1
|
Cucchiari D, Podestà MA, Ponticelli C. Pathophysiology of rejection in kidney transplantation. Expert Rev Clin Immunol 2024:1-11. [PMID: 39467249 DOI: 10.1080/1744666x.2024.2421310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Rejection remains a major obstacle to successful kidney transplantation. The complex pathophysiology of rejection depends on a fine-tuned interplay between the innate and adaptive immune systems. AREAS COVERED This review provides a comprehensive analysis of the pathophysiology of rejection of kidney grafts, performed through careful selection of most relevant papers available on the topic in the PubMed database. The two types of rejection usually observed at the kidney biopsy, i.e. cellular and humoral rejection, are described with an accurate outline of the biological processes that lead to their development. EXPERT OPINION The incidence of T-cell-mediated rejection is decreasing, and most cases promptly respond to appropriate immunosuppression. However, late diagnosis or incomplete response to treatment may have deleterious consequences in the long term. The main issue is represented by antibody-mediated rejection, which unsatisfactorily responds to aggressive immunosuppression, especially when diagnosed late. Prevention of acute ABMR rests on HLA-specific antibody detection prior to transplantation, adequate immunosuppression, and optimal patients' compliance. Late diagnosis and poor response to treatment inevitably lead to chronic ABMR, for which no therapies are currently available.
Collapse
Affiliation(s)
- David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Barcelona, Spain
| | - Manuel Alfredo Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hopsital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
2
|
Santos E, Lucisano G, Dor FJMF, Willicombe M. Comparative outcomes of DSA positive, crossmatch negative living donor kidney transplants versus remaining on the waitlist for an HLA compatible deceased donor. Transpl Immunol 2024; 86:102098. [PMID: 39074764 DOI: 10.1016/j.trim.2024.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The clinical relevance of preformed donor specific antibodies in the setting of a negative crossmatch (DSA + XM-) remains controversial. In this study we investigate the outcomes of patients with a DSA + XM- living donor (LDi) who proceeded with an HLA-incompatible (HLAi) transplant compared with those who waited for an HLA-compatible deceased donor (DDc). MATERIALS AND METHODS We investigated 359 patients on the transplant waiting list who had at least one potential HLAi living donor, from which 203 DSA + XM- pairs were identified and outcomes analysed. RESULTS Out of 203 patients, 96 (47.3%) received a LD transplant: 52/96 (54.2%) a LDi, and 44/96 (45.8%) an alternative compatible LD. In addition, 107 patients out of 203(52.7%) waited for a DDc, of which 47(43.9%) were subsequently transplanted. Our adjusted analysis showed that the LDi transplantation did not offer a superior patient survival over waiting for a DDc transplant. For those transplanted, there was no difference in patient (p = 0.065) or death censored allograft survival (p = 0.37) between DDc and LDi recipients. However, there was a higher incidence of acute allograft rejection (p = 0.043) and antibody-mediated rejection (p = 0.005) in the LDi group. Having a high pre-transplant calculated reaction frequency and preformed DSA to both class I and class II antigens were associated with inferior outcomes in the LDi transplants. CONCLUSIONS Given the lack of difference in allograft survival between LDi and DDc transplants, in the absence of an alternative compatible living donor, proceeding with a LDi should be supported despite a higher rejection risk, providing individual risk assessment and shared decision making is undertaken.
Collapse
Affiliation(s)
- Eva Santos
- Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK.
| | - Gaetano Lucisano
- Histocompatibility and Immunogenetics, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Frank J M F Dor
- Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Michelle Willicombe
- Renal and Transplant Centre, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK; Histocompatibility and Immunogenetics, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK; Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, UK
| |
Collapse
|
3
|
de Weerd AE, Roelen DL, Betjes MG, Clahsen-van Groningen MC, Haasnoot GW, Kho MM, Reinders ME, Roodnat JI, Severs D, Karahan GE, van de Wetering J. Anti-HLA Class II Antibodies Are the Most Resistant to Desensitization in Crossmatch-positive Living-donor Kidney Transplantations: A Patient Series. Transplant Direct 2024; 10:e1695. [PMID: 39220218 PMCID: PMC11365629 DOI: 10.1097/txd.0000000000001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background In HLA-incompatible kidney transplantation, the efficacy of desensitization in terms of anti-HLA antibody kinetics is not well characterized. We present an overview of the course of anti-HLA antibodies throughout plasma exchange (PE) desensitization in a series of crossmatch-positive patients. Methods All consecutive candidates in the Dutch HLA-incompatible kidney transplantation program between November 2012 and January 2022 were included. The eligibility criteria were a positive crossmatch with a living kidney donor and no options for compatible transplantation. Desensitization consisted of 5-10 PE with low-dose IVIg. Results A total of 16 patient-donor pairs were included. Patients had median virtual panel-reactive antibody of 99.58%. Cumulative donor-specific anti-HLA antibody (cumDSA) mean fluorescence intensity (MFI) was 31 399 median, and immunodominant DSA (iDSA) MFI was 18 677 for class I and 21 893 for class II. Median anti-HLA antibody MFI response to desensitization was worse in class II as compared with class I (P < 0.001), particularly for HLA-DQ. Class I cumDSA MFI decreased 68% after 4 PE versus 53% in class II. The decrease between the fifth and the 10th PE sessions was modest with 21% in class I versus 9% in class II. Antibody-mediated rejection occurred in 85% of patients, with the iDSA directed to the same mismatched HLA as before desensitization, except for 3 patients, of whom 2 had vigorous rebound of antibodies to repeated mismatches (RMMs). Rebound was highest (86%) in RMM-DSA with prior grafts removed (transplantectomy n = 7), lower (39%) in non-RMM-DSA (n = 30), and lowest (11%) for RMM-DSA with in situ grafts (n = 5; P = 0.018 for RMM-DSA transplantectomy versus RMM-DSA graft in situ). With a median follow-up of 59 mo, 1 patient had died resulting in a death-censored graft survival of 73%. Conclusions Patients with class II DSA, and particularly those directed against HLA-DQ locus, were difficult to desensitize.
Collapse
Affiliation(s)
- Annelies E. de Weerd
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Dave L. Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel G.H. Betjes
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | | | - Geert W. Haasnoot
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcia M.L. Kho
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Marlies E.J. Reinders
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Joke I. Roodnat
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - David Severs
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Gonca E. Karahan
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacqueline van de Wetering
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Chang JH, King KL, Ali Husain S, Dube GK, Rodica Vasilescu E, Patel S, Cohen DJ, Ratner LE, Mohan S, John Crew R. Highly Sensitized Kidney Transplant Outcomes After the 2014 Kidney Allocation System Change. Prog Transplant 2024; 34:70-80. [PMID: 39090844 DOI: 10.1177/15269248241268697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Introduction: Kidney Allocation System (KAS) was implemented by United Network for Organ Sharing in 2014 to reduce allocation disparities. Research Questions: Outcomes of highly sensitized patients (calculated panel reactive antibody (cPRA) ≥ 97%) before and after KAS were compared to low-risk recipients (cPRA <10%) in the post-KAS era were examined. The impact on racial disparities was determined. Design: This was a retrospective study of national registry data. Two cohorts of adult candidates waitlisted for deceased donor transplantation during 3-year periods before and after KAS were identified. Results: Highly sensitized patients (N = 1238 and 4687) received a deceased donor kidney transplant between January 1, 2011 and December 31, 2013 and between January 1, 2015 and December, 31, 2017. Racial disparity for highly sensitized patients improved, yet remained significant (P < 0.001), with Black patients comprising 40% and 41% of the highly sensitized candidates and 28% and 34% of the recipients pre- and post-KAS. While posttransplant death-censored graft failure for highly sensitized recipients was similar overall, post-KAS was associated with improved graft survival in the first year after transplant (HR 0.56, 95% CI 0.40-0.78). When compared to contemporaneous lowrisk recipients, both death-censored and all-cause graft failure were similar for highly sensitized recipients and was associated with increased risk for death-censored graft failure beyond the first year (HR 1.39, 95% CI 1.11-1.73). Conclusion: The allocation system led to an increase in transplantation in highly sensitized candidates without compromising outcomes. Although KAS has led to more balanced transplant rates between highly sensitized Black and White patients, racial inequalities persist.
Collapse
Affiliation(s)
- Jae-Hyung Chang
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kristen L King
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia University Renal Epidemiology (CURE) group, New York, NY, USA
| | - S Ali Husain
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia University Renal Epidemiology (CURE) group, New York, NY, USA
| | - Geoffrey K Dube
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - E Rodica Vasilescu
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shefali Patel
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David J Cohen
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lloyd E Ratner
- Department of Surgery, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sumit Mohan
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Columbia University Renal Epidemiology (CURE) group, New York, NY, USA
- Department of Epidemiology, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - R John Crew
- Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
5
|
Diebold M, Mayer KA, Hidalgo L, Kozakowski N, Budde K, Böhmig GA. Chronic Rejection After Kidney Transplantation. Transplantation 2024:00007890-990000000-00858. [PMID: 39192468 DOI: 10.1097/tp.0000000000005187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In kidney transplantation, ongoing alloimmune processes-commonly triggered by HLA incompatibilities-can trigger chronic transplant rejection, affecting the microcirculation and the tubulointerstitium. Continuous inflammation may lead to progressive, irreversible graft injury, culminating in graft dysfunction and accelerated transplant failure. Numerous experimental and translational studies have delineated a complex interplay of different immune mechanisms driving rejection, with antibody-mediated rejection (AMR) being an extensively studied rejection variant. In microvascular inflammation, a hallmark lesion of AMR, natural killer (NK) cells have emerged as pivotal effector cells. Their essential role is supported by immunohistologic evidence, bulk and spatial transcriptomics, and functional genetics. Despite significant research efforts, a substantial unmet need for approved rejection therapies persists, with many trials yielding negative outcomes. However, several promising therapies are currently under investigation, including felzartamab, a monoclonal antibody targeting the surface molecule CD38, which is highly expressed in NK cells and antibody-producing plasma cells. In an exploratory phase 2 trial in late AMR, this compound has demonstrated potential in resolving molecular and morphologic rejection activity and injury, predominantly by targeting NK cell effector function. These findings inspire hope for effective treatments and emphasize the necessity of further pivotal trials focusing on chronic transplant rejection.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Luis Hidalgo
- HLA Laboratory, Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Li JM, Zhang ZL, Zhao JL, Wang YQ, Gong SS, Lei H, Wang XF, Hu XX, Cai XH. A simple predictor for donor-specific anti-HLA antibody desensitisation in haploidentical haematopoietic stem cell transplantation. HLA 2024; 104:e15625. [PMID: 39091273 DOI: 10.1111/tan.15625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Donor-specific HLA antibody (DSA) has been recognised as an independent risk factor for graft failure in patients undergoing haploidentical haematopoietic stem cell transplantation (HID HSCT). Therapeutic plasma exchange (TPE), as a first-line strategy for DSA desensitisation, can promptly reduce serum DSA levels. This study aimed to investigate DSA characteristics and identify a biomarker predicting the efficacy of DSA desensitisation in patients proceeding to HID HSCT. We retrospectively enrolled 32 patients with DSA from April 2021 to January 2024, and analysed the mean fluorescence intensity (MFI) value of DSA at the different time points of desensitisation treatment. Compared with baseline DSA level before TPE, the median MFI of HLA class I DSA was reduced from 8178.6 to 795.3 (p < 0.001), and HLA class II DSA decreased from 6210.9 to 808.8 (p < 0.001) after TPE. The DSA level in 1:16 diluted pre-TPE serum correlated well with DSA value in post-TPE serum (class I, r = 0.85, p < 0.0001; class II, r = 0.94, p < 0.0001), predicting TPE efficacy in 84.4% of patients. Based on the degree of DSA reduction after TPE, patients were divided into complete responders (decreased by >70%), partial responders (decreased by 30 to 70%) and non-responders (decreased by <30%) and the percentages were 43.8%, 25% and 31.2%, respectively. Non-responders receiving aggressive immunotherapy had longer overall survival compared to those receiving standard strategies (p < 0.05). The 1:16 diluted pre-TPE serum may predict the efficacy of TPE and allow for more rational immunotherapy strategy for patients with DSA proceeding to HID HSCT.
