin Pulm Med 2024; 30:391-397. [PMID: 38656281 DOI: 10.1097/mcp.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW To review what is currently known about the pathogenesis, diagnosis, treatment, and prevention of acute rejection (AR) in lung transplantation. RECENT FINDINGS Epigenomic and transcriptomic methods are gaining traction as tools for earlier detection of AR, which still remains primarily a histopathologic diagnosis. SUMMARY Acute rejection is a common cause of early posttransplant lung graft dysfunction and increases the risk of chronic rejection. Detection and diagnosis of AR is primarily based on histopathology, but noninvasive molecular methods are undergoing investigation. Two subtypes of AR exist: acute cellular rejection (ACR) and antibody-mediated rejection (AMR). Both can have varied clinical presentation, ranging from asymptomatic to fulminant ARDS, and can present simultaneously. Diagnosis of ACR requires transbronchial biopsy; AMR requires the additional measuring of circulating donor-specific antibody (DSA) levels. First-line treatment in ACR is increased immunosuppression (pulse-dose or tapered dose glucocorticoids); refractory cases may need antibody-based lymphodepletion therapy. First line treatment in AMR focuses on circulating DSA removal with B and plasma cell depletion; plasmapheresis, intravenous human immunoglobulin (IVIG), bortezomib, and rituximab are often employed.
Collapse
Affiliation(s)
- Justin Hanks
- Department of Pulmonary Medicine, Integrated Hospital Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | |
Collapse
|
7
|
Tache-Codreanu DL, David I, Popp CG, Bobocea L, Trăistaru MR. Successfully physical therapy program for functional respiratory rehabilitation after lung transplant surgery - case report. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:331-340. [PMID: 39020549 PMCID: PMC11384042 DOI: 10.47162/rjme.65.2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 07/19/2024]
Abstract
The first lung transplant (LT) was made in Romania in 2018 at a 36-year-old male patient with chronic obstructive pulmonary disease (COPD). The study follows the first LT rehabilitation by describing the physical therapy program (PTP), the measurements of body mass and appendicular skeletal muscle mass (ASM) by bio-impedancemetry analysis (BIA) and the functional capacity assessment realized by the six-minute walk test (6MWT) and by the functional respiratory tests (FRTs) in order to evaluate the effectiveness of functional respiratory rehabilitation in this case during a period of one year. In parallel, repeated transbronchial biopsies were performed after six weeks, three months, six months and one year since the transplant. Only the first biopsies showed injuries suggesting an acute rejection, all the rest revealing mild, unspecific lesions. The patient followed 15 sessions of respiratory exercises, joints mobilizations and progressive global muscle strength started one month after LT surgery and was also instructed to perform the exercises at home, using a tablet given at discharge and under monthly guidance through telemedicine. All the measurements were performed before and after the rehabilitation cure, and it was repeated at three different evaluations for one year. The results showed that at the end of follow-up, the 6MWT was significantly increased from 59% of predicted distance at the intake in post-acute hospitalization to 166% at one year after LT, without desaturation that represent a very good evolution; the FRTs increased to normal, and the body weight increased with 18 kg (from severe underweight to normal weight) with constant increasement of skeletal muscle mass. The use of PTP after LT surgery significantly improves functional capacity and increases body mass and skeletal muscle mass.
Collapse
|
8
|
Lunardi F, Vedovelli L, Pezzuto F, Le Pavec J, Dorfmuller P, Ivanovic M, Pena T, Wassilew K, Perch M, Hirschi S, Chenard MP, Sosa RA, Goddard M, Neil D, Montero-Fernandez A, Rice A, Cozzi E, Rea F, Levine DJ, Roux A, Fishbein GA, Calabrese F. Assessing the role of phosphorylated S6 ribosomal protein in the pathological diagnosis of pulmonary antibody-mediated rejection. J Heart Lung Transplant 2024; 43:403-413. [PMID: 37806601 DOI: 10.1016/j.healun.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Pulmonary antibody-mediated rejection is still a challenging diagnosis as C4d immunostaining has poor sensitivity. Previous studies have indicated that the phosphorylated S6 ribosomal protein, a component of the mammalian target of rapamycin (mTOR) pathway, is correlated with de novo donor-specific antibodies in lung transplantation. The objective of this study was to evaluate the phosphorylation of S6 ribosomal protein as a surrogate for antibody-mediated rejection diagnosis in lung transplant patients. METHODS This multicentre retrospective study analyzed transbronchial biopsies from 216 lung transplanted patients, 114 with antibody-mediated rejection and 102 without (19 with acute cellular rejection, 17 with ischemia/reperfusion injury, 18 with infection, and 48 without post-transplant complications). Immunohistochemistry was used to quantify phosphorylated S6 ribosomal protein expression in macrophages, endothelium, epithelium, and inter-pathologist agreement was assessed. RESULTS Median phosphorylated S6 ribosomal protein expression values were higher in antibody-mediated rejection cases than in controls for all cell components, with the highest sensitivity in macrophages (0.9) and the highest specificity in endothelial expression (0.8). The difference was mainly significant in macrophages compared to other post-lung transplantation complications. Inter-pathologist agreement was moderate for macrophages and endothelium, with higher agreement when phosphorylated S6 ribosomal protein expression was dichotomized into positive/negative. The inclusion of phosphorylated S6 ribosomal protein in the diagnostic algorithm could have increased antibody-mediated rejection certainty levels by 25%. CONCLUSIONS The study supports the role of the mTOR pathway in antibody-mediated rejection-related graft injury and suggests that tissue phosphorylation of S6 ribosomal protein could be a useful surrogate for a more accurate pathological diagnosis of lung antibody-mediated rejection.
Collapse
Affiliation(s)
- Francesca Lunardi
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Luca Vedovelli
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federica Pezzuto
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Jerome Le Pavec
- Service de Pneumologie et de Transplantation Pulmonaire, Groupe Hospitalier Marie-Lannelongue-Paris Saint Joseph, Le Plessis-Robinson, France; Faculty of Medicine, Université Paris-Saclay, Le Kremlin Bicêtre, France; UMR_S 999, Université Paris-Sud, INSERM, Groupe hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France
| | - Peter Dorfmuller
- UMR_S 999, Université Paris-Sud, INSERM, Groupe hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France
| | - Marina Ivanovic
- Department of Pathology, Loyola University Medical Center, Chicago, Illinois
| | - Tahuanty Pena
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Righospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sandrine Hirschi
- Department of Respiratory Medicine, University Hospital of Strasbourg, Strasbourg, France
| | | | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Martin Goddard
- Department of Histopathology, Papworth Hospital NHS Trust, Cambridge, UK
| | - Desley Neil
- Department of Histopathology, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Alexandra Rice
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Emanuele Cozzi
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Rea
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Deborah J Levine
- Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Antoine Roux
- Department of Pneumology, Hôpital Foch, Suresnes, France and Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Fiorella Calabrese
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Matsumoto H, Suzuki H, Yamanaka T, Kaiho T, Hata A, Inage T, Ito T, Kamata T, Tanaka K, Sakairi Y, Motohashi S, Yoshino I. Anti-CD20 Antibody and Calcineurin Inhibitor Combination Therapy Effectively Suppresses Antibody-Mediated Rejection in Murine Orthotopic Lung Transplantation. Life (Basel) 2023; 13:2042. [PMID: 37895424 PMCID: PMC10608275 DOI: 10.3390/life13102042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Antibody-mediated rejection (AMR) is a risk factor for chronic lung allograft dysfunction, which impedes long-term survival after lung transplantation. There are no reports evaluating the efficacy of the single use of anti-CD20 antibodies (aCD20s) in addition to calcineurin inhibitors in preventing AMR. Thus, this study aimed to evaluate the efficacy of aCD20 treatment in a murine orthotopic lung transplantation model. Murine left lung transplantation was performed using a major alloantigen strain mismatch model (BALBc (H-2d) → C57BL/6 (BL/6) (H-2b)). There were four groups: isograft (BL/6→BL/6) (Iso control), no-medication (Allo control), cyclosporine A (CyA) treated, and CyA plus murine aCD20 (CyA+aCD20) treated groups. Severe neutrophil capillaritis, arteritis, and positive lung C4d staining were observed in the allograft model and CyA-only-treated groups. These findings were significantly improved in the CyA+aCD20 group compared with those in the Allo control and CyA groups. The B cell population in the spleen, lymph node, and graft lung as well as the levels of serum donor-specific IgM and interferon γ were significantly lower in the CyA+aCD20 group than in the CyA group. Calcineurin inhibitor-mediated immunosuppression combined with aCD20 therapy effectively suppressed AMR in lung transplantation by reducing donor-specific antibodies and complement activation.
