1
|
Burboa PC, Corrêa-Velloso JC, Arriagada C, Thomas AP, Durán WN, Lillo MA. Impact of Matrix Gel Variations on Primary Culture of Microvascular Endothelial Cell Function. Microcirculation 2024; 31:e12859. [PMID: 38818977 PMCID: PMC11227414 DOI: 10.1111/micc.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques. METHODS Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology. RESULTS Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident. Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca2+ elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs. CONCLUSIONS Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Juliana C. Corrêa-Velloso
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Cecilia Arriagada
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago, Chile
| | - Andrew P. Thomas
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Walter N. Durán
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| | - Mauricio A. Lillo
- Department of Pharmacology; Physiology & Neuroscience; New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ 07103, U.S.A
| |
Collapse
|
2
|
Shaikh S, Saleem AN, Ymele-Leki P. Simulation and Modeling of the Adhesion of Staphylococcus aureus onto Inert Surfaces under Fluid Shear Stress. Pathogens 2024; 13:551. [PMID: 39057778 PMCID: PMC11280353 DOI: 10.3390/pathogens13070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial adhesion to biotic and abiotic surfaces under fluid shear stress plays a major role in the pathogenesis of infections linked to medical implants and tissues. This study employed an automated BioFlux 200 microfluidic system and video microscopy to conduct real-time adhesion assays, examining the influence of shear stress on adhesion kinetics and spatial distribution of Staphylococcus aureus on glass surfaces. The adhesion rate exhibited a non-linear relationship with shear stress, with notable variations at intermediate levels. Empirical adhesion events were simulated with COMSOL Multiphysics® and Python. Overall, COMSOL accurately predicted the experimental trend of higher rates of bacterial adhesion with decreasing shear stress but poorly characterized the plateauing phenomena observed over time. Python provided a robust mathematical representation of the non-linear relationship between cell concentration, shear stress, and time but its polynomial regression approach was not grounded on theoretical physical concepts. These insights, combined with advancements in AI and machine learning, underscore the potential for synergistic computational techniques to enhance our understanding of bacterial adhesion to surfaces, offering a promising avenue for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sarees Shaikh
- Department of Chemical Engineering, Howard University, Washington, DC 20059, USA;
| | - Abdul Nafay Saleem
- Department of Electrical Engineering and Computer Science, Howard University, Washington, DC 20059, USA;
| | - Patrick Ymele-Leki
- Department of Chemical Engineering, Howard University, Washington, DC 20059, USA;
| |
Collapse
|
3
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
4
|
Moztarzadeh S, Sepic S, Hamad I, Waschke J, Radeva MY, García-Ponce A. Cortactin is in a complex with VE-cadherin and is required for endothelial adherens junction stability through Rap1/Rac1 activation. Sci Rep 2024; 14:1218. [PMID: 38216638 PMCID: PMC10786853 DOI: 10.1038/s41598-024-51269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
5
|
Vlasov H, Talvasto A, Hiippala S, Suojaranta R, Wilkman E, Rautamo M, Helve O, Petäjä L, Raivio P, Juvonen T, Pesonen E. Albumin and Cardioprotection in On-Pump Cardiac Surgery-A Post Hoc Analysis of a Randomized Trial. J Cardiothorac Vasc Anesth 2024; 38:86-92. [PMID: 37891142 DOI: 10.1053/j.jvca.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVES To study the quantitative potency of plasma albumin on cardioprotection in terms of creatinine kinase-myocardial band mass (CK-MBm) in on-pump cardiac surgery. DESIGN Post hoc analysis of a double-blinded randomized clinical trial. SETTING Single-center study in the Helsinki University Hospital. PARTICIPANTS A total of 1,386 adult on-pump cardiac surgical patients. INTERVENTION Administration of 4% albumin (n = 693) or Ringers acetate (n = 693) for cardiopulmonary bypass priming and volume replacement intraoperatively and postoperatively during the first 24 hours. MEASUREMENTS AND MAIN RESULTS Albumin concentration was measured preoperatively and intraoperatively (after protamine administration), and CK-MBm on the first postoperative morning. Multivariate linear regression analyses were measured in the whole cohort and the Ringer group. Plasma albumin concentration did not differ between the groups preoperatively (Ringer v albumin: 38.3 ± 5.0 g/L v 38.6 ± 4.5 g/L; p = 0.171) but differed intraoperatively (29.5 ± 5.2 g/L v 41.5 ± 6.0 g/L; p < 0.001). Creatinine kinase-myocardial band mass was higher in the Ringer (32.0 ± 34.8 μg/L) than in the albumin group (24.3 ± 33.0 μg/L) (p < 0.001). Aortic cross-clamping time associated with CK-MBm in the whole cohort (standardized β = 0.376 [95% CI 0.315-0.437], p < 0.001) and the Ringer group (β = 0.363 [0.273-0.452]; p < 0.001). Albumin administration in the whole cohort (β = -0.156 [-0.201 to -0.111]; p < 0.001) and high intraoperative albumin concentration in the Ringer group (β = -0.07 [-0.140 to -0.003]; p = 0.04) associated with reduced CK-MBm. Compared with ischemia-induced increase in CK-MBm, albumin's potency to reduce CK-MBm was 41% in the whole cohort (β-value ratio of -0.156/0.376) and 19% in the Ringer group (β-value ratio of -0.07/0.363). CONCLUSION Both endogenous and exogenous albumin appear to be cardioprotective regarding CK-MBm release in on-pump cardiac surgery.
Collapse
Affiliation(s)
- Hanna Vlasov
- Department of Anesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Akseli Talvasto
- Department of Anesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Hiippala
- Department of Anesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raili Suojaranta
- Department of Anesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Wilkman
- Department of Anesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Rautamo
- HUS Pharmacy, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Otto Helve
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Liisa Petäjä
- Department of Anesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Peter Raivio
- Department of Cardiac Surgery, Heart, and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tatu Juvonen
- Department of Cardiac Surgery, Heart, and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Pesonen
- Department of Anesthesiology and Intensive Care Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Yazbeck P, Cullere X, Bennett P, Yajnik V, Wang H, Kawada K, Davis V, Parikh A, Kuo A, Mysore V, Hla T, Milstone D, Mayadas TN. DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arterioscler Thromb Vasc Biol 2022; 42:886-902. [PMID: 35477279 PMCID: PMC9233130 DOI: 10.1161/atvbaha.122.317565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)-an unconventional Rho family GTPase GEF in vascular function. METHODS We generated mice deficient in DOCK4' used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells' used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation. RESULTS Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)-induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation. CONCLUSIONS Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1-mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.
Collapse
Affiliation(s)
- Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Bennett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Vijay Yajnik
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Huan Wang
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kenji Kawada
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Vanessa Davis
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Asit Parikh
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02445
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 20115
| | - David Milstone
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
9
|
Woodcock TE, Michel CC. Advances in the Starling Principle and Microvascular Fluid Exchange; Consequences and Implications for Fluid Therapy. Front Vet Sci 2021; 8:623671. [PMID: 33889604 PMCID: PMC8056939 DOI: 10.3389/fvets.2021.623671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/03/2021] [Indexed: 12/05/2022] Open
Abstract
Ernest Starling first presented a hypothesis about the absorption of tissue fluid to the plasma within tissue capillaries in 1896. In this Chapter we trace the evolution of Starling's hypothesis to a principle and an equation, and then look in more detail at the extension of the Starling principle in recent years. In 2012 Thomas Woodcock and his son proposed that experience and experimental observations surrounding clinical practices involving the administration of intravenous fluids were better explained by the revised Starling principle. In particular, the revised or extended Starling principle can explain why crystalloid resuscitation from the abrupt physiologic insult of hypovolaemia is much more effective than the pre-revision Starling principle had led clinicians to expect. The authors of this chapter have since combined their science and clinical expertise to offer clinicians a better basis for their practice of rational fluid therapy.