Collapse
Affiliation(s)
- Jia-Ming Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Lu Zhang
- Shanghai Institute of Haematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Lu Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Qing Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song-Song Gong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Lei
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Feng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Xia Hu
- Shanghai Institute of Haematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hong Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Hashmi AJ, Bujáki B, Bidiga L, Kardos L, Nemes B, Balla J, Szabó RP. Relevance of Proteinuria in Kidney Transplant Recipients and Allograft Outcomes. Transplant Proc 2024; 56:1273-1279. [PMID: 39034194 DOI: 10.1016/j.transproceed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The onset of proteinuria in renal allograft recipients is frequently associated with an increased risk for both graft failure and mortality. We investigated the risk associated with post-transplant proteinuria and its time-dynamics in a select group treated for biopsy proven antibody-mediated rejection (ABMR). METHODS Eighty-five patients who underwent transplantation were enrolled in our study and followed up from transplantation until October 31, 2020, death, or the date of the return to dialysis. We created two main groups: the ABMR group (n = 19) and an ABMR-negative control group with stable kidney function (n = 52) without donor-specific antibodies (DSA) and a subgroup with DSAs but stable graft function (n = 14) without ABMR. Differences in patient, donor, and transplant graft characteristics between the groups were assessed by Fisher's exact test for categorical variables. Death-censored graft loss was evaluated with the help of Kaplan-Meier analysis using log risk statistics. RESULTS Proteinuria decreased after treatment in the ABMR group (P < .0009). Pre-treatment every 10 mg/mmol increase in proteinuria was associated with a 7% increase in the risk for graft failure in the ABMR group. The estimated 3-year graft survival was 87.5% in the ABMR group, compared to 93% in the group without ABMR but with pre-formed DSA, and 100% in the DSA negative subgroup (log-rank probe P < .0666). CONCLUSION Proteinuria is an independent predictor for graft failure, can be lowered by treatment for ABMR but ABMR is associated with lower graft survival in our study population.
Collapse
Affiliation(s)
| | - Boglárka Bujáki
- University of Debrecen, Faculty of Medicine, Institute of Internal Medicine, Department of Nephrology, Debrecen, Hungary
| | - László Bidiga
- University of Debrecen, Faculty of Medicine, Institute of Pathology, Debrecen, Hungary
| | - László Kardos
- University of Debrecen, Faculty of Medicine, Institute of Infectology, Debrecen, Hungary
| | - Balázs Nemes
- University of Debrecen, Faculty of Medicine, Institute of Surgery, Debrecen, Hungary
| | - József Balla
- University of Debrecen, Faculty of Medicine, Institute of Internal Medicine, Department of Nephrology, Debrecen, Hungary
| | - Réka P Szabó
- University of Debrecen, Faculty of Medicine, Institute of Internal Medicine, Department of Nephrology, Debrecen, Hungary.
| |
Collapse
|
8
|
Masset C, Danger R, Degauque N, Dantal J, Giral M, Brouard S. Blood Gene Signature as a Biomarker for Subclinical Kidney Allograft Rejection: Where Are We? Transplantation 2024:00007890-990000000-00787. [PMID: 38867352 DOI: 10.1097/tp.0000000000005105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The observation decades ago that inflammatory injuries because of an alloimmune response might be present even in the absence of concomitant clinical impairment in allograft function conduced to the later definition of subclinical rejection. Many studies have investigated the different subclinical rejections defined according to the Banff classification (subclinical T cell-mediated rejection and antibody-mediated rejection), overall concluding that these episodes worsened long-term allograft function and survival. These observations led several transplant teams to perform systematic protocolar biopsies to anticipate treatment of rejection episodes and possibly prevent allograft loss. Paradoxically, the invasive characteristics and associated logistics of such procedures paved the way to investigate noninvasive biomarkers (urine and blood) of subclinical rejection. Among them, several research teams proposed a blood gene signature developed from cohort studies, most of which achieved excellent predictive values for the occurrence of subclinical rejection, mainly antibody-mediated rejection. Interestingly, although all identified genes relate to immune subsets and pathways involved in rejection pathophysiology, very few transcripts are shared among these sets of genes, highlighting the heterogenicity of such episodes and the difficult but mandatory need for external validation of such tools. Beyond this, their application and value in clinical practice remain to be definitively demonstrated in both biopsy avoidance and prevention of clinical rejection episodes. Their combination with other biomarkers, either epidemiological or biological, could contribute to a more accurate picture of a patient's risk of rejection and guide clinicians in the follow-up of kidney transplant recipients.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Richard Danger
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Nicolas Degauque
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| |
Collapse
|
9
|
García-Jiménez S, Paz-Artal E, Trujillo H, Polanco N, Castro MJ, Del Rey MJ, Alfocea Á, Morales E, González E, Andrés A, Mancebo E. A personalised delisting strategy enables successful kidney transplantation in highly sensitised patients with preformed donor-specific anti HLA antibodies. HLA 2024; 103:e15572. [PMID: 38923242 DOI: 10.1111/tan.15572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
This study investigates kidney transplant outcomes in highly sensitised patients after implementing a delisting strategy aimed at enabling transplantation despite preformed donor-specific antibodies (preDSA), with the goal of reducing acute antibody-mediated rejection (aAMR) risk. Fifty-three sensitised recipients underwent kidney transplant after delisting prohibited HLA antigens, focusing initially in low MFI antibodies (<5000), except for anti-HLA-DQ. If insufficient, higher MFI antibodies were permitted, especially for those without an immunogenic eplet pattern assigned. Delisting of Complement-fixing antibodies (C1q+) was consistently avoided. Comparison cohorts included 53 sensitised recipients without DSA (SwoDSA) and 53 non-sensitised (NS). The average waiting time prior to delisting was 4.4 ± 1.8 years, with a reduction in cPRA from 99.7 ± 0.5 to 98.1 ± 0.7, followed by transplantation within 7.2 ± 8.0 months (analysed in 34 patients). Rejection rates were similar among preDSA, SwoDSA, and NS groups (16%, 8%, and 11%, respectively; p = 0.46). However, aAMR was higher in the preDSA group (12%, 4%, and 2%, respectively; p = 0.073), only presented in recipients with DSA of MFI >5000. The highest MFI DSA were against HLA-DP (Median: 10796 MFI), with 50% of preDSA aAMR cases due to anti-DP antibodies (n = 3). Graft survival rates at 1 and 5 years in preDSA group were 94%, and 67%, comparable to SwoDSA (94%, and 70%; p = 0.69), being significantly higher in the NS group (p = 0.002). The five-year recipient survival rate was 89%, comparable to SwoDSA and NS groups (p = 0.79). A delisting strategy enables safe kidney transplant in highly sensitised patients with preDSA, with a slight increase in aAMR and comparable graft and patient survivals to non-DSA cohorts.
Collapse
Affiliation(s)
- Sandra García-Jiménez
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Hernando Trujillo
- Nephrology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Natalia Polanco
- Nephrology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - María J Castro
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Manuel J Del Rey
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Ángel Alfocea
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Enrique Morales
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Nephrology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Esther González
- Nephrology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Amado Andrés
- School of Medicine, Complutense University of Madrid, Madrid, Spain
- Nephrology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Esther Mancebo
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Debyser T, Callemeyn J, Coemans M, Kerkhofs J, Koshy P, Kuypers D, Senev A, Tambur AR, Van Loon E, Wellekens K, Naesens M, Emonds MP. Sensitive HLA antibody testing and the risk of antibody-mediated rejection and graft failure. HLA 2024; 103:e15586. [PMID: 38932739 DOI: 10.1111/tan.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Solid phase detection and identification of HLA antibodies in kidney transplantation currently relies on single antigen bead (Luminex®) assays, which is more sensitive than the previously used enzyme-linked immunosorbent assays (ELISA). To evaluate the impact of more sensitive HLA testing on antibody-mediated rejection (AMR) occurrence and allograft survival, we analysed 1818 renal allograft recipients transplanted between March 2004 and May 2021. In 2008, solid phase testing switched from ELISA to Luminex. We included 393 (21.6%) transplantations before and 1425 (78.4%) transplantations after transition from ELISA- to Luminex-based testing. For this study, bio-banked ELISA era samples were tested retrospectively with Luminex. Significantly less pretransplant DSA were found in patients transplanted with pre-existing HLA antibodies in the Luminex (109/387) versus the ELISA period (43/90) (28% vs. 48%, p < 0.01). Throughout histological follow-up, 169 of 1818 (9.3%) patients developed AMR. After implementing Luminex-based testing, the rate of AMR significantly decreased (p = 0.003). However, incidence of graft failure did not significantly differ between both eras. In conclusion, less patients with pretransplant DSA were transplanted since the implementation of Luminex HLA testing. Transition from ELISA- to Luminex-based HLA testing was associated with a significant decrease in AMR occurrence post-transplantation. Since the decline of AMR did not translate into improved graft survival, Luminex-based testing has the added value of preventing low-risk AMR cases. Therefore, Luminex' high sensitivity must be balanced against waiting time for a suitable organ.
Collapse
Affiliation(s)
- Tim Debyser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Johan Kerkhofs
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross Flanders, Mechelen, Belgium
| | - Priyanka Koshy
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross Flanders, Mechelen, Belgium
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Anat R Tambur
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Karolien Wellekens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross Flanders, Mechelen, Belgium
| |
Collapse
|
11
|
Xu Q, Zeevi A, Ganoza A, Cruz RJ, Mazariegos GV. Current approaches for risk assessment of intestinal transplant patients: A view from the histocompatibility laboratory. Hum Immunol 2024; 85:110768. [PMID: 38433035 DOI: 10.1016/j.humimm.2024.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Despite its recent decline in volumes, intestinal transplantation remains an important option for patients with irreversible intestinal failures. The long-term outcome of an intestinal transplant has stagnated. The major cause of graft loss is rejection, resulting from mismatches in human leukocyte antigens (HLA) and the presence of antibodies to mismatched donor-specific HLA antigens (DSA). Literature has reported that DSAs, either preformed before transplantation or developed de novo after transplantation, are harmful to intestinal grafts, especially for those without combined liver grafts. A comprehensive assessment of DSA by the histocompatibility laboratory is critical for successful intestinal transplantation and its long-term survival. This paper briefly reviews the history and current status of different methods for detecting DSA and their clinical applications in intestinal transplantation. The focus is on applying different antibody assays to manage immunologically challenging intestinal transplant patients before and after transplantation. A clinical case is presented to illustrate the complexity of HLA tests and the necessity of multiple assays. The review of risk assessment by the histocompatibility laboratory also highlights the need for close interaction between the laboratory and the intestinal transplant program.
Collapse
Affiliation(s)
- Qingyong Xu
- Department of Pathology, University of Pittsburgh, USA.