Collapse
Affiliation(s)
- Hiroki Matsumoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
- Department of Thoracic Surgery, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu 292-8535, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Takahiro Yamanaka
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Taisuke Kaiho
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Atsushi Hata
- Department of General Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; (A.H.); (T.I.)
| | - Terunaga Inage
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Takamasa Ito
- Department of General Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; (A.H.); (T.I.)
| | - Toshiko Kamata
- Department of Thoracic Surgery, International University of Health and Welfare Atami Hospital, Shizuoka 413-0012, Japan;
| | - Kazuhisa Tanaka
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
- Department of General Thoracic Surgery, International University of Health and Welfare Narita Hospital, Chiba 286-8520, Japan
| |
Collapse
|
10
|
Franco-Acevedo A, Comes J, Mack JJ, Valenzuela NM. New insights into maladaptive vascular responses to donor specific HLA antibodies in organ transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1146040. [PMID: 38993843 PMCID: PMC11235244 DOI: 10.3389/frtra.2023.1146040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 07/13/2024]
Abstract
Transplant vasculopathy (TV) causes thickening of donor blood vessels in transplanted organs, and is a significant cause of graft loss and mortality in allograft recipients. It is known that patients with repeated acute rejection and/or donor specific antibodies are predisposed to TV. Nevertheless, the exact molecular mechanisms by which alloimmune injury culminates in this disease have not been fully delineated. As a result of this incomplete knowledge, there is currently a lack of effective therapies for this disease. The immediate intracellular signaling and the acute effects elicited by anti-donor HLA antibodies are well-described and continuing to be revealed in deeper detail. Further, advances in rejection diagnostics, including intragraft gene expression, provide clues to the inflammatory changes within allografts. However, mechanisms linking these events with long-term outcomes, particularly the maladaptive vascular remodeling seen in transplant vasculopathy, are still being delineated. New evidence demonstrates alterations in non-coding RNA profiles and the occurrence of endothelial to mesenchymal transition (EndMT) during acute antibody-mediated graft injury. EndMT is also readily apparent in numerous settings of non-transplant intimal hyperplasia, and lessons can be learned from advances in those fields. This review will provide an update on these recent developments and remaining questions in our understanding of HLA antibody-induced vascular damage, framed within a broader consideration of manifestations and implications across transplanted organ types.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Johanna Comes
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA, United States
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Charya AV, Ponor IL, Cochrane A, Levine D, Philogene M, Fu YP, Jang MK, Kong H, Shah P, Bon AM, Krishnan A, Mathew J, Luikart H, Khush KK, Berry G, Marboe C, Iacono A, Orens JB, Nathan SD, Agbor-Enoh S. Clinical features and allograft failure rates of pulmonary antibody-mediated rejection categories. J Heart Lung Transplant 2023; 42:226-235. [PMID: 36319530 DOI: 10.1016/j.healun.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Pulmonary antibody-mediated rejection (AMR) consensus criteria categorize AMR by diagnostic certainty. This study aims to define the clinical features and associated outcomes of these recently defined AMR categories. METHODS Adjudication committees reviewed clinical data of 335 lung transplant recipients to define clinical or subclinical AMR based on the presence of allograft dysfunction, and the primary endpoints, time from transplant to allograft failure, a composite endpoint of chronic lung allograft dysfunction and/or death. Clinical AMR was subcategorized based on diagnostic certainty as definite, probable or possible AMR if 4, 3, or 2 characteristic features were present, respectively. Allograft injury was assessed via plasma donor-derived cell-free DNA (ddcfDNA). Risk of allograft failure and allograft injury was compared for AMR categories using regression models. RESULTS Over the 38.5 months follow-up, 28.7% of subjects developed clinical AMR (n = 96), 18.5% developed subclinical AMR (n = 62) or 58.3% were no AMR (n = 177). Clinical AMR showed higher risk of allograft failure and ddcfDNA levels compared to subclinical or no AMR. Clinical AMR included definite/probable (n = 21) or possible AMR (n = 75). These subcategories showed similar clinical characteristics, ddcfDNA levels, and risk of allograft failure. However, definite/probable AMR showed greater measures of AMR severity, including degree of allograft dysfunction and risk of death compared to possible AMR. CONCLUSIONS Clinical AMR showed greater risk of allograft failure than subclinical AMR or no AMR. Subcategorization of clinical AMR based on diagnostic certainty correlated with AMR severity and risk of death, but not with the risk of allograft failure.
Collapse
Affiliation(s)
- Ananth V Charya
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care, University of Maryland Medical Center, Baltimore, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Ileana L Ponor
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; Division of Hospital Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Adam Cochrane
- Advanced Lung Disease and Lung Transplantation Program, Inova Fairfax Hospital, Fairfax, Virginia
| | - Deborah Levine
- Lung Transplantation Program, University of Texas, San Antonio, Texas
| | - Mary Philogene
- Histocompatibility and Molecular Genetics Laboratory, Philadelphia, Pennsylvania
| | - Yi-Ping Fu
- Biostatistics, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Moon K Jang
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Pali Shah
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ann Mary Bon
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Joby Mathew
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Helen Luikart
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Gerald Berry
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Charles Marboe
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Pathology, New York Presbyterian University Hospital of Cornell and Columbia, New York, New York
| | - Aldo Iacono
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care, University of Maryland Medical Center, Baltimore, Maryland
| | - Jonathan B Orens
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Advanced Lung Disease and Lung Transplantation Program, Inova Fairfax Hospital, Fairfax, Virginia.
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
12
|
Righi I, Vaira V, Morlacchi LC, Croci GA, Rossetti V, Blasi F, Ferrero S, Nosotti M, Rosso L, Clerici M. PD-1 expression in transbronchial biopsies of lung transplant recipients is a possible early predictor of rejection. Front Immunol 2023; 13:1024021. [PMID: 36703976 PMCID: PMC9871480 DOI: 10.3389/fimmu.2022.1024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Chronic lung allograft dysfunction (CLAD) is the main cause of the reduced survival of lung transplanted (LTx) patients. The possible role of immune checkpoint molecules in establishing tolerance has been scarcely investigated in the setting of lung transplantation. Methods We conducted a retrospective, observational pilot study on a consecutive series of transbronchial cryobiopsies (TCB) obtained from 24 patients during LTx follow-up focusing on PD-1, one of the most investigated immune checkpoint molecules. Results Results showed that PD-1-expressing T lymphocytes were present in all TCB with a histological diagnosis of acute rejection (AR; 9/9), but not in most (11/15) of the TCB not resulting in a diagnosis of AR (p=0.0006). Notably, the presence of PD-1-expressing T lymphocytes in TCB resulted in a 10-times higher risk of developing chronic lung allograft dysfunction (CLAD), the main cause of the reduced survival of lung transplanted patients, thus being associated with a clearly worst clinical outcome. Discussion Results of this pilot study indicate a central role of PD-1 in the development of AR and its evolution towards CLAD and suggest that the evaluation of PD-1-expressing lymphocytes in TCB could offer a prognostic advantage in monitoring the onset of AR in patients who underwent lung transplantation.
Collapse
Affiliation(s)
- Ilaria Righi
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Corinna Morlacchi
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Alberto Croci
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valeria Rossetti
- Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,Respiratory Unit and Adult Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Mario Nosotti
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Department of Cardio- Thoracic - Vascular Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,*Correspondence: Lorenzo Rosso,
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,Don C. Gnocchi Foundation, IRCCS, Milan, Italy
| |
Collapse
|
13
|
Sandot A, Grall N, Rodier T, Bunel V, Godet C, Weisenburger G, Tran-Dinh A, Montravers P, Mordant P, Castier Y, Eloy P, Armand-Lefevre L, Mal H, Messika J. Risk of Bronchial Complications After Lung Transplantation With Respiratory Corynebacteria. Results From a Monocenter Retrospective Cohort Study. Transpl Int 2023; 36:10942. [PMID: 36936442 PMCID: PMC10014466 DOI: 10.3389/ti.2023.10942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
Corynebacterium spp. are associated with respiratory infections in immunocompromised hosts. A link with bronchial complications after lung transplantation (LTx) has been suggested. We aimed to assess the link between respiratory sampling of Corynebacterium spp. and significant bronchial complication (SBC) after LTx. We performed a single center retrospective study. Inclusion of LTx recipients with at least one respiratory Corynebacterium spp. sample (July 2014 to December 2018). Subjects were matched to unexposed LTx recipients. Primary outcome was SBC occurrence after Corynebacterium spp. isolation. Secondary outcomes were Corynebacterium spp. persistent sampling, chronic lung allograft dysfunction (CLAD) onset and all-cause mortality. Fifty-nine patients with Corynebacterium spp. sampling with 59 without isolation were included. Corynebacterium spp. identification was not associated with SBC occurrence (32.4% vs. 21.6%, p = 0.342). Previous SBC was associated with further isolation of Corynebacterium spp. (OR 3.94, 95% CI [1.72-9.05]). Previous SBC and corticosteroids pulses in the last 3 months were the only factors associated with increased risk of Corynebacterium spp. isolation in multivariate analysis. Corynebacterium spp. sampling was significantly associated with CLAD onset (27.1% vs. 6.9%, p = 0.021). Corynebacterium spp. isolation was not associated with SBC but with higher risk of CLAD. Whether CLAD evolution is affected by Corynebacterium spp. eradication remains to be investigated.
