1
|
Qin JY, Huang G, Pan ZH, Liao LF, Hu HF. Different medications for seasonal allergic rhinitis in adults: A systematic review and meta-analysis. World J Meta-Anal 2024; 12:98508. [DOI: 10.13105/wjma.v12.i4.98508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND While the efficacy of medications such as fluticasone furoate (FF), fluticasone propionate (FP), and azelastine-fluticasone (AF) has been substantiated in comparison to their respective placebo controls, uncertainties persist regarding the comparative effectiveness of different intranasal agents.
AIM To evaluate the efficacy of FP, FF, and AF in the treatment of adult patients with seasonal allergic rhinitis (SAR) using a meta-analytic approach.
METHODS A computer search was conducted in Cochrane Library, PubMed, and EMBASE databases to identify randomized controlled trials assessing the effectiveness and safety of FF, FP, and AF in treating SAR. Data on treatment safety and efficacy were extracted and analyzed through meta-analysis.
RESULTS A total of 20 studies were included, comprising 10590 participants. The results of the direct meta-analysis indicated that, compared to placebo, both relative Total Nasal Symptom Score (rTNSS) and relative Total Ocular Symptom Score (rTOSS) significantly decreased post-intervention [mean difference (MD) = -1.48, 95% confidence interval (CI): -1.73 to -1.22; MD = -0.66, 95%CI: -0.82 to -0.49], with similar findings observed across the FF, FP, and AF subgroups. The network meta-analysis results showed that for improving rTNSS and rTOSS, the SUCRA values ranking from highest to lowest were AF, FP, FF, and placebo. Improvements in rTNSS and rTOSS with FP, FF, and AF were all significantly greater than those observed with placebo, with AF demonstrating superior efficacy compared to both FP and FF. No statistically significant difference in rTNSS improvement was found between FP and FF, although FP exhibited significantly greater improvement in rTOSS compared to FF.
CONCLUSION In adult patients with SAR, the combination of azelastine and fluticasone shows a significant effect in improving nasal and ocular symptoms, with FP demonstrating marked improvement in ocular symptoms compared to FF.
Collapse
Affiliation(s)
- Jiang-Yuan Qin
- The Third Department of Surgery, Guangxi Armed Police Corps Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Geng Huang
- Department of Health, Guangxi Armed Police Corps, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Hui Pan
- The Third Department of Surgery, Guangxi Armed Police Corps Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lan-Fang Liao
- The Third Department of Surgery, Guangxi Armed Police Corps Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Heng-Fen Hu
- Medical School, Hunan Vocational and Technical College of Environmental Biology, Hengyang 421005, Hunan Province, China
| |
Collapse
|
2
|
Cong J, Lv H, Xu Y. The role of nociceptive neurons in allergic rhinitis. Front Immunol 2024; 15:1430760. [PMID: 39185421 PMCID: PMC11341422 DOI: 10.3389/fimmu.2024.1430760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Allergic rhinitis (AR) is a chronic, non-infectious condition affecting the nasal mucosa, primarily mediated mainly by IgE. Recent studies reveal that AR is intricately associated not only with type 2 immunity but also with neuroimmunity. Nociceptive neurons, a subset of primary sensory neurons, are pivotal in detecting external nociceptive stimuli and modulating immune responses. This review examines nociceptive neuron receptors and elucidates how neuropeptides released by these neurons impact the immune system. Additionally, we summarize the role of immune cells and inflammatory mediators on nociceptive neurons. A comprehensive understanding of the dynamic interplay between nociceptive neurons and the immune system augments our understanding of the neuroimmune mechanisms underlying AR, thereby opening novel avenues for AR treatment modalities.
Collapse
Affiliation(s)
- Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
3
|
Ellis AK, Cook V, Keith PK, Mace SR, Moote W, O'Keefe A, Quirt J, Rosenfield L, Small P, Watson W. Focused allergic rhinitis practice parameter for Canada. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:45. [PMID: 39118164 PMCID: PMC11311964 DOI: 10.1186/s13223-024-00899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/21/2024] [Indexed: 08/10/2024]
Abstract
Allergic rhinitis (AR) is a prevalent disease in Canada that affects both children and adults. Several guidelines for the management of AR have been published by professional allergy societies worldwide. However, there are regional differences in the clinical management of AR, and regulatory approval of some AR pharmacotherapies varies among countries. Thus, six research questions specific to the treatment of AR in Canada were identified for this focused practice parameter. Reviews of the literature published since 2016 were conducted to obtain evidence-based support for the responses of the Work Group to each research question. In response to research question 1 "In patients with symptoms indicative of AR, is serum-specific IgE sufficient to identify candidates for immunotherapy or is a skin prick test mandatory?" the Work Group concluded that either sIgE testing or skin prick test are acceptable for diagnosing AR and guiding immunotherapy. In response to research question 2 "When taking into account the preferences of the patient and the prescriber (stakeholder engagement) should second-generation oral antihistamine (OAH) or intranasal corticosteroid (INCS) be first line?" the Work Group concluded that existing guidelines generally agree on the use of INCS as a first-line therapy used for AR, however, patient and provider preferences and considerations can easily shift the first choice to a second-generation OAH. In response to research question 3 "Is a combination intranasal antihistamine (INAH)/INCS formulation superior to INCS plus OAH? Do they become equivalent after prolonged use?" the Work Group concluded that that the combination INAH/INCS is superior to an INCS plus OAH. However, there was insufficient evidence to answer the second question. In response to research question 4 "Do leukotriene receptor antagonists (LTRA) have a greater benefit than OAH in AR for some symptoms to justify a therapeutic trial in those who cannot tolerate INCS?" the Work Group concluded that LTRAs have inferior, or at best equivalent, daytime or overall symptom control compared with OAH, but LTRAs may improve nighttime symptom control and provide benefits in patients with AR and concomitant asthma. In response to research question 5 "Should sublingual immunotherapy (SLIT) tablets be considered first-line immunotherapeutic options over subcutaneous immunotherapy (SCIT) based on the evidence of efficacy?" the Work Group concluded that the choice of SLIT or SCIT cannot be made on efficacy alone, and differences in other factors outweigh any differences in efficacy. In response to research question 6 "Based on efficacy data, should ALL patients seen by an allergist be offered SLIT or SCIT as a treatment option?" the Work Group concluded that the efficacy data suggests that SLIT or SCIT should be used broadly in patients with AR, but other clinical concerns also need to be taken into consideration.
Collapse
Affiliation(s)
- Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada.
| | - Victoria Cook
- Community Allergy Clinic, Victoria, BC, and Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Paul K Keith
- Division of Clinical Immunology and Allergy, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sean R Mace
- Mace Allergy and Clinical Immunology, Toronto, ON, Canada
| | | | - Andrew O'Keefe
- Department of Pediatrics, Memorial University, St. John's, NL, Canada
| | - Jaclyn Quirt
- Division of Clinical Immunology and Allergy, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lana Rosenfield
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Small
- Jewish General Hospital, Montreal, QC, Canada
| | - Wade Watson
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Sousa-Pinto B, Vieira RJ, Brozek J, Cardoso-Fernandes A, Lourenço-Silva N, Ferreira-da-Silva R, Ferreira A, Gil-Mata S, Bedbrook A, Klimek L, Fonseca JA, Zuberbier T, Schünemann HJ, Bousquet J. Intranasal antihistamines and corticosteroids in allergic rhinitis: A systematic review and meta-analysis. J Allergy Clin Immunol 2024; 154:340-354. [PMID: 38685482 DOI: 10.1016/j.jaci.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND There is insufficient systematized evidence on the effectiveness of individual intranasal medications in allergic rhinitis (AR). OBJECTIVES We sought to perform a systematic review to compare the efficacy of individual intranasal corticosteroids and antihistamines against placebo in improving the nasal and ocular symptoms and the rhinoconjunctivitis-related quality of life of patients with perennial or seasonal AR. METHODS The investigators searched 4 electronic bibliographic databases and 3 clinical trials databases for randomized controlled trials (1) assessing adult patients with seasonal or perennial AR and (2) comparing the use of intranasal corticosteroids or antihistamines versus placebo. Assessed outcomes included the Total Nasal Symptom Score, the Total Ocular Symptom Score, and the Rhinoconjunctivitis Quality-of-Life Questionnaire. The investigators performed random-effects meta-analyses of mean differences for each medication and outcome. The investigators assessed evidence certainty using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. RESULTS This review included 151 primary studies, most of which assessed patients with seasonal AR and displayed unclear or high risk of bias. Both in perennial and seasonal AR, most assessed treatments were more effective than placebo. In seasonal AR, azelastine-fluticasone, fluticasone furoate, and fluticasone propionate were the medications with the highest probability of resulting in moderate or large improvements in the Total Nasal Symptom Score and Rhinoconjunctivitis Quality-of-Life Questionnaire. Azelastine-fluticasone displayed the highest probability of resulting in moderate or large improvements of Total Ocular Symptom Score. Overall, evidence certainty was considered "high" in 6 of 46 analyses, "moderate" in 23 of 46 analyses, and "low"/"very low" in 17 of 46 analyses. CONCLUSIONS Most intranasal medications are effective in improving rhinitis symptoms and quality of life. However, there are relevant differences in the associated evidence certainty.