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh, USA
| | | | - Ruy J Cruz
- Department of Surgery, University of Pittsburgh, USA; Gastrointestinal Rehabilitation and Transplant Center, Starzl Transplantation Institute, USA
| | - George V Mazariegos
- Department of Surgery, University of Pittsburgh, USA; Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, USA
| |
Collapse
|
12
|
Van Loon E, Tinel C, de Loor H, Bossuyt X, Callemeyn J, Coemans M, De Vusser K, Sauvaget V, Olivre J, Koshy P, Kuypers D, Sprangers B, Van Craenenbroeck AH, Vaulet T, Anglicheau D, Naesens M. Automated Urinary Chemokine Assays for Noninvasive Detection of Kidney Transplant Rejection: A Prospective Cohort Study. Am J Kidney Dis 2024; 83:467-476. [PMID: 37777058 DOI: 10.1053/j.ajkd.2023.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 10/02/2023]
Abstract
RATIONALE & OBJECTIVE Prior studies have demonstrated the diagnostic potential of urinary chemokines C-X-C motif ligand 9 (CXCL9) and CXCL10 for kidney transplant rejection. However, their benefit in addition to clinical information has not been demonstrated. We evaluated the diagnostic performance for detecting acute rejection of urinary CXCL9 and CXCL10 when integrated with clinical information. STUDY DESIGN Single-center prospective cohort study. SETTING & PARTICIPANTS We analyzed 1,559 biopsy-paired urinary samples from 622 kidney transplants performed between April 2013 and July 2019 at a single transplant center in Belgium. External validation was performed in 986 biopsy-paired urinary samples. TESTS COMPARED We quantified urinary CXCL9 (uCXCL9) and CXCL10 (uCXCL10) using an automated immunoassay platform and normalized the values to urinary creatinine. Urinary chemokines were incorporated into a multivariable model with routine clinical markers (estimated glomerular filtration rate, donor-specific antibodies, and polyoma viremia) (integrated model). This model was then compared with the tissue diagnosis according to the Banff classification for acute rejection. OUTCOME Acute rejection detected on kidney biopsy using the Banff classification. RESULTS Chemokines integrated with routine clinical markers had high diagnostic value for detection of acute rejection (n=150) (receiver operating characteristic area under the curve 81.3% [95% CI, 77.6-85.0]). The integrated model would help avoid 59 protocol biopsies per 100 patients when the risk for rejection is predicted to be below 10%. The performance of the integrated model was similar in the external validation cohort. LIMITATIONS The cross-sectional nature obviates investigating the evolution over time and prediction of future rejection. CONCLUSIONS The use of an integrated model of urinary chemokines and clinical markers for noninvasive monitoring of rejection could enable a reduction in the number of biopsies. Urinary chemokines may be useful noninvasive biomarkers whose use should be further studied in prospective randomized trials to clarify their role in guiding clinical care and the use of biopsies to detect rejection after kidney transplantation. PLAIN-LANGUAGE SUMMARY Urinary chemokines CXCL9 and CXCL10 have been suggested to be good noninvasive biomarkers of kidney transplant rejection. However, defining a context of use and integration with clinical information is necessary before clinical implementation can begin. In this study, we demonstrated that urinary chemokines CXCL9 and CXCL10, together with clinical information, have substantial diagnostic accuracy for the detection of acute kidney transplant rejection. Application of urinary chemokines together with clinical information may guide biopsy practices following kidney transplantation and potentially reduce the need for kidney transplant biopsies.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven
| | - Henriette de Loor
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven
| | - Katrien De Vusser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven
| | - Amaryllis H Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Thibaut Vaulet
- ESAT STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven
| | - Dany Anglicheau
- INSERM U1151, Université de Paris, Paris, France; Department of Nephrology and Kidney Transplantation, RTRS Centaure, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Yang BQ, Bai YJ, Wang LL, Dai B, Li YM, Tao Y, Shi YY. The impact of pretransplant suspected HLA antibody on the long-term outcome of the graft kidney: A retrospective cohort study. Transpl Immunol 2024; 82:101922. [PMID: 37657691 DOI: 10.1016/j.trim.2023.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION The preoperative examination of kidney transplantation includes HLA antibody screening to initially determine the presence of preexisting donor-specific antibody (DSA) that mediates hyperacute rejection. Recipients with positive HLA antibodies require further HLA specificity analysis to type the antigen and determine the antigen mismatches between the donor and recipient. However, recipients with suspected antibodies would have no further HLA specificity analysis. It is unclear whether suspected HLA antibodies would affect renal graft function. This study aimed to explore the impact of pretransplant suspected HLA antibody on the long-term outcome of the graft kidney and thus determine the necessity of routinely performing the HLA specificity analysis in recipients with suspected HLA antibodies preoperatively. METHODS This is a single-center retrospective cohort study. 179 kidney transplant recipients (KTRs) were included and further divided into HLA antibody-negative group (Group 1) and HLA antibody-suspected groups (Group 2) based on the result of the pretransplant HLA antibody screen test. And the antibody-suspected group was further divided into a low-mismatched group (Group A) and a high-mismatched group (Group B) according to the HLA specificity analysis. We tracked the renal function indexes, biochemical indexes, and posttransplant adverse events within 5 years after transplantation and explored the necessity of further HLA specificity analysis in recipients with pretransplant suspected HLA antibodies. RESULTS There was no statistically significant difference in demographics between HLA antibody-negative group and HLA antibody-suspected groups. At 5 years of follow-up, the KTRs in HLA antibody-negative group had significantly higher eGFR levels, lower serum creatinine levels, and less urinary protein compared to those in antibody-suspected group. Meanwhile, the KTRs in low-mismatched group also had significantly higher eGFR levels, lower serum creatinine levels, and less proteinuria compared to those in high-mismatched group. Correlation analysis showed that the age of KTRs, urinary protein levels and the load capacity of HLA mismatches were associated with eGFR levels of KTRs at 5 year posttransplant. CONCLUSION KTRs with suspected HLA antibodies before kidney transplantation have worse graft function than the preoperative HLA antibody-negative recipients in the long-term posttransplant follow-up. The specific load capacity of HLA mismatches, the age of the recipient and the urinary protein was found to be negatively correlated with long-term posttransplant renal outcomes. It is necessary to undergo further HLA specificity analysis for recipients with suspected HLA antibodies in HLA antibody screen test to explicit HLA mismatches and improve long-term posttransplant outcomes.
Collapse
Affiliation(s)
- Bin-Qi Yang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041,China
| | - Lan-Lan Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041,China
| | - Bo Dai
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041,China
| | - Ya-Mei Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041,China
| | - Ye Tao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yun-Ying Shi
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Shih NR, Nong T, Murphey C, Lopez-Cepero M, Nickerson PW, Taupin JL, Devriese M, Nilsson J, Matignon MB, Bray RA, Lee JH. HLA class I peptide polymorphisms contribute to class II DQβ0603:DQα0103 antibody specificity. Nat Commun 2024; 15:609. [PMID: 38242876 PMCID: PMC10798988 DOI: 10.1038/s41467-024-44912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
Antibodies reactive to human leukocyte antigens (HLA) represent a barrier for patients awaiting transplantation. Based on reactivity patterns in single-antigen bead (SAB) assays, various epitope matching algorithms have been proposed to improve transplant outcomes. However, some antibody reactivities cannot be explained by amino acid motifs, leading to uncertainty about their clinical relevance. Antibodies against the HLA class II molecule, DQβ0603:DQα0103, present in some candidates, represent one such example. Here, we show that peptides derived from amino acids 119-148 of the HLA class I heavy chain are bound to DQβ0603:DQα0103 proteins and contribute to antibody reactivity through an HLA-DM-dependent process. Moreover, antibody reactivity is impacted by the specific amino acid sequence presented. In summary, we demonstrate that polymorphic HLA class I peptides, bound to HLA class II proteins, can directly or indirectly be part of the antibody binding epitope. Our findings have potential important implications for the field of transplant immunology and for our understanding of adaptive immunity.
Collapse
Affiliation(s)
- N Remi Shih
- Terasaki Innovation Center, Los Angeles, CA, USA
| | - Thoa Nong
- Terasaki Innovation Center, Los Angeles, CA, USA
| | - Cathi Murphey
- Southwest Immunodiagnostics, Inc., San Antonio, TX, USA
| | | | - Peter W Nickerson
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité and INSERM U976 IRSL, Hôpital Saint-Louis APHP, Paris, France
| | - Magali Devriese
- Laboratoire d'Immunologie et Histocompatibilité and INSERM U976 IRSL, Hôpital Saint-Louis APHP, Paris, France
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Robert A Bray
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Jar-How Lee
- Terasaki Innovation Center, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Kardol-Hoefnagel T, Senejohnny DM, Kamburova EG, Wisse BW, Reteig L, Gruijters ML, Joosten I, Allebes WA, van der Meer A, Hilbrands LB, Baas MC, Spierings E, Hack CE, van Reekum FE, van Zuilen AD, Verhaar MC, Bots ML, Drop ACAD, Plaisier L, Melchers RCA, Seelen MAJ, Sanders JS, Hepkema BG, Lambeck AJA, Bungener LB, Roozendaal C, Tilanus MGJ, Voorter CE, Wieten L, van Duijnhoven EM, Gelens MACJ, Christiaans MHL, van Ittersum FJ, Nurmohamed SA, Lardy NM, Swelsen W, van der Pant KAMI, van der Weerd NC, Ten Berge IJM, Hoitsma A, van der Boog PJM, de Fijter JW, Betjes MGH, Roelen DL, Claas FH, Bemelman FJ, Senev A, Naesens M, Heidt S, Otten HG. Determination of the clinical relevance of donor epitope-specific HLA-antibodies in kidney transplantation. HLA 2024; 103:e15346. [PMID: 38239046 DOI: 10.1111/tan.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
In kidney transplantation, survival rates are still partly impaired due to the deleterious effects of donor specific HLA antibodies (DSA). However, not all luminex-defined DSA appear to be clinically relevant. Further analysis of DSA recognizing polymorphic amino acid configurations, called eplets or functional epitopes, might improve the discrimination between clinically relevant vs. irrelevant HLA antibodies. To evaluate which donor epitope-specific HLA antibodies (DESAs) are clinically important in kidney graft survival, relevant and irrelevant DESAs were discerned in a Dutch cohort of 4690 patients using Kaplan-Meier analysis and tested in a cox proportional hazard (CPH) model including nonimmunological variables. Pre-transplant DESAs were detected in 439 patients (9.4%). The presence of certain clinically relevant DESAs was significantly associated with increased risk on graft loss in deceased donor transplantations (p < 0.0001). The antibodies recognized six epitopes of HLA Class I, 3 of HLA-DR, and 1 of HLA-DQ, and most antibodies were directed to HLA-B (47%). Fifty-three patients (69.7%) had DESA against one donor epitope (range 1-5). Long-term graft survival rate in patients with clinically relevant DESA was 32%, rendering DESA a superior parameter to classical DSA (60%). In the CPH model, the hazard ratio (95% CI) of clinically relevant DESAs was 2.45 (1.84-3.25) in deceased donation, and 2.22 (1.25-3.95) in living donation. In conclusion, the developed model shows the deleterious effect of clinically relevant DESAs on graft outcome which outperformed traditional DSA-based risk analysis on antigen level.
Collapse
Affiliation(s)
- Tineke Kardol-Hoefnagel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Elena G Kamburova
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bram W Wisse
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leon Reteig
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maartje L Gruijters
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wil A Allebes
- Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arnold van der Meer
- Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marije C Baas
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Central Diagnostic Laboratory (CDL), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis E Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Franka E van Reekum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan C A D Drop
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Loes Plaisier
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rowena C A Melchers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc A J Seelen
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Stephan Sanders
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Bouke G Hepkema
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Annechien J A Lambeck
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura B Bungener
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Caroline Roozendaal
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel G J Tilanus
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christina E Voorter
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elly M van Duijnhoven
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mariëlle A C J Gelens
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maarten H L Christiaans
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frans J van Ittersum
- Department of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Shaikh A Nurmohamed
- Department of Nephrology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Neubury M Lardy
- Department of Immunogenetics, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Wendy Swelsen
- Department of Immunogenetics, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Karlijn A M I van der Pant
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Neelke C van der Weerd
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ineke J M Ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Andries Hoitsma
- Dutch Organ Transplant Registry (NOTR), Dutch Transplant Foundation (NTS), Leiden, The Netherlands
| | | | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel G H Betjes
- Department of Nephrology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dave L Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Aleksandar Senev
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Maarten Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henny G Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Central Diagnostic Laboratory (CDL), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Buscher K, Rixen R, Schütz P, Hüchtmann B, Van Marck V, Heitplatz B, Jehn U, Braun DA, Gabriëls G, Pavenstädt H, Reuter S. Plasma protein signatures reflect systemic immunity and allograft function in kidney transplantation. Transl Res 2023; 262:35-43. [PMID: 37507006 DOI: 10.1016/j.trsl.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Kidney transplantation causes large perturbations of the immune system. While many studies focus on the allograft, insights into systemic effects are largely missing. Here, we analyzed the systemic immune response in 3 cohorts of kidney transplanted patients. Using serum proteomics, laboratory values, mass cytometry, histological and clinical parameters, inter-patient heterogeneity was leveraged for multi-omic co-variation analysis. We identified circulating immune modules (CIM) that describe extra-renal signatures of co-regulated plasma proteins. CIM are present in nontransplanted controls, in transplant conditions and during rejection. They are enriched in pathways linked to kidney function, extracellular matrix, signaling, and cellular activation. A complex leukocyte response in the blood during allograft quiescence and rejection is associated with CIM activity and CIM-specific cytokines. CIM activity correlates with kidney function including a 2-month prediction. Together, the data suggest a systemic and multi-layered response of transplant immunity that might be insightful for understanding allograft dysfunction and developing translational biomarkers.
Collapse
Affiliation(s)
- Konrad Buscher
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany.
| | - Rebecca Rixen
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Paula Schütz
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Birte Hüchtmann
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Veerle Van Marck
- Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Barbara Heitplatz
- Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Ulrich Jehn
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Daniela A Braun
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Gert Gabriëls
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Hermann Pavenstädt
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
17
|
Battle R, Pritchard D, Peacock S, Hastie C, Worthington J, Jordan S, McCaughlan JA, Barnardo M, Cope R, Collins C, Diaz-Burlinson N, Rosser C, Foster L, Kallon D, Shaw O, Briggs D, Turner D, Anand A, Akbarzad-Yousefi A, Sage D. BSHI and BTS UK guideline on the detection of alloantibodies in solid organ (and islet) transplantation. Int J Immunogenet 2023; 50 Suppl 2:3-63. [PMID: 37919251 DOI: 10.1111/iji.12641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Solid organ transplantation represents the best (and in many cases only) treatment option for patients with end-stage organ failure. The effectiveness and functioning life of these transplants has improved each decade due to surgical and clinical advances, and accurate histocompatibility assessment. Patient exposure to alloantigen from another individual is a common occurrence and takes place through pregnancies, blood transfusions or previous transplantation. Such exposure to alloantigen's can lead to the formation of circulating alloreactive antibodies which can be deleterious to solid organ transplant outcome. The purpose of these guidelines is to update to the previous BSHI/BTS guidelines 2016 on the relevance, assessment, and management of alloantibodies within solid organ transplantation.