Collapse
Affiliation(s)
- Adèle Sandot
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
| | - Nathalie Grall
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
| | - Thomas Rodier
- INSERM, CIC-EC 1425, Hôpital Bichat, Paris, France
- AP-HP, Hôpital Bichat, DEBRC, Paris, France
| | - Vincent Bunel
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Cendrine Godet
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Gaëlle Weisenburger
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Alexy Tran-Dinh
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Département d’Anesthésie et Réanimation, Paris, France
| | - Philippe Montravers
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Département d’Anesthésie et Réanimation, Paris, France
| | - Pierre Mordant
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Chirurgie Vasculaire, Thoracique et Transplantation, Paris, France
| | - Yves Castier
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- APHP, Hôpital Bichat, Chirurgie Vasculaire, Thoracique et Transplantation, Paris, France
| | - Philippine Eloy
- INSERM, CIC-EC 1425, Hôpital Bichat, Paris, France
- AP-HP, Hôpital Bichat, DEBRC, Paris, France
| | - Laurence Armand-Lefevre
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, Paris, France
| | - Hervé Mal
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
| | - Jonathan Messika
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Université Paris Cité, PHERE UMRS 1152, LVTS UMRS 1148, IAME UMRS 1137, Paris, France
- Paris Transplant Group, Paris, France
- *Correspondence: Jonathan Messika,
| |
Collapse
|
14
|
Clinical recommendations for posttransplant assessment of anti-HLA (Human Leukocyte Antigen) donor-specific antibodies: A Sensitization in Transplantation: Assessment of Risk consensus document. Am J Transplant 2023; 23:115-132. [PMID: 36695614 DOI: 10.1016/j.ajt.2022.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 01/13/2023]
Abstract
Although anti-HLA (Human Leukocyte Antigen) donor-specific antibodies (DSAs) are commonly measured in clinical practice and their relationship with transplant outcome is well established, clinical recommendations for anti-HLA antibody assessment are sparse. Supported by a careful and critical review of the current literature performed by the Sensitization in Transplantation: Assessment of Risk 2022 working group, this consensus report provides clinical practice recommendations in kidney, heart, lung, and liver transplantation based on expert assessment of quality and strength of evidence. The recommendations address 3 major clinical problems in transplantation and include guidance regarding posttransplant DSA assessment and application to diagnostics, prognostics, and therapeutics: (1) the clinical implications of positive posttransplant DSA detection according to DSA status (ie, preformed or de novo), (2) the relevance of posttransplant DSA assessment for precision diagnosis of antibody-mediated rejection and for treatment management, and (3) the relevance of posttransplant DSA for allograft prognosis and risk stratification. This consensus report also highlights gaps in current knowledge and provides directions for clinical investigations and trials in the future that will further refine the clinical utility of posttransplant DSA assessment, leading to improved transplant management and patient care.
Collapse
|
15
|
Abstract
BACKGROUND Donor-specific antibodies (DSAs) have been associated with antibody-mediated rejection, chronic lung allograft dysfunction (CLAD), and increased mortality in lung transplant recipients. Our center performs transplants in the presence of DSA, and we sought to evaluate the safety of this practice with respect to graft loss, CLAD onset, and primary graft dysfunction (PGD). METHODS We reviewed recipients transplanted from 2010 to 2017, classifying them as DSA positive (DSA+) or negative. We used Kaplan-Meier estimation to test the association between DSA status and time to death or retransplant and time to CLAD onset. We further tested associations with severe PGD and rejection in the first year using logistic regression and Fisher exact testing. RESULTS Three hundred thirteen patients met inclusion criteria, 30 (10%) of whom were DSA+. DSA+ patients were more likely to be female, bridged to transplant, and receive induction therapy. There was no association between DSA status and time to death or retransplant (log rank P = 0.581) nor death-censored time to CLAD onset (log rank P = 0.278), but DSA+ patients were at increased risk of severe PGD (odds ratio 2.88; 95% confidence interval, 1.10-7.29; P = 0.031) and more frequent antibody-mediated rejection in the first posttransplant year. CONCLUSIONS Crossing DSA at time of lung transplant was not associated with an increased risk of death or CLAD in our cohort, but patients developed severe PGD and antibody-mediated rejection more frequently. However, these risks are likely manageable when balanced against the benefits of expanded access for sensitized candidates.
Collapse
|
16
|
Trindade AJ, Chapin KC, Gannon WD, Hoy H, Demarest CT, Lambright ES, McPherson KA, Norfolk SG, Robbins IM, Bacchetta M, Erasmus DB, Shaver CM. Clinical course of SARS-CoV-2 infection and recovery in lung transplant recipients. Transpl Infect Dis 2022; 24:e13967. [PMID: 36271645 PMCID: PMC9780187 DOI: 10.1111/tid.13967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Reports on outcomes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in lung transplant recipients remain limited. METHODS We performed a single-center, observational study of outcomes in lung transplant recipients diagnosed with SARS-CoV-2 between 5/1/2020 and 3/15/2022 that were followed for a median of 123 days. We analyzed changes in spirometry, acute lung allograft dysfunction (ALAD) incidence, hospitalization, mechanical ventilation needs, secondary infection, and survival. RESULTS In our cohort of 336 patients, 103 developed coronavirus disease (COVID) (27 pre-Delta, 20 Delta, and 56 Omicron-era). Twenty-five patients (24%) required hospitalization and 10 patients ultimately died (10%). Among 85 survivors who completed ambulatory spirometry, COVID-19 did not alter change in forced expiratory volume in 1 s (FEV1 ) or forced vital capacity (FVC) over time compared to the preceding 6 months. The pre-COVID FEV1 change was -0.05 ml/day (IQR -0.50 to 0.60) compared to -0.20 ml/day (IQR -1.40 to 0.70) post-COVID (p = .16). The pre-COVID change in FVC was 0.20 ml/day (IQR -0.60 to 0.70) compared to 0.05 ml/day (IQR -1.00 to 1.10) post-COVID (p = .76). Although the cohort overall had stable lung function, 33 patients (39%) developed ALAD or accelerated chronic lung allograft dysfunction (FEV1 decline >10% from pre-COVID baseline). Nine patients (35%) with ALAD recovered lung function. Within 3 months of acute COVID infection, 18 patients (17%) developed secondary infections, the majority being bacterial pneumonia. Finally, vaccination with at least two doses of mRNA vaccine was not associated with improved outcomes. CONCLUSIONS This study describes the natural history of SARS-CoV-2 infection in a large cohort of lung transplant recipients. Although one third of patients develop ALAD requiring augmented immunosuppression, infection with SARS-CoV-2 is not associated with worsening lung function.
Collapse
Affiliation(s)
- Anil J. Trindade
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kaitlyn C. Chapin
- Vanderbilt Transplant Center, Vanderbilt University Medical Center, Nashville, TN
| | - Whitney D. Gannon
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Haley Hoy
- Vanderbilt Transplant Center, Vanderbilt University Medical Center, Nashville, TN
| | - Caitlin T. Demarest
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Eric S. Lambright
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Katie A. McPherson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Stephanie G. Norfolk
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ivan M. Robbins
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN
| | - David B. Erasmus
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
17
|
Yang W, Cerier EJ, Núñez-Santana FL, Wu Q, Yan Y, Kurihara C, Liu X, Yeldandi A, Khurram N, Avella-Patino D, Sun H, Budinger GS, Kreisel D, Mohanakumar T, Lecuona E, Bharat A. IL-1β-dependent extravasation of preexisting lung-restricted autoantibodies during lung transplantation activates complement and mediates primary graft dysfunction. J Clin Invest 2022; 132:157975. [PMID: 36250462 PMCID: PMC9566897 DOI: 10.1172/jci157975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Preexisting lung-restricted autoantibodies (LRAs) are associated with a higher incidence of primary graft dysfunction (PGD), although it remains unclear whether LRAs can drive its pathogenesis. In syngeneic murine left lung transplant recipients, preexisting LRAs worsened graft dysfunction, which was evident by impaired gas exchange, increased pulmonary edema, and activation of damage-associated pathways in lung epithelial cells. LRA-mediated injury was distinct from ischemia-reperfusion injury since deletion of donor nonclassical monocytes and host neutrophils could not prevent graft dysfunction in LRA-pretreated recipients. Whole LRA IgG molecules were necessary for lung injury, which was mediated by the classical and alternative complement pathways and reversed by complement inhibition. However, deletion of Fc receptors in donor macrophages or mannose-binding lectin in recipient mice failed to rescue lung function. LRA-mediated injury was localized to the transplanted lung and dependent on IL-1β-mediated permeabilization of pulmonary vascular endothelium, which allowed extravasation of antibodies. Genetic deletion or pharmacological inhibition of IL-1R in the donor lungs prevented LRA-induced graft injury. In humans, preexisting LRAs were an independent risk factor for severe PGD and could be treated with plasmapheresis and complement blockade. We conclude that preexisting LRAs can compound ischemia-reperfusion injury to worsen PGD for which complement inhibition may be effective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - G.R. Scott Budinger
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Departments of Surgery, Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | | | | | - Ankit Bharat
- Division of Thoracic Surgery
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
18
|
Louis K, Lefaucheur C. DSA in solid organ transplantation: is it a matter of specificity, amount, or functional characteristics? Curr Opin Organ Transplant 2022; 27:392-398. [PMID: 35881421 DOI: 10.1097/mot.0000000000001006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The present review describes the clinical relevance of human leukocyte antigen (HLA) donor-specific antibodies (HLA-DSAs) as biomarkers of alloimmunity and summarizes recent improvements in their characterization that provide insights into immune risk assessment, precision diagnosis, and prognostication in transplantation. RECENT FINDINGS Recent studies have addressed the clinical utility of HLA-DSAs as biomarkers for immune risk assessment in pretransplant and peritransplant, diagnosis and treatment evaluation of antibody-mediated rejection, immune monitoring posttransplant, and risk stratification. SUMMARY HLA-DSAs have proved to be the most advanced immune biomarkers in solid organ transplantation in terms of analytical validity, clinical validity and clinical utility. Recent studies are integrating multiple HLA-DSA characteristics including antibody specificity, HLA class, quantity, immunoglobulin G subclass, and complement-binding capacity to improve risk assessment peritransplant, diagnosis and treatment evaluation of antibody-mediated rejection, immune monitoring posttransplant, and transplant prognosis evaluation. In addition, integration of HLA-DSAs to clinical, functional and histological transplant parameters has further consolidated the utility of HLA-DSAs as robust biomarkers and allows to build new tools for monitoring, precision diagnosis, and risk stratification for individual patients. However, prospective and randomized-controlled studies addressing the clinical benefit and cost-effectiveness of HLA-DSA-based monitoring and patient management strategies are required to demonstrate that the use of HLA-DSAs as biomarkers can improve current clinical practice and transplant outcomes.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris
- Human Immunology and Immunopathology, Université de Paris
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| |
Collapse
|
19
|
Integrated Immunologic Monitoring in Solid Organ Transplantation: The Road Toward Torque Teno Virus-guided Immunosuppression. Transplantation 2022; 106:1940-1951. [PMID: 35509090 PMCID: PMC9521587 DOI: 10.1097/tp.0000000000004153] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potent immunosuppressive drugs have been introduced into clinical care for solid organ transplant recipients. It is now time to guide these drugs on an individual level to optimize their efficacy. An ideal tool simultaneously detects overimmunosuppression and underimmunosuppression, is highly standardized, and is straightforward to implement into routine. Randomized controlled interventional trials are crucial to demonstrate clinical value. To date, proposed assays have mainly focused on the prediction of rejection and were based on the assessment of few immune compartments. Recently, novel tools have been introduced based on a more integrated approach to characterize the immune function and cover a broader spectrum of the immune system. In this respect, the quantification of the plasma load of a highly prevalent and apathogenic virus that might reflect the immune function of its host has been proposed: the torque teno virus (TTV). Although TTV control is driven by T cells, other major immune compartments might contribute to the hosts' response. A standardized in-house polymerase chain reaction and a conformité européenne-certified commercially available polymerase chain reaction are available for TTV quantification. TTV load is associated with rejection and infection in solid organ transplant recipients, and cutoff values for risk stratification of such events have been proposed for lung and kidney transplantation. Test performance of TTV load does not allow for the diagnosis of rejection and infection but is able to define at-risk patients. Hitherto TTV load has not been used in interventional settings, but two interventional randomized controlled trials are currently testing the safety and efficacy of TTV-guided immunosuppression.