Collapse
Affiliation(s)
| | - C Charles Michel
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Lee W, Ku SK, Kim TI, Kim EN, Park EK, Jeong GS, Bae JS. Inhibitory effects of cudratricusxanthone O on particulate matter-induced pulmonary injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:271-284. [PMID: 31407590 DOI: 10.1080/09603123.2019.1652252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), aerodynamic diameter ≤ 2.5 μm, is the primary air pollutant that plays the key role for lung injury resulted from the loss of vascular barrier integrity. Cudratricusxanthone O (CTXO) is a novel xanthone compound isolated from the root of Cudrania tricuspidata Bureau. Here, we investigated the beneficial effects of CTXO against PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated ECs and mice. CTXO significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase (MAPK). Concurrently, CTXO activated Akt, which helped maintain endothelial integrity. Furthermore, CTXO reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid in PM-induced lung tissues. These results indicated that CTXO may exhibit protective effects against PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Deajeon, Republic of Korea
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University , Gyeongsan-si, Republic of Korea
| | - Tae In Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine , Dong-gu, Daegu, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
11
|
Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med 2020; 27:314-331. [PMID: 33309601 DOI: 10.1016/j.molmed.2020.11.006] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.
| | - Elisabetta Dejana
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Donald M McDonald
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Abe RJ, Savage H, Imanishi M, Banerjee P, Kotla S, Paez-Mayorga J, Taunton J, Fujiwara K, Won JH, Yusuf SW, Palaskas NL, Banchs J, Lin SH, Schadler KL, Abe JI, Le NT. p90RSK-MAGI1 Module Controls Endothelial Permeability by Post-translational Modifications of MAGI1 and Hippo Pathway. Front Cardiovasc Med 2020; 7:542485. [PMID: 33304925 PMCID: PMC7693647 DOI: 10.3389/fcvm.2020.542485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023] Open
Abstract
Previously, we reported that post-translational modifications (PTMs) of MAGI1, including S741 phosphorylation and K931 de-SUMOylation, both of which are regulated by p90RSK activation, lead to endothelial cell (EC) activation. However, roles for p90RSK and MAGI1-PTMs in regulating EC permeability remain unclear despite MAGI1 being a junctional molecule. Here, we show that thrombin (Thb)-induced EC permeability, detected by the electric cell-substrate impedance sensing (ECIS) based system, was decreased by overexpression of dominant negative p90RSK or a MAGI1-S741A phosphorylation mutant, but was accelerated by overexpression of p90RSK, siRNA-mediated knockdown of magi1, or the MAGI1-K931R SUMOylation mutant. MAGI1 depletion also increased the mRNA and protein expression of the large tumor suppressor kinases 1 and 2 (LATS1/2), which inhibited YAP/TAZ activity and increased EC permeability. Because the endothelial barrier is a critical mediator of tumor hypoxia, we also evaluated the role of p90RSK activation in tumor vessel leakiness by using a relatively low dose of the p90RSK specific inhibitor, FMK-MEA. FMK-MEA significantly inhibited tumor vessel leakiness at a dose that does not affect morphology and growth of tumor vessels in vivo. These results provide novel insights into crucial roles for p90RSK-mediated MAGI1 PTMs and the Hippo pathway in EC permeability, as well as p90RSK activation in tumor vessel leakiness.
Collapse
Affiliation(s)
- Rei J Abe
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Hannah Savage
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Banerjee
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jesus Paez-Mayorga
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jong Hak Won
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jose Banchs
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keri L Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
13
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
14
|
Vlasov H, Juvonen T, Hiippala S, Suojaranta R, Peltonen M, Schramko A, Arvonen K, Salminen US, Kleine Budde I, Eränen T, Mazanikov M, Meinberg M, Vähäsilta T, Wilkman E, Pettilä V, Pesonen E. Effect and safety of 4% albumin in the treatment of cardiac surgery patients: study protocol for the randomized, double-blind, clinical ALBICS (ALBumin In Cardiac Surgery) trial. Trials 2020; 21:235. [PMID: 32111230 PMCID: PMC7048052 DOI: 10.1186/s13063-020-4160-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/11/2020] [Indexed: 01/31/2023] Open
Abstract
Background In cardiac surgery with cardiopulmonary bypass (CPB), large amounts of fluids are administered. CPB priming with crystalloid solution causes marked hemodilution and fluid extravasation. Colloid solutions may reduce fluid overload because they have a better volume expansion effect than crystalloids. The European Medicines Agency does not recommend the use of hydroxyethyl starch solutions (HES) due to harmful renal effects. Albumin solution does not impair blood coagulation but the findings on kidney function are conflicting. On the other hand, albumin may reduce endothelial glycocalyx destruction and decrease platelet count during CPB. No large randomized, double-blind, clinical trials have compared albumin solution to crystalloid solution in cardiac surgery. Methods/design In this single-center, double-blind, randomized controlled trial comprising 1386 adult cardiac surgery patients, 4% albumin solution will be compared to Ringer’s acetate solution in CPB priming and volume replacement up to 3200 mL during surgery and the first 24 h of intensive care unit stay. The primary efficacy outcome is the number of patients with at least one major adverse event (MAE) during 90 postoperative days (all-cause death, acute myocardial injury, acute heart failure or low output syndrome, resternotomy, stroke, major arrhythmia, major bleeding, infection compromising post-procedural rehabilitation, acute kidney injury). Secondary outcomes are total number of MAEs, incidence of major adverse cardiac events (MACE; cardiac death, acute myocardial injury, acute heart failure, arrhythmia), amount of each type of blood product transfused (red blood cells, fresh frozen plasma, platelets), total fluid balance at the end of the intervention period, total measured blood loss, development of acute kidney injury, days alive without mechanical ventilation in 90 days, days alive outside intensive care unit at 90 days, days alive at home at 90 days, and 90-day mortality. Discussion The findings of this study will provide new evidence regarding efficacy and safety of albumin solution in adult patients undergoing cardiac surgery with CPB. Trial registration EudraCT (clinicaltrialsregister.eu) 2015–002556-27 Registered 11 Nov 2016 and ClinicalTrials.gov NCT02560519. Registered 25 Sept 2015.
Collapse
Affiliation(s)
- Hanna Vlasov
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Tatu Juvonen
- Department of Cardiac Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Hiippala
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raili Suojaranta
- Department of Cardiac Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Peltonen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Alexey Schramko
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaapo Arvonen
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulla-Stina Salminen
- Department of Cardiac Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilona Kleine Budde
- Department of Clinical Operations, Sanquin Plasma Products B.V., Amsterdam, The Netherlands
| | - Tiina Eränen
- HUS Pharmacy, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maxim Mazanikov
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mihkel Meinberg
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tommi Vähäsilta
- Department of Cardiac Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Erika Wilkman
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Pettilä
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Pesonen
- Department of Anesthesiology and Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
15
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
16
|
Lee W, Ku SK, Kim JE, Cho SH, Song GY, Bae JS. Inhibitory Effects of Black Ginseng on Particulate Matter-Induced Pulmonary Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1237-1251. [PMID: 31495180 DOI: 10.1142/s0192415x19500630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inhalation of fine particulate matter (PM2.5) is associated with elevated pulmonary injury caused by the loss of vascular barrier integrity. Black ginseng (BG), steamed and dried ginseng nine times, exhibits various pharmacological activities such as antibacterial, antihyperglycemic, anti-atopic, antibacterial, and anti-inflammatory activities. In this study, we investigated the beneficial effects of black ginseng extract (BGE) against PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated ECs and mice. BGE significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase (MAPK). Concurrently, BGE activated Akt, which helped maintain endothelial integrity. Furthermore, BGE reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid in PM-induced lung tissues. These results indicated that BGE may exhibit protective effects against PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon 34141, Republic of Korea.,College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea
| | - Ji-Eun Kim
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Soo-Hyun Cho
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Choi H, Lee W, Kim E, Ku SK, Bae JS. Inhibitory effects of collismycin C and pyrisulfoxin A on particulate matter-induced pulmonary injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152939. [PMID: 31100678 DOI: 10.1016/j.phymed.2019.152939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Inhalation of fine particulate matter (PM2.5) is associated with elevated pulmonary injury caused by the loss of vascular barrier integrity. Marine microbial natural products isolated from microbial culture broths were screened for pulmonary protective effects against PM2.5. Two 2,2'-bipyridine compounds isolated from a red alga-associated Streptomyces sp. MC025-collismycin C (2) and pyrisulfoxin A (5)-were found to inhibit PM2.5-mediated vascular barrier disruption. PURPOSE To confirm the inhibitory effects of collismycin C and pyrisulfoxin A on PM2.5-induced pulmonary injury STUDY DESIGN: In this study, we investigated the beneficial effects of collismycin C and pyrisulfoxin A on PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. METHODS Permeability, leukocyte migration, proinflammatory protein activation, reactive oxygen species (ROS) generation, and histology were evaluated in PM2.5-treated ECs and mice. RESULTS Collismycin C and pyrisulfoxin A significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase as well as activated Akt, which helped in maintaining endothelial integrity, in purified pulmonary endothelial cells. Furthermore, collismycin C and pyrisulfoxin A reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid of PM-treated mice. CONCLUSION These data suggested that collismycin C and pyrisulfoxin A might exert protective effects on PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eonmi Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Lee W, Jeong SY, Gu MJ, Lim JS, Park EK, Baek MC, Kim JS, Hahn D, Bae JS. Inhibitory effects of compounds isolated from Dioscorea batatas Decne peel on particulate matter-induced pulmonary injury in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:727-740. [PMID: 31342870 DOI: 10.1080/15287394.2019.1646174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), with an aerodynamic diameter of ≤2.5 μm, is the primary air pollutant that plays a key role associated with lung injury produced by loss of vascular barrier integrity. Dioscorea batatas Decne (Chinese yam), a perennial plant belonging to Dioscoreaceae family, is widely cultivated in tropical and subtropical regions across Asia. Both aerial parts and root of D. batatas are consumed for nutritional and medicinal purposes. The aim of this study was to (1) identify the bioactive compounds present in D. batatas peel which may be responsible for inhibition of PM2.5-induced pulmonary inflammation in mice and (2) examine in vitro mechanisms underlying the observed effects of these compounds on mouse lung microvascular endothelial cells. The measured parameters include permeability, leukocyte migration, proinflammatory protein activation, reactive oxygen species (ROS) generation, and histology. Two phenanthrene compounds, 2,7-dihydroxy-4,6-dimethoxyphenanthrene (1) and 6,7-dihydroxy-2,4-dimethoxyphenanthrene (2) were isolated from D. batatas peels. Both these phenanthrene compounds exhibited significant scavenging activity against PM2.5-induced ROS and inhibited ROS-induced activation of p38 mitogen-activated protein kinase. In addition, enhancement of Akt pathway, involved in the maintenance of endothelial integrity, was noted. These phenanthrene compounds also reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid obtained from PM2.5-induced lung tissues. Evidence thus indicates that phenanthrene compounds derived from D. batatas may exhibit protective effects against PM2.5-induced inflammatory lung injury and vascular hyperpermeability in mice.
Collapse
Affiliation(s)
- Wonhwa Lee
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
- b Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - So Yeon Jeong
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
| | - Myeong Ju Gu
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ji Sun Lim
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Eui Kyun Park
- d Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu , Republic of Korea
| | - Moon-Chang Baek
- e Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Jong-Sang Kim
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
- f Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Dongyup Hahn
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
- f Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Jong-Sup Bae
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
19
|
Pulmonary Protective Functions of Rare Ginsenoside Rg4 on Particulate Matter-induced Inflammatory Responses. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0096-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Curry FE. Layer upon layer: the functional consequences of disrupting the glycocalyx-endothelial barrier in vivo and in vitro. Cardiovasc Res 2019; 113:559-561. [PMID: 28453735 DOI: 10.1093/cvr/cvx044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- FitzRoy E Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
21
|
Lee W, Bae JS. Inhibitory effects of Kyung-Ok-Ko, traditional herbal prescription, on particulate matter-induced vascular barrier disruptive responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:301-311. [PMID: 30394101 DOI: 10.1080/09603123.2018.1542490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Inhalation of fine particulate matter (PM2.5) is associated with elevated pulmonary injury caused by the loss of vascular barrier integrity. A traditional herbal prescription, Kyung-Ok-Ko (KOK), has long been used in Oriental medicine as a tonic for age-related diseases. In this study, we investigated the beneficial effects of KOK on PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated EC and mice. KOK significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase (MAPK). Concurrently, KOK activated Akt, which helped maintain endothelial integrity. Furthermore, KOK reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in bronchoalveolar lavage fluids in PM-induced lung tissues. These data suggested that KOK might exhibit protective effects in PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- a Aging Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daegeon , Republic of Korea
- b College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team , Kyungpook National University , Daegu , Republic of Korea
| | - Jong-Sup Bae
- b College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
22
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
23
|
Lee W, Ku SK, Kim JE, Cho SH, Song GY, Bae JS. Inhibitory effects of protopanaxatriol type ginsenoside fraction (Rgx365) on particulate matter-induced pulmonary injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:338-350. [PMID: 30917762 DOI: 10.1080/15287394.2019.1596183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inhalation of fine particulate matter (PM2.5) is associated with elevated pulmonary injury attributed to the loss of vascular barrier integrity. Black ginseng (BG), steamed 9 times and dried ginseng, and its major protopanaxatriol type ginsenosides (ginsenoside Rg4, Rg6, Rh4, Rh1, and Rg2) exhibited various biological activities including anti-septic, anti-diabetic, wound healing, immune-stimulatory, and anti-antioxidant activity. The aim of this study was to investigate the beneficial effects of Rgx365 (a protopanaxatriol type rare ginsenosides fraction) on PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated EC and mice. Rgx365 significantly scavenged PM2.5-induced ROS, inhibited ROS-induced activation of p38 mitogen-activated protein kinase (MAPK), activated Akt in purified pulmonary EC, which helped maintain endothelial integrity. Further, Rgx365 reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in bronchoalveolar lavage fluids in PM-induced mouse lung tissues. Data suggested that Rgx365 might exhibit protective effects in PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- a Aging Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Deajeon , Republic of Korea
- b College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team , Kyungpook National University , Daegu , Republic of Korea
| | - Sae-Kwang Ku
- c Department of Histology and Anatomy , College of Korean Medicine, Daegu Haany University , Gyeongsan-si , Republic of Korea
| | - Ji-Eun Kim
- d College of Pharmacy , Chungnam National University , Daejon , Republic of Korea
| | - Soo-Hyun Cho
- d College of Pharmacy , Chungnam National University , Daejon , Republic of Korea
| | - Gyu-Yong Song
- d College of Pharmacy , Chungnam National University , Daejon , Republic of Korea
| | - Jong-Sup Bae
- b College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
24
|
Lidén Å, Karlsen TV, Guss B, Reed RK, Rubin K. Integrin α V β 3 can substitute for collagen-binding β 1 -integrins in vivo to maintain a homeostatic interstitial fluid pressure. Exp Physiol 2019. [PMID: 29524327 PMCID: PMC5947675 DOI: 10.1113/ep086902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? Collagen‐binding β1‐integrins function physiologically in cellular control of dermal interstitial fluid pressure (PIF) in vivo and thereby participate in control of extravascular fluid volume. During anaphylaxis, simulated by injection of compound 48/80, integrin αVβ3 takes over this physiological function. Here we addressed the question whether integrin αVβ3 can replace collagen‐binding β1‐integrin to maintain a long‐term homeostatic PIF. What is the main finding and its importance? Mice lacking the collagen‐binding integrin α11β1 show a complex dermal phenotype with regard to the interstitial physiology apparent in the control of PIF. Notably dermal PIF is not lowered with compound 48/80 in these animals. Our present data imply that integrin αVβ3 is the likely candidate that has taken over the role of collagen‐binding β1‐integrins for maintaining a steady‐state homeostatic PIF. A better understanding of molecular processes involved in control of PIF is instrumental for establishing novel treatment regimens for control of oedema formation in anaphylaxis and septic shock.
Abstract Accumulated data indicate that cell‐mediated contraction of reconstituted collagenous gels in vitro can serve as a model for cell‐mediated control of interstitial fluid pressure (PIF) in vivo. A central role for collagen‐binding β1‐integrins in both processes has been established. Furthermore, integrin αVβ3 takes over the role of collagen‐binding β1‐integrins in mediating contraction after perturbations of collagen‐binding β1‐integrins in vitro. Integrin αVβ3 is also instrumental for normalization of dermal PIF that has been lowered due to mast cell degranulation with compound 48/80 (C48/80) in vivo. Here we demonstrate a role of integrin αVβ3 in maintaining a long term homeostatic dermal PIF in mice lacking the collagen‐binding integrin α11β1 (α11−/− mice). Measurements of PIF were performed after circulatory arrest. Furthermore, cell‐mediated integrin αVβ3‐directed contraction of collagenous gels in vitro depends on free access to a collagen site known to bind several extracellular matrix (ECM) proteins that form substrates for αVβ3‐directed cell attachment, such as fibronectin and fibrin. A streptococcal collagen‐binding protein, CNE, specifically binds to and blocks this site on the collagen triple helix. Here we show that whereas CNE perturbed αVβ3‐directed and platelet‐derived growth factor BB‐induced normalization of dermal PIF after C48/80, it did not affect αVβ3‐dependent maintenance of a homeostatic dermal PIF. These data imply that dynamic modification of the ECM structure is needed during acute patho‐physiological modulations of PIF but not for long‐term maintenance of a homeostatic PIF. Our data thus show that collagen‐binding β1‐integrins, integrin αVβ3 and ECM structure are potential targets for novel therapy aimed at modulating oedema formation and hypovolemic shock during anaphylaxis.
Collapse
Affiliation(s)
- Åsa Lidén
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Tine Veronika Karlsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, SE-750 07, Uppsala, Sweden
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Kristofer Rubin
- Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 63, Lund, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life laboratories, Uppsala University, BMC Box 582, SE 751 23, Uppsala, Sweden
| |
Collapse
|
25
|
Curry FE, Taxt T, Rygh CB, Pavlin T, Bjørnstad R, Døskeland SO, Reed RK. Epac1 -/- mice have elevated baseline permeability and do not respond to histamine as measured with dynamic contrast-enhanced magnetic resonance imaging with contrast agents of different molecular weights. Acta Physiol (Oxf) 2019; 225:e13199. [PMID: 30300965 PMCID: PMC6646910 DOI: 10.1111/apha.13199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Aim Epac1−/− mice, but not Epac2−/− mice have elevated baseline permeability to albumin. This study extends the investigations of how Epac‐dependent pathways modulate transvascular exchange in response to the classical inflammatory agent histamine. It also evaluates the limitations of models of blood‐to‐tissue exchange in transgenic mice in DCE‐MRI measurements. Methods We measured DCE‐MRI signal intensity in masseter muscle of wt and Epac1−/− mice with established approaches from capillary physiology to determine how changes in blood flow and vascular permeability contribute to overall changes of microvascular flux. We used two tracers, the high molecular weight tracer (Gadomer‐17, MW 17 kDa, apparent MW 30‐35 kDa) is expected to be primarily limited by diffusion and therefore less dependent on changes in blood flow and the low molecular weight tracer (Dotarem (MW 0.56 kDa) whose transvascular exchange is determined by both blood flow and permeability. Paired experiments in each animal combined with analytical methods provided an internally consistent description of microvascular transport. Results Epac1−/− mice had elevated baseline permeability relative to wt control mice for Dotarem and Gadomer‐17. In contrast to wt mice, Epac1−/− mice failed to increase transvascular permeability in response to histamine. Dotarem underestimated blood flow and vascular volume and Gadomer‐17 has limited sensitivity in extravascular accumulation. Conclusion The study suggests that the normal barrier loosening effect of histamine in venular microvessels do not function when the normal barrier tightening effect of Epac1 is already compromised. The study also demonstrated that the numerical analysis of DCE‐MRI data with tracers of different molecular weight has significant limitations.
Collapse
Affiliation(s)
- Fitz‐Roy E. Curry
- Department of Physiology and Membrane Biology University of California Davis Davis California
| | - Torfinn Taxt
- Department of Biomedicine University of Bergen Bergen Norway
| | - Cecilie Brekke Rygh
- Department of Biomedicine University of Bergen Bergen Norway
- Molecular Imaging Centre Department of Biomedicine University of Bergen Bergen Norway
| | - Tina Pavlin
- Department of Biomedicine University of Bergen Bergen Norway
- Molecular Imaging Centre Department of Biomedicine University of Bergen Bergen Norway
| | - Ronja Bjørnstad
- Department of Biomedicine University of Bergen Bergen Norway
| | | | - Rolf K. Reed
- Department of Biomedicine University of Bergen Bergen Norway
- Centre for Cancer Biomarkers University of Bergen Bergen Norway
| |
Collapse
|
26
|
Histamine causes endothelial barrier disruption via Ca 2+-mediated RhoA activation and tension at adherens junctions. Sci Rep 2018; 8:13229. [PMID: 30185878 PMCID: PMC6125323 DOI: 10.1038/s41598-018-31408-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
During inflammation, the disruption of the endothelial barrier leads to increased microvascular permeability. Whether tension along cell junctions contributes to histamine-induced endothelial barrier disruption remains unknown. Rapid Ca2+ influx induced by both histamine and thrombin was accompanied by endothelial barrier breakdown revealed as drop of transendothelial electric resistance in primary human microvascular endothelial cells. Interestingly, GLISA measurements revealed activation of RhoA but not inactivation of Rac1 at the time-point of barrier breakdown. FRET measurements showed activation of RhoA at intercellular junctions after both thrombin and histamine exposure. Breakdown coincided with increased stress fiber formation but not with translocation of vinculin, which was located along junctions in the resting state similar to postcapillary venules ex vivo. Moreover, increased tension at AJs was indicated by immunostaining with a conformation-sensitive antibody targeting the α18-subunit of α-catenin. Ca2+ chelation by BAPTA-AM and ROCK1 inhibition by Y27632 abolished both increase of tension along AJs as well as barrier dysfunction. Moreover, BAPTA-AM decreased RhoA activation following histamine stimulation, indicating a key role of Ca2+ signaling in barrier breakdown. Taken together, in response to histamine, Ca2+ via RhoA/ROCK activation along endothelial adherens junctions (AJs) appears to be critical for barrier disruption and presumably correlated with enhanced tension. However, vinculin appears not to be critical in this process.
Collapse
|
27
|
Wollborn J, Schlegel N, Schick MA. [Phosphodiesterase 4 inhibition for treatment of endothelial barrier and microcirculation disorders in sepsis]. Anaesthesist 2018; 66:347-352. [PMID: 28429038 DOI: 10.1007/s00101-017-0305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is commonly associated with loss of microvascular endothelial barrier function (capillary leak) and dysfunctional microcirculation, which both promote organ failure. The development of a distinct therapy of impaired endothelial barrier function and disturbed microcirculation is highly relevant because both of these phenomena constitute crucial processes which critically influence the prognosis of patients. Numerous in vivo and in vitro trials over the past years have fostered a better understanding of the pathophysiology of capillary leak. Furthermore, promising data in animal models show that therapeutic modulation of endothelial barrier function and microcirculation can be achieved by stabilizing endothelial cAMP (cyclic adenosine monophosphate) levels followed by activation of Rho-GTPase Rac1, e. g. by phosphodiesterase 4 inhibitors. This review summarizes and discusses recent findings of cellular mechanisms and in vivo trials.
Collapse
Affiliation(s)
- J Wollborn
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland
| | - N Schlegel
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M A Schick
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland.
| |
Collapse
|
28
|
Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 2018; 595:5015-5035. [PMID: 28524373 PMCID: PMC5538239 DOI: 10.1113/jp274167] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Key points We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin.
Abstract The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real‐time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17–3.02 μm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 μm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same vessels in a time‐dependent manner, with changes in all three true vessel wall permeability coefficients (hydraulic conductivity, reflection coefficient and diffusive solute permeability). These novel technologies expand the range of techniques that permit direct studies of the structure of the endothelial glycocalyx and dependent microvascular functions in vivo, and demonstrate that sialic acid residues within the endothelial glycocalyx are critical regulators of microvascular permeability to both water and albumin. We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin.
Collapse
Affiliation(s)
- Kai B Betteridge
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Kenton P Arkill
- School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK.,Biofisika Institute (CSIC UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country, Spain
| | - Christopher R Neal
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Steven J Harper
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Rebecca R Foster
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Simon C Satchell
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - David O Bates
- School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Andrew H J Salmon
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.,Renal Service, Specialist Medicine and Health of Older People, Waitemata DHB, Auckland, New Zealand
| |
Collapse
|
29
|
The proteome of fetal fluids in mares with experimentally-induced placentitis. Placenta 2018; 64:71-78. [DOI: 10.1016/j.placenta.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/24/2018] [Accepted: 03/19/2018] [Indexed: 11/21/2022]
|
30
|
Kovacs-Kasa A, Kim KM, Cherian-Shaw M, Black SM, Fulton DJ, Verin AD. Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role. J Cell Physiol 2018; 233:5736-5746. [PMID: 29168172 DOI: 10.1002/jcp.26281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
We have previously shown that Gs-coupled adenosine receptors (A2a) are primarily involved in adenosine-induced human pulmonary artery endothelial cell (HPAEC) barrier enhancement. However, the downstream events that mediate the strengthening of the endothelial cell (EC) barrier via adenosine signaling are largely unknown. In the current study, we tested the overall hypothesis that adenosine-induced Rac1 activation and EC barrier enhancement is mediated by Gs-dependent stimulation of cAMP-dependent Epac1-mediated signaling cascades. Adenoviral transduction of HPAEC with constitutively-active (C/A) Rac1 (V12Rac1) significantly increases transendothelial electrical resistance (TER) reflecting an enhancement of the EC barrier. Conversely, expression of an inactive Rac1 mutant (N17Rac1) decreases TER reflecting a compromised EC barrier. The adenosine-induced increase in TER was accompanied by activation of Rac1, decrease in contractility (MLC dephosphorylation), but not Rho inhibition. Conversely, inhibition of Rac1 activity attenuates adenosine-induced increase in TER. We next examined the role of cAMP-activated Epac1 and its putative downstream targets Rac1, Vav2, Rap1, and Tiam1. Depletion of Epac1 attenuated the adenosine-induced Rac1 activation and the increase in TER. Furthermore, silencing of Rac1 specific guanine nucleotide exchange factors (GEFs), Vav2 and Rap1a expression significantly attenuated adenosine-induced increases in TER and activation of Rac1. Depletion of Rap1b only modestly impacted adenosine-induced increases in TER and Tiam1 depletion had no effect on adenosine-induced Rac1 activation and TER. Together these data strongly suggest that Rac1 activity is required for adenosine-induced EC barrier enhancement and that the activation of Rac1 and ability to strengthen the EC barrier depends, at least in part, on cAMP-dependent Epac1/Vav2/Rap1-mediated signaling.
Collapse
Affiliation(s)
- Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Kyung Mi Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Stephen M Black
- Center for Lung Vascular Pathobiology, University of Arizona, Phoenix, Arizona
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
31
|
Liu Y, Dhall S, Castro A, Chan A, Alamat R, Martins-Green M. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue. Biol Open 2018; 7:bio.026187. [PMID: 29101099 PMCID: PMC5827262 DOI: 10.1242/bio.026187] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing. Summary: Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue, involving -Akt, SPAK/JNK, and p38 MAPK which in turn are involved in Rac1 activation. Furthermore, these results augment our understanding of the insulin-regulated wound inflammatory response.
Collapse
Affiliation(s)
- Yan Liu
- Department of Burn and Plastic Surgery, ShangHai JiaoTong University School of Medicine Ruijin hospital, Shanghai, P.R.China 200025
| | - Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Anthony Castro
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Alex Chan
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Raquelle Alamat
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| |
Collapse
|
32
|
The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:1-27. [PMID: 30315537 DOI: 10.1007/978-3-319-96445-4_1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.
Collapse
|
33
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Ubiquitously-expressed small GTPase Rap1 is a key modulator of integrin- and cadherin-regulated processes. In endothelium, Rap1 promotes angiogenesis and endothelial barrier function, acting downstream from cAMP-activated Rap1GEF, Epac. Recent in-vivo studies in mouse models have provided more information about the physiological role of Rap1 in vessel development and after birth under normal and pathologic conditions. Important molecular details of dynamic regulation of endothelial barrier are uncovered. RECENT FINDINGS Rap1 is not essential for initial vessel formation but is critical for vessel stabilization, as double knockout of the two Rap1 isoforms leads to hemorrhage and embryonic lethality. After development, Rap1 is not required for endothelial barrier maintenance but is critical for nitric oxide production and endothelial function. Radil and Afadin mediate Rap1 effects on endothelial barrier function by regulating connection with Rho GTPases, actomyosin cytoskeleton, and cell-cell adhesion receptors. SUMMARY Rap1 is critically required for nitric oxide release and normal endothelial function in vivo. Mechanistic studies lead to a novel paradigm of Rap1 as a critical regulator of endothelial cell shear stress responses and endothelial homeostasis. Increased understanding of molecular mechanisms underlying endothelial barrier regulation may identify novel pharmacological targets for retinopathies and conditions with altered endothelial barrier function or when increased endothelial barrier is desired.
Collapse
|
35
|
Abstract
Endothelial cells line blood vessels and provide a dynamic interface between the blood and tissues. They remodel to allow leukocytes, fluid and small molecules to enter tissues during inflammation and infections. Here we compare the signaling networks that contribute to endothelial permeability and leukocyte transendothelial migration, focusing particularly on signals mediated by small GTPases that regulate cell adhesion and the actin cytoskeleton. Rho and Rap GTPase signaling is important for both processes, but they differ in that signals are activated locally under leukocytes, whereas endothelial permeability is a wider event that affects the whole cell. Some molecules play a unique role in one of the two processes, and could therefore be targeted to selectively alter either endothelial permeability or leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Camilla Cerutti
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
36
|
Doggett TM, Alves NG, Yuan SY, Breslin JW. Sphingosine-1-Phosphate Treatment Can Ameliorate Microvascular Leakage Caused by Combined Alcohol Intoxication and Hemorrhagic Shock. Sci Rep 2017; 7:4078. [PMID: 28642485 PMCID: PMC5481382 DOI: 10.1038/s41598-017-04157-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/10/2017] [Indexed: 11/09/2022] Open
Abstract
Fluid resuscitation following hemorrhagic shock is often problematic, with development of prolonged hypotension and edema. In addition, many trauma patients are also intoxicated, which generally worsens outcomes. We directly investigated how alcohol intoxication impacts hemorrhagic shock and resuscitation-induced microvascular leakage using a rat model with intravital microscopic imaging. We also tested the hypothesis that an endothelial barrier-protective bioactive lipid, sphingosine-1-phosphate (S1P), could ameliorate the microvascular leakage following alcohol intoxication plus hemorrhagic shock and resuscitation. Our results show that alcohol intoxication exacerbated hemorrhagic shock and resuscitation-induced hypotension and microvascular leakage. We next found that S1P effectively could reverse alcohol-induced endothelial barrier dysfunction using both cultured endothelial cell monolayer and in vivo models. Lastly, we observed that S1P administration ameliorated hypotension and microvascular leakage following combined alcohol intoxication and hemorrhagic shock, in a dose-related manner. These findings suggest the viability of using agonists that can improve microvascular barrier function to ameliorate trauma-induced hypotension, offering a novel therapeutic opportunity for potentially improving clinical outcomes in patients with multi-hit injuries.
Collapse
Affiliation(s)
- Travis M Doggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
37
|
Zeng Y. Endothelial glycocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signalling. J Cell Mol Med 2017; 21:1457-1462. [PMID: 28211170 PMCID: PMC5542909 DOI: 10.1111/jcmm.13081] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
The glycocalyx covers the human mammalian cells and plays important roles in stroke, inflammation and atherosclerosis. It has also been shown to be involved in endothelial mechanotransduction of shear stress. Shear stress induces the remodelling of the major component of the glycocalyx including glypican‐1, a cell membrane heparan sulphate proteoglycan. Other factors, such as sphingosine‐1‐phosphate (S1P), protect the glycocalyx against syndecan‐1 ectodomain shedding and induce the synthesis of heparan sulphate. In this study, we reviewed the role of shear stress and S1P in glycocalyx remodelling and revealed that the glycocalyx is a critical signalling platform, integrating the extracellular haemodynamic forces and chemical signalling, such as S1P, for determining the fate of endothelial cells and vascular diseases. This review integrated our current understanding of the structure and function of the glycocalyx and provided new insight into the role of the glycocalyx that might be helpful for investigating the underlying biological mechanisms in certain human diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Kopperud RK, Rygh CB, Karlsen TV, Krakstad C, Kleppe R, Hoivik EA, Bakke M, Tenstad O, Selheim F, Lidén Å, Madsen L, Pavlin T, Taxt T, Kristiansen K, Curry FRE, Reed RK, Døskeland SO. Increased microvascular permeability in mice lacking Epac1 (Rapgef3). Acta Physiol (Oxf) 2017; 219:441-452. [PMID: 27096875 PMCID: PMC5073050 DOI: 10.1111/apha.12697] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Aim Maintenance of the blood and extracellular volume requires tight control of endothelial macromolecule permeability, which is regulated by cAMP signalling. This study probes the role of the cAMP mediators rap guanine nucleotide exchange factor 3 and 4 (Epac1 and Epac2) for in vivo control of microvascular macromolecule permeability under basal conditions. Methods Epac1−/− and Epac2−/− C57BL/6J mice were produced and compared with wild‐type mice for transvascular flux of radio‐labelled albumin in skin, adipose tissue, intestine, heart and skeletal muscle. The transvascular leakage was also studied by dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) using the MRI contrast agent Gadomer‐17 as probe. Results Epac1−/− mice had constitutively increased transvascular macromolecule transport, indicating Epac1‐dependent restriction of baseline permeability. In addition, Epac1−/− mice showed little or no enhancement of vascular permeability in response to atrial natriuretic peptide (ANP), whether probed with labelled albumin or Gadomer‐17. Epac2−/− and wild‐type mice had similar basal and ANP‐stimulated clearances. Ultrastructure analysis revealed that Epac1−/− microvascular interendothelial junctions had constitutively less junctional complex. Conclusion Epac1 exerts a tonic inhibition of in vivo basal microvascular permeability. The loss of this tonic action increases baseline permeability, presumably by reducing the interendothelial permeability resistance. Part of the action of ANP to increase permeability in wild‐type microvessels may involve inhibition of the basal Epac1‐dependent activity.
Collapse
Affiliation(s)
- R. K. Kopperud
- Department of Biomedicine; University of Bergen; Bergen Norway
- Centre for Cancer Biomarkers (CCBIO); University of Bergen; Bergen Norway
| | - C. Brekke Rygh
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - T. V. Karlsen
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - C. Krakstad
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - R. Kleppe
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - E. A. Hoivik
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - M. Bakke
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - O. Tenstad
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - F. Selheim
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - Å. Lidén
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - L. Madsen
- Department of Biomedicine; University of Bergen; Bergen Norway
- Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - T. Pavlin
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - T. Taxt
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - K. Kristiansen
- Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - F.-R. E. Curry
- Department of Physiology and Membrane Biology; School of Medicine; University of California; Davis CA USA
| | - R. K. Reed
- Department of Biomedicine; University of Bergen; Bergen Norway
- Centre for Cancer Biomarkers (CCBIO); University of Bergen; Bergen Norway
| | - S. O. Døskeland
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
39
|
|
40
|
Bigaud M, Dincer Z, Bollbuck B, Dawson J, Beckmann N, Beerli C, Fishli-Cavelti G, Nahler M, Angst D, Janser P, Otto H, Rosner E, Hersperger R, Bruns C, Quancard J. Pathophysiological Consequences of a Break in S1P1-Dependent Homeostasis of Vascular Permeability Revealed by S1P1 Competitive Antagonism. PLoS One 2016; 11:e0168252. [PMID: 28005953 PMCID: PMC5179015 DOI: 10.1371/journal.pone.0168252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
RATIONAL Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist. RESULTS NIBR-0213 was tolerated at the efficacious oral dose of 30 mg/kg BID in the rat adjuvant-induced arthritis (AiA) model, with no sign of labored breathing. However, it induced dose-dependent acute vascular pulmonary leakage and pleural effusion that fully resolved within 3-4 days, as evidenced by MRI monitoring. At the supra-maximal oral dose of 300 mg/kg QD, NIBR-0213 impaired lung function (with increased breathing rate and reduced tidal volume) within the first 24 hrs. Two weeks of NIBR-0213 oral dosing at 30, 100 and 300 mg/kg QD induced moderate pulmonary changes, characterized by alveolar wall thickening, macrophage accumulation, fibrosis, micro-hemorrhage, edema and necrosis. In addition to this picture of chronic inflammation, perivascular edema and myofiber degeneration observed in the heart were also indicative of vascular leakage and its consequences. CONCLUSIONS Overall, these observations suggest that, in the rat, the lung is the main target organ for the S1P1 competitive antagonism-induced acute vascular leakage, which appears first as transient and asymptomatic but could lead, upon chronic dosing, to lung remodeling with functional impairments. Hence, this not only raises the question of organ specificity in the homeostasis of vascular barriers, but also provides insight into the pre-clinical evaluation of a potential safety window for S1P1 competitive antagonists as drug candidates.
Collapse
MESH Headings
- Adjuvants, Immunologic/toxicity
- Aniline Compounds/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/physiopathology
- Capillary Permeability/drug effects
- Cells, Cultured
- Dipeptides/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Homeostasis/drug effects
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/physiopathology
- Lung/drug effects
- Lung/pathology
- Lysophospholipids/metabolism
- Male
- Rats
- Rats, Inbred Lew
- Rats, Wistar
- Receptors, Lysosphingolipid/antagonists & inhibitors
- Signal Transduction/drug effects
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
Collapse
Affiliation(s)
- Marc Bigaud
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
- * E-mail:
| | - Zuhal Dincer
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Birgit Bollbuck
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Janet Dawson
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Nicolau Beckmann
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Christian Beerli
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Gina Fishli-Cavelti
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Michaela Nahler
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Daniela Angst
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Philipp Janser
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Heike Otto
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Elisabeth Rosner
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Rene Hersperger
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Christian Bruns
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Jean Quancard
- Novartis Institutes for Biomedical Research, Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| |
Collapse
|
41
|
Davies MJ, Russell-Jones D, Selam JL, Bailey TS, Kerényi Z, Luo J, Bue-Valleskey J, Iványi T, Hartman ML, Jacobson JG, Jacober SJ. Basal insulin peglispro versus insulin glargine in insulin-naïve type 2 diabetes: IMAGINE 2 randomized trial. Diabetes Obes Metab 2016; 18:1055-1064. [PMID: 27349219 PMCID: PMC5096014 DOI: 10.1111/dom.12712] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023]
Abstract
AIMS To compare, in a double-blind, randomized, multi-national study, 52- or 78-week treatment with basal insulin peglispro or insulin glargine, added to pre-study oral antihyperglycaemic medications, in insulin-naïve adults with type 2 diabetes. MATERIAL AND METHODS The primary outcome was non-inferiority of peglispro to glargine with regard to glycated haemoglobin (HbA1c) reduction (margin = 0.4%). Six gated secondary objectives with statistical multiplicity adjustments focused on other measures of glycaemic control and safety. Liver fat content was measured using MRI, in a subset of patients. RESULTS Peglispro was non-inferior to glargine in HbA1c reduction [least-squares (LS) mean difference: -0.29%, 95% confidence interval (CI) -0.40, -0.19], and had a lower nocturnal hypoglycaemia rate [relative rate 0.74 (95% CI 0.60, 0.91); p = .005), more patients achieving HbA1c <7.0% without nocturnal hypoglycaemia [odds ratio (OR) 2.15 (95% CI 1.60, 2.89); p < .001], greater HbA1c reduction (p < .001), and more patients achieving HbA1c<7.0% [OR 1.97 (95% CI 1.57, 2.47); p < .001]. Total hypoglycaemia rate and fasting serum glucose did not achieve statistical superiority. At 52 weeks, peglispro-treated patients had higher triglyceride (1.9 vs 1.7 mmol/L). alanine transaminase (34 vs 27 IU/L), and aspartate transaminase levels (27 vs 24 IU/L). LS mean liver fat content was unchanged with peglispro at 52 weeks but decreased 3.1% with glargine [difference: 2.6% (0.9, 4.2); p = .002]. More peglispro-treated patients experienced adverse injection site reactions (3.5% vs 0.6%, p < .001). CONCLUSIONS Compared with glargine at 52 weeks, peglispro resulted in a statistically superior reduction in HbA1c, more patients achieving HbA1c targets, less nocturnal hypoglycaemia, no improvement in total hypoglycaemia, higher triglyceride levels, higher aminotransferase levels, and more injection site reactions.
Collapse
Affiliation(s)
- M J Davies
- Department of Health Sciences, Diabetes Research Centre, University of Leicester, Leicester, UK
| | - D Russell-Jones
- Department of Endocrinology and Diabetes, Royal Surrey County Hospital, Guildford, UK
| | - J-L Selam
- Diabetes Research Center, Tustin, California
| | | | - Z Kerényi
- Csepel Health Service, Budapest, Hungary
| | - J Luo
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - T Iványi
- Eli Lilly and Company, Budapest, Hungary
| | - M L Hartman
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - S J Jacober
- Eli Lilly and Company, Indianapolis, Indiana.
| |
Collapse
|
42
|
Curry FRE. Drug delivery: Redefining tumour vascular barriers. NATURE NANOTECHNOLOGY 2016; 11:494-496. [PMID: 26878144 DOI: 10.1038/nnano.2016.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
43
|
EPAC1 promotes adaptive responses in human arterial endothelial cells subjected to low levels of laminar fluid shear stress: Implications in flow-related endothelial dysfunction. Cell Signal 2016; 28:606-19. [DOI: 10.1016/j.cellsig.2016.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/18/2022]
|
44
|
Zhang XE, Adderley SP, Breslin JW. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement. PLoS One 2016; 11:e0155490. [PMID: 27187066 PMCID: PMC4871357 DOI: 10.1371/journal.pone.0155490] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/30/2016] [Indexed: 12/19/2022] Open
Abstract
Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P)-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC) or human dermal microvascular endothelial cells (HDMEC) were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER) using an electrical cell-substrate impedance sensor (ECIS). The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET) biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.
Collapse
Affiliation(s)
- Xun E. Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
45
|
Curry FRE, Clark JF, Adamson RH. Microperfusion Technique to Investigate Regulation of Microvessel Permeability in Rat Mesentery. J Vis Exp 2015. [PMID: 26436435 DOI: 10.3791/53210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Experiments to measure the permeability properties of individually perfused microvessels provide a bridge between investigation of molecular and cellular mechanisms regulating vascular permeability in cultured endothelial cell monolayers and the functional exchange properties of whole microvascular beds. A method to cannulate and perfuse venular microvessels of rat mesentery and measure the hydraulic conductivity of the microvessel wall is described. The main equipment needed includes an intravital microscope with a large modified stage that supports micromanipulators to position three different microtools: (1) a beveled glass micropipette to cannulate and perfuse the microvessel; (2) a glass micro-occluder to transiently block perfusion and enable measurement of transvascular water flow movement at a measured hydrostatic pressure, and (3) a blunt glass rod to stabilize the mesenteric tissue at the site of cannulation. The modified Landis micro-occlusion technique uses red cells suspended in the artificial perfusate as markers of transvascular fluid movement, and also enables repeated measurements of these flows as experimental conditions are changed and hydrostatic and colloid osmotic pressure difference across the microvessels are carefully controlled. Measurements of hydraulic conductivity first using a control perfusate, then after re-cannulation of the same microvessel with the test perfusates enable paired comparisons of the microvessel response under these well-controlled conditions. Attempts to extend the method to microvessels in the mesentery of mice with genetic modifications expected to modify vascular permeability were severely limited because of the absence of long straight and unbranched microvessels in the mouse mesentery, but the recent availability of the rats with similar genetic modifications using the CRISPR/Cas9 technology is expected to open new areas of investigation where the methods described herein can be applied.
Collapse
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology & Membrane Biology, University of California Davis
| | - Joyce F Clark
- Department of Physiology & Membrane Biology, University of California Davis
| | - Roger H Adamson
- Department of Physiology & Membrane Biology, University of California Davis;
| |
Collapse
|
46
|
Zeng Y, Liu XH, Tarbell J, Fu B. Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Exp Cell Res 2015; 339:90-5. [PMID: 26364737 DOI: 10.1016/j.yexcr.2015.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/15/2015] [Accepted: 08/20/2015] [Indexed: 01/14/2023]
Abstract
Sphingosine 1-phosphate (S1P) protects glycocalyx against shedding, playing important roles in endothelial functions. We previously found that glycocalyx on endothelial cells (ECs) was shed after plasma protein depletion. In the present study, we investigated the role of S1P on the recovery of glycocalyx, and tested whether it is mediated by phosphoinositide 3-kinase (PI3K) pathway. After depletion of plasma protein, ECs were treated with S1P for another 6h. And then, the major components of glycocalyx including syndecan-1 with attached heparan sulfate (HS) and chondroitin sulfate (CS) on endothelial cells were detected using confocal fluorescence microscopy. Role of PI3K in the S1P-induced synthesis of glycocalyx was confirmed by using the PI3K inhibitor (LY294002). Syndecan-1 with attached HS and CS were degraded with duration of plasma protein depletion. S1P induced recovery of syndecan-1 with attached HS and CS. The PI3K inhibitor LY294002 abolished the effect of S1P on recovery of glycocalyx. Thus, S1P induced synthesis of glycocalyx on endothelial cells and it is mediated by PI3K pathway.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, China.
| | - Xiao-Heng Liu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, China
| | - John Tarbell
- Department of Biomedical Engineering, The City College of New York, United States of America
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of New York, United States of America
| |
Collapse
|
47
|
Kruse C, Kurz ARM, Pálfi K, Humbert PO, Sperandio M, Brandes RP, Fork C, Michaelis UR. Polarity Protein Scrib Facilitates Endothelial Inflammatory Signaling. Arterioscler Thromb Vasc Biol 2015. [PMID: 26205961 DOI: 10.1161/atvbaha.115.305678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The polarity protein Scrib is highly expressed in endothelial cells and is required for planar cell polarity. Scrib also facilitates recycling of integrin α5 to the plasma membrane. Because integrin α5 signals the presence of the inflammatory matrix protein fibronectin, we hypothesized that Scrib contributes to endothelial inflammatory signaling. APPROACH AND RESULTS Cytokine treatment of human umbilical vein endothelial cells induced an inflammatory response as evident by the induction of vascular cell adhesion molecule-1 (VCAM-1). Downregulation of Scrib greatly attenuated this effect. In endothelial-specific conditional Scrib knockout mice, in vivo lipopolysaccharide treatment resulted in an impaired VCAM-1 induction. These effects were functionally relevant because Scrib small interfering RNAs in human umbilical vein endothelial cells attenuated the VCAM-1-mediated leukocyte adhesion in response to tumor necrosis factor-α. In vivo, tamoxifen-induced endothelial-specific deletion of Scrib resulted in a reduced VCAM-1-mediated leukocyte adhesion in response to tumor necrosis factor-α in the mouse cremaster model. This effect was specific for Scrib and not mediated by other polarity proteins. Moreover, it did not involve integrin α5 or classic pathways supporting inflammatory signaling, such as nuclear factor κ light chain enhancer of activated B-cells or MAP kinases. Co-immunoprecipitation/mass spectrometry identified the zinc finger transcription factor GATA-like protein-1 as a novel Scrib interacting protein. Small interfering RNA depletion of GATA-like protein-1 decreased the tumor necrosis factor-α-stimulated VCAM-1 induction to a similar extent as loss of Scrib did. Silencing of Scrib reduced GATA-like protein-1 protein, but not mRNA abundance. CONCLUSIONS Scrib is a novel proinflammatory regulator in endothelial cells, which maintains the protein expression of GATA-like protein-1.
Collapse
Affiliation(s)
- Christoph Kruse
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.)
| | - Angela R M Kurz
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.)
| | - Katalin Pálfi
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.)
| | - Patrick O Humbert
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.)
| | - Markus Sperandio
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.)
| | - Ralf P Brandes
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.).
| | - Christian Fork
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.)
| | - U Ruth Michaelis
- From the Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany (C.K., K.P., R.P.B., C.F., U.R.M.); Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians University, Munich, Germany (A.R.M.K., M.S.); Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, and Sir Peter MacCallum Department of Oncology, Department of Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia (P.O.H.); and DZHK (German Centre for Cardiovascular Research), partner sites Rhine-Main and Munich, Germany (C.K., A.R.M.K., K.P., M.S., R.P.B., C.F., U.R.M.)
| |
Collapse
|
48
|
Abstract
The small G-protein Rap1 plays an important role in the regulation of endothelial barrier function, a process controlled largely by cell–cell adhesions and their connection to the actin cytoskeleton. During the various stages of barrier dynamics, different guanine nucleotide exchange factors (GEFs) control Rap1 activity, indicating that Rap1 integrates multiple input signals. Once activated, Rap1 induces numerous signaling cascades, together responsible for the increased endothelial barrier function. Most notably, Rap1 activation results in the inhibition of Rho to decrease radial stress fibers and the activation of Cdc42 to increase junctional actin. This implies that Rap regulates endothelial barrier function by dual control of cytoskeletal tension. The molecular details of the signaling pathways are becoming to be elucidated.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research and Cancer Genomics Netherlands; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Anneke Post
- Molecular Cancer Research and Cancer Genomics Netherlands; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Johannes L Bos
- Molecular Cancer Research and Cancer Genomics Netherlands; University Medical Center Utrecht; Utrecht, The Netherlands
| |
Collapse
|
49
|
Persson PB. The multiple functions of the endothelium: more than just wallpaper. Acta Physiol (Oxf) 2015; 213:747-9. [PMID: 25683245 DOI: 10.1111/apha.12464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
50
|
Breslin JW, Zhang XE, Worthylake RA, Souza-Smith FM. Involvement of local lamellipodia in endothelial barrier function. PLoS One 2015; 10:e0117970. [PMID: 25658915 PMCID: PMC4320108 DOI: 10.1371/journal.pone.0117970] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/06/2015] [Indexed: 01/15/2023] Open
Abstract
Recently we observed that endothelial cells cultured in tightly confluent monolayers display frequent local lamellipodia, and that thrombin, an agent that increases endothelial permeability, reduces lamellipodia protrusions. This led us to test the hypothesis that local lamellipodia contribute to endothelial barrier function. Movements of subcellular structures containing GFP-actin or VE-cadherin-GFP expressed in endothelial cells were recorded using time-lapse microscopy. Transendothelial electrical resistance (TER) served as an index of endothelial barrier function. Changes in both lamellipodia dynamics and TER were assessed during baseline and after cells were treated with either the barrier-disrupting agent thrombin, or the barrier-stabilizing agent sphingosine-1-phosphate (S1P). The myosin II inhibitor blebbistatin was used to selectively block lamellipodia formation, and was used to test their role in the barrier function of endothelial cell monolayers and isolated, perfused rat mesenteric venules. Myosin light chain (MLC) phosphorylation was assessed by immunofluorescence microscopy. Rac1 and RhoA activation were evaluated using G-LISA assays. The role of Rac1 was tested with the specific inhibitor NSC23766 or by expressing wild-type or dominant negative GFP-Rac1. The results show that thrombin rapidly decreased both TER and the lamellipodia protrusion frequency. S1P rapidly increased TER in association with increased protrusion frequency. Blebbistatin nearly abolished local lamellipodia protrusions while cortical actin fibers and stress fibers remained intact. Blebbistatin also significantly decreased TER of cultured endothelial cells and increased permeability of isolated rat mesenteric venules. Both thrombin and S1P increased MLC phosphorylation and activation of RhoA. However, thrombin and S1P had differential impacts on Rac1, correlating with the changes in TER and lamellipodia protrusion frequency. Overexpression of Rac1 elevated, while NSC23766 and dominant negative Rac1 reduced barrier function and lamellipodia activity. Combined, these data suggest that local lamellipodia, driven by myosin II and Rac1, are important for dynamic changes in endothelial barrier integrity.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| | - Xun E. Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Rebecca A. Worthylake
- Department of Pharmacology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Flavia M. Souza-Smith
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|