Collapse
Affiliation(s)
- Richard Battle
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | | | - Sarah Peacock
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Sue Jordan
- National Blood Service Tooting, London, UK
| | | | - Martin Barnardo
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rebecca Cope
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Luke Foster
- Birmingham Blood Donor Centre, Birmingham, UK
| | | | - Olivia Shaw
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Arthi Anand
- Imperial College Healthcare NHS Trust, London, UK
| | | | | |
Collapse
|
18
|
Kervella D, Torija A, Zúñiga JM, Bestard O. How to measure human leukocyte antigen-specific B cells. Curr Opin Organ Transplant 2023; 28:345-354. [PMID: 37678170 DOI: 10.1097/mot.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW The implementation of highly sensitive immune assays measuring anti-human leukocyte antigen (HLA) antibodies has modified alloimmune risk stratification and diagnosis of rejection. Nonetheless, anti-HLA antibodies represent the downstream effector mechanism of the B-cell response. Better characterizing the cellular components of the humoral immune response (including memory B cells (mBCs) and long-lived plasma cells) could help to further stratify the alloimmune risk stratification and enable discovery of new therapeutic targets. Several tests that characterize HLA-specific mBCs, either functionally or phenotypically, have been developed in the last years, showing promising applications as well as some limitations. RECENT FINDINGS Functional assays involving ex vivo polyclonal activation of mBC have been refined to allow the detection of HLA-specific mBC capable of producing anti-HLA Abs, using different and complementary detection platforms such as multiplex Fluorospot and single antigen bead assay on culture supernatants. Detection of circulating HLA-specific B cells by flow cytometry remains hindered by the very low frequency of HLA-specific mBC. SUMMARY Technological refinements have allowed the development of tests detecting HLA-specific mBC. Further evaluation of these assays in clinical trials, both for immune risk stratification and to assess treatment efficacy (desensitization strategies, rescue therapies for ABMR) are now urgently needed.
Collapse
Affiliation(s)
- Delphine Kervella
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Alba Torija
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jose M Zúñiga
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Oriol Bestard
- Nephrology and Kidney Transplant Department
- Translational Nephrology and Kidney Transplant Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
19
|
van den Broek DAJ, Meziyerh S, Budde K, Lefaucheur C, Cozzi E, Bertrand D, López del Moral C, Dorling A, Emonds MP, Naesens M, de Vries APJ. The Clinical Utility of Post-Transplant Monitoring of Donor-Specific Antibodies in Stable Renal Transplant Recipients: A Consensus Report With Guideline Statements for Clinical Practice. Transpl Int 2023; 36:11321. [PMID: 37560072 PMCID: PMC10408721 DOI: 10.3389/ti.2023.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Solid phase immunoassays improved the detection and determination of the antigen-specificity of donor-specific antibodies (DSA) to human leukocyte antigens (HLA). The widespread use of SPI in kidney transplantation also introduced new clinical dilemmas, such as whether patients should be monitored for DSA pre- or post-transplantation. Pretransplant screening through SPI has become standard practice and DSA are readily determined in case of suspected rejection. However, DSA monitoring in recipients with stable graft function has not been universally established as standard of care. This may be related to uncertainty regarding the clinical utility of DSA monitoring as a screening tool. This consensus report aims to appraise the clinical utility of DSA monitoring in recipients without overt signs of graft dysfunction, using the Wilson & Junger criteria for assessing the validity of a screening practice. To assess the evidence on DSA monitoring, the European Society for Organ Transplantation (ESOT) convened a dedicated workgroup, comprised of experts in transplantation nephrology and immunology, to review relevant literature. Guidelines and statements were developed during a consensus conference by Delphi methodology that took place in person in November 2022 in Prague. The findings and recommendations of the workgroup on subclinical DSA monitoring are presented in this article.
Collapse
Affiliation(s)
- Dennis A. J. van den Broek
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Soufian Meziyerh
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Kidney Transplant Department, Saint Louis Hospital, Université de Paris Cité, Paris, France
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Dominique Bertrand
- Department of Nephrology, Transplantation and Hemodialysis, Rouen University Hospital, Rouen, France
| | - Covadonga López del Moral
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Anthony Dorling
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology & Microbial Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Aiko P. J. de Vries
- Division of Nephrology, Department of Medicine, Leiden Transplant Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
20
|
Marinaki S, Vittoraki A, Tsiakas S, Kofotolios I, Darema M, Ioannou S, Vallianou K, Boletis J. Clinical Outcome of Kidney Transplant Recipients with C1q-Binding De Novo Donor Specific Antibodies: A Single-Center Experience. J Clin Med 2023; 12:4475. [PMID: 37445510 DOI: 10.3390/jcm12134475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Complement activation by HLA antibodies is a key component of immune-mediated graft injury. We examined the clinical outcomes of kidney transplant recipients with complement-fixing de novo donor-specific antibodies (dnDSA) who were followed in our center. The C1q-binding ability was retrospectively assessed in 69 patients with dnDSA and mean fluorescence intensity (MFI) values > 2000 out of the 1325 kidney transplant recipients who were screened for DSA between 2015 and 2019. Luminex IgG single antigen beads (SAB)and C1q-SAB assays (One Lambda) were used. C1q-binding dnDSA was identified in 32/69 (46.4%) of the patients. Significantly higher MFI values were observed in C1q-positive DSA (18,978 versus 5840, p < 0.001). Renal graft biopsies were performed in 43 of the kidney transplant recipients (62.3%) with allograft dysfunction. Antibody-mediated rejection (ABMR) was detected in 29/43 (67.4%) of the patients. The incidence of ABMR was similar among patients with C1q-binding and non-C1q-binding DSA (51.7% vs. 48.3%, p = 0.523). Graft loss occurred in 30/69 (43.5%) of the patients at a median time of 82.5 months (IQR 45-135) from DSA detection. C1q-binding DSA was present in more patients who experienced graft loss (53.1% vs. 35.1%, p = 0.152). Higher MFI values and inferior clinical outcomes occurred in most of the kidney transplant recipients with C1q-binding dnDSA.
Collapse
Affiliation(s)
- Smaragdi Marinaki
- Clinic of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, 11527 Athens, Greece
| | - Angeliki Vittoraki
- Immunology Department, National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", 11527 Athens, Greece
| | - Stathis Tsiakas
- Clinic of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, 11527 Athens, Greece
| | - Ioannis Kofotolios
- Clinic of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, 11527 Athens, Greece
| | - Maria Darema
- Clinic of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, 11527 Athens, Greece
| | - Sofia Ioannou
- Immunology Department, National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", 11527 Athens, Greece
| | - Kalliopi Vallianou
- Clinic of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, 11527 Athens, Greece
| | - John Boletis
- Clinic of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, 11527 Athens, Greece
| |
Collapse
|
21
|
See SB, Yang X, Burger C, Lamarthée B, Snanoudj R, Shihab R, Tsapepas DS, Roy P, Larivière-Beaudoin S, Hamelin K, Rojas AM, van Besouw NM, Bartosic A, Daniel N, Vasilescu ER, Mohan S, Cohen D, Ratner L, Baan CC, Bromberg JS, Cardinal H, Anglicheau D, Sun Y, Zorn E. Natural Antibodies Are Associated With Rejection and Long-term Renal Allograft Loss in a Multicenter International Cohort. Transplantation 2023; 107:1580-1592. [PMID: 36728359 PMCID: PMC10290575 DOI: 10.1097/tp.0000000000004472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Potentially harmful nonhuman leukocyte antigen antibodies have been identified in renal transplantation, including natural immunoglobulin G antibodies (Nabs) reactive to varied antigenic structures, including apoptotic cells. METHODS In this retrospective, multicenter study, we assessed Nabs by reactivity to apoptotic cells in sera collected from 980 kidney transplant recipients across 4 centers to determine their association with graft outcomes. RESULTS Elevated pretransplant Nabs were associated with graft loss (hazard ratio [HR] 2.71; 95% confidence interval [CI], 1.15-6.39; P = 0.0232), the composite endpoint of graft loss or severe graft dysfunction (HR 2.40; 95% CI, 1.13-5.10; P = 0.0232), and T cell-mediated rejection (odds ratio [OR] 1.77; 95% CI, 1.07-3.02; P = 0.0310). High pretransplant Nabs together with donor-specific antibodies (DSAs) were associated with increased risk of composite outcomes (HR 6.31; 95% CI, 1.81-22.0; P = 0.0039). In patients with high pretransplant Nabs, the subsequent development of posttransplant Nabs was associated with both T cell-mediated rejection (OR 3.64; 95% CI, 1.61-8.36; P = 0.0021) and mixed rejection (OR 3.10; 95% CI, 1.02-9.75; P = 0.0473). Finally, elevated pre- and posttransplant Nabs combined with DSAs were associated with increased risk of composite outcomes (HR 3.97; 95% CI, 1.51-10.43; P = 0.0052) and T cell-mediated rejection (OR 7.28; 95% CI, 2.16-25.96; P = 0.0016). CONCLUSIONS The presence of pre- and posttransplant Nabs, together with DSAs, was associated with increased risk of poor graft outcomes and rejection after renal transplantation.
Collapse
Affiliation(s)
- Sarah B. See
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| | - Xue Yang
- Department of Biostatistics, Columbia University Irving Medical Center, New York, USA
| | - Carole Burger
- Department of Kidney Transplantation, Hôpital Universitaire Necker-Assistance Publique Hopitaux de Paris, France
| | - Baptiste Lamarthée
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Paris, France
| | - Renaud Snanoudj
- Department of Kidney Transplantation, Hôpital Kremlin Bicêtre, Paris, France
| | - Ronzon Shihab
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| | - Demetra S. Tsapepas
- Department of Surgery, Columbia University Vagelos College of Physicians & Surgeons, New York, USA
| | - Poulomi Roy
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| | - Stéphanie Larivière-Beaudoin
- Research Center, Centre Hospitalier de l’Université de Montréal, Montreal, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Katia Hamelin
- Research Center, Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Aleixandra Mendoza Rojas
- Department of Internal Medicine – Nephrology and Transplantation, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole M. van Besouw
- Department of Internal Medicine – Nephrology and Transplantation, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Amanda Bartosic
- Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - Nikita Daniel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - E. Rodica Vasilescu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Sumit Mohan
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons, New York, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, USA
| | - David Cohen
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons, New York, USA
| | - Lloyd Ratner
- Department of Medicine, Division of Nephrology, Columbia University College of Physicians & Surgeons, New York, USA
| | - Carla C. Baan
- Department of Internal Medicine – Nephrology and Transplantation, Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, USA
| | - Héloïse Cardinal
- Research Center, Centre Hospitalier de l’Université de Montréal, Montreal, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Canada
| | - Dany Anglicheau
- Department of Kidney Transplantation, Hôpital Universitaire Necker-Assistance Publique Hopitaux de Paris, France
| | - Yifei Sun
- Department of Biostatistics, Columbia University Irving Medical Center, New York, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
22
|
Couzi L, Malvezzi P, Amrouche L, Anglicheau D, Blancho G, Caillard S, Freist M, Guidicelli GL, Kamar N, Lefaucheur C, Mariat C, Koenig A, Noble J, Thaunat O, Thierry A, Taupin JL, Bertrand D. Imlifidase for Kidney Transplantation of Highly Sensitized Patients With a Positive Crossmatch: The French Consensus Guidelines. Transpl Int 2023; 36:11244. [PMID: 37448448 PMCID: PMC10336835 DOI: 10.3389/ti.2023.11244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
Imlifidase recently received early access authorization for highly sensitized adult kidney transplant candidates with a positive crossmatch against an ABO-compatible deceased donor. These French consensus guidelines have been generated by an expert working group, in order to homogenize patient selection, associated treatments and follow-up. This initiative is part of an international effort to analyze properly the benefits and tolerance of this new costly treatment in real-life. Eligible patients must meet the following screening criteria: cPRA ≥ 98%, ≤ 65-year of age, ≥ 3 years on the waiting list, and a low risk of biopsy-related complications. The final decision to use Imlifidase will be based on the two following criteria. First, the results of a virtual crossmatch on recent serum, which shall show a MFI for the immunodominant donor-specific antibodies (DSA) > 6,000 but the value of which does not exceed 5,000 after 1:10 dilution. Second, the post-Imlifidase complement-dependent cytotoxicity crossmatch must be negative. Patients treated with Imlifidase will receive an immunosuppressive regimen based on steroids, rATG, high dose IVIg, rituximab, tacrolimus and mycophenolic acid. Frequent post-transplant testing for DSA and systematic surveillance kidney biopsies are highly recommended to monitor post-transplant DSA rebound and subclinical rejection.