Collapse
|
20
|
Activation of Humoral Immunity during the Pathogenesis of Experimental Chronic Lung Allograft Dysfunction. Int J Mol Sci 2022; 23:ijms23158111. [PMID: 35897686 PMCID: PMC9331602 DOI: 10.3390/ijms23158111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Alloreactive and autoreactive antibodies have been associated with the development of chronic lung allograft dysfunction (CLAD), but their pathogenic role is disputed. Orthotopic left lung transplantation was performed in the Fischer-344 to Lewis rat strain combination followed by the application of ciclosporine for 10 days. Four weeks after transplantation, lipopolysaccharide (LPS) was instilled into the trachea. Lungs were harvested before (postoperative day 28) and after LPS application (postoperative days 29, 33, 40, and 90) for histopathological, immunohistochemical, and Western blot analyses. Recipient serum was collected to investigate circulating antibodies. Lung allografts were more strongly infiltrated by B cells and deposits of immunoglobulin G and M were more prominent in allografts compared to right native lungs or isografts and increased in response to LPS instillation. LPS induced the secretion of autoreactive antibodies into the circulation of allograft and isograft recipients, while alloreactive antibodies were only rarely detected. Infiltration of B cells and accumulation of immunoglobulin, which is observed in allografts treated with LPS but not isografts or native lungs, might contribute to the pathogenesis of experimental CLAD. However, the LPS-induced appearance of circulating autoreactive antibodies does not seem to be related to CLAD, because it is observed in both, isograft and allograft recipients.
Collapse
|
21
|
Calabrese F, Roden AC, Pavlisko E, Lunardi F, Neil D, Adam B, Hwang D, Goddard M, Berry GJ, Ivanovic M, Thüsen JVD, Gibault L, Lin CY, Wassilew K, Glass C, Westall G, Zeevi A, Levine DJ, Roux A. LUNG ALLOGRAFT STANDARDIZED HISTOLOGICAL ANALYSIS (LASHA) TEMPLATE: A RESEARCH CONSENSUS PROPOSAL. J Heart Lung Transplant 2022; 41:1487-1500. [DOI: 10.1016/j.healun.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
|
22
|
Sorbini M, Togliatto G, Mioli F, Simonato E, Marro M, Cappuccio M, Arruga F, Caorsi C, Mansouri M, Magistroni P, Gambella A, Delsedime L, Papotti MG, Solidoro P, Albera C, Boffini M, Rinaldi M, Amoroso A, Vaisitti T, Deaglio S. Validation of a Simple, Rapid, and Cost-Effective Method for Acute Rejection Monitoring in Lung Transplant Recipients. Transpl Int 2022; 35:10546. [PMID: 35755857 PMCID: PMC9221674 DOI: 10.3389/ti.2022.10546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Despite advances in immunosuppression therapy, acute rejection remains the leading cause of graft dysfunction in lung transplant recipients. Donor-derived cell-free DNA is increasingly being considered as a valuable biomarker of acute rejection in several solid organ transplants. We present a technically improved molecular method based on digital PCR that targets the mismatch between the recipient and donor at the HLA-DRB1 locus. Blood samples collected sequentially post-transplantation from a cohort of lung recipients were used to obtain proof-of-principle for the validity of the assay, correlating results with transbronchial biopsies and lung capacity tests. The results revealed an increase in dd-cfDNA during the first 2 weeks after transplantation related to ischemia-reperfusion injury (6.36 ± 5.36%, p < 0.0001). In the absence of complications, donor DNA levels stabilized, while increasing again during acute rejection episodes (7.81 ± 12.7%, p < 0.0001). Respiratory tract infections were also involved in the release of dd-cfDNA (9.14 ± 15.59%, p = 0.0004), with a positive correlation with C-reactive protein levels. Overall, the dd-cfDNA percentages were inversely correlated with the lung function values measured by spirometry. These results confirm the value of dd-cfDNA determination during post-transplant follow-up to monitor acute rejection in lung recipients, achieved using a rapid and inexpensive approach based on the HLA mismatch between donor and recipient.
Collapse
Affiliation(s)
- Monica Sorbini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Fiorenza Mioli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Erika Simonato
- Cardiac Surgery Division, Surgical Sciences Department, Heart and Lung Transplant Center, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Matteo Marro
- Cardiac Surgery Division, Surgical Sciences Department, Heart and Lung Transplant Center, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | | | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristiana Caorsi
- Immunogenetics and Transplant Biology Service, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Morteza Mansouri
- Immunogenetics and Transplant Biology Service, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Paola Magistroni
- Immunogenetics and Transplant Biology Service, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | | | - Luisa Delsedime
- Pathology Unit, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Città Della Salute e Della Scienza University Hospital, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Paolo Solidoro
- Lung Transplantation and Advanced Airways Management, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Carlo Albera
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Boffini
- Cardiac Surgery Division, Surgical Sciences Department, Heart and Lung Transplant Center, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Mauro Rinaldi
- Cardiac Surgery Division, Surgical Sciences Department, Heart and Lung Transplant Center, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Transplant Biology Service, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Transplant Biology Service, Città Della Salute e Della Scienza University Hospital, Turin, Italy
| |
Collapse
|
23
|
Ravichandran R, Bansal S, Rahman M, Sureshbabu A, Sankpal N, Fleming T, Bharat A, Mohanakumar T. Extracellular Vesicles Mediate Immune Responses to Tissue-Associated Self-Antigens: Role in Solid Organ Transplantations. Front Immunol 2022; 13:861583. [PMID: 35572510 PMCID: PMC9094427 DOI: 10.3389/fimmu.2022.861583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Transplantation is a treatment option for patients diagnosed with end-stage organ diseases; however, long-term graft survival is affected by rejection of the transplanted organ by immune and nonimmune responses. Several studies have demonstrated that both acute and chronic rejection can occur after transplantation of kidney, heart, and lungs. A strong correlation has been reported between de novo synthesis of donor-specific antibodies (HLA-DSAs) and development of both acute and chronic rejection; however, some transplant recipients with chronic rejection do not have detectable HLA-DSAs. Studies of sera from such patients demonstrate that immune responses to tissue-associated antigens (TaAgs) may also play an important role in the development of chronic rejection, either alone or in combination with HLA-DSAs. The synergistic effect between HLA-DSAs and antibodies to TaAgs is being established, but the underlying mechanism is yet to be defined. We hypothesize that HLA-DSAs damage the transplanted donor organ resulting in stress and leading to the release of extracellular vesicles, which contribute to chronic rejection. These vesicles express both donor human leukocyte antigen (HLA) and non-HLA TaAgs, which can activate antigen-presenting cells and lead to immune responses and development of antibodies to both donor HLA and non-HLA tissue-associated Ags. Extracellular vesicles (EVs) are released by cells under many circumstances due to both physiological and pathological conditions. Primarily employing clinical specimens obtained from human lung transplant recipients undergoing acute or chronic rejection, our group has demonstrated that circulating extracellular vesicles display both mismatched donor HLA molecules and lung-associated Ags (collagen-V and K-alpha 1 tubulin). This review focuses on recent studies demonstrating an important role of antibodies to tissue-associated Ags in the rejection of transplanted organs, particularly chronic rejection. We will also discuss the important role of extracellular vesicles released from transplanted organs in cross-talk between alloimmunity and autoimmunity to tissue-associated Ags after solid organ transplantation.