Collapse
Affiliation(s)
- Bernardo Sousa-Pinto
- CINTESIS@RISE, Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal; MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rafael José Vieira
- CINTESIS@RISE, Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal; MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jan Brozek
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - António Cardoso-Fernandes
- CINTESIS@RISE, Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal; MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Nuno Lourenço-Silva
- CINTESIS@RISE, Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal; MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Renato Ferreira-da-Silva
- CINTESIS@RISE, Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal; MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André Ferreira
- MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal; Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Ophthalmology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sara Gil-Mata
- CINTESIS@RISE, Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal; MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Ludger Klimek
- Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany; Center for Rhinology and Allergology, Wiesbaden, Germany
| | - João A Fonseca
- CINTESIS@RISE, Centre for Health Technology and Services Research, Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal; MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Torsten Zuberbier
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology, and Allergology, Berlin, Germany
| | - Holger J Schünemann
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jean Bousquet
- ARIA, Montpellier, France; Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology, and Allergology, Berlin, Germany.
| |
Collapse
|
5
|
Tantilipikorn P, Kirtsreesakul V, Bunnag C, Vangveeravong M, Thanaviratananich S, Chusakul S. The Use of Azelastine Hydrochloride/Fluticasone Propionate in the Management of Allergic Rhinitis in Asia: A Review. J Asthma Allergy 2024; 17:667-679. [PMID: 39045291 PMCID: PMC11264124 DOI: 10.2147/jaa.s451733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/13/2024] [Indexed: 07/25/2024] Open
Abstract
The incidence of allergic rhinitis (AR) in Asia and the world is steadily rising. Patients experience incomplete symptom relief despite existing treatment options, which warrants the need for new therapeutic regimes. Azelastine hydrochloride/fluticasone propionate (MP-AzeFlu), a novel intranasal formulation of azelastine hydrochloride and fluticasone propionate has been indicated in the treatment of AR. The current review discusses the effects of MP-AzeFlu versus conventional therapies in achieving superior clinical improvement with a very rapid onset of action (5 minutes). The superiority of MP-AzeFlu in offering complete symptom control with sustained relief in patients with AR compared to the existing therapeutic options is also discussed. MP-AzeFlu has been shown to improve the quality of life for patients with AR, thereby enhancing patient adherence to therapy and establishing its preference for the treatment of AR. Currently, the Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines recommend the use of a combination of intranasal corticosteroids and intranasal antihistamines as first-line treatment in patients with persistent AR with visual analog scores ≥5 or when prior treatment with single agents has been ineffective. Widely published data on the efficacy and safety of its prolonged use in adults and children have validated that effective treatment of AR can be achieved with MP-AzeFlu.
Collapse
Affiliation(s)
- Pongsakorn Tantilipikorn
- Center of Research Excellence in Allergy & Immunology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Virat Kirtsreesakul
- Department of Otolaryngology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chaweewan Bunnag
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Supinda Chusakul
- Department of Otolaryngology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Du K, Pang Z, Lou H, Yu H. Blood eosinophilia and a higher ethmoid sinus/maxillary sinus score ratio predict new-onset asthma in patients with chronic rhinosinusitis with nasal polyps. Acta Otolaryngol 2024; 144:313-319. [PMID: 39011988 DOI: 10.1080/00016489.2024.2362776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUD Presently, the impact of Chronic rhinosinusitis with nasal polyps (CRSwNP) on asthma onset is unknown. AIMS To evaluate the role of CRSwNP in asthma onset. MATERIALS AND METHODS A total of 3107 CRSwNP patients were retrospectively screened from 1 January 2018, to 31 May 2021; 624 patients were enrolled. Clinical data regarding nasal symptoms, Lund-Mackay scores, blood eosinophil percentage, and onset of asthma were analyzed. Patients were divided into different groups according to past history of nasal polyps, Lund-Mackay score, and the extent of blood eosinophilia. Asthma-free rates between these subgroups were analyzed by Kaplan-Meier curves and Cox regression models. RESULTS The prevalence of asthma was 10.90% in patients with CRSwNP, and new-onset asthma occurred in 3.14% of these patients. Higher Lund-Mackay scores for ethmoid sinus and maxillary sinus (E/M) and blood eosinophil percentages were two independent risk factors for new-onset asthma, with hazard ratios of 1.267 (95%CI, 1.155-1.390) and 1.224 (95%CI, 1.054-1.422), respectively. CRSwNP patients with an E/M ratio > 2.33 or a blood Eos percentage > 5.5% were at risk for asthma onset. CONCLUSIONS AND SIGNIFICANCE Blood eosinophilia and a higher E/M score ratio were associated with new-onset asthma in patients with CRSwNP.
Collapse
Affiliation(s)
- Kun Du
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihui Pang
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfei Lou
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Li P, Wang N, Kai L, Si J, Wang Z. Chronic intranasal corticosteroid treatment induces degeneration of olfactory sensory neurons in normal and allergic rhinitis mice. Int Forum Allergy Rhinol 2023; 13:1889-1905. [PMID: 36800514 DOI: 10.1002/alr.23142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Nasal eosinophilic inflammation is the therapeutic target for olfactory dysfunction in allergic rhinitis (AR). Intranasal corticosteroids are commonly considered to offer targetable benefit given their immunosuppressive property. However, experimental evidence suggests that continuous corticosteroid exposure may directly cause olfactory damage by disrupting the turnover of olfactory sensory neurons (OSNs). This potentially deleterious effect of corticosteroids calls into question their long-term topical use for treating olfactory loss related to AR. The aim of this study was to assess the impacts of chronic intranasal corticosteroid treatment on olfactory function and OSN population in mice under normal and pathological conditions. METHODS BALB/c mice were intranasally treated with fluticasone propionate (FP, 0.3 mg/kg) for up to 8 weeks. Additional mice were used to establish an ovalbumin-induced mouse model of AR, followed by nasal challenge with ovalbumin for 8 weeks in the presence or absence of intranasal FP treatment. The authors examined olfactory function, OSN existence, neuronal turnover, and nasal inflammation using behavioral test, histological analyses, Western blotting, and enzyme-linked immunosorbent assay. RESULTS Intranasal treatment with FP for 8 weeks (FP-wk8) reduced odor sensitivity in normal mice. This reduction was concomitant with loss of OSNs and the axons projecting to the olfactory bulb, primarily resulting from increased neuronal apoptosis. In FP-wk8 AR mice, intranasal FP treatment attenuated olfactory impairment and eosinophilic inflammation but failed to reconstitute OSN population and axonal projections. CONCLUSION These results suggest that chronic intranasal corticosteroid treatment contributes to OSN degeneration that may reduce the therapeutic effectiveness for AR-related olfactory loss.
Collapse
Affiliation(s)
- Pu Li
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Na Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Luo Kai
- Department of Otolaryngology-Head and Neck Surgery, Peking University Shougang Hospital, Beijing, China
| | - Jinyuan Si
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Scadding GK, Smith PK, Hellings PW. EUFOREA Comment on a Misleading Allergic Rhinitis Report [Letter]. Patient Prefer Adherence 2023; 17:1881-1883. [PMID: 37538315 PMCID: PMC10395507 DOI: 10.2147/ppa.s431247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
- Glenis K Scadding
- Department of Allergy & Rhinology, Royal National ENT Hospital; Division of Immunity and Infection, University College, London, UK
| | - Peter K Smith
- Griffith University, School of Medicine, Southport, Queensland, 4215, Australia
| | - Peter W Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals, Leuven, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
10
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
11
|
Vicens‐Artes S, Roca‐Ferrer J, Tubita V, Fuentes M, Alobid I, Valero A, Kopietz F, Nguyen D, Mullol J. Effect of MP-AzeFlu compared to monotherapy on COX-2, PGE 2 , and EP2 gene expression in upper airway mucosa. Immun Inflamm Dis 2023; 11:e709. [PMID: 36705401 PMCID: PMC9753815 DOI: 10.1002/iid3.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 12/23/2022] Open
Abstract
MP-AzeFlu (intranasal fluticasone and azelastine) has been widely studied and has demonstrated efficacy in Allergic rhinitis with a superior effect compared to these drugs administered individually; however, the mechanism by which MP-AzeFlu produces this improved clinical effect has not yet been fully explained. In this study, we investigated the effect of MP-AzeFlu and fluticasone propionate (FP) on arachidonic acid metabolism as measured by changes in regulation of cyclooxygenase (COX) isoforms, prostaglandin (PG) D2 , PGE2 , PGE2 receptor (EP) 2, and EP3. Expression of these key inflammation markers was assessed through an in vitro model of upper airway inflammation using fibroblasts derived from both healthy and inflamed upper airway mucosa. Both MP-AzeFlu and FP inhibited interleukin-1β-induced COX-2 messenger RNA (mRNA) and protein expression and PGE2 secretion in vitro. MP-AzeFlu and FP both upregulated EP2 mRNA expression, though neither upregulated EP2 protein expression. This downregulation of COX-2 and PGE2 coupled with upregulation of EP2 receptor expression reinforces the anti-inflammatory effect of MP-AzeFlu in upper airway inflammation.