Collapse
Affiliation(s)
- Lionel Couzi
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- CNRS-UMR 5164 Immuno ConcEpT, Université de Bordeaux, Bordeaux, France
| | - Paolo Malvezzi
- Centre Hospitalier Universitaire de Grenoble, La Tronche, France
| | | | | | - Gilles Blancho
- Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | | | - Marine Freist
- Centre Hospitalier Emile Roux, Le Puy-en-Velay, France
| | | | - Nassim Kamar
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | - Christophe Mariat
- Centre Hospitalier Universitaire (CHU) de Saint-Étienne, Saint-Etienne, France
| | | | - Johan Noble
- Centre Hospitalier Universitaire de Grenoble, La Tronche, France
| | | | - Antoine Thierry
- Centre Hospitalier Universitaire (CHU) de Poitiers, Poitiers, France
| | | | | |
Collapse
|
23
|
Gniewkiewicz M, Czerwinska K, Zielniok K, Durlik M. Impact of Resolved Preformed, Persistent Preformed, and De Novo Anti-HLA Donor-Specific Antibodies in Kidney Transplant Recipients on Long-Term Renal Graft Outcomes. J Clin Med 2023; 12:jcm12103361. [PMID: 37240467 DOI: 10.3390/jcm12103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The post-transplant evolution of antihuman leukocyte antigen donor-specific antibodies (anti-HLA DSAs) includes three clinical patterns: resolved preformed DSAs, persistent preformed DSAs, and de novo DSAs. The aim of this retrospective study was to analyze the impact of resolved preformed, persistent preformed, and de novo anti-HLA-A, -B, and -DR DSAs in kidney transplant recipients on long-term renal allograft outcomes. This is a post hoc analysis of the study conducted in our transplant center. One hundred eight kidney transplant recipients were included in the study. Patients were followed for a minimum of 24 months after allograft biopsy, which was performed 3 to 24 months after kidney transplantation. The identification of persistent preformed DSAs at the time of biopsy was the most significant predictor of the combined endpoint of the study (>30% decline in estimated glomerular filtration rate or death-censored graft loss; HR = 5.96, 95% CI 2.041-17.431, p = 0.0011), followed by the occurrence of de novo DSAs (HR = 4.48, 95% CI 1.483-13.520, p = 0.0079). No increased risk was observed in patients with resolved preformed DSAs (HR = 1.10, 95% CI 0.139-8.676, p = 0.9305). Patients with resolved preformed DSAs have similar graft prognoses as patients without DSAs, therefore, the persistence of preformed DSAs and development of de novo DSAs are associated with inferior long-term allograft outcomes.
Collapse
Affiliation(s)
- Michal Gniewkiewicz
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Katarzyna Czerwinska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Katarzyna Zielniok
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| |
Collapse
|
24
|
Kang ZY, Ma S, Liu W, Liu C. Effect of blood transfusion post kidney transplantation on de novo human leukocytes antigen donor-specific antibody development and clinical outcomes in kidney transplant recipients: A systematic review and meta-analysis. Transpl Immunol 2023; 78:101801. [PMID: 36841513 DOI: 10.1016/j.trim.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The relationship between blood transfusion following kidney transplantation (KT) and the development of de novo donor-specific antibodies (dnDSA) is controversial. This was investigated by conducting a meta-analysis of studies on patients who underwent KT with or without blood transfusion, and by evaluating the effect of post-KT blood transfusion on clinical outcomes of kidney transplant recipients. Relevant studies in the PubMed, EMBASE, and Cochrane Library databases were identified from inception to July 1, 2022. Two reviewers independently extracted data from the selected articles and estimated study quality. A fixed effects or random effects model was used to pool data according to the heterogeneity among studies. Data included in the meta-analysis were derived from 11 studies with a total of 19,543 patients including 6191 with and 13,352 without blood transfusion post-KT. We assessed the pooled associations between blood transfusion and occurrence of dnDSA and clinical outcomes of transplant recipients. Blood transfusion was strongly correlated with the development of dnDSA (relative risk [RR] = 1.40, 95% confidence interval [CI]: 1.17-1.67; P < 0.05). Patients with blood transfusion had a higher risk of developing anti-human leukocyte antigen (HLA) class I dnDSA than non-transfused patients (RR = 1.75, 95% CI: 1.14-2.69; P < 0.05) as well as significantly higher rates of antibody-mediated rejection (AMR) (RR = 1.41, 95% CI: 1.21-2.35; P < 0.05) and graft loss (RR = 1.75, 95% CI: 1.30-2.35; P < 0.05). There were no statistically significant differences between the two groups in the development of anti-HLA antibodies, anti-HLA class II dnDSA, and anti-HLA class I and II dnDSA; delayed graft function; T cell-mediated rejection; acute rejection; borderline rejection; or patient death. Our results suggest that blood transfusion was associated with dnDSA development in KT recipients. The findings of this systematic review also suggest that post-KT blood transfusion recipients have a higher risk of AMR, and graft loss compared with non-transfused patients. Evidence from this meta-analysis indicates that the use of blood transfusion post-KT is associated with a significantly higher risk of immunological sensitization. More and higher quality results from large randomized controlled trials are still needed to inform clinical practice.
Collapse
Affiliation(s)
- Zhong-Yu Kang
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, NanKai University, Tianjin, Nankai, China
| | - Shuangshuang Ma
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, NanKai University, Tianjin, Nankai, China
| | - Wei Liu
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, NanKai University, Tianjin, Nankai, China
| | - Chun Liu
- Department of Blood Transfusion, Tianjin First Central Hospital, School of Medicine, NanKai University, Tianjin, Nankai, China.
| |
Collapse
|
25
|
Llinàs-Mallol L, Raïch-Regué D, Pascual J, Crespo M. Alloimmune risk assessment for antibody-mediated rejection in kidney transplantation: A practical proposal. Transplant Rev (Orlando) 2023; 37:100745. [PMID: 36572001 DOI: 10.1016/j.trre.2022.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease. Although an improvement in graft survival has been observed in the last decades with the use of different immunosuppressive drugs, this is still limited in time with antibody-mediated rejection being a main cause of graft-loss. Immune monitoring and risk assessment of antibody-mediated rejection before and after kidney transplantation with useful biomarkers is key to tailoring treatments to achieve the best outcomes. Here, we provide a review of the rationale and several accessible tools for immune monitoring, from the most classic to the modern ones. Finally, we end up discussing a practical proposal for alloimmune risk assessment in kidney transplantation, including histocompatibility leukocyte antigen (HLA) and non-HLA antibodies, HLA molecular mismatch analysis and characterization of peripheral blood immune cells.
Collapse
Affiliation(s)
- Laura Llinàs-Mallol
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Dàlia Raïch-Regué
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
26
|
Seeking Standardized Definitions for HLA-incompatible Kidney Transplants: A Systematic Review. Transplantation 2023; 107:231-253. [PMID: 35915547 DOI: 10.1097/tp.0000000000004262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is no standard definition for "HLA incompatible" transplants. For the first time, we systematically assessed how HLA incompatibility was defined in contemporary peer-reviewed publications and its prognostic implication to transplant outcomes. METHODS We combined 2 independent searches of MEDLINE, EMBASE, and the Cochrane Library from 2015 to 2019. Content-expert reviewers screened for original research on outcomes of HLA-incompatible transplants (defined as allele or molecular mismatch and solid-phase or cell-based assays). We ascertained the completeness of reporting on a predefined set of variables assessing HLA incompatibility, therapies, and outcomes. Given significant heterogeneity, we conducted narrative synthesis and assessed risk of bias in studies examining the association between death-censored graft failure and HLA incompatibility. RESULTS Of 6656 screened articles, 163 evaluated transplant outcomes by HLA incompatibility. Most articles reported on cytotoxic/flow T-cell crossmatches (n = 98). Molecular genotypes were reported for selected loci at the allele-group level. Sixteen articles reported on epitope compatibility. Pretransplant donor-specific HLA antibodies were often considered (n = 143); yet there was heterogeneity in sample handling, assay procedure, and incomplete reporting on donor-specific HLA antibodies assignment. Induction (n = 129) and maintenance immunosuppression (n = 140) were frequently mentioned but less so rejection treatment (n = 72) and desensitization (n = 70). Studies assessing death-censored graft failure risk by HLA incompatibility were vulnerable to bias in the participant, predictor, and analysis domains. CONCLUSIONS Optimization of transplant outcomes and personalized care depends on accurate HLA compatibility assessment. Reporting on a standard set of variables will help assess generalizability of research, allow knowledge synthesis, and facilitate international collaboration in clinical trials.
Collapse
|
27
|
Clinical recommendations for posttransplant assessment of anti-HLA (Human Leukocyte Antigen) donor-specific antibodies: A Sensitization in Transplantation: Assessment of Risk consensus document. Am J Transplant 2023; 23:115-132. [PMID: 36695614 DOI: 10.1016/j.ajt.2022.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 01/13/2023]
Abstract
Although anti-HLA (Human Leukocyte Antigen) donor-specific antibodies (DSAs) are commonly measured in clinical practice and their relationship with transplant outcome is well established, clinical recommendations for anti-HLA antibody assessment are sparse. Supported by a careful and critical review of the current literature performed by the Sensitization in Transplantation: Assessment of Risk 2022 working group, this consensus report provides clinical practice recommendations in kidney, heart, lung, and liver transplantation based on expert assessment of quality and strength of evidence. The recommendations address 3 major clinical problems in transplantation and include guidance regarding posttransplant DSA assessment and application to diagnostics, prognostics, and therapeutics: (1) the clinical implications of positive posttransplant DSA detection according to DSA status (ie, preformed or de novo), (2) the relevance of posttransplant DSA assessment for precision diagnosis of antibody-mediated rejection and for treatment management, and (3) the relevance of posttransplant DSA for allograft prognosis and risk stratification. This consensus report also highlights gaps in current knowledge and provides directions for clinical investigations and trials in the future that will further refine the clinical utility of posttransplant DSA assessment, leading to improved transplant management and patient care.
Collapse
|
28
|
Lehmann C, Pehnke S, Weimann A, Bachmann A, Dittrich K, Petzold F, Fürst D, de Fallois J, Landgraf R, Henschler R, Lindner TH, Halbritter J, Doxiadis I, Popp B, Münch J. Extended genomic HLA typing identifies previously unrecognized mismatches in living kidney transplantation. Front Immunol 2023; 14:1094862. [PMID: 36776892 PMCID: PMC9911689 DOI: 10.3389/fimmu.2023.1094862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Antibody mediated rejection (ABMR) is the most common cause of long-term allograft loss in kidney transplantation (KT). Therefore, a low human leukocyte antigen (HLA) mismatch (MM) load is favorable for KT outcomes. Hitherto, serological or low-resolution molecular HLA typing have been adapted in parallel. Here, we aimed to identify previously missed HLA mismatches and corresponding antibodies by high resolution HLA genotyping in a living-donor KT cohort. Methods 103 donor/recipient pairs transplanted at the University of Leipzig Medical Center between 1998 and 2018 were re-typed using next generation sequencing (NGS) of the HLA loci -A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1. Based on these data, we compiled HLA MM counts for each pair and comparatively evaluated genomic HLA-typing with pre-transplant obtained serological/low-resolution HLA (=one-field) typing results. NGS HLA typing (=two-field) data was further used for reclassification of de novo HLA antibodies as "donor-specific". Results By two-field HLA re-typing, we were able to identify additional MM in 64.1% (n=66) of cases for HLA loci -A, -B, -C, -DRB1 and -DQB1 that were not observed by one-field HLA typing. In patients with biopsy proven ABMR, two-field calculated MM count was significantly higher than by one-field HLA typing. For additional typed HLA loci -DRB345, -DQA1, -DPA1, and -DPB1 we observed 2, 26, 3, and 23 MM, respectively. In total, 37.3% (69/185) of de novo donor specific antibodies (DSA) formation was directed against these loci (DRB345 ➔ n=33, DQA1 ➔ n=33, DPA1 ➔ n=1, DPB1 ➔ n=10). Conclusion Our results indicate that two-field HLA typing is feasible and provides significantly more sensitive HLA MM recognition in living-donor KT. Furthermore, accurate HLA typing plays an important role in graft management as it can improve discrimination between donor and non-donor HLA directed cellular and humoral alloreactivity in the long range. The inclusion of additional HLA loci against which antibodies can be readily detected, HLA-DRB345, -DQA1, -DQB1, -DPA1, and -DPB1, will allow a more precise virtual crossmatch and better prediction of potential DSA. Furthermore, in living KT, two-field HLA typing could contribute to the selection of the immunologically most suitable donors.