Collapse
Affiliation(s)
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Narendra Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Ankit Bharat
- Department of Surgery-Thoracic, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
24
|
Subramani MV, Pandit S, Gadre SK. Acute rejection and post lung transplant surveillance. Indian J Thorac Cardiovasc Surg 2022; 38:271-279. [PMID: 35340687 PMCID: PMC8938213 DOI: 10.1007/s12055-021-01320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose The purpose of this review is to summarize the current evidence on the evaluation and treatment of acute rejection after lung transplantation. Results Despite significant progress in the field of transplant immunology, acute rejection remains a frequent complication after transplantation. Almost 30% of lung transplant recipients experience at least one episode of acute cellular rejection (ACR) during the first year after transplant. Acute cellular rejection, lymphocytic bronchiolitis, and antibody-mediated rejection (AMR) are all risk factors for the subsequent development of chronic lung allograft dysfunction (CLAD). Acute cellular rejection and lymphocytic bronchiolitis have well-defined histopathologic diagnostic criteria and grading. The diagnosis of antibody-mediated rejection after lung transplantation requires a multidisciplinary approach. Antibody-mediated rejection may cause acute allograft failure. Conclusions Acute rejection is a risk factor for development of chronic rejection. Further investigations are required to better define risk factors, surveillance strategies, and optimal management strategies for acute allograft rejection.
Collapse
Affiliation(s)
| | - Sumir Pandit
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A-90, Cleveland, OH 44195 USA
| | - Shruti Kumar Gadre
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A-90, Cleveland, OH 44195 USA
| |
Collapse
|
25
|
Ohm B, Jungraithmayr W. B Cell Immunity in Lung Transplant Rejection - Effector Mechanisms and Therapeutic Implications. Front Immunol 2022; 13:845867. [PMID: 35320934 PMCID: PMC8934882 DOI: 10.3389/fimmu.2022.845867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Allograft rejection remains the major hurdle in lung transplantation despite modern immunosuppressive treatment. As part of the alloreactive process, B cells are increasingly recognized as modulators of alloimmunity and initiators of a donor-specific humoral response. In chronically rejected lung allografts, B cells contribute to the formation of tertiary lymphoid structures and promote local alloimmune responses. However, B cells are functionally heterogeneous and some B cell subsets may promote alloimmune tolerance. In this review, we describe the current understanding of B-cell-dependent mechanisms in pulmonary allograft rejection and highlight promising future strategies that employ B cell-targeted therapies.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Shino MY, Zhang Q, Li N, Derhovanessian A, Ramsey A, Saggar R, Britton IN, Amubieya OO, Lari SM, Hickey M, Reed EF, Noble PW, Stripp BR, Fishbein GA, Lynch JP, Ardehali A, Sayah DM, Weigt SS, Belperio JA. The allograft injury marker CXCL9 determines prognosis of anti-HLA antibodies after lung transplantation. Am J Transplant 2022; 22:565-573. [PMID: 34464505 PMCID: PMC10826889 DOI: 10.1111/ajt.16827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/25/2023]
Abstract
Despite the common detection of non-donor specific anti-HLA antibodies (non-DSAs) after lung transplantation, their clinical significance remains unclear. In this retrospective single-center cohort study of 325 lung transplant recipients, we evaluated the association between donor-specific HLA antibodies (DSAs) and non-DSAs with subsequent CLAD development. DSAs were detected in 30% of recipients and were associated with increased CLAD risk, with higher HRs for both de novo and high MFI (>5000) DSAs. Non-DSAs were detected in 56% of recipients, and 85% of DSA positive tests had concurrent non-DSAs. In general, non-DSAs did not increase CLAD risk in multivariable models accounting for DSAs. However, non-DSAs in conjunction with high BAL CXCL9 levels were associated with increased CLAD risk. Multivariable proportional hazards models demonstrate the importance of the HLA antibody-CXCL9 interaction: CLAD risk increases when HLA antibodies (both DSAs and non-DSAs) are detected in conjunction with high CXCL9. Conversely, CLAD risk is not increased when HLA antibodies are detected with low CXCL9. This study supports the potential utility of BAL CXCL9 measurement as a biomarker to risk stratify HLA antibodies for future CLAD. The ability to discriminate between high versus low-risk HLA antibodies may improve management by allowing for guided treatment decisions.
Collapse
Affiliation(s)
- Michael Y. Shino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Qiuheng Zhang
- Department of Immunogenetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ning Li
- Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss Derhovanessian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ian N. Britton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Olawale O. Amubieya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shahrzad M. Lari
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michelle Hickey
- Department of Immunogenetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elaine F. Reed
- Department of Immunogenetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Paul W. Noble
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Barry R. Stripp
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Gregory A. Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P. Lynch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Abbas Ardehali
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - David M. Sayah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S. Sam Weigt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
27
|
Correlation Between Microvascular Inflammation in Endomyocardial Biopsies and Rejection Transcripts, Donor-specific Antibodies, and Graft Dysfunction in Antibody-mediated Rejection. Transplantation 2021; 106:1455-1464. [DOI: 10.1097/tp.0000000000004008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Immunosuppression in Lung Transplantation. Handb Exp Pharmacol 2021; 272:139-164. [PMID: 34796380 DOI: 10.1007/164_2021_548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunosuppression in lung transplantation is an area devoid of robust clinical data. This chapter will review the history of immunosuppression in lung transplantation. Additionally, it will evaluate the three classes of induction, maintenance, and rescue immunosuppression in detail. Induction immunosuppression in lung transplantation aims to decrease incidence of lung allograft rejection, however infectious risk must be considered when determining if induction is appropriate and which agent is most favorable. Similar to other solid organ transplant patient populations, a multi-drug approach is commonly prescribed for maintenance immunosuppression to minimize single agent drug toxicities. Emphasis of this review is placed on key medication considerations including dosing, adverse effects, and drug interactions. Clinical considerations will be reviewed per drug class given available literature. Finally, acute cellular, antibody mediated, and chronic rejection are reviewed.
Collapse
|
29
|
Cone BD, Zhang JQ, Sosa RA, Calabrese F, Reed EF, Fishbein GA. Phosphorylated S6 ribosomal protein expression by immunohistochemistry correlates with de novo donor-specific HLA antibodies in lung allograft recipients. J Heart Lung Transplant 2021; 40:1164-1171. [PMID: 34330604 DOI: 10.1016/j.healun.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Per the ISHLT 2016 definition, a C4d-positive lung biopsy is required to meet criteria for definite antibody-mediated rejection (AMR). Unfortunately, C4d has poor sensitivity and specificity, and low inter-rater reliability. Phosphorylated S6 ribosomal protein (p-S6RP) expressed via the mTOR pathway has been shown to be a biomarker of AMR and correlates with donor-specific antibodies (DSA) in heart allografts. However, p-S6RP immunohistochemistry (IHC) in the setting of pulmonary AMR has yet to be evaluated. We sought to determine whether p-S6RP IHC performed on lung biopsies correlates with de novo DSA. METHODS IHC for p-S6RP performed on 26 biopsies from lung transplant recipients with de novo HLA DSA (DSA+) and 28 biopsies from patients with no DSA (DSA-) were evaluated by 3 pathologists who independently scored the degree of alveolar macrophage and pneumocyte staining. Staining in ≥50% of the biopsy as determined by at least 2 pathologists was considered positive. RESULTS Twenty-one (81%) DSA+ biopsies stained positive for p-S6RP in pneumocytes and 21 (81%) in macrophages. Six DSA- biopsies (21%) stained positive for p-S6RP in pneumocytes, 6 (21%) were positive in macrophages. Pneumocyte p-S6RP staining was 81% sensitive and 79% specific for DSA. Macrophage staining showed the same sensitivity and specificity but with lower inter-rater agreement (κ = 0.53 vs 0.68). CONCLUSIONS This study demonstrates a positive relationship between de novo DSA and p-S6RP expression in pneumocytes and macrophages using IHC. p-S6RP is relatively sensitive and specific, and has superior inter-rater reliability compared to C4d.
Collapse
Affiliation(s)
- Brian D Cone
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jennifer Q Zhang
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rebecca A Sosa
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Elaine F Reed
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | | |
Collapse
|
30
|
Joher N, Matignon M, Grimbert P. HLA Desensitization in Solid Organ Transplantation: Anti-CD38 to Across the Immunological Barriers. Front Immunol 2021; 12:688301. [PMID: 34093594 PMCID: PMC8173048 DOI: 10.3389/fimmu.2021.688301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
The presence of anti-human leucocyte antigen (HLA) antibodies in the potential solid organ transplant recipient's blood is one of the main barriers to access to a transplantation. The HLA sensitization is associated with longer waitlist time, antibody mediated rejection and transplant lost leading to increased recipient's morbidity and mortality. However, solid organ transplantation across the HLA immunological barriers have been reported in recipients who were highly sensitized to HLA using desensitization protocols. These desensitization regimens are focused on the reduction of circulating HLA antibodies. Despite those strategies improve rates of transplantation, it remains several limitations including persistent high rejection rate and worse long-term outcomes when compare with non-sensitized recipient population. Currently, interest is growing in the development of new desensitization approaches which, beyond targeting antibodies, would be based on the modulation of alloimmune pathways. Plasma cells appears as an interesting target given their critical role in antibody production. In the last decade, CD38-targeting immunotherapies, such as daratumumab, have been recognized as a key component in the treatment of myeloma by inducing an important plasma cell depletion. This review focuses on an emerging concept based on targeting CD38 to desensitize in the field of transplantation.