Collapse
Affiliation(s)
- Sonia Vicens‐Artes
- Clinical and Experimental Respiratory Immunoallergy, IDIBAPSBarcelonaSpain
| | - Jordi Roca‐Ferrer
- Clinical and Experimental Respiratory Immunoallergy, IDIBAPSBarcelonaSpain
- CIBER of Respiratory Diseases (CIBERES)BarcelonaSpain
| | - Valeria Tubita
- Clinical and Experimental Respiratory Immunoallergy, IDIBAPSBarcelonaSpain
- Clinical and Experimental Respiratory ImmunoallergyUniversitat de BarcelonaBarcelonaSpain
| | - Mireya Fuentes
- Clinical and Experimental Respiratory Immunoallergy, IDIBAPSBarcelonaSpain
- CIBER of Respiratory Diseases (CIBERES)BarcelonaSpain
| | - Isam Alobid
- Clinical and Experimental Respiratory Immunoallergy, IDIBAPSBarcelonaSpain
- CIBER of Respiratory Diseases (CIBERES)BarcelonaSpain
- Clinical and Experimental Respiratory ImmunoallergyUniversitat de BarcelonaBarcelonaSpain
- Rhinology Unit & Smell Clinic, ENT DepartmentHospital Clinic BarcelonaBarcelonaSpain
| | - Antonio Valero
- Clinical and Experimental Respiratory Immunoallergy, IDIBAPSBarcelonaSpain
- CIBER of Respiratory Diseases (CIBERES)BarcelonaSpain
- Allergy SectionPulmonology & Allergy DepartmentBarcelonaSpain
| | | | - DucTung Nguyen
- MEDA Pharma GmbH & Co. KG (A Viatris Company)Bad HomburgGermany
| | - Joaquim Mullol
- Clinical and Experimental Respiratory Immunoallergy, IDIBAPSBarcelonaSpain
- CIBER of Respiratory Diseases (CIBERES)BarcelonaSpain
- Clinical and Experimental Respiratory ImmunoallergyUniversitat de BarcelonaBarcelonaSpain
- Rhinology Unit & Smell Clinic, ENT DepartmentHospital Clinic BarcelonaBarcelonaSpain
| |
Collapse
|
12
|
Velasco E, Delicado‐Miralles M, Hellings PW, Gallar J, Van Gerven L, Talavera K. Epithelial and sensory mechanisms of nasal hyperreactivity. Allergy 2022; 77:1450-1463. [PMID: 35174893 DOI: 10.1111/all.15259] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
"Nasal hyperreactivity" is a key feature in various phenotypes of upper airway diseases, whereby reactions of the nasal epithelium to diverse chemical and physical stimuli are exacerbated. In this review, we illustrate how nasal hyperreactivity can result from at least three types of mechanisms: (1) impaired barrier function, (2) hypersensitivity to external and endogenous stimuli, and (3) potentiation of efferent systems. We describe the known molecular basis of hyperreactivity related to the functional impairment of epithelial cells and somatosensory innervation, and indicate that the thermal, chemical, and mechanical sensors determining hyperreactivity in humans remain to be identified. We delineate research directions that may provide new insights into nasal hyperreactivity associated with rhinitis/rhinosinusitis pathophysiology and therapeutics. The elucidation of the molecular mechanisms underlying nasal hyperreactivity is essential for the treatment of rhinitis according to the precepts of precision medicine.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC San Juan de Alicante Spain
- The European University of Brain and Technology‐Neurotech EU San Juan de Alicante Spain
| | | | - Peter W. Hellings
- Department of Otorhinolaryngology University Hospitals Leuven Leuven Belgium
| | - Juana Gallar
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC San Juan de Alicante Spain
- The European University of Brain and Technology‐Neurotech EU San Juan de Alicante Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante San Juan de Alicante Spain
| | - Laura Van Gerven
- Department of Otorhinolaryngology University Hospitals Leuven Leuven Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit KU Leuven Leuven Belgium
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research KU Leuven Leuven Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research Department of Cellular and Molecular Medicine KU Leuven, VIB‐KU Leuven Center for Brain & Disease Research Leuven Belgium
| |
Collapse
|
13
|
Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma. Chin Med J (Engl) 2022; 135:519-531. [PMID: 35170505 PMCID: PMC8920422 DOI: 10.1097/cm9.0000000000001983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Type 2 inflammation is a complex immune response and primary mechanism for several common allergic diseases including allergic rhinitis, allergic asthma, atopic dermatitis, and chronic rhinosinusitis with nasal polyps. It is the predominant type of immune response against helminths to prevent their tissue infiltration and induce their expulsion. Recent studies suggest that epithelial barrier dysfunction contributes to the development of type 2 inflammation in asthma, which may partly explain the increasing prevalence of asthma in China and around the globe. The epithelial barrier hypothesis has recently been proposed and has received great interest from the scientific community. The development of leaky epithelial barriers leads to microbial dysbiosis and the translocation of bacteria to inter- and sub-epithelial areas and the development of epithelial tissue inflammation. Accordingly, preventing the impairment and promoting the restoration of a deteriorated airway epithelial barrier represents a promising strategy for the treatment of asthma. This review introduces the interaction between type 2 inflammation and the airway epithelial barrier in asthma, the structure and molecular composition of the airway epithelial barrier, and the assessment of epithelial barrier integrity. The role of airway epithelial barrier disruption in the pathogenesis of asthma will be discussed. In addition, the possible mechanisms underlying the airway epithelial barrier dysfunction induced by allergens and environmental pollutants, and current treatments to restore the airway epithelial barrier are reviewed.
Collapse
|
14
|
Hox V, Beyaert S, Bullens D, Couto M, Langer D, Hellings P, Huart C, Rombaux P, Seys SF, Surda P, Walker A, Steelant B. Tackling nasal symptoms in athletes: Moving towards personalized medicine. Allergy 2021; 76:2716-2729. [PMID: 33605430 DOI: 10.1111/all.14786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 01/16/2023]
Abstract
Adequate nasal breathing is indispensable for athletes, and nasal symptoms have been shown to interfere with their subjective feeling of comfortable breathing and quality of life. Nasal symptoms are caused by either structural abnormalities or mucosal pathology. Structural pathologies are managed differently from mucosal disease, and therefore, adequate diagnosis is of utmost importance in athletes in order to choose the correct treatment option for the individual. Literature suggests that nasal symptoms are more prevalent in athletes compared to the general population and certain sports environments might even trigger the development of symptoms. Given the high demands of respiratory function in athletes, insight into triggering factors is of high importance for disease prevention. Also, it has been suggested that athletes are more neglectful to their symptoms and hence remain undertreated, meaning that special attention should be paid to education of athletes and their caregivers. This review aims at giving an overview of nasal physiology in exercise as well as the possible types of nasal pathology. Additionally, diagnostic and treatment options are discussed and we focus on unmet needs for the management and prevention of these symptoms in athletes within the concept of precision medicine.
Collapse
Affiliation(s)
- Valerie Hox
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
- Institute of Experimental and Clinical Research Pole of Pulmonology, Otorhinolaryngology and Dermatology UCLouvain Brussels Belgium
| | - Simon Beyaert
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Dominique Bullens
- Clinical Division of Pediatrics University Hospitals Leuven Belgium
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
| | - Mariana Couto
- Allergy Unit Hospital CUF Descobertas, Lisbon, Portugal Lisbon Portugal
| | - Daniel Langer
- Respiratory Rehabilitation and Respiratory Division University Hospitals Leuven, KU Leuven Leuven Belgium
| | - Peter‐Willem Hellings
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
- Clinical Division of Ear, Nose and Throat Disease, Head and Neck Surgery University Hospitals Leuven Belgium
| | - Caroline Huart
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Philippe Rombaux
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
| | - Pavol Surda
- Department of Otorhinolaryngology Guy’s and St‐Thomas’ University Hospital London UK
| | - Abigail Walker
- Department of Ear, Nose and Throat Disease St‐George Hospital London UK
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
| |
Collapse
|
15
|
Clinical efficacy and safety of MP-AzeFlu for the treatment of allergic rhinitis: a meta-analysis. Eur Arch Otorhinolaryngol 2021; 279:2457-2464. [PMID: 34415405 DOI: 10.1007/s00405-021-07048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE MP-AzeFlu is a novel option for therapy of allergic rhinitis (AR). The purpose of our study was to assess the safety and efficacy of MP-AzeFlu for the treatment of allergic rhinitis, compared to placebo and azelastine monotherapy. METHODS The PubMed, MEDLINE, EMBASE and Cochrane databases were comprehensively searched for all published randomized controlled trials (RCTs) of using MP-AzeFlu nasal spray on July 26, 2019. In these studies, we selected patients with clinical symptom scores. The heterogeneity of the included studies was assessed by I2. RESULTS Among the 336 citations retrieved, 6 articles with over 6000 patients were finally included in the meta-analysis. The results of meta-analysis revealed that MP-AzeFlu was superior to placebo ( - 2.43 [95%CI, - 2.73 to - 2.14], P < 0.00001) and azelastine ( - 1.27 [95% CI, - 1.57 to - 0.97], P < 0.00001) in reflective total nasal symptom score. In the MP-AzeFlu group, the instantaneous total nasal symptom score ( - 2.56 [95% CI, - 3.02 to - 2.10], P < 0.00001) and the reflective total ocular symptom score ( - 1.22 [95% CI, - 1.57 to - 0.87], P < 0.00001) were significantly reduced compared to the placebo group. CONCLUSION MP-AzeFlu is as safe and mild as placebo and azelastine, which also is associated with symptom relief and the improvement of quality of life in AR patients. MP-AzeFlu can provide better clinical benefits than two currently available first-line intranasal therapies. It is an ideal therapy for AR patients.