Collapse
Affiliation(s)
- Claudia Lehmann
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Sarah Pehnke
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Weimann
- Division of Visceral Surgery and Transplantation Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Anette Bachmann
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Katalin Dittrich
- Department of Pediatric Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Daniel Fürst
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Ramona Landgraf
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Reinhard Henschler
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Tom H Lindner
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany.,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ilias Doxiadis
- Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany.,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Senev A, Van Loon E, Lerut E, Coemans M, Callemeyn J, Daniëls L, Kerkhofs J, Koshy P, Kuypers D, Lamarthée B, Sprangers B, Tinel C, Van Craenenbroeck AH, Van Sandt V, Emonds MP, Naesens M. Association of Predicted HLA T-Cell Epitope Targets and T-Cell-Mediated Rejection After Kidney Transplantation. Am J Kidney Dis 2022; 80:718-729.e1. [PMID: 35690154 DOI: 10.1053/j.ajkd.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/09/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE The relationship between human leukocyte antigen (HLA) molecular mismatches and T-cell-mediated rejection (TCMR) is unknown. We investigated the associations between the different donor HLA-derived T-cell targets and the occurrence of TCMR and borderline histologic changes suggestive of TCMR after kidney transplantation. STUDY DESIGN Retrospective cohort study. SETTING & PARTICIPANTS All kidney transplant recipients at a single center between 2004 and 2013 with available biopsy data and a DNA sample for high-resolution HLA donor/recipient typing (N = 893). EXPOSURE Scores calculated by the HLA matching algorithm PIRCHE-II and HLA eplet mismatches. OUTCOME TCMR, borderline changes suggestive of TCMR, and allograft failure. ANALYTICAL APPROACH Multivariable cause-specific hazards models were fit to characterize the association between HLA epitopes targets and study outcomes. RESULTS We found 277 patients developed TCMR, and 134 developed only borderline changes suggestive of TCMR on at least 1 biopsy. In multivariable analyses, only the PIRCHE-II scores for HLA-DRB1 and HLA-DQB1 were independently associated with the occurrence of TCMR and with allograft failure; this was not the case for HLA class I molecules. If restricted to rejection episodes within the first 3 months after transplantation, only the T-cell epitope targets originating from the donor's HLA-DRB1 and HLA-DQB1, but not class I molecules, were associated with the early acute TCMR. Also, the median PIRCHE-II score for HLA class II was statistically different between the patients with TCMR compared to the patients without TCMR (129 [IQR, 60-240] vs 201 [IQR, 96-298], respectively; P < 0.0001). These differences were not observed for class I PIRCHE-II scores. LIMITATIONS Observational clinical data and residual confounding. CONCLUSIONS In the absence of HLA-DSA, HLA class II but not class I mismatches are associated with early episodes of acute TCMR and allograft failure. This suggests that current immunosuppressive therapies are largely able to abort the most deleterious HLA class I-directed alloimmune processes; however, alloresponses against HLA-DRB1 and HLA-DQB1 molecular mismatches remain insufficiently suppressed. PLAIN-LANGUAGE SUMMARY Genetic differences in the human leukocyte antigen (HLA) complex between kidney transplant donors and recipients play a central role in T-cell-mediated rejection (TCMR), which can lead to failure of the transplanted kidney. Evaluating this genetic disparity (mismatch) in the HLA complex at the molecular (epitope) level could contribute to better prediction of the immune response to the donor organ posttransplantation. We investigated the associations of the different donor HLA-derived T-cell epitope targets and scores obtained from virtual crossmatch algorithms with the occurrence of TCMR, borderline TCMR, and graft failure after kidney transplantation after taking into account the influence of donor-specific anti-HLA antibodies. This study illustrates the greater importance of the molecular mismatches in class II molecules compared to class I HLA molecules.
Collapse
Affiliation(s)
- Aleksandar Senev
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Elisabet Van Loon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Coemans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Jasper Callemeyn
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Liesbeth Daniëls
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Johan Kerkhofs
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Priyanka Koshy
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Ben Sprangers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Claire Tinel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Vicky Van Sandt
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Marie-Paule Emonds
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Maarten Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, KU Leuven University, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Wang L, Ji K, Chen L, Li Y, Zhu W, Yuan X, Bao X, Wu X, He J. Posttransplant de novo DSA and NDSA affect GvHD, OS, and DFS after haplo-HSCT in patients without pre-existing HLA antibodies of hematological malignancies. Front Immunol 2022; 13:1047200. [PMID: 36532004 PMCID: PMC9751004 DOI: 10.3389/fimmu.2022.1047200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
To examine the production time, type, and MFI of post-transplantation de novo HLA antibodies, and their effects on haplo-HSCT outcomes, we retrospectively included 116 patients who were negative for pre-existing HLA antibodies. In total, 322 serum samples from pre-transplantation to post-transplantation were dynamically tested by Luminex and single-antigen bead reagents. Patients were divided into: HLA antibody persistently negative group (group 1), the de novo HLA antibody transiently positive group (group 2), the de novo HLA antibody non-persistently positive group (group 3), and the de novo HLA antibody persistently positive group (group 4). Group 4 included DSA+non-DSA (NDSA) (group 4a) and NDSA (group 4b) groups. The detection rate of de novo HLA antibodies was 75.9% (88/116). The median MFI for de novo HLA antibodies was 2439 (1033-20162). The incidence of II-IV aGvHD was higher in group 2 than in group 1 (52.6% vs 17.9%, P < 0.01); in group 4a than in group 1 (87.5% vs 17.9%, P < 0.001); and in group 4a than in group 4b (87.5% vs 40.0%, P = 0.001). The DFS (37.5% vs 85.7%, P < 0.01) and OS (37.5% vs 85.7%, P < 0.01) of group 4a were lower than those of group 1. The DFS (48.0% vs 85.7%, P < 0.01) and OS (56.0% vs 85.7%, P = 0.03) of group 4b were lower than those of group 1. Multivariate analysis showed that de novo HLA antibody being transiently positive (HR: 5.30; 95% CI: 1.71-16.42, P = 0.01) and persistently positive (HR: 5.67; 95% CI: 2.00-16.08, P < 0.01) were both associated with a higher incidence of II-IV aGvHD. Persistently positive de novo HLA antibodies were a risk factor for reduced DFS (HR: 6.57; 95% CI: 2.08-20.70, P < 0.01) and OS (HR: 5.51; 95% CI: 1.73-17.53, P < 0.01). DSA and NDSA can be detected since 15 days after haplo-HSCT in patients without pre-existing HLA antibodies, and affect aGvHD, DFS, and OS. Haplo-HSCT patients must be monitored for HLA antibodies changes for appropriate preventive clinical management, and we recommend that 1-month post-transplantation is the best test time point.
Collapse
Affiliation(s)
- Lan Wang
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Department of Hematology, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Ji
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Luyao Chen
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Li
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Department of Hematology, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenjuan Zhu
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Department of Hematology, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoni Yuan
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojing Bao
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojin Wu
- Department of Hematology, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Jun He
- HLA Laboratory of Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China,*Correspondence: Jun He,
| |
Collapse
|
31
|
Impact of Sensitization on Waiting Time Prior to Kidney Transplantation in Germany. Transplantation 2022; 106:2448-2455. [PMID: 35973058 DOI: 10.1097/tp.0000000000004238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Assignment of unacceptable HLA mismatches (UAMs) prevents transplantation of incompatible grafts but potentially prolongs waiting time. Whether this is true in the Eurotransplant Kidney Allocation System (ETKAS) and the Eurotransplant Senior Program in Germany is highly debated and relevant for UAM policies. METHODS Donor pool restriction due to UAM was expressed as percent virtual panel-reactive antibodies (vPRAs). Kaplan-Meier estimates and multivariable Cox regression models were used to analyze the impact of vPRA levels on waiting time and transplant probability during a period of 2 y in all patients eligible for a kidney graft unter standard circumstances in Germany on February 1, 2019 (n = 6533). Utility of the mismatch probability score to compensate for sensitization in ETKAS was also investigated. RESULTS In ETKAS, donor pool restriction resulted in significant prolongation of waiting time and reduction in transplant probability only in patients with vPRA levels above 85%. This was most evident in patients with vPRA levels above 95%, whereas patients in the acceptable mismatch program had significantly shorter waiting times and higher chances for transplantation than nonsensitized patients. In the Eurotransplant Senior Program, vPRA levels above 50% resulted in significantly longer waiting times and markedly reduced the chance for transplantation. Compensation for sensitization by the mismatch probability score was insufficient. CONCLUSIONS Donor pool restriction had no significant impact on waiting time in most sensitized patients. However, despite the existence of the acceptable mismatch program, the majority of highly sensitized patients is currently disadvantaged and would benefit from better compensation mechanisms.
Collapse
|
32
|
Nickerson PW. Rationale for the IMAGINE study for chronic active antibody-mediated rejection (caAMR) in kidney transplantation. Am J Transplant 2022; 22 Suppl 4:38-44. [PMID: 36453707 DOI: 10.1111/ajt.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Chronic active antibody-mediated rejection (caAMR) in kidney transplantation is a major cause of late graft loss and despite all efforts to date, there is no proven effective therapy. Indeed, the Transplant Society (TTS) consensus opinion called for a conservative approach optimizing baseline immunosuppression and supportive care focused on blood pressure, blood glucose, and lipid control. This review provides the rationale and early evidence in kidney transplant recipients with caAMR that supported the design of the IMAGINE study whose goal is to evaluate the potential impact of targeting the IL6/IL6R pathway.
Collapse
Affiliation(s)
- Peter W Nickerson
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
33
|
Louis K, Lefaucheur C. DSA in solid organ transplantation: is it a matter of specificity, amount, or functional characteristics? Curr Opin Organ Transplant 2022; 27:392-398. [PMID: 35881421 DOI: 10.1097/mot.0000000000001006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The present review describes the clinical relevance of human leukocyte antigen (HLA) donor-specific antibodies (HLA-DSAs) as biomarkers of alloimmunity and summarizes recent improvements in their characterization that provide insights into immune risk assessment, precision diagnosis, and prognostication in transplantation. RECENT FINDINGS Recent studies have addressed the clinical utility of HLA-DSAs as biomarkers for immune risk assessment in pretransplant and peritransplant, diagnosis and treatment evaluation of antibody-mediated rejection, immune monitoring posttransplant, and risk stratification. SUMMARY HLA-DSAs have proved to be the most advanced immune biomarkers in solid organ transplantation in terms of analytical validity, clinical validity and clinical utility. Recent studies are integrating multiple HLA-DSA characteristics including antibody specificity, HLA class, quantity, immunoglobulin G subclass, and complement-binding capacity to improve risk assessment peritransplant, diagnosis and treatment evaluation of antibody-mediated rejection, immune monitoring posttransplant, and transplant prognosis evaluation. In addition, integration of HLA-DSAs to clinical, functional and histological transplant parameters has further consolidated the utility of HLA-DSAs as robust biomarkers and allows to build new tools for monitoring, precision diagnosis, and risk stratification for individual patients. However, prospective and randomized-controlled studies addressing the clinical benefit and cost-effectiveness of HLA-DSA-based monitoring and patient management strategies are required to demonstrate that the use of HLA-DSAs as biomarkers can improve current clinical practice and transplant outcomes.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris
- Human Immunology and Immunopathology, Université de Paris
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| |
Collapse
|
34
|
Rodriguez-Ramirez S, Al Jurdi A, Konvalinka A, Riella LV. Antibody-mediated rejection: prevention, monitoring and treatment dilemmas. Curr Opin Organ Transplant 2022; 27:405-414. [PMID: 35950887 PMCID: PMC9475491 DOI: 10.1097/mot.0000000000001011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection (AMR) has emerged as the leading cause of late graft loss in kidney transplant recipients. Donor-specific antibodies are an independent risk factor for AMR and graft loss. However, not all donor-specific antibodies are pathogenic. AMR treatment is heterogeneous due to the lack of robust trials to support clinical decisions. This review provides an overview and comments on practical but relevant dilemmas physicians experience in managing kidney transplant recipients with AMR. RECENT FINDINGS Active AMR with donor-specific antibodies may be treated with plasmapheresis, intravenous immunoglobulin and corticosteroids with additional therapies considered on a case-by-case basis. On the contrary, no treatment has been shown to be effective against chronic active AMR. Various biomarkers and prediction models to assess the individual risk of graft failure and response to rejection treatment show promise. SUMMARY The ability to personalize management for a given kidney transplant recipient and identify treatments that will improve their long-term outcome remains a critical unmet need. Earlier identification of AMR with noninvasive biomarkers and prediction models to assess the individual risk of graft failure should be considered. Enrolling patients with AMR in clinical trials to assess novel therapeutic agents is highly encouraged.