Collapse
Affiliation(s)
- Nizar Joher
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| | - Marie Matignon
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| | - Philippe Grimbert
- Assistance Publique-Hôpitaux de Paris AP-HP, Hôpital Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire (Innovative Therapy for Immune Disorders), Créteil, France.,Université Paris Est Créteil UPEC, Institut National de la Santé et de la Recherche Médicale INSERM U955, Institut Mondor de Recherche Biomédicale IMRB, Équipe 21, Créteil, France
| |
Collapse
|
31
|
Jang MK, Tunc I, Berry GJ, Marboe C, Kong H, Keller MB, Shah PD, Timofte I, Brown AW, Ponor IL, Mutebi C, Philogene MC, Yu K, Iacono A, Orens JB, Nathan SD, Agbor-Enoh S. Donor-derived cell-free DNA accurately detects acute rejection in lung transplant patients, a multicenter cohort study. J Heart Lung Transplant 2021; 40:822-830. [PMID: 34130911 DOI: 10.1016/j.healun.2021.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Acute rejection, which includes antibody-mediated rejection and acute cellular rejection, is a risk factor for lung allograft loss. Lung transplant patients often undergo surveillance transbronchial biopsies to detect and treat acute rejection before irreversible chronic rejection develops. Limitations of this approach include its invasiveness and high interobserver variability. We tested the performance of percent donor-derived cell-free DNA (%ddcfDNA), a non-invasive blood test, to detect acute rejection. METHODS This multicenter cohort study monitored 148 lung transplant subjects over a median of 19.6 months. We collected serial plasma samples contemporaneously with TBBx to measure %ddcfDNA. Clinical data was collected to adjudicate for acute rejection. The primary analysis consisted of computing the area-under-the-receiver-operating-characteristic-curve of %ddcfDNA to detect acute rejection. Secondary analysis determined %ddcfDNA rule-out thresholds for acute rejection. RESULTS ddcfDNA levels were high after transplant surgery and decayed logarithmically. With acute rejection, ddcfDNA levels rose six-fold higher than controls. ddcfDNA levels also correlated with severity of lung function decline and histological grading of rejection. %ddcfDNA area-under-the-receiver-operating-characteristic-curve for acute rejection, AMR, and ACR were 0.89, 0.93, and 0.83, respectively. ddcfDNA levels of <0.5% and <1.0% showed a negative predictive value of 96% and 90% for acute rejection, respectively. Histopathology detected one-third of episodes with ddcfDNA levels ≥1.0%, even though >90% of these events were coincident to clinical complications missed by histopathology. CONCLUSIONS This study demonstrates that %ddcfDNA reliably detects acute rejection and other clinical complications potentially missed by histopathology, lending support to its use as a non-invasive marker of allograft injury.
Collapse
Affiliation(s)
- Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, Maryland
| | - Ilker Tunc
- Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, Maryland
| | - Gerald J Berry
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Stanford University School of Medicine, Palo Alto, California
| | - Charles Marboe
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Department of Pathology, New York Presbyterian University Hospital of Cornell and Columbia, New York, New York
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, Maryland
| | - Michael B Keller
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, Maryland
| | - Pali D Shah
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, Maryland
| | - Irina Timofte
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; University of Maryland Medical Center, Baltimore, Maryland
| | - Anne W Brown
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Inova Fairfax Hospital, Fairfax, Virginia
| | - Ileana L Ponor
- Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Cedric Mutebi
- Immunogenetics Core Laboratory, Johns Hopkins Hospital, Baltimore, Maryland
| | - Mary C Philogene
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; National Cancer Institute, Rockville, Maryland
| | - Kai Yu
- National Cancer Institute, Rockville, Maryland
| | - Aldo Iacono
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; University of Maryland Medical Center, Baltimore, Maryland
| | - Jonathan B Orens
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Stanford University School of Medicine, Palo Alto, California
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Inova Fairfax Hospital, Fairfax, Virginia
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), 10 Center Drive, 7S261, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, 10 Center Drive, 7S261, Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, 1830 East Monument Street, Baltimore, Maryland.
| |
Collapse
|
32
|
Assessment of Carfilzomib Treatment Response in Lung Transplant Recipients With Antibody-mediated Rejection. Transplant Direct 2021; 7:e680. [PMID: 33748409 PMCID: PMC7969244 DOI: 10.1097/txd.0000000000001131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/31/2023] Open
Abstract
Supplemental Digital Content is available in the text. Data supporting the use of carfilzomib (CFZ) for treatment of antibody-mediated rejection (AMR) in lung transplantation in combination with plasmapheresis and intravenous immunoglobulin suggest positive outcomes through donor-specific antibody (DSA) depletion or conversion to noncomplement-activating antibodies. Herein, we describe our center’s experience treating AMR with CFZ.
Collapse
|
33
|
Verleden SE, Von der Thüsen J, Roux A, Brouwers ES, Braubach P, Kuehnel M, Laenger F, Jonigk D. When tissue is the issue: A histological review of chronic lung allograft dysfunction. Am J Transplant 2020; 20:2644-2651. [PMID: 32185874 DOI: 10.1111/ajt.15864] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/25/2023]
Abstract
Although chronic lung allograft dysfunction (CLAD) remains the major life-limiting factor following lung transplantation, much of its pathophysiology remains unknown. The discovery that CLAD can manifest both clinically and morphologically in vastly different ways led to the definition of distinct subtypes of CLAD. In this review, recent advances in our understanding of the pathophysiological mechanisms of the different phenotypes of CLAD will be discussed with a particular focus on tissue-based and molecular studies. An overview of the current knowledge on the mechanisms of the airway-centered bronchiolitis obliterans syndrome, as well as the airway and alveolar injuries in the restrictive allograft syndrome and also the vascular compartment in chronic antibody-mediated rejection is provided. Specific attention is also given to morphological and molecular markers for early CLAD diagnosis or histological changes associated with subsequent CLAD development. Evidence for a possible overlap between different forms of CLAD is presented and discussed. In the end, "tissue remains the (main) issue," as we are still limited in our knowledge about the actual triggers and specific mechanisms of all late forms of posttransplant graft failure, a shortcoming that needs to be addressed in order to further improve the outcome of lung transplant recipients.
Collapse
Affiliation(s)
- Stijn E Verleden
- Lab of Respiratory Diseases, BREATH, Department of CHROMETA, KU Leuven, Leuven, Belgium.,Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany
| | - Jan Von der Thüsen
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
| | - Emily S Brouwers
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hannover Medical School (MHH), Hannover, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hannover Medical School (MHH), Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hannover Medical School (MHH), Hannover, Germany
| | - Florian Laenger
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hannover Medical School (MHH), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), The German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
34
|
Association between Allosensitization and Waiting List Outcomes among Adult Lung Transplant Candidates in the United States. Ann Am Thorac Soc 2020; 16:846-852. [PMID: 30763122 DOI: 10.1513/annalsats.201810-713oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Allosensitization may be a barrier to lung transplant. Currently, consideration is not given to allosensitization when assigning priority on the lung transplant waiting list. Objectives: We aimed to examine the association between allosensitization and waiting list outcomes. Methods: We conducted a retrospective single-center cohort study of adults listed for lung transplant at our center between January 1, 2006, and December 31, 2016. We screened candidates for human leukocyte antigen antibodies before listing and examined the association between allosensitization and waiting list outcomes, including likelihood of transplant and death on the waiting list, using a competing risk model. Calculated panel-reactive antibody (CPRA) was used as a continuous measure of allosensitization. Results: Among 746 candidates who were listed for lung transplant during the study period, 263 (35%) were allosensitized, and 483 (65%) were not. In unadjusted analysis, allosensitized candidates had a decreased likelihood of transplant compared with nonallosensitized candidates (subhazard ratio [sHR], 0.71; 95% confidence interval [CI], 0.60-0.83; P < 0.001) and were more likely to die on the waiting list (sHR, 1.66; 95% CI, 1.08-2.58; P < 0.001). In multivariable modeling, increasing CPRA was associated with an increased risk of death and a decreased likelihood of transplant (sHR for death, 1.15 per 10% increase in CPRA; 95% CI, 1.07-1.22; P < 0.001; sHR for transplant, 0.89 per 10% increase in CPRA; 95% CI, 0.86-0.91; P < 0.001). Conclusions: Broad allosensitization was associated with longer waiting times, decreased likelihood of transplant, and increased risk of death among candidates on the waiting list for lung transplant. Consideration of allosensitization in organ allocation strategies might help mitigate this increased risk in highly allosensitized candidates.