Collapse
|
16
|
Yum HY, Ha EK, Shin YH, Han MY. Prevalence, comorbidities, diagnosis, and treatment of nonallergic rhinitis: real-world comparison with allergic rhinitis. Clin Exp Pediatr 2021; 64:373-383. [PMID: 32777916 PMCID: PMC8342874 DOI: 10.3345/cep.2020.00822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rhinitis is among the most common respiratory diseases in children. Nonallergic rhinitis, which involves nasal symptoms without evidence of systemic allergic inflammation or infection, is a heterogeneous entity with diverse manifestations and intensities. Nonallergic rhinitis accounts for 16%-89% of the chronic rhinitis cases, affecting 1%-50% (median 10%) of the total pediatric population. The clinical course of nonallergic rhinitis is generally rather mild and less likely to be associated with allergic comorbidities than allergic rhinitis. Here, we aimed to estimate the rate of coexisting comorbidities of nonallergic rhinitis. Nonallergic rhinitis is more prevalent during the first 2 years of life; however, its underestimation for children with atopic tendencies is likely due to low positive rates of specific allergic tests during early childhood. Local allergic rhinitis is a recently noted phenotype with rates similar to those in adults (median, 44%; range, 4%-67%), among patients previously diagnosed with nonallergic rhinitis. Idiopathic rhinitis, a subtype of nonallergic rhinitis, has been poorly studied in children, and its rates are known to be lower than those in adults. The prevalence of nonallergic rhinitis with eosinophilia syndrome is even lower. A correlation between nonallergic rhinitis and pollution has been suggested owing to the recent increase in nonallergic rhinitis rates in highly developing regions such as some Asian countries, but many aspects remain unknown. Conventional treatments include antihistamines, intranasal corticosteroids, and recent treatments include combination of intranasal corticosteroids with azelastin or decongestants. Here we review the prevalence, diagnosis, comorbidities, and treatment recommendations for nonallergic rhinitis versus allergic rhinitis in children.
Collapse
Affiliation(s)
- Hye Yung Yum
- Department of Pediatrics, Seoul Medical Center, Seoul, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Yoon Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
17
|
Backaert W, Steelant B, Hellings PW, Talavera K, Van Gerven L. A TRiP Through the Roles of Transient Receptor Potential Cation Channels in Type 2 Upper Airway Inflammation. Curr Allergy Asthma Rep 2021; 21:20. [PMID: 33738577 PMCID: PMC7973410 DOI: 10.1007/s11882-020-00981-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Despite their high prevalence, the pathophysiology of allergic rhinitis (AR) and chronic rhinosinusitis (CRS) remains unclear. Recently, transient receptor potential (TRP) cation channels emerged as important players in type 2 upper airway inflammatory disorders. In this review, we aim to discuss known and yet to be explored roles of TRP channels in the pathophysiology of AR and CRS with nasal polyps. RECENT FINDINGS TRP channels participate in a plethora of cellular functions and are expressed on T cells, mast cells, respiratory epithelial cells, and sensory neurons of the upper airways. In chronic upper airway inflammation, TRP vanilloid 1 is mostly studied in relation to nasal hyperreactivity. Several other TRP channels such as TRP vanilloid 4, TRP ankyrin 1, TRP melastatin channels, and TRP canonical channels also have important functions, rendering them potential targets for therapy. The role of TRP channels in type 2 inflammatory upper airway diseases is steadily being uncovered and increasingly recognized. Modulation of TRP channels may offer therapeutic perspectives.
Collapse
Affiliation(s)
- Wout Backaert
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
| | - Peter W Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Otorhinolaryngology, Laboratory of Upper Airways Research, University of Ghent, Ghent, Belgium
| | - Karel Talavera
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Van Gerven
- Department of Otorhinolaryngology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit, KU Leuven, Leuven, Belgium.
- Department of Neurosciences, Experimental Otorhinolaryngology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Maglie R, Souza Monteiro de Araujo D, Antiga E, Geppetti P, Nassini R, De Logu F. The Role of TRPA1 in Skin Physiology and Pathology. Int J Mol Sci 2021; 22:3065. [PMID: 33802836 PMCID: PMC8002674 DOI: 10.3390/ijms22063065] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, acts as 'polymodal cellular sensor' on primary sensory neurons where it mediates the peripheral and central processing of pain, itch, and thermal sensation. However, the TRPA1 expression extends far beyond the sensory nerves. In recent years, much attention has been paid to its expression and function in non-neuronal cell types including skin cells, such as keratinocytes, melanocytes, mast cells, dendritic cells, and endothelial cells. TRPA1 seems critically involved in a series of physiological skin functions, including formation and maintenance of physico-chemical skin barriers, skin cells, and tissue growth and differentiation. TRPA1 appears to be implicated in mechanistic processes in various immunological inflammatory diseases and cancers of the skin, such as atopic and allergic contact dermatitis, psoriasis, bullous pemphigoid, cutaneous T-cell lymphoma, and melanoma. Here, we report recent findings on the implication of TRPA1 in skin physiology and pathophysiology. The potential use of TRPA1 antagonists in the treatment of inflammatory and immunological skin disorders will be also addressed.
Collapse
Affiliation(s)
- Roberto Maglie
- Department of Health Sciences, Section of Dermatology, University of Florence, 50139 Florence, Italy; (R.M.); (E.A.)
| | - Daniel Souza Monteiro de Araujo
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, 50139 Florence, Italy; (R.M.); (E.A.)
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (P.G.); (F.D.L.)
| |
Collapse
|
19
|
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 2021; 145:1499-1509. [PMID: 32507228 PMCID: PMC7270816 DOI: 10.1016/j.jaci.2020.04.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The respiratory epithelium provides a physical, functional, and immunologic barrier to protect the host from the potential harming effects of inhaled environmental particles and to guarantee maintenance of a healthy state of the host. When compromised, activation of immune/inflammatory responses against exogenous allergens, microbial substances, and pollutants might occur, rendering individuals prone to develop chronic inflammation as seen in allergic rhinitis, chronic rhinosinusitis, and asthma. The airway epithelium in asthma and upper airway diseases is dysfunctional due to disturbed tight junction formation. By putting the epithelial barrier to the forefront of the pathophysiology of airway inflammation, different approaches to diagnose and target epithelial barrier defects are currently being developed. Using single-cell transcriptomics, novel epithelial cell types are being unraveled that might play a role in chronicity of respiratory diseases. We here review and discuss the current understandings of epithelial barrier defects in type 2-driven chronic inflammation of the upper and lower airways, the estimated contribution of these novel identified epithelial cells to disease, and the current clinical challenges in relation to diagnosis and treatment of allergic rhinitis, chronic rhinosinusitis, and asthma.
Collapse
Affiliation(s)
- Peter W Hellings
- Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, University Hospital Ghent, Laboratory of Upper Airway Research, Ghent, Belgium.
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Crete, Greece
| |
Collapse
|
20
|
Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol JP, De La Torre R, Pizarro Lozano N, Le Moing V, Bedbrook A, Agache I, Akdis CA, Canonica GW, Cruz AA, Fiocchi A, Fonseca JA, Fonseca S, Gemicioğlu B, Haahtela T, Iaccarino G, Ivancevich JC, Jutel M, Klimek L, Kraxner H, Kuna P, Larenas-Linnemann DE, Martineau A, Melén E, Okamoto Y, Papadopoulos NG, Pfaar O, Regateiro FS, Reynes J, Rolland Y, Rouadi PW, Samolinski B, Sheikh A, Toppila-Salmi S, Valiulis A, Choi HJ, Kim HJ, Anto JM. Potential Interplay between Nrf2, TRPA1, and TRPV1 in Nutrients for the Control of COVID-19. Int Arch Allergy Immunol 2021; 182:324-338. [PMID: 33567446 PMCID: PMC8018185 DOI: 10.1159/000514204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany, .,University Hospital and MACVIA France, Montpellier, France,
| | | | - Torsten Zuberbier
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic - Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de, Montpellier, France
| | - Rafael De La Torre
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.,IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Anna Bedbrook
- University Hospital and MACVIA France, Montpellier, France.,MASK-air, Montpellier, France
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - G Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS and Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alvaro A Cruz
- Fundação ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Brazil
| | - Alessandro Fiocchi
- Division of Allergy, The Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,MEDIDA, Lda, Porto, Portugal
| | - Susana Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Bilun Gemicioğlu
- Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Guido Iaccarino
- Interdepartmental Center of Research on Hypertension and Related Conditions CIRIAPA, Federico II University, Napoli, Italy
| | | | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University and ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Helga Kraxner
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom.,Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Frederico S Regateiro
- Allergy and Clinical Immunology Unit, Centro Hospitalar e Universitário de Coimbra, Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, ICBR - Institute for Clinical and Biomedical Research, CIBB, University of Coimbra, Coimbra, Portugal
| | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | | | - Philip W Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Arunas Valiulis
- Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania
| | - Hak-Jong Choi
- Research and Development Division, Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyun Ju Kim
- Strategy and Planning Division, SME Service Department, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology, Barcelona, Spain
| |
Collapse
|
21
|
Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Curr Opin Pulm Med 2021; 26:20-26. [PMID: 31688241 DOI: 10.1097/mcp.0000000000000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Epithelial barrier defects are being appreciated in various inflammatory disorders; however, causal underlying mechanisms are lacking. In this review, we describe the disruption of the airway epithelium with regard to upper and lower airway diseases, the role of epigenetic alterations underlying this process, and potential novel ways of interfering with dysfunctional epithelial barriers as a novel therapeutic approach. RECENT FINDINGS A defective epithelial barrier, impaired innate defence mechanisms or hampered epithelial cell renewal are found in upper and lower airway diseases. Barrier dysfunction might facilitate the entrance of foreign substances, initiating and facilitating the onset of disease. Latest data provided novel insights for possible involvement of epigenetic alterations induced by inflammation or other unknown mechanisms as a potential mechanism responsible for epithelial defects. Additionally, these mechanisms might precede disease development, and represent a novel therapeutic approach for restoring epithelial defects. SUMMARY A better understanding of the role of epigenetics in driving and maintaining epithelial defects in various inflammatory diseases, using state-of-the-art biology tools will be crucial in designing novel therapies to protect or reconstitute a defective airway epithelial barrier.
Collapse
|
22
|
De Jong HJI, Voorham J, Scadding GK, Bachert C, Canonica GW, Smith P, Wahn U, Ryan D, Castillo JA, Carter VA, Murray RB, Price DB. Evaluating the real-life effect of MP-AzeFlu on asthma outcomes in patients with allergic rhinitis and asthma in UK primary care. World Allergy Organ J 2020; 13:100490. [PMID: 33376573 PMCID: PMC7753940 DOI: 10.1016/j.waojou.2020.100490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background MP-AzeFlu (Dymista®; spray of azelastine/fluticasone propionate) is the most effective allergic rhinitis (AR) treatment available. Its effect on asthma outcomes in patients with AR and asthma is unknown. Methods This pre-post historical cohort study, using the Optimum Patient Care Research Database, included patients aged ≥12 years, from UK general practice with active asthma (defined as a recorded diagnosis, with ≥1 prescription for reliever or controller inhaler) in the year before or at the initiation date. The primary study outcome was change in number of acute respiratory events (i.e. exacerbation or antibiotic course for a respiratory event) between baseline and outcome years. The effect size of MP-AzeFlu was quantified as the difference in % of patients that improved and worsened. Results Of the 1,188 patients with AR and asthma included, many had a record of irreversible obstruction (67%), and uncontrolled asthma (70.4%), despite high mean daily doses of reliever/controller therapy and acute oral corticosteroid use, in the year pre-MP-AzeFlu initiation. MP-AzeFlu initiation was associated with fewer acute respiratory events (effect size (e) = 5.8%, p = 0.0129) and a reduction in daily use of short-acting β2-agonists, with fewer patients requiring >2 SABA puffs/week (e = 7.7% p < 0.0001). More patients had well-controlled asthma 1-year post-MP-AzeFlu initiation (e = 4.1%; p = 0.0037), despite a reduction in inhaled corticosteroids (e = 4.8%; p = 0.0078). Conclusions This study provides the first direct evidence of the beneficial effect of MP-AzeFlu on asthma outcomes in co-morbid patients in primary care in the United Kingdom. Trial registration EUPAS30940. Registered August 13, 2019.
Collapse
Key Words
- ADEPT, Anonymized data ethics & protocol transparency
- AR, Allergic rhinitis
- ATS, American Thoracic society
- BEC, Blood eosinophil count
- CRS, Chronic rhinosinusitis
- Control
- ERS, European respiratory society
- Exacerbations
- FEV1, forced expiratory volume in 1 s
- FVC, Forced vital capacity
- GERD, Gastroesophageal reflux disease
- GINA, Global initiative for asthma
- ICS, Inhaled corticosteroid
- INS, Intranasal corticosteroid
- NP, Nasal polyps
- OAC, Overall asthma control
- OAH, Oral anti-histamine
- OCS, Oral corticosteroid
- OPCRD, Optimum patient care research database
- OTC, Over the counter
- PEF, Peak expiratory flow rate
- RCT, Randomized controlled trial
- RDAC, Risk domain asthma control
- Rescue medication
- SABA, Short-acting β2-agonist
- SMD, Standardised mean difference
- UK, United Kingdom
Collapse
Affiliation(s)
| | - Jaco Voorham
- Observational and Pragmatic Research Institute, Singapore
| | - Glenis K Scadding
- Royal National Throat, Nose and Ear Hospital, University College London School of Medicine, London, UK
| | | | - Giorgio Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital, SANI-Severe Asthma Network, Milan, Italy
| | - Peter Smith
- Griffith University, Southport, QLD, Australia
| | | | - Dermot Ryan
- Usher Institute, University of Edinburgh, Edinburgh, UK.,Optimum Patient Care, Cambridge, UK
| | | | | | | | - David B Price
- Observational and Pragmatic Research Institute, Singapore.,Optimum Patient Care, Cambridge, UK.,Academic Primary Care, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
23
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
24
|
Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy 2020; 75:3069-3076. [PMID: 32901931 DOI: 10.1111/all.14586] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Allergic rhinitis (AR) is an upper airway disease with high prevalence in the world, and therefore needs to be thoroughly investigated and treated accordingly. Although the mechanisms underlying the pathology and treatment of AR have been widely studied, many aspects of AR are still unclear and warrant further investigations. The purpose of the present review was therefore to report recently published papers, which highlight the novel mechanisms and treatments of AR. These include role of environment, important proteins and cells, and some other factors in the pathogenesis of AR; as well as the role of immunotherapy and biologics in the treatment of AR.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
- Department of Allergy Beijing TongRen Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
25
|
Klimek L, Price D, Gálffy G, Emmeluth M, Koltun A, Kopietz F, Nguyen DT, van Weissenbruch R, Pohl W, Kuhl HC, Scadding G, Mullol J. Effect of Specific Immunoglobulin E Response and Comorbidities on Effectiveness of MP-AzeFlu in a Real-Life Study. Int Arch Allergy Immunol 2020; 181:754-764. [PMID: 32829329 DOI: 10.1159/000508749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Phenotyping allergic rhinitis (AR) by immunoglobulin E (IgE) sensitivity and comorbidities may help characterize AR and provide a framework for treatment decisions. METHODS This prospective, noninterventional study evaluated the effectiveness of MP-AzeFlu (azelastine hydrochloride plus fluticasone propionate intranasal spray formulation) across AR phenotypes. Patients with moderate-to--severe seasonal or perennial AR for whom MP-AzeFlu was prescribed were enrolled. AR subpopulations (ARPs) were assigned based on the classification of IgE response and comorbidities. AR symptoms over the previous 24 h were documented using an AR visual analog scale (AR-VAS), with ratings from "not at all bothersome" (0 mm) to "extremely bothersome" (100 mm), at the inclusion visit and on days 1, 3, 7, and the last day of the study (approximately day 14). AR quality-of-life measures were recorded using a VAS. RESULTS A total of 1,103 patients with AR were included. Mean baseline AR-VAS scores ranged from 70.3 to 75.1 mm (severe) across ARPs. In the overall population, 86.6% of patients responded to treatment (AR-VAS score <50 mm on ≥1 days). In the ARPs, response rates ranged from 79.3 to 89.6%. Mean reduction in AR-VAS scores ranged from 47.9 to 40.9 mm, a decrease from severe to mild across all ARPs. Quality-of-life VAS scores were similarly reduced in the total population and ARPs. DISCUSSION/CONCLUSION MP-AzeFlu treatment reduced VAS severity and quality-of-life scores from baseline in the total population and ARPs, supporting MP-AzeFlu as an effective treatment for all patients with moderate-to-severe AR, regardless of AR phenotype or comorbidities.
Collapse
Affiliation(s)
- Ludger Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Germany,
| | - David Price
- Primary Care Respiratory Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | - Duc Tung Nguyen
- MEDA Pharma GmbH & Co. KG (A Mylan Co.), Bad Homburg, Germany
| | | | - Wolfgang Pohl
- Karl Landsteiner Gesellschaft, Institut für Klinische und Experimentelle Pneumologie, Vienna, Austria
| | | | - Glenis Scadding
- Royal National Throat, Nose and Ear Hospital, London, United Kingdom
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic Barcelona, IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| |
Collapse
|
26
|
Price D, Klimek L, Gálffy G, Emmeluth M, Koltun A, Kopietz F, Nguyen DT, van Weissenbruch R, Pohl W, Kuhl HC, Scadding G, Mullol J. Allergic rhinitis and asthma symptoms in a real-life study of MP-AzeFlu to treat multimorbid allergic rhinitis and asthma. Clin Mol Allergy 2020; 18:15. [PMID: 32782442 PMCID: PMC7412849 DOI: 10.1186/s12948-020-00130-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
Background Asthma affects up to nearly 40% of patients with allergic rhinitis (AR). Poor control of AR symptoms is associated with poor asthma control. The goal of this study was to evaluate the effect of AR treatment with MP-AzeFlu on symptoms of AR as well as symptoms of asthma. Methods This prospective study used a visual analog scale (VAS) to assess symptoms of AR and asthma before and after treatment with MP-AzeFlu (Dymista®; azelastine hydrochloride plus fluticasone propionate; 1 spray in each nostril twice daily for 2 weeks). Participants suffered from moderate-to-severe AR according to Allergic Rhinitis and its Impact on Asthma criteria, with acute AR symptoms (AR-VAS scores ≥ 50 mm) on inclusion day. In addition to symptom assessment, patients recorded the impact of AR symptoms on quality-of-life measures before, during, and at the conclusion of the treatment period (approximately 14 days). Patients self-reported change in frequency of their usage of asthma reliever medication on the last day of treatment. Results Of 1103 study participants, 267 (24.2%) had comorbid asthma. These participants reported using a mean of 5.1 puffs of asthma reliever medication in the week before treatment with MP-AzeFlu. A total of 81.8% of patients with comorbid asthma responded to AR therapy (AR-VAS < 50 mm on at least 1 study day). Among patients with AR and comorbid asthma, MP-AzeFlu was associated with improved VAS scores across all study parameters, including AR symptom severity, asthma symptom severity, sleep quality, daily work or school activities, daily social activities, and daily outdoor activities. Asthma symptom severity decreased from a mean of 48.9 mm to 24.1 mm on the VAS. Self-reported frequency of asthma reliever medication use was reduced for 57.6% of participants (n = 139/241). Conclusion MP-AzeFlu used to relieve AR symptoms was associated with reduced asthma symptom VAS scores and frequency of asthma reliever medication usage. Changes in overall symptoms of AR and asthma were correlated.
Collapse
Affiliation(s)
- David Price
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK.,Optimum Patient Care, Cambridge, UK.,Observational and Pragmatic Research Institute (OPRI), Pte
- #02-05 883 North Bridge Road, Singapore, 198785 Singapore
| | - Ludger Klimek
- Zentrum für Rhinologie und Allergologie, Wiesbaden, Germany
| | | | - Melanie Emmeluth
- MEDA Pharma GmbH & Co. KG (A Mylan Company), Bad Homburg, Germany
| | | | | | - Duc Tung Nguyen
- MEDA Pharma GmbH & Co. KG (A Mylan Company), Bad Homburg, Germany
| | | | - Wolfgang Pohl
- Karl Landsteiner Gesellschaft, Institut für Klinische und experimentelle Pneumologie, Vienna, Austria
| | | | | | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic Barcelona, IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Catalonia Spain
| |
Collapse
|
27
|
Klimek L, Casper I, Bergmann KC, Biedermann T, Bousquet J, Hellings P, Jung K, Merk H, Olze H, Mösges R, Schlenter W, Gröger M, Ring J, Chaker A, Pfaar O, Wehrmann W, Zuberbier T, Becker S. Die Therapie der allergischen Rhinitis in der Routineversorgung: evidenzbasierte Nutzenbewertung der kombinierten Anwendung mehrerer Wirkstoffe. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-2551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Eguiluz-Gracia I, Fernandez-Santamaria R, Testera-Montes A, Ariza A, Campo P, Prieto A, Perez-Sanchez N, Salas M, Mayorga C, Torres MJ, Rondon C. Coexistence of nasal reactivity to allergens with and without IgE sensitization in patients with allergic rhinitis. Allergy 2020; 75:1689-1698. [PMID: 31995231 DOI: 10.1111/all.14206] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) and local allergic rhinitis (LAR) are defined by nasal reactivity to aeroallergens with and without positive skin prick test (SPT), respectively. In this study, we aimed to investigate whether both types of allergen-specific reactivity can coexist in the same individual. METHODS Forty-eight patients with perennial rhinitis symptoms and positive SPT with seasonal allergens only (discrepant group) were subjected to consecutive nasal allergen challenges (NAC) with seasonal (NAC-S) and perennial allergens (NAC-P). A nasal lavage was collected before and after the NACs to measure eosinophil cationic protein (ECP). A basophil activation test (BAT) with seasonal and/or perennial allergens was performed in ten patients from the discrepant group and in six seasonal allergic rhinitis (SAR), eight perennial local allergic rhinitis (LAR), six nonallergic rhinitis (NAR), and six healthy control (HC) individuals. RESULTS All patients in the discrepant group tested positive in the NAC-S, and 41 of them (85.4%), also in the NAC-P (group A). Conversely, seven patients tested negative in the NAC-P (group B). ECP in the nasal lavage increased after the NAC-P in the group A (P = .004), but not in the group B. The BAT with seasonal allergens was positive in 100% of SAR and group A cases, whereas the BAT with perennial allergens was positive in 37.5% and 60% of LAR and group A cases, respectively. All NAR and HC subjects tested negative for the BAT. CONCLUSION This study shows that nasal reactivity to aeroallergens with and without positive SPT can coexist in the same patient. We propose the term dual allergic rhinitis for this rhinitis phenotype.
Collapse
Affiliation(s)
- Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain
| | | | - Almudena Testera-Montes
- Allergy Unit, Hospital Regional Universitario de Malaga, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain.,Universidad de Málaga-UMA, Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain
| | - Paloma Campo
- Allergy Unit, Hospital Regional Universitario de Malaga, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain
| | - Ana Prieto
- Pediatrics Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Natalia Perez-Sanchez
- Allergy Unit, Hospital Regional Universitario de Malaga, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain
| | - Maria Salas
- Allergy Unit, Hospital Regional Universitario de Malaga, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Malaga, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain.,Universidad de Málaga-UMA, Málaga, Spain
| | - Carmen Rondon
- Allergy Unit, Hospital Regional Universitario de Malaga, Instituto de Investigación Biomédica de Málaga-IBIMA and ARADyAL, Málaga, Spain
| |
Collapse
|
29
|
Wang Ms J, Kang Ms X, Huang Ms ZQ, Shen Ms L, Luo Md Q, Li Ms MY, Luo Ms LP, Tu Ms JH, Han Ms M, Ye J. Protease-Activated Receptor-2 Decreased Zonula Occlidens-1 and Claudin-1 Expression and Induced Epithelial Barrier Dysfunction in Allergic Rhinitis. Am J Rhinol Allergy 2020; 35:26-35. [PMID: 32551923 DOI: 10.1177/1945892420932486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Protease-activated receptor-2 (PAR-2)-modulated tight junctions (TJs) have been suggested to be involved in the pathogenesis of chronic inflammatory diseases. However, immunopathogenesis remains to be investigated among patients with allergic rhinitis (AR). OBJECTIVE This study sought to investigate the role of PAR-2 in the modulation of epithelial barrier function and the expression of TJs in the nasal mucosa of AR patients. METHODS The expression of TJs and PAR-2 of the nasal mucosa in AR patients and control subjects by immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. In vitro, Primary human nasal epithelial cells (pHNECs) of AR patients were stimulated by Der p1 to analyze the correlation between PAR-2 and TJs expression. Der p1-induced pHNECs were treated with the PAR-2 agonist SLIGRL-NH2 and antagonist FSLLRY-NH2. Fluorescein isothiocyanate-dextran 4 kDa detection was employed as an indicator of epithelial permeability. RESULTS Lower expression levels of TJs in the nasal epithelium of AR patients were observed in comparison with that in control subjects. The PAR-2 level was markedly increased following treatment with 1,000 ng/mL of Der p1 for 24 hours in a cellular model of AR. The expression of PAR-2 was increased in Der p1-induced pHNECs of AR patients and correlated inversely with zonula occlidens (ZO)-1 and claudin-1. Treatment with Der p1 further downregulated TJs expression and promoted an increased epithelial permeability in Der p1-induced pHNECs. CONCLUSIONS PAR-2 could downregulate the expression of ZO-1 and claudin-1, which is involved in epithelial barrier dysfunction in AR.