Collapse
Affiliation(s)
- Sonia Rodriguez-Ramirez
- Department of Medicine, Division of Nephrology
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Ayman Al Jurdi
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ana Konvalinka
- Department of Medicine, Division of Nephrology
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network
- Institute of Medical Science, University of Toronto
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo V. Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Frischknecht L, Deng Y, Wehmeier C, de Rougemont O, Villard J, Ferrari-Lacraz S, Golshayan D, Gannagé M, Binet I, Wirthmueller U, Sidler D, Schachtner T, Schaub S, Nilsson J. The impact of pre-transplant donor specific antibodies on the outcome of kidney transplantation – Data from the Swiss transplant cohort study. Front Immunol 2022; 13:1005790. [PMID: 36211367 PMCID: PMC9532952 DOI: 10.3389/fimmu.2022.1005790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pre-transplant donor specific antibodies (DSA), directed at non-self human leukocyte antigen (HLA) protein variants present in the donor organ, have been associated with worse outcomes in kidney transplantation. The impact of the mean fluorescence intensity (MFI) and the target HLA antigen of the detected DSA has, however, not been conclusively studied in a large cohort with a complete virtual cross-match (vXM). Methods We investigated the effect of pre-transplant DSA on the risk of antibody-mediated rejection (ABMR), graft loss, and the rate of eGFR decline in 411 DSA positive transplants and 1804 DSA negative controls. Results Pre-transplant DSA were associated with a significantly increased risk of ABMR, graft loss, and accelerated eGFR decline. DSA directed at Class I and Class II HLA antigens were strongly associated with increased risk of ABMR, but only DSA directed at Class II associated with graft loss. DSA MFI markedly affected outcome, and Class II DSA were associated with ABMR already at 500-1000 MFI, whereas Class I DSA did not affect outcome at similar low MFI values. Furthermore, isolated DSA against HLA-DP carried comparable risks for ABMR, accelerated eGFR decline, and graft loss as DSA against HLA-DR. Conclusion Our results have important implications for the construction and optimization of vXM algorithms used within organ allocation systems. Our data suggest that both the HLA antigen target of the detected DSA as well as the cumulative MFI should be considered and that different MFI cut-offs could be considered for Class I and Class II directed DSA.
Collapse
Affiliation(s)
- Lukas Frischknecht
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Yun Deng
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Caroline Wehmeier
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Olivier de Rougemont
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Monique Gannagé
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Isabelle Binet
- Nephrology & Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Urs Wirthmueller
- Department of Laboratory Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Daniel Sidler
- Department of Nephrology and Hypertension, Inselspital, Berne University Hospital and University of Berne, Berne, Switzerland
| | - Thomas Schachtner
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich (USZ), Zurich, Switzerland
- *Correspondence: Jakob Nilsson,
| | | |
Collapse
|
36
|
Olszowska-Zaremba N, Gozdowska J, Zagożdżon R. Clinical significance of low pre-transplant donor specific antibodies (DSA) in living donor kidney recipients with negative complement-dependent cytotoxicity crossmatches (CDCXM), and negative flow cytometry crossmatches (FLXM) - A single-center experience. Transpl Immunol 2022; 74:101672. [PMID: 35868613 DOI: 10.1016/j.trim.2022.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND It is controversial whether all donor-specific antibodies (DSA) detected by the solid-phase single antigen bead (SAB) assay negatively affect kidney transplantation outcomes. The study aimed to evaluate the possible clinical significance of low pre-transplant DSA in living donor kidney recipients. We analyzed a group of patients with HLA-A, B, and -DR DSA reactivities below a virtual crossmatch (VXM) value of 5000 MFI but with all VXM DSA reactivities at HLA-DQ, -DP, and -Cw, which were not typed routinely for donors prior to transplantation. We also investigated the incidence of persistent and de novo DSAs in available posttransplant SAB assays. METHODS From the historical cohort of living donor recipients transplanted between 2014 and 2018 at our center (n = 82), 55 patients met the inclusion criteria, namely: these patients were > 18 years old with non-HLA identical sibling donors, who were not desensitized, who had available pre-transplant SAB results, and who had negative both complement-dependent cytotoxicity crossmatch (CDCXM) and flow cytometry crossmatch (FLXM) results. An additional donor HLA typing, performed for all 55 recipients, identified donor additional HLA-DQ, -DP, and -Cw DSA reactivities. These patients were then divided by SAB reactivity into three groups: 1) those with DSA-positive reactivities; 2) those with non-donor-specific anti-HLA reactivities (NDSA); and, 3) those who were anti-HLA-negative. All these recipients were followed for three years and checked for their de novo or persistent DSA. RESULTS In the studied cohort, DSA-positive, NDSA reactive, and anti-HLA negative recipients constituted 33%, 36%, and 31% of 55 patients, respectively. Non-routinely considered pre-transplant HLA-DQ, -DP, and -Cw DSA-positive reactivities were shown in as many as 78% of DSA-positive cases (group 1) with the lowest MFI value of 319 to DP4 and the highest MFI of 5767 to DQ2. Of the pre-transplant HLA-A, B, and -DR DSA reactivities, only -DR52 DSA reactivity reached the highest MFI value of 2191. These detected DSAs did not reduce the mean estimated glomerular filtration rate (eGFR) values and did not increase the incidence of proteinuria in recipients. While the 3-year graft survival was lower in the DSA-positive group (94.4%) with one recipient who lost kidney transplant, the difference was not significantly different (p = 0.7) from the NDSA (100%) and negative (100%) groups. In terms of the incidence of de novo acute antibody-mediated rejection (AMR) at three years after transplantation, no case has been reported in the cohort. This may suggest that low DSA-positive recipients do not experience higher rejection rate. However, DSA-positive recipients had a tendency for a higher frequency of C4d deposits in peritubular capillaries (PTC) and de novo DSA. CONCLUSION Our 3-year follow-up of patients with low pre-transplant DSA found no association with a deterioration in graft function and worse graft survival. Furthermore, we did not observe an increase in AMR in our patients with low DSA. A larger cohort and a longer follow-up period may be needed to evaluate the tendency of low DSA-positive recipients towards the higher incidence of C4d deposits in PTC and/or de novo DSA.
Collapse
Affiliation(s)
- Natasza Olszowska-Zaremba
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Jolanta Gozdowska
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| |
Collapse
|
37
|
Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022; 10:proteomes10030024. [PMID: 35893765 PMCID: PMC9326686 DOI: 10.3390/proteomes10030024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
Collapse
|
38
|
Phillpott M, Daga S, Higgins R, Lowe D, Krishnan N, Zehnder D, Briggs D, Khovanova N. Dynamic Behaviour of Donor Specific Antibodies in the Early Period Following HLA Incompatible Kidney Transplantation. Transpl Int 2022; 35:10128. [PMID: 35516975 PMCID: PMC9062976 DOI: 10.3389/ti.2022.10128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
In HLA-incompatible kidney transplantation, monitoring donor-specific antibodies (DSA) plays a crucial role in providing appropriate treatment and increases kidney survival times. This work aimed to determine if early post-transplant DSA dynamics inform graft outcome over and above other predictive factors. Eighty-eight cases were classified by unsupervised machine learning into five distinct DSA response groups: no response, fast modulation, slow modulation, rise to sustained and sustained. Fast modulation dynamics gave an 80% rate for early acute rejection, whereas the sustained group was associated with the lowest rejection rates (19%). In complete contrast, the five-year graft failure was lowest in the modulation groups (4–7%) and highest in the sustained groups (25–31%). Multivariable analysis showed that a higher pre-treatment DSA level, male gender and absence of early acute rejection were strongly associated with a sustained DSA response. The modulation group had excellent five-year outcomes despite higher rates of early rejection episodes. This work further develops an understanding of post-transplant DSA dynamics and their influence on graft survival following HLA-incompatible kidney transplantation.
Collapse
Affiliation(s)
- Mason Phillpott
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Sunil Daga
- St James's University Hospital, LTHT NHS Trust, Leeds, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom.,NIHR Leeds In-Vitro Diagnostics Co-operative, Leeds, United Kingdom
| | - Rob Higgins
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - David Lowe
- Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Nithya Krishnan
- University Hospitals Coventry & Warwickshire NHS Trust, Coventry, United Kingdom
| | - Daniel Zehnder
- Warwick Medical School, University of Warwick, Coventry, United Kingdom.,North Cumbria Integrated Care NHS Trust, Carlisle, Cumbria, United Kingdom
| | - David Briggs
- Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, United Kingdom.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalia Khovanova
- School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
39
|
Van Loon E, Lamarthée B, Barba T, Claes S, Coemans M, de Loor H, Emonds MP, Koshy P, Kuypers D, Proost P, Senev A, Sprangers B, Tinel C, Thaunat O, Van Craenenbroeck AH, Schols D, Naesens M. Circulating Donor-Specific Anti-HLA Antibodies Associate With Immune Activation Independent of Kidney Transplant Histopathological Findings. Front Immunol 2022; 13:818569. [PMID: 35281018 PMCID: PMC8904423 DOI: 10.3389/fimmu.2022.818569] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Despite the critical role of cytokines in allograft rejection, the relation of peripheral blood cytokine profiles to clinical kidney transplant rejection has not been fully elucidated. We assessed 28 cytokines through multiplex assay in 293 blood samples from kidney transplant recipients at time of graft dysfunction. Unsupervised hierarchical clustering identified a subset of patients with increased pro-inflammatory cytokine levels. This patient subset was hallmarked by a high prevalence (75%) of donor-specific anti-human leukocyte antigen antibodies (HLA-DSA) and histological rejection (70%) and had worse graft survival compared to the group with low cytokine levels (HLA-DSA in 1.7% and rejection in 33.7%). Thirty percent of patients with high pro-inflammatory cytokine levels and HLA-DSA did not have histological rejection. Exploring the cellular origin of these cytokines, we found a corresponding expression in endothelial cells, monocytes, and natural killer cells in single-cell RNASeq data from kidney transplant biopsies. Finally, we confirmed secretion of these cytokines in HLA-DSA-mediated cross talk between endothelial cells, NK cells, and monocytes. In conclusion, blood pro-inflammatory cytokines are increased in kidney transplant patients with HLA-DSA, even in the absence of histology of rejection. These observations challenge the concept that histology is the gold standard for identification of ongoing allo-immune activation after transplantation.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Thomas Barba
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Leuven Biostatistics and Statistical Bioinformatics Centre, Department of Public Health and Primary Care, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Henriette de Loor
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Marie-Paule Emonds
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Priyanka Koshy
- Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital Lyon, Hospices Civils de Lyon, Lyon, France
| | - Amaryllis H Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Biological pathways and comparison with biopsy signals and cellular origin of peripheral blood transcriptomic profiles during kidney allograft pathology. Kidney Int 2022; 102:183-195. [PMID: 35526671 PMCID: PMC9231008 DOI: 10.1016/j.kint.2022.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
|
41
|
Lebraud E, Eloudzeri M, Rabant M, Lamarthée B, Anglicheau D. Microvascular Inflammation of the Renal Allograft: A Reappraisal of the Underlying Mechanisms. Front Immunol 2022; 13:864730. [PMID: 35392097 PMCID: PMC8980419 DOI: 10.3389/fimmu.2022.864730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Antibody-mediated rejection (ABMR) is associated with poor transplant outcomes and was identified as a leading cause of graft failure after kidney transplantation. Although the hallmark histological features of ABMR (ABMRh), i.e., microvascular inflammation (MVI), usually correlate with the presence of anti-human leukocyte antigen donor-specific antibodies (HLA-DSAs), it is increasingly recognized that kidney transplant recipients can develop ABMRh in the absence of HLA-DSAs. In fact, 40-60% of patients with overt MVI have no circulating HLA-DSAs, suggesting that other mechanisms could be involved. In this review, we provide an update on the current understanding of the different pathogenic processes underpinning MVI. These processes include both antibody-independent and antibody-dependent mechanisms of endothelial injury and ensuing MVI. Specific emphasis is placed on non-HLA antibodies, for which we discuss the ontogeny, putative targets, and mechanisms underlying endothelial toxicity in connection with their clinical impact. A better understanding of these emerging mechanisms of allograft injury and all the effector cells involved in these processes may provide important insights that pave the way for innovative diagnostic tools and highly tailored therapeutic strategies.
Collapse
Affiliation(s)
- Emilie Lebraud
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Maëva Eloudzeri
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Marion Rabant
- Department of Renal Pathology, Necker Hospital, AP-HP, Paris, France
| | - Baptiste Lamarthée
- Université Bourgogne Franche-Comté, EFS BFC, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| |
Collapse
|
42
|
Wojciechowski E, Jambon F, Cargou M, Guidicelli G, Merville P, Couzi L, Taupin JL, Visentin J. Stability of Anti-HLA Sensitization Profiles in Highly Sensitized Kidney Transplantation Candidates: Toward a Rational Serological Testing Strategy. Transplantation 2022; 106:869-878. [PMID: 34028385 DOI: 10.1097/tp.0000000000003822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Highly sensitized (HS) anti-HLA patients awaiting kidney transplantation benefit from specific allocation programs. Serological monitoring at 3-mo intervals is recommended to prevent unexpected positive crossmatch (XM), but this strategy is not evidence-based. Therefore, we assessed its relevance when using single-antigen flow bead (SAFB) and screening flow bead (SFB) assays. METHODS We included 166 HS patients awaiting a transplant and assessed their SAFB profile during the year preceding their inclusion. Anti-HLA antibodies were evaluated by SAFB assay and compared within patients as serum pairs at 3, 6, and 9 mo. We assessed the performance of SFB for detecting changes in SAFB profiles with 35 serum pairs. RESULTS On comparing 354, 218, and 107 serum pairs at 3, 6, and 9 mo, respectively, only 0.6%, 0.7%, and 1% of all antigens tested exceeded for the first time the unacceptable antigen threshold (mean fluorescence intensity ≥2000) in the most recent sample. Irrespective of the follow-up period, the calculated panel-reactive antibodies increased by a mean of 1%, and there was no significant increase in the proportion of donors at risk for positivity of flow- or complement-dependent cytotoxicity XM. The SFB did not accurately detect the variations of SAFB profiles. CONCLUSIONS Changes in HS patient profiles are anecdotal and show little association with transplant access or risk for positive XM. Less-frequent monitoring in HS patients should be considered to improve cost-effectiveness without affecting transplant safety.
Collapse
Affiliation(s)
- Elodie Wojciechowski
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
- Université Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Frédéric Jambon
- Université Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
- Université Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Pierre Merville
- Université Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Lionel Couzi
- Université Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
| | - Jean-Luc Taupin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
- Université Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France
- Université Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
43
|
Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int 2021; 101:692-710. [PMID: 34915041 DOI: 10.1016/j.kint.2021.11.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Detection of mismatched human leukocyte antigens by adaptive immune cells is considered as the main cause of transplant rejection, leading to either T-cell mediated rejection or antibody-mediated rejection. This canonical view guided the successful development of immunosuppressive therapies and shaped the diagnostic Banff classification for kidney transplant rejection that is used in clinics worldwide. However, several observations have recently emerged that question this dichotomization between T-cell mediated rejection and antibody-mediated rejection, related to heterogeneity in the serology, histology, and prognosis of the rejection phenotypes. In parallel, novel insights were obtained concerning the dynamics of donor-specific anti-human leukocyte antigen antibodies, the immunogenicity of donor-recipient non-human leukocyte antigen mismatches, and the autoreactivity against self-antigens. Moreover, the potential of innate allorecognition was uncovered, as exemplified by natural killer cell-mediated microvascular inflammation through missing self, and by the emerging evidence on monocyte-driven allorecognition. In this review, we highlight the gaps in the current classification of rejection, provide an overview of the expanding insights into the mechanisms of allorecognition, and critically appraise how these could improve our understanding and clinical approach to kidney transplant rejection. We argue that consideration of the complex interplay of various allorecognition mechanisms can foster a more integrated view of kidney transplant rejection and can lead to improved risk stratification, targeted therapies, and better outcome after kidney transplantation.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Necker-Enfants Malades Institute, French National Institute of Health and Medical Research (INSERM) Unit 1151, Paris, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Priyanka Koshy
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
44
|
Drasch T, Bach C, Luber M, Spriewald B, Utpatel K, Büttner-Herold M, Banas B, Zecher D. Increased Levels of sCD30 Have No Impact on the Incidence of Early ABMR and Long-Term Outcome in Intermediate-Risk Renal Transplant Patients With Preformed DSA. Front Med (Lausanne) 2021; 8:778864. [PMID: 34820407 PMCID: PMC8606593 DOI: 10.3389/fmed.2021.778864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Background: It is still incompletely understood why some patients with preformed donor-specific anti-HLA antibodies (DSA) have reduced kidney allograft survival secondary to antibody-mediated rejection (ABMR), whereas many DSA-positive patients have favorable long-term outcomes. Elevated levels of soluble CD30 (sCD30) have emerged as a promising biomarker indicating deleterious T-cell help in conjunction with DSA in immunologically high-risk patients. We hypothesized that this would also be true in intermediate-risk patients. Methods: We retrospectively analyzed pre-transplant sera from 287 CDC-crossmatch negative patients treated with basiliximab induction and tacrolimus-based maintenance therapy for the presence of DSA and sCD30. The incidence of ABMR according to the Banff 2019 classification and death-censored allograft survival were determined. Results: During a median follow-up of 7.4 years, allograft survival was significantly lower in DSA-positive as compared to DSA-negative patients (p < 0.001). In DSA-positive patients, most pronounced in those with strong DSA (MFI > 5,000), increased levels of sCD30 were associated with accelerated graft loss compared to patients with low sCD30 (3-year allograft survival 75 vs. 95%). Long-term survival, however, was comparable in DSA-positive patients irrespective of sCD30 status. Likewise, the incidence of early ABMR and lesion score characteristics were comparable between sCD30-positive and sCD30-negative patients with DSA. Finally, increased sCD30 levels were not predictive for early persistence of DSA. Conclusion: Preformed DSA are associated with an increased risk for ABMR and long-term graft loss independent of sCD30 levels in intermediate-risk kidney transplant patients.
Collapse
Affiliation(s)
- Thomas Drasch
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Christian Bach
- Department of Internal Medicine 5-Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Luber
- Department of Internal Medicine 5-Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Spriewald
- Department of Internal Medicine 5-Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Utpatel
- Institute of Pathology, Regensburg University, Regensburg, Germany
| | | | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Zecher
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
45
|
Filippone EJ, Gulati R, Farber JL. Noninvasive Assessment of the Alloimmune Response in Kidney Transplantation. Adv Chronic Kidney Dis 2021; 28:548-560. [PMID: 35367023 DOI: 10.1053/j.ackd.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Transplantation remains the optimal mode of kidney replacement therapy, but unfortunately long-term graft survival after 1 year remains suboptimal. The main mechanism of chronic allograft injury is alloimmune, and current clinical monitoring of kidney transplants includes measuring serum creatinine, proteinuria, and immunosuppressive drug levels. The most important biomarker routinely monitored is human leukocyte antigen (HLA) donor-specific antibodies (DSAs) with the frequency based on underlying immunologic risk. HLA-DSA should be measured if there is graft dysfunction, immunosuppression minimization, or nonadherence. Antibody strength is semiquantitatively estimated as mean fluorescence intensity, with titration studies for equivocal cases and for following response to treatment. Determination of in vitro C1q or C3d positivity or HLA-DSA IgG subclass analysis remains of uncertain significance, but we do not recommend these for routine use. Current evidence does not support routine monitoring of non-HLA antibodies except anti-angiotensin II type 1 receptor antibodies when the phenotype is appropriate. The monitoring of both donor-derived cell-free DNA in blood or gene expression profiling of serum and/or urine may detect subclinical rejection, although mainly as a supplement and not as a replacement for biopsy. The optimal frequency and cost-effectiveness of using these noninvasive assays remain to be determined. We review the available literature and make recommendations.
Collapse
|
46
|
Affiliation(s)
- Sundaram Hariharan
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Ajay K Israni
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Gabriel Danovitch
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| |
Collapse
|
47
|
Abstract
Defined as histologic evidence of rejection on a protocol biopsy in the absence of kidney dysfunction, subclinical rejection has garnered attention since the 1990s. The major focus of much of this research, however, has been subclinical T cell-mediated rejection (TCMR). Herein, we review the literature on subclinical antibody-mediated rejection (AMR), which may occur with either preexisting donor-specific antibodies (DSA) or upon the development of de novo DSA (dnDSA). In both situations, subsequent kidney function and graft survival are compromised. Thus, we recommend protocol biopsy routinely within the first year with preexisting DSA and at the initial detection of dnDSA. In those with positive biopsies, baseline immunosuppression should be maximized, any associated TCMR treated, and adherence stressed, but it remains uncertain if antibody-reduction treatment should be initiated. Less invasive testing of blood for donor DNA or gene profiling may have a role in follow-up of those with negative initial biopsies. If a protocol biopsy is positive in the absence of detectable HLA-DSA, it also remains to be determined whether non-HLA-DSA should be screened for either in particular or on a genome-wide basis and how these patients should be treated. Randomized controlled trials are clearly needed.
Collapse
|
48
|
Tambur AR, Kosmoliaptsis V, Claas FHJ, Mannon RB, Nickerson P, Naesens M. Significance of HLA-DQ in kidney transplantation: time to reevaluate human leukocyte antigen matching priorities to improve transplant outcomes? An expert review and recommendations. Kidney Int 2021; 100:1012-1022. [PMID: 34246656 DOI: 10.1016/j.kint.2021.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
The weight of human leukocyte antigen (HLA) matching in kidney allocation algorithms, especially in the United States, has been devalued in a stepwise manner, supported by the introduction of modern immunosuppression. The intent was further to reduce the observed ethnic/racial disparity, as data emerged associating HLA matching with decreased access to transplantation for African American patients. In recent years, it has been increasingly recognized that a leading cause of graft loss is chronic antibody-mediated rejection, attributed to the development of de novo antibodies against mismatched donor HLA expressed on the graft. These antibodies are most frequently against donor HLA-DQ molecules. Beyond their impact on graft survival, generation of de novo donor-specific HLA antibodies also leads to increased sensitization, as measured by panel-reactive antibody metrics. Consequently, access to transplantation for patients returning to the waitlist in need of a second transplant is compromised. Herein, we address the implications of reduced HLA matching policies in kidney allocation. We highlight the observed diminished outcome data, the significant financial burden, the long-term health consequences, and, more important, the unintended consequences. We further provide recommendations to examine the impact of donor-recipient HLA class II and specifically HLA-DQα1β1 mismatching, focusing on collection of appropriate data, application of creative simulation approaches, and reconsideration of best practices to reduce inequalities while optimizing patient outcomes.
Collapse
Affiliation(s)
- Anat R Tambur
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA.
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Cambridge, UK; NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Coemans M, Senev A, Van Loon E, Lerut E, Sprangers B, Kuypers D, Emonds MP, Verbeke G, Naesens M. The evolution of histological changes suggestive of antibody-mediated injury, in the presence and absence of donor-specific anti-HLA antibodies. Transpl Int 2021; 34:1824-1836. [PMID: 34197662 DOI: 10.1111/tri.13964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
The interplay between donor-specific anti-HLA antibodies (HLA-DSA), histology of active antibody-mediated rejection (aABMRh ), transplant glomerulopathy (cg) and graft failure in kidney transplantation remains insufficiently understood. We performed a single-center cohort study (n=1000) including 2761 protocol and 833 indication biopsies. Patients with pre-transplant HLA-DSA were more prone to develop aABMRh (OR 22.7, 95% CI, 11.8 - 43.7, p<0.001), cg (OR 5.76, 95% CI, 1.67 - 19.8, p=0.006) and aABMRh/cg (OR 19.5, 95% CI, 10.6 - 35.9, p<0.001). The negative impact of pre-transplant HLA-DSA on graft survival (HR 2.12, 95% CI, 1.41 - 3.20, p<0.001) was partially mediated through aABMRh and cg occurrence. When adjusted for time-dependent HLA-DSA (HR 4.03, 95% CI, 2.21 - 7.15, p=0.002), graft failure was only affected by aABMRh when cg was evident. In HLA-DSA negative patients, aABMRh was associated with impaired graft outcome only when evolving to cg (HR 1.32, 95% CI, 1.07 - 1.61, p=0.008). We conclude that the kinetics of HLA-DSA are important to estimate the rate of graft failure, and that histological follow-up is necessary to discover, often subclinical, ABMR and cg. In the absence of HLA-DSA, patients experience similar histological lesions and the evolution to transplant glomerulopathy associates with impaired graft outcome.
Collapse
Affiliation(s)
- Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Marie-Paule Emonds
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Geert Verbeke
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Callemeyn J, Ameye H, Lerut E, Senev A, Coemans M, Van Loon E, Sprangers B, Van Sandt V, Rabeyrin M, Dubois V, Thaunat O, Kuypers D, Emonds MP, Naesens M. Revisiting the changes in the Banff classification for antibody-mediated rejection after kidney transplantation. Am J Transplant 2021; 21:2413-2423. [PMID: 33382185 DOI: 10.1111/ajt.16474] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 01/25/2023]
Abstract
The Banff classification for antibody-mediated rejection (ABMR) has undergone important changes, mainly by inclusion of C4d-negative ABMR in Banff'13 and elimination of suspicious ABMR (sABMR) with the use of C4d as surrogate for HLA-DSA in Banff'17. We aimed to evaluate the numerical and prognostic repercussions of these changes in a single-center cohort study of 949 single kidney transplantations, comprising 3662 biopsies that were classified according to the different versions of the Banff classification. Overall, the number of ABMR and sABMR cases increased from Banff'01 to Banff'13. In Banff'17, 248 of 292 sABMR biopsies were reclassified to No ABMR, and 44 of 292 to ABMR. However, reclassified sABMR biopsies had worse and better outcome than No ABMR and ABMR, which was mainly driven by the presence of microvascular inflammation and absence of HLA-DSA, respectively. Consequently, the discriminative performance for allograft failure was lowest in Banff'17, and highest in Banff'13. Our data suggest that the clinical and histological heterogeneity of ABMR is inadequately represented in a binary classification system. This study provides a framework to evaluate the updates of the Banff classification and assess the impact of proposed changes on the number of cases and risk stratification. Two alternative classifications introducing an intermediate category are explored.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Heleen Ameye
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Vicky Van Sandt
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Bron, France
| | - Valérie Dubois
- French National Blood Service (EFS), HLA Laboratory, Décines-Charpieu, France
| | - Olivier Thaunat
- Medical Research (Inserm) Unit 111, French National Institute of Health, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Dirk Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marie-Paule Emonds
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Maarten Naesens
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|