Collapse
|
35
|
Vascularized composite allotransplantation versus solid organ transplantation: innate-adaptive immune interphase. Curr Opin Organ Transplant 2020; 24:714-720. [PMID: 31577596 DOI: 10.1097/mot.0000000000000705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA), a life-enhancing treatment for patients with complex tissue defects, trauma or illness, expounds upon the foundation of solid organ transplantation (SOT), the gold standard in end-stage organ failure. As innate and adaptive immunity remain the fundamental concern, this review highlights divergent immunobiology responses in VCA and SOT recipients. RECENT FINDINGS Host innate immune activation drives peritransplant tissue ischemia-reperfusion injury (IRI). Despite the direct relationship between ischemia-reperfusion (IR)-stress and cell-mediated acute rejection, the mechanism of how IRI may affect VCA loss needs investigation. With skin grafts being highly immunogenic, the incidence of cell-mediated rejection is higher in VCA than SOT; whereas ex-vivo perfusion may exert cytoprotection against IRI in VCA and SOT. New treatment concepts, such as topical immunosuppression or cell-based tolerogenic therapies, may avoid systemic immunosuppression in VCA. Although antibody-mediated rejection is relatively rare in VCA and its disease seems to be distinct from that in SOT, little is known as to whether and how IRI may influence humoral immune rejection cascade in VCA or SOT. SUMMARY Further understanding of the innate-adaptive immune crosstalk should contribute to much needed development of novel therapies to improve VCA outcomes, based on strategies established in SOT.
Collapse
|
36
|
Bery AI, Hachem RR. Antibody-mediated rejection after lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:411. [PMID: 32355855 PMCID: PMC7186640 DOI: 10.21037/atm.2019.11.86] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antibody-mediated rejection (AMR) has been identified as a significant form of acute allograft dysfunction in lung transplantation. The development of consensus diagnostic criteria has created a uniform definition of AMR; however, significant limitations of these criteria have been identified. Treatment modalities for AMR have been adapted from other areas of medicine and data on the effectiveness of these therapies in AMR are limited. AMR is often refractory to these therapies, and graft failure and death are common. AMR is associated with increased rates of chronic lung allograft dysfunction (CLAD) and poor long-term survival. In this review, we discuss the history of AMR and describe known mechanisms, application of the consensus diagnostic criteria, data for current treatment strategies, and long-term outcomes. In addition, we highlight current gaps in knowledge, ongoing research, and future directions to address these gaps. Promising diagnostic techniques are actively being investigated that may allow for early detection and treatment of AMR. We conclude that further investigation is required to identify and define chronic and subclinical AMR, and head-to-head comparisons of currently used treatment protocols are necessary to identify an optimal treatment approach. Gaps in knowledge regarding the epidemiology, mechanisms, diagnosis, and treatment of AMR continue to exist and future research should focus on these aspects.
Collapse
Affiliation(s)
- Amit I Bery
- Division of Pulmonary & Critical Care, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ramsey R Hachem
- Division of Pulmonary & Critical Care, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
37
|
Alexander MP, Bentall A, Aleff PCA, Gandhi MJ, Scott JP, Roden AC. Ultrastructural changes in pulmonary allografts with antibody-mediated rejection. J Heart Lung Transplant 2019; 39:165-175. [PMID: 31870771 DOI: 10.1016/j.healun.2019.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/02/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (AMR) is an important cause of lung allograft loss in some patients. Challenges with current diagnostic criteria limit timely detection. Ultrastructural studies of endothelia allow the early detection of AMR in kidney allografts. This study aimed to define the ultrastructural changes of the endothelium in lung allografts in the setting of AMR and determine its specificity for AMR. METHODS Ultrastuctural studies were performed on lung allograft biopsies of 12 patients using glutaraldehyde-fixed or paraffin-embedded material. AMR had been classified according to the International Society of Heart and Lung Transplant 2016 consensus report criteria. Endothelial changes (swelling [ES], vacuolization [EV], surface irregularity, detachment, neutrophil margination [NM]) and basement membrane changes were graded semi quantitatively using electron microscopy (EM). Grades were compared between AMR, acute cellular rejection, and non-transplant controls. RESULTS Significant differences were found between AMR and acute cellular reaction biopsies, particularly in ES (p = 0.006), EV (p = 0.023) and NM (p = 0.038). Using a combined score of all categories of assessment, the total EM score was significantly higher in AMR (p = 0.007) and provided excellent sensitivity and specificity with a receiver operator characteristic curve of 1.0. C4d did not correlate with EM changes associated with AMR. The use of paraffin-embedded material samples did not significantly affect the analysis compared with glutaraldehyde-fixed tissue, although ES was reduced in the former. CONCLUSIONS Endothelial structural analysis using EM can facilitate improved diagnostic accuracy of AMR and needs to be validated in larger cohorts, but it also allows retrospective studies to be performed.
Collapse
Affiliation(s)
| | | | | | | | - John P Scott
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
38
|
Rotman S, Koch N, Wiesner L, Aubert V, Rosales IA, Colvin RB, Raffoul W, Pascual M. Nonvascularized human skin chronic allograft rejection. Am J Transplant 2019; 19:3191-3196. [PMID: 31344327 DOI: 10.1111/ajt.15542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023]
Abstract
A 65-year-old man had extensive burns of the lower legs in 1991, at the age of 40 years. He was treated by nonvascularized and de-epithelialized, allogeneic split-thickness skin allograft and cyclosporine monotherapy for 2 months. Ulcers developed between 10 and 25 years after transplantation and a surgical debridement on the lower extremities was required. Analyses of the removed tissue allografts showed chronic antibody-mediated and cellular rejection with extensive and dense fibrosis, and diffuse capillary C4d deposits. An anti-DRB1*08:01, donor-specific antibody was present. A unique clinical condition with late immunopathological features of human skin chronic allograft rejection is reported.
Collapse
Affiliation(s)
- Samuel Rotman
- Service of Clinical Pathology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Koch
- Service of Plastic and Reconstructive Surgery, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Lucie Wiesner
- Service of Plastic and Reconstructive Surgery, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Vincent Aubert
- Service of Immunology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wassim Raffoul
- Service of Plastic and Reconstructive Surgery, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Dick A, Humpe A, Kauke T. Impact, Screening, and Therapy of HLA Antibodies in Patients before and after Lung Transplantation. Transfus Med Hemother 2019; 46:337-347. [PMID: 31832059 DOI: 10.1159/000502124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/13/2019] [Indexed: 12/29/2022] Open
Abstract
Since almost 30 years, lung transplantation is a considerable therapeutic option in patients suffering from end-stage lung disease. Up to now, the impact of donor-specific antibodies directed against donor HLA (human leukocyte antigen) before and after transplantation is still a matter of debate. As histocompatibility testing is not required for each patient according to the current national guidelines and Eurotransplant recommendations for lung transplantation, each transplantation unit has to establish a local protocol together with the tissue typing laboratory how to implement an immunological risk assessment strategy for their patients while enabling access to transplantation. Desensitization regimens might help in case of highly alloimmunized patients waiting for urgent transplantation.
Collapse
Affiliation(s)
- Andrea Dick
- Division of Transfusion Medicine, Cellular Therapeutics, and Hemostaseology, University Clinic LMU Munich, Munich, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cellular Therapeutics, and Hemostaseology, University Clinic LMU Munich, Munich, Germany
| | - Teresa Kauke
- Division of Transfusion Medicine, Cellular Therapeutics, and Hemostaseology, University Clinic LMU Munich, Munich, Germany.,Division of Thoracic Surgery, University Clinic LMU Munich, Munich, Germany
| |
Collapse
|
40
|
Paul P, Pedini P, Lyonnet L, Di Cristofaro J, Loundou A, Pelardy M, Basire A, Dignat-George F, Chiaroni J, Thomas P, Reynaud-Gaubert M, Picard C. FCGR3A and FCGR2A Genotypes Differentially Impact Allograft Rejection and Patients' Survival After Lung Transplant. Front Immunol 2019; 10:1208. [PMID: 31249568 PMCID: PMC6582937 DOI: 10.3389/fimmu.2019.01208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Fc gamma receptors (FcγRs) play a major role in the regulation of humoral immune responses. Single-nucleotide polymorphisms (SNPs) of FCGR2A and FCGR3A can impact the expression level, IgG affinity and function of the CD32 and CD16 FcγRs in response to their engagement by the Fc fragment of IgG. The CD16 isoform encoded by FCGR3A [158V/V] controls the intensity of antibody-dependent cytotoxic alloimmune responses of natural killer cells (NK) and has been identified as a susceptibility marker predisposing patients to cardiac allograft vasculopathy after heart transplant. This study aimed to investigate whether FCGR2A and FCGR3A polymorphisms can also be associated with the clinical outcome of lung transplant recipients (LTRs). The SNPs of FCGR2A ([131R/H], rs1801274) and FCGR3A ([158V/F], rs396991) were identified in 158 LTRs and 184 Controls (CTL). The corresponding distribution of genotypic and allelic combinations was analyzed for potential links with the development of circulating donor-specific anti-HLA alloantibodies (DSA) detected at months 1 and 3 after lung transplant (LTx), the occurrence of acute rejection (AR) and chronic lung allograft dysfunction (CLAD), and the overall survival of LTRs. The FCGR3A [158V/V] genotype was identified as an independent susceptibility factor associated with higher rates of AR during the first trimester after LTx (HR 4.8, p < 0.0001, 95% CI 2.37-9.61), but it could not be associated with the level of CD16- mediated NK cell activation in response to the LTR's DSA, whatever the MFI intensity and C1q binding profiles of the DSA evaluated. The FCGR2A [131R/R] genotype was associated with lower CLAD-free survival of LTRs, independently of the presence of DSA at 3 months (HR 1.8, p = 0.024, 95% CI 1.08-3.03). Our data indicate that FCGR SNPs differentially affect the clinical outcome of LTRs and may be of use to stratify patients at higher risk of experiencing graft rejection. Furthermore, these data suggest that in the LTx setting, specific mechanisms of humoral alloreactivity, which cannot be solely explained by the complement and CD16-mediated pathogenic effects of DSA, may be involved in the development of acute and chronic lung allograft rejection.
Collapse
Affiliation(s)
- Pascale Paul
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Pascal Pedini
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Luc Lyonnet
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France
| | - Julie Di Cristofaro
- "Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Anderson Loundou
- Département de santé Publique - EA 3279, Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Mathieu Pelardy
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Agnes Basire
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Françoise Dignat-George
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Jacques Chiaroni
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Pascal Thomas
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM) - IHU Méditerranée Infection Aix-Marseille-Université, Marseille, France
| | - Christophe Picard
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| |
Collapse
|
41
|
Akbarpour M, Wu Q, Liu X, Sun H, Lecuona E, Tomic R, Bhorade S, Mohanakumar T, Bharat A. Clinical relevance of lung-restricted antibodies in lung transplantation. Hum Immunol 2019; 80:595-601. [PMID: 31078336 DOI: 10.1016/j.humimm.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
Lung transplant is a definitive treatment for several end-stage lung diseases. However, the high incidence of allograft rejection limits the overall survival following lung transplantation. Traditionally, alloimmunity directed against human leukocyte antigens (HLA) has been implicated in transplant rejection. Recently, the clinical impact of non-HLA lung-restricted antibodies (LRA) has been recognized and extensive research has demonstrated that they may play a dominant role in the development of lung allograft rejection. The immunogenic lung-restricted antigens that have been identified include amongst others, collagen type I, collagen type V, and k-alpha 1 tubulin. Pre-existing antibodies against these lung-restricted antigens are prevalent in patients undergoing lung transplantation and have emerged as one of the predominant risk factors for primary graft dysfunction which limits short-term survival following lung transplantation. Additionally, LRA have been shown to predispose to chronic lung allograft rejection, the predominant cause of poor long-term survival. This review will discuss ongoing research into the mechanisms of development of LRA as well as the pathogenesis of associated lung allograft injury.
Collapse
Affiliation(s)
- Mahzad Akbarpour
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiang Wu
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xianpeng Liu
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Haiying Sun
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rade Tomic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
42
|
Kummrow M, Hiho S, Hudson F, Cantwell L, Mulley WR, D'Orsogna L, Testro A, Pavlovic J, MacDonald P, Sullivan LC, Snell GI, Westall GP. Transfer of donor anti-HLA antibody expression to multiple transplant recipients: A potential variant of the passenger lymphocyte syndrome? Am J Transplant 2019; 19:1577-1581. [PMID: 30653828 DOI: 10.1111/ajt.15262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection, whereby transplant recipient B cells and/or plasma cells produce alloreactive anti-human leukocyte antigen (HLA) antibodies, negatively influences transplant outcomes and is a major contributor to graft loss. An early humoral immune response is suggested by the production of anti-HLA donor-specific antibodies (DSA) that can be measured using solid phase assays. We report the early posttransplant coexistence of a shared anti-HLA antibody profile in 5 solid organ transplant recipients who received organs from the same donor. Retrospective analysis of the donor's serum confirmed the presence of the same anti-HLA profile, suggesting the transfer of donor-derived anti-HLA antibodies, or the cells that produce them, to multiple solid organ transplant recipients. The time frame and extent of transfer suggest a novel variant of the passenger lymphocyte syndrome. These findings have important implications for the consideration of all posttransplant antibody measurements, particularly the interpretation of non-DSAs in the sera of transplant recipients.
Collapse
Affiliation(s)
- Megan Kummrow
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Steven Hiho
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia.,Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Fiona Hudson
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Linda Cantwell
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - William R Mulley
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Lloyd D'Orsogna
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
| | - Julie Pavlovic
- Liver Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
| | - Peter MacDonald
- Heart Transplant Service, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Lucy C Sullivan
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Gregory I Snell
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Glen P Westall
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Elvington M, Liszewski MK, Liszewski AR, Kulkarni HS, Hachem RR, Mohanakumar T, Kim AHJ, Atkinson JP. Development and Optimization of an ELISA to Quantitate C3(H 2 O) as a Marker of Human Disease. Front Immunol 2019; 10:703. [PMID: 31019515 PMCID: PMC6458276 DOI: 10.3389/fimmu.2019.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Discovery of a C3(H2O) uptake pathway has led to renewed interest in this alternative pathway triggering form of C3 in human biospecimens. Previously, a quantifiable method to measure C3(H2O), not confounded by other complement activation products, was unavailable. Herein, we describe a sensitive and specific ELISA for C3(H2O). We initially utilized this assay to determine baseline C3(H2O) levels in healthy human fluids and to define optimal sample storage and handling conditions. We detected ~500 ng/ml of C3(H2O) in fresh serum and plasma, a value substantially lower than what was predicted based on previous studies with purified C3 preparations. After a single freeze-thaw cycle, the C3(H2O) concentration increased 3- to 4-fold (~2,000 ng/ml). Subsequent freeze-thaw cycles had a lesser impact on C3(H2O) generation. Further, we found that storage of human sera or plasma samples at 4°C for up to 22 h did not generate additional C3(H2O). To determine the potential use of C3(H2O) as a biomarker, we evaluated specimens from patients with inflammatory-driven diseases. C3(H2O) concentrations were moderately increased (1.5- to 2-fold) at baseline in sera from active systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients compared to healthy controls. In addition, upon challenge with multiple freeze-thaw cycles or incubation at 22 or 37°C, C3(H2O) generation was significantly enhanced in SLE and RA patients' sera. In bronchoalveolar lavage fluid from lung-transplant recipients, we noted a substantial increase in C3(H2O) within 3 months of acute antibody-mediated rejection. In conclusion, we have established an ELISA for assessing C3(H2O) as a diagnostic and prognostic biomarker in human diseases.
Collapse
Affiliation(s)
- Michelle Elvington
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexis R Liszewski
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ramsey R Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
44
|
Ngo C, Danel C, Duong-Quy S, Dauriat G, Castier Y, Lortat-Jacob B, Mal H, Brugière O, Cazes A. C4d detection and histological patterns in the diagnosis of antibody-mediated rejection after lung transplantation: a single-centre study. Histopathology 2019; 74:988-996. [PMID: 30636056 DOI: 10.1111/his.13823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
AIMS Antibody-mediated rejection (AMR) is an emerging and challenging issue in transplantation. Endothelial deposition of C4d and microvascular inflammation (MI) are reliable markers of AMR in renal and cardiac transplantation, but remain controversial in the lung. Our aim was to assess C4d immunohistochemistry and histological patterns for the diagnosis of lung AMR. METHODS AND RESULTS We reviewed 158 transbronchial biopsies (TBBs) (n = 85 clinically indicated, and n = 73 surveillance TBBs) from 48 recipients, blinded to clinical and serological data. C4d was scored as 0, 1+ (<10%), 2+ (10-50%) or 3+ (>50%). TBBs were reassessed for MI and acute lung injury (ALI). Donor-specific antibodies (DSAs), acute clinical graft dysfunction and chronic lung allograft graft dysfunction (CLAD) were recorded. C4d3+, C4d2+, C4d1+ and C4d0 occurred respectively in four (2.5%), six (3.8%), 28 (17.7%) and 120 (75.9%) TBBs. MI and ALI were rare but more frequent in C4d1-3+ TBBs than in the absence of C4d. C4d2+ was frequently observed with concomitant infection. Among the surveillance TBBs, only two (2.7%) showed MI. Neither ALI nor C4d3+ was diagnosed on surveillance TBBs. No significant association was found between histopathological findings and DSAs. All four patients with C4d3+ could retrospectively be diagnosed with AMR and developed CLAD. CONCLUSION Although rare, diffuse C4d deposition appears to be a strong indication of acute clinical AMR in lung transplant patients, whereas intermediate C4d2+ requires more investigations. In stable patients, histopathology and C4d may lack the sensitivity to diagnose subclinical AMR. This emphasises the need for a multidisciplinary evaluation of each suspected AMR case, and the need for complementary diagnostic tools.
Collapse
Affiliation(s)
- Carine Ngo
- Département de Pathologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Danel
- Département de Pathologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM U1152, Paris Diderot University, Paris, France
| | - Sy Duong-Quy
- Department of Lung Function Testing, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris, France
| | - Gaëlle Dauriat
- Service de Pneumologie B et Transplantation, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yves Castier
- INSERM U1152, Paris Diderot University, Paris, France.,Service de Chirurgie Vasculaire et Thoracique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Brice Lortat-Jacob
- Service de Réanimation Chirurgicale, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hervé Mal
- INSERM U1152, Paris Diderot University, Paris, France.,Service de Pneumologie B et Transplantation, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Brugière
- INSERM U1152, Paris Diderot University, Paris, France.,Service de Pneumologie B et Transplantation, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France.,Service de Pneumologie et Transplantation, Hôpital Foch, Suresnes, France
| | - Aurélie Cazes
- Département de Pathologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM U1152, Paris Diderot University, Paris, France
| |
Collapse
|