1
|
Liu L, Liu Y, Sun Y, Lu X, Ji Y, Zhao X, Li J, Liu C. The changes in the ratio of Dicer1 transcripts can participate in the neuronal hypoxic response by regulating miR-29b. Cereb Cortex 2025:bhae490. [PMID: 39756430 DOI: 10.1093/cercor/bhae490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
The nervous system is highly dependent on the supply of oxygen and nutrients, so when demand for oxygen exceeds its supply, hypoxia is induced. The hippocampus is very important in the nervous system. It has the ability to control human behavior, memory, emotion, and so on. Therefore, when the hippocampus is damaged by hypoxia, it may cause nervous system diseases such as Alzheimer's disease, Parkinson's disease, and stroke. Alternative splicing plays an important regulatory role in the processes of growth and disease occurrence and development. However, the function of hypoxia-induced alternative splicing in neurological diseases needs to be further studied. Therefore, we performed hypoxia stress on mouse hippocampal neuron HT22 cells and then analyzed differentially expressed genes and differential alternative splicing events by next-generation sequencing. Through bioinformatics analysis and verification, it was found that hypoxia stress regulated the expression of Rbm15 and the ratio of Dicer1 transcripts in HT22 cells. The change in the ratio of Dicer1 transcripts may be related to the upregulation of miR-29b under hypoxia stress. This study can provide multiple time point sequencing results and a theoretical basis for the study of hypoxia-related gene alternative splicing.
Collapse
Affiliation(s)
- Linan Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| | - Yingxin Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| | - Yongfeng Sun
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| | - Xian Lu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| | - Yong Ji
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| | - Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| | - Jun Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, No. 7, Aerding Street, Kundulun District, Baotou 014010, China
| |
Collapse
|
2
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Wang Y, Chen Y, Li Z, Tang L, Wen D, Wu Y, Guo Z. Electroacupuncture enhances cerebral blood perfusion by inhibiting HIF-1α in rat subarachnoid hemorrhage. Brain Res 2024; 1839:149010. [PMID: 38763503 DOI: 10.1016/j.brainres.2024.149010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Cerebral blood perfusion (CBP) reduction is a prevalent complication following subarachnoid hemorrhage (SAH) in clinical practice, often associated with long-term cognitive impairment and prognosis. Electroacupuncture (EA), a widely utilized traditional Chinese therapy for central nervous system disorders, has demonstrated promising therapeutic effects. This study aims to investigate the therapeutic potential of EA in restoring CBP in SAH rats and to explore the mechanisms involving HIF-1α in this process. METHODS Rats were randomly assigned to one of five groups, including Sham, SAH, EA, EA + Saline, and EA + dimethyloxallyl glycine (DMOG) groups. EA treatment was administered for 10 min daily, while DMOG were intraperitoneally injected. Behavioral tests, cerebral blood flow monitoring, vascular thickness measurement, western blotting, and immunofluorescence staining were conducted to assess the therapeutic effects of EA on cerebral blood flow. RESULTS SAH resulted in elevated levels of HIF-1α, endothelin (ET), ICAM-1, P-SELECTIN, E-SELECTIN, and decreased level of eNOS in the brain. This led to cerebral vasospasm, decreased CBF, and cognitive deficits in the rat SAH model. EA intervention downregulated the expression of HIF-1α, ET, ICAM-1, P-SELECTIN, and E-SELECTIN, while increasing eNOS expression. This alleviated cerebral vasospasm, restored CBF, and improved cognitive function. However, the administration of the HIF-1α stabilizer (DMOG) counteracted the therapeutic effects of EA. CONCLUSION EA promotes the recovery of cerebral blood flow after SAH injury, attenuates cerebral vasospasm, and accelerates the recovery of cognitive dysfunction, and its mechanism of action may be related to the inhibition of the HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao Li
- Emergency Department, Chengdu First People's Hospital, Chengdu, Sichuan Province, China.
| | - Liuyang Tang
- Department of Neurosurgery, The People's Hospital of Qijiang District, 401420, China
| | - Daochen Wen
- Department of Neurosurgery, Xuanhan County People's Hospital, Dazhou, China.