Collapse
Affiliation(s)
- Jun Wang Ms
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xue Kang Ms
- Department of Otorhinolaryngology, Jiangxi Children's Hospital, Nanchang, China
| | - Zhi-Qun Huang Ms
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Shen Ms
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Luo Md
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meng-Yue Li Ms
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ping Luo Ms
- Department of Otorhinolaryngology, Jiangxi Children's Hospital, Nanchang, China
| | - Jun-Hao Tu Ms
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei Han Ms
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Feijen J, Seys SF, Steelant B, Bullens DM, Dupont LJ, García-Cruz M, Jimenez-Chobillón A, Larenas-Linnemann D, Van Gerven L, Fokkens WJ, Agache I, Hellings PW. Prevalence and triggers of self-reported nasal hyperreactivity in adults with asthma. World Allergy Organ J 2020; 13:100132. [PMID: 32642023 PMCID: PMC7334478 DOI: 10.1016/j.waojou.2020.100132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nasal hyperreactivity (NHR) is a common feature of various rhinitis subtypes and represents a novel phenotype of rhinitis. It is being reported in two-thirds of adult rhinitis patients irrespective of the atopic status. Data on the prevalence of NHR in patients with asthma are lacking, as well as the nature of evoking triggers. METHODS Postal questionnaires were distributed to an unselected group of asthmatic patients in Leuven (Belgium, n = 190) and completed by 114 patients. In Mexico City (Mexico) and Brasov (Romania), respectively, 97 out of 110 and 80 out of 100 asthmatic patients attending the outpatient clinic completed the questionnaire. Non-asthmatic volunteers were recruited amongst university and hospital co-workers in Leuven (n = 53). The presence of self-reported NHR, the type of triggers evoking nasal and bronchial symptoms, medication use, self-reported allergy, and environmental factors were evaluated. RESULTS Overall, 69% of asthma patients reported NHR, with 32% having more than 4 triggers evoking NHR. These triggers included mainly exposure to temperature and humidity changes, cigarette smoke, and strong odours. A higher prevalence of NHR was detected in allergic compared to non-allergic asthma patients (73% vs. 53% p < 0.01). The prevalence of NHR correlated with asthma severity, ranging from 63% (VAS ≤3) to 81% (VAS ≥7). BHR was found more frequently in patients with NHR compared to without NHR (89% vs. 53%, p < 0.0001). CONCLUSION NHR represents a clinical phenotype of upper airway disease affecting over two-thirds of asthma patients and correlates with asthma severity. Targeting NHR in patients with asthma is often overlooked and should be reinforced in the future to achieve better symptom control.
Collapse
Affiliation(s)
- Jef Feijen
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, Belgium
| | - Sven F. Seys
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Dominique M.A. Bullens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Clinical Division of Pediatrics, University Hospitals Leuven, Belgium
| | - Lieven J. Dupont
- Department of Respiratory Medicine, University Hospitals Leuven, Belgium
| | - Maria García-Cruz
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | - Laura Van Gerven
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, Belgium
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology, Amsterdam University Medical Centres, AMC, Amsterdam, the Netherlands
| | - Ioana Agache
- Department of Fundamental, Prophylactic and Clinical Disciplines, Transylvania University of Brasov, Romania
| | - Peter W. Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, Belgium
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Department of Otorhinolaryngology, Amsterdam University Medical Centres, AMC, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Kortekaas Krohn I, Seys SF, Lund G, Jonckheere A, Dierckx de Casterlé I, Ceuppens JL, Steelant B, Hellings PW. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy 2020; 75:1155-1164. [PMID: 31769882 DOI: 10.1111/all.14132] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/21/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Increased epithelial permeability has been reported in allergic rhinitis, with histamine and type-2 inflammation being responsible for tight junction dysfunction. The impact of an epithelial barrier defect on allergic sensitization and mast cell (MC) degranulation remains speculative. METHODS Transepithelial passage of allergens was evaluated on primary human nasal epithelial cell cultures. Active sensitization was attempted by repeated intranasal ovalbumin (OVA) applications in Naïve mice. In a passive sensitization model, mice were injected with IgE to Dermatophagoides pteronyssinus (rDer p)2 and then exposed intranasally to the allergen. Chitosan was used to disrupt nasal epithelial integrity in vitro and in vivo. RESULTS Chitosan strongly reduced transepithelial electrical resistance and facilitated transepithelial allergen passage in cultured primary nasal epithelial cells. In vivo, intranasal chitosan affected occludin expression and facilitated allergen passage. After epithelial barrier disruption, intranasal OVA application induced higher OVA-specific IgG1 and total IgE in serum, and increased eosinophilia and interleukin-5 in bronchoalveolar lavage (BAL) compared to sham-OVA mice. Chitosan exposure, prior to rDer p2 allergen challenge in passively sensitized mice, resulted in increased β-hexosaminidase levels in serum and BAL compared to sham-rDer p2 mice. Intranasal treatment with the synthetic glucocorticoid fluticasone propionate prevented chitosan-induced barrier dysfunction, allergic sensitization, and MC degranulation. CONCLUSION Epithelial barrier dysfunction facilitates transepithelial allergen passage, allergic sensitization, and allergen-induced MC degranulation even in the absence of inflammatory environment. These results emphasize the crucial role of an intact epithelial barrier in prevention of allergy.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Sven F. Seys
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
- European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA) Brussels Belgium
| | | | - Anne‐Charlotte Jonckheere
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Isabelle Dierckx de Casterlé
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Jan L. Ceuppens
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Peter W. Hellings
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery University Hospitals Leuven Leuven Belgium
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery Academic Medical Center Amsterdam The Netherlands
- Faculty of Medicine and Health Sciences University of Ghent Ghent Belgium
| |
Collapse
|
32
|
Meng Y, Wang C, Zhang L. Recent developments and highlights in allergic rhinitis. Allergy 2019; 74:2320-2328. [PMID: 31571226 DOI: 10.1111/all.14067] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
Allergic rhinitis (AR) is a disease with high prevalence all over the world and therefore needs to be thoroughly investigated and treated accordingly. The mechanisms underlying the pathology and treatment of AR have been widely studied, but many aspects remain unclear and warrant further investigations. This review presents an overview of recently published papers highlighting the risk factors, mechanisms, and treatment of AR. Additionally, recent studies discussing the role of single nucleotide polymorphism, DNA methylation, regulatory B cells, group 2 innate lymphoid cells, immunotherapy, and biologics in AR are also covered.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Allergy Beijing TongRen Hospital Capital Medical University Beijing China
| |
Collapse
|
33
|
Bousquet J, Akdis CA, Grattan C, Eigenmann PA, Hoffmann‐Sommergruber K, Agache I, Jutel M. Highlights and recent developments in airway diseases in EAACI journals (2018). Allergy 2019; 74:2329-2341. [PMID: 31573676 DOI: 10.1111/all.14068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) supports three journals: Allergy, Pediatric Allergy and Immunology, and Clinical and Translational Allergy. EAACI's major goals include supporting the promotion of health, in which the prevention of allergy and asthma plays a critical role, and disseminating the knowledge of allergic disease to all stakeholders. In 2018, the remarkable progress in the identification of basic mechanisms of allergic and respiratory diseases as well as the translation of these findings into clinical practice were observed. Last year's highlights include publication of EAACI guidelines for allergen immunotherapy, many EAACI Position Papers covering important aspects for the specialty, better understanding of molecular and cellular mechanisms, identification of biomarkers for disease prediction and progress monitoring, novel prevention and intervention studies, elucidation of mechanisms of multimorbidities, introduction of new drugs to the clinics, recently completed phase three clinical studies, and publication of a large number of allergen immunotherapy studies and meta-analyses.
Collapse
Affiliation(s)
- Jean Bousquet
- Fondation partenariale FMC VIA‐LR MACVIA‐France Montpellier France
- INSERM U 1168 VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches Villejuif France
- UMR‐S 1168 Université Versailles St‐Quentin‐en‐Yvelines Montigny le Bretonneux France
- EUFOREA Brussels Belgium
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Clive Grattan
- St John's Institute of Dermatology Guy's Hospital London UK
| | | | | | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Marek Jutel
- Department of Clinical Immunology ALL‐MED Medical Research Institute Wroclaw Medical University Wrocław Poland
| |
Collapse
|
34
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
35
|
Peng Y, Guan WJ, Zhu ZC, Tan KS, Chen Z, Hong HY, Zi XX, Andiappan AK, Shi L, Yang QT, Wang DY, Qiu QH. Microarray Assay Reveals Ciliary Abnormalities of the Allergic Nasal Mucosa. Am J Rhinol Allergy 2019; 34:50-58. [PMID: 31450948 DOI: 10.1177/1945892419871795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Gene expression patterns (particularly, cilia-associated genes) of nasal mucosa, the first-line defense system, in allergic rhinitis (AR) are not well understood. Objective We sought to screen for AR-associated genes in inferior turbinate (IT) from patients with AR, and to validate the expression of common cilia-related genes and ciliary shedding. Methods Prime View™ Human Gene Expression Array, which consisted of more than 530 000 probes covering more than 36 000 transcripts and variants, was employed to compare individual gene expression of ITs from control subjects (n = 11) and patients with AR (n = 19). Gene ontology (GO) analysis was performed with Cytoscape software. Eight of the common cilia-related genes were validated with quantitative polymerase chain reaction. We applied a semiquantitative scoring system for immunofluorescence assay to demonstrate ciliary shedding in 5 areas per paraffin section, with individual sections being scored between 0 (normal ciliary distribution) and 1 (ciliary shedding). Results Compared with control subjects, 160 (38 upregulated and 122 downregulated) genes were differentially expressed for at least 2 folds (all P < .05) in AR. Seven GO categories were significantly enriched, 4 of which were related to cilium assembly and motility. Quantitative polymerase chain reaction validated the predicted direction of change for common cilia-related gene expression. The ciliary distribution score was significantly higher (more prominent ciliary shedding) in AR than in controls ( P < .05). Conclusion The significant aberrant cilia-related gene expression, revealed by microarray assays, might be the critical driver of AR where ciliary shedding is prominent.
Collapse
Affiliation(s)
- Yang Peng
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Zhen-Chao Zhu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Zhuo Chen
- Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Hai-Yu Hong
- Department of Otolaryngology-Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao-Xue Zi
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore.,Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Qin-Tai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Qian-Hui Qiu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head & Neck Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
36
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
37
|
Reitsma S, Subramaniam S, Fokkens WWJ, Wang DY. Recent developments and highlights in rhinitis and allergen immunotherapy. Allergy 2018; 73:2306-2313. [PMID: 30260494 DOI: 10.1111/all.13617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/09/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
This review paper aims to provide an overview of recent developments in the field of allergic and non-allergic rhinitis, as well as allergen immunotherapy. Recent advances in phenotyping and endotyping various forms of rhinitis have brought us one step closer towards tailoring treatment more appropriately for a given patient. Updates on local allergic rhinitis are also covered. Allergen immunotherapy (AIT) is an area of significant interest, with multiple original papers and recent position papers and guidelines published. Evidence related to the application of AIT in seasonal and perennial allergic rhinitis (AR), local allergic rhinitis and novel and expanded applications is discussed in the publication.
Collapse
Affiliation(s)
- Sietze Reitsma
- Department of Otorhinolaryngology; Amsterdam UMC; University of Amsterdam; Amsterdam The Netherlands
| | - Soma Subramaniam
- Department of Otolaryngology; Ng Teng Fong General Hospital; Singapore Singapore
| | - Wytske W. J. Fokkens
- Department of Otorhinolaryngology; Amsterdam UMC; University of Amsterdam; Amsterdam The Netherlands
| | - De Yun Wang
- Department of Otolaryngology; National University of Singapore; Singapore Singapore
| |
Collapse
|
38
|
Kucuksezer UC, Ozdemir C, Akdis M, Akdis CA. Chronic rhinosinusitis: pathogenesis, therapy options, and more. Expert Opin Pharmacother 2018; 19:1805-1815. [PMID: 30345822 DOI: 10.1080/14656566.2018.1527904] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION When rhinosinusitis - the inflammation of the nasal cavity and paranasal sinuses - persists for over 12 weeks, it is termed 'chronic rhinosinusitis' (CRS). Both innate and adaptive immunity contribute to the heterogeneous inflammatory pathogenesis of CRS, which is driven by genetic and environmental factors and the microbiome. CRS is classified by the presence of polyps. Molecular mechanisms in CRS with nasal polyps are similar to those in atopic diseases. AREAS COVERED This review focuses on the immune pathogenesis of CRS, differences between the two CRS subtypes, and latest treatments that may aid in the provision of personalized medicine. EXPERT OPINION Basic research in the last decade has helped significantly in enhancing our knowledge of the pathophysiologic processes of CRS, due to which there is now a better understanding of the associated natural history, physiopathology, novel treatments, and prevention strategies. Treatment success depends on the clarification of the underlying pathogenesis and disease-contributing factors. The exploration of disease endotypes and introduction of novel agents are important advancements. Prior studies performed without disease-endotyping resulted in the inefficiency of certain drugs and insignificant results. The identification of biomarkers, development of personalized approaches, and utilization of disease algorithms are required for CRS therapy success.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- a Department of Immunology, Aziz Sancar Institute of Experimental Medicine , Istanbul University , Istanbul , Turkey
| | - Cevdet Ozdemir
- b Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology , Istanbul University , Istanbul , Turkey.,c Department of Pediatric Basic Sciences, Institute of Child Health , Istanbul University , Istanbul , Turkey
| | - Mubeccel Akdis
- d Swiss Institute of Allergy and Asthma Research (SIAF) , University of Zurich , Davos , Switzerland.,e Christine Kühne-Center for Allergy Research and Education (CK-CARE) , Davos , Switzerland
| | - Cezmi A Akdis
- d Swiss Institute of Allergy and Asthma Research (SIAF) , University of Zurich , Davos , Switzerland.,e Christine Kühne-Center for Allergy Research and Education (CK-CARE) , Davos , Switzerland
| |
Collapse
|
39
|
Bachert C, Bousquet J, Hellings P. Rapid onset of action and reduced nasal hyperreactivity: new targets in allergic rhinitis management. Clin Transl Allergy 2018; 8:25. [PMID: 29983907 PMCID: PMC6016145 DOI: 10.1186/s13601-018-0210-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background This article summarizes a EUFOREA symposium, presented during the European Rhinology Research Forum in Brussels (9–10 November 2017; https://www.rhinologyresearch.eu/) which focused on novel pathways and therapeutic approaches in allergic rhinitis (AR). Main body AR remains under-diagnosed, under-estimated and under-treated. A key component in understanding the AR landscape has been the realization of a significant mismatch between how physicians instruct AR patients to manage their disease and what AR patients actually do in real life. Data from the Allergy Diary (developed by MACVIA ARIA) showed that AR patients take their medication prn, rapidly switch treatments, often experience poor control, use multiple therapies and stop treatment when symptoms are controlled. Better control of AR may be achievable by using an AR treatment which has a rapid onset of action and which effectively targets breakthrough symptoms. Indeed, AR patients report complete symptom relief, lack of breakthrough symptoms, rapid onset of action, safety and use on an ‘as needed’ basis as key targets for new nasal sprays. MP-AzeFlu comprises intranasal azelastine and fluticasone propionate (FP) in a novel formulation delivered in a single device. It is the first AR treatment to break the 5 min onset of action threshold and provides clinically relevant symptom relief in 15 min, much faster than that noted for FP + oral loratadine. MP-AzeFlu also significantly reduces nasal hyperresponsiveness (NHR) which may be responsible for the breakthrough symptoms frequently reported by AR patients. Mechanisms underlying MP-AzeFlu’s effect include inhibition of mast cell degranulation, stabilization of the mucosal barrier, synergistic inhibition of inflammatory cell recruitment and a unique desensitization of sensory neurons expressing the transient receptor potential A1 and V1 channels. Conclusion With the most rapid onset of action and onset of clinically-relevant effect of any AR medication currently available, and proven efficacy in the treatment of NHR, MP-AzeFlu is an AR treatment which provides what patients want, and fits how patients manage their AR in real life.
Collapse
Affiliation(s)
- C Bachert
- 1Ghent University Hospital, Ghent, Belgium.,2Upper Airways Research Laboratory, University of Ghent, Ghent, Belgium.,3Karolinska Institute, Stockholm, Sweden
| | - J Bousquet
- Fondation FMC VIA-LR, Montpellier, France.,5UMR-S 1168, INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France.,European Forum for Research and Education in Allergy & airways diseases (EUFOREA), Brussels, Belgium
| | - P Hellings
- European Forum for Research and Education in Allergy & airways diseases (EUFOREA), Brussels, Belgium.,7Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, Box 1030, 3000 Louvain, Belgium.,8Clinical Division of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Louvain, Belgium.,9Clinical Division of Otorhinolaryngology, Head and Neck Surgery, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|