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Moreton N, Puzio M, McCormack J, O'Connor JJ. The effects of prolyl hydroxylase inhibition during and post, hypoxia, oxygen glucose deprivation and oxidative stress, in isolated rat hippocampal slices. Brain Res Bull 2023; 205:110822. [PMID: 37984622 DOI: 10.1016/j.brainresbull.2023.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The contributions of hypoxia and oxidative stress to the pathophysiology of acute ischemic stroke are well established and can lead to disruptions in synaptic signaling. Hypoxia and oxidative stress lead to the neurotoxic overproduction of reactive oxygen species (ROS) and the stabilization of hypoxia inducible factors (HIF). Compounds such as prolyl-4-hydroxylase domain enzyme inhibitors (PHDIs) have been shown to have a preconditioning and neuroprotective effect against ischemic insults such as hypoxia, anoxia, oxygen glucose deprivation (OGD) or H2O2. Therefore, this study explored the effects of two PHDIs, JNJ-42041935 (10 µM) and roxadustat (100 µM) on cell viability using organotypic hippocampal slice cultures. We also assessed the effects of these compounds on synaptic transmission during and post hypoxia, OGD and H2O2 application in isolated rat hippocampal slices using field recording electrophysiological techniques and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit trafficking using immunohistochemistry. Our organotypic data demonstrated a protective role for both inhibitors, where slices had significantly less cell death post anoxia and OGD compared to controls. We also report a distinct modulatory role for both JNJ-42041935 and roxadustat on fEPSP slope post hypoxia and OGD but not H2O2. In addition, we report that application of roxadustat impaired long-term potentiation, but only when applied post-hypoxia. This inhibitory effect was not reversed with co-application of the cyclin-dependent kinase 5 (CDK-5) inhibitor, roscovitine (10 µM), suggesting a CDK-5 independent synaptic AMPAR trafficking mechanism. Both hypoxia and OGD induced a reduction in synaptic AMPA GluA2 subunits, the OGD effect being reversed by prior treatment with both JNJ-42041935 and roxadustat. These results suggest an important role for PHDs in synaptic signaling and plasticity during episodes of ischemic stress.
Collapse
Affiliation(s)
- Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martina Puzio
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Janet McCormack
- UCD Research Pathology Core, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Yuan M, Feng Y, Zhao M, Xu T, Li L, Guo K, Hou D. Identification and verification of genes associated with hypoxia microenvironment in Alzheimer's disease. Sci Rep 2023; 13:16252. [PMID: 37759083 PMCID: PMC10533856 DOI: 10.1038/s41598-023-43595-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
As the incidence of Alzheimer's disease (AD) increases year by year, more people begin to study this disease. In recent years, many studies on reactive oxygen species (ROS), neuroinflammation, autophagy, and other fields have confirmed that hypoxia is closely related to AD. However, no researchers have used bioinformatics methods to study the relationship between AD and hypoxia. Therefore, our study aimed to screen the role of hypoxia-related genes in AD and clarify their diagnostic significance. A total of 7681 differentially expressed genes (DEGs) were identified in GSE33000 by differential expression analysis and cluster analysis. Weighted gene co-expression network analysis (WGCNA) was used to detect 9 modules and 205 hub genes with high correlation coefficients. Next, machine learning algorithms were applied to 205 hub genes and four key genes were selected. Through the verification of external dataset and quantitative real-time PCR (qRT-PCR), the AD diagnostic model was established by ANTXR2, BDNF and NFKBIA. The bioinformatics analysis results suggest that hypoxia-related genes may increase the risk of AD. However, more in-depth studies are still needed to investigate their association, this article would guide the insights and directions for further research.
Collapse
Affiliation(s)
- Mingyang Yuan
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Yanjin Feng
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Mingri Zhao
- School of Life Sciences, Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410000, China
| | - Ting Xu
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Liuhong Li
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Ke Guo
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Deren Hou
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China.
| |
Collapse
|
6
|
Yang R, Li Z, Xu J, Luo J, Qu Z, Chen X, Yu S, Shu H. Role of hypoxic exosomes and the mechanisms of exosome release in the CNS under hypoxic conditions. Front Neurol 2023; 14:1198546. [PMID: 37786863 PMCID: PMC10541965 DOI: 10.3389/fneur.2023.1198546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023] Open
Abstract
Hypoxia is characterized by low oxygen levels in the body or environment, resulting in various physiological and pathological changes. The brain, which has the highest oxygen consumption of any organ, is particularly susceptible to hypoxic injury. Exposure to low-pressure hypoxic environments can cause irreversible brain damage. Hypoxia can occur in healthy individuals at high altitudes or in pathological conditions such as trauma, stroke, inflammation, and autoimmune and neurodegenerative diseases, leading to severe brain damage and impairments in cognitive, learning, and memory functions. Exosomes may play a role in the mechanisms of hypoxic injury and adaptation and are a current focus of research. Investigating changes in exosomes in the central nervous system under hypoxic conditions may aid in preventing secondary damage caused by hypoxia. This paper provides a brief overview of central nervous system injury resulting from hypoxia, and aimed to conduct a comprehensive literature review to assess the pathophysio-logical impact of exosomes on the central nervous system under hypoxic conditions.
Collapse
Affiliation(s)
- Rong Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Zheng Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jing Xu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Juan Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Zhichuang Qu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| |
Collapse
|
7
|
Xu S, Zhang N, Cao L, Liu L, Deng H, Hua S, Zhang Y. Tetramethylpyrazine Attenuates Oxygen-glucose Deprivation-induced Neuronal Damage through Inhibition of the HIF-1α/BNIP3 Pathway: from Network Pharmacological Finding to Experimental Validation. Curr Pharm Des 2023; 29:543-554. [PMID: 36790003 DOI: 10.2174/1381612829666230215100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 02/16/2023]
Abstract
AIMS A network pharmacological analysis combined with experimental validation was used to investigate the neuroprotective mechanism of the natural product Tetramethylpyrazine(TMP). BACKGROUND Protecting neurons is critical for acute ischemic stroke treatment. Tetramethylpyrazine is a bioactive component extracted from Chuanxiong. The neuroprotective potential of TMP has been reported, but a systematic analysis of its mechanism has not been performed. OBJECTIVE Based on the hints of network pharmacology and bioinformatics analysis, the mechanism by which TMP alleviates oxygen-glucose deprivation-induced neuronal damage through inhibition of the HIF-1α/BNIP3 pathway was verified. METHOD In this study, we initially used network pharmacology and bioinformatics analyses to elucidate the mechanisms involved in TMP's predictive targets on a system level. The HIF-1α/BNIP3 pathway mediating the cellular response to hypoxia and apoptosis was considered worthy of focus in the bioinformatic analysis. An oxygen-glucose deprivation (OGD)-induced PC12 cell injury model was established for functional and mechanical validation. Cell viability, lactate dehydrogenase leakage, intracellular reactive oxygen species, percentage of apoptotic cells, and Caspase-3 activity were determined to assess the TMP's protective effects. Transfection with siRNA/HIF-1α or pcDNA/HIF-1α plasmids to silence or overexpress hypoxia-inducible factor 1α(HIF-1α). The role of HIF-1α in OGD-injured cells was observed first. After that, TMP's regulation of the HIF-1α/BNIP3 pathway was investigated. The pcDNA3.1/HIF-1α-positive plasmids were applied in rescue experiments. RESULT The results showed that TMP dose-dependently attenuated OGD-induced cell injury. The expression levels of HIF-1α, BNIP3, and the Bax/Bcl-2 increased significantly with increasing OGD duration. Overexpression of HIF-1α decreased cell viability, increased BNIP3 expression, and Bax/Bcl-2 ratio; siRNA-HIF-1α showed the opposite effect. TMP treatment suppressed HIF-1α, BNIP3 expression, and the Bax/Bcl-2 ratio and was reversed by HIF-1α overexpression. CONCLUSION Our study shows that TMP protects OGD-damaged PC12 cells by inhibiting the HIF-1α/BNIP3 pathway, which provides new insights into the mechanism of TMP and its neuroprotective potential.
Collapse
Affiliation(s)
- Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Nannan Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Dongcheng District Community Health Service Management Center, Beijing, China
| | - Lanlan Cao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Lu Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM. Tian Jin, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shengyu Hua
- Institute of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Fabries P, Gomez-Merino D, Sauvet F, Malgoyre A, Koulmann N, Chennaoui M. Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia. Front Physiol 2022; 13:1046166. [PMID: 36579023 PMCID: PMC9792101 DOI: 10.3389/fphys.2022.1046166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In the course of their missions or training, alpinists, but also mountain combat forces and mountain security services, professional miners, aircrew, aircraft and glider pilots and helicopter crews are regularly exposed to altitude without oxygen supplementation. At altitude, humans are exposed to systemic environmental hypoxia induced by the decrease in barometric pressure (<1,013 hPa) which decreases the inspired partial pressure of oxygen (PIO2), while the oxygen fraction is constant (equal to approximately 20.9%). Effects of altitude on humans occur gradually and depend on the duration of exposure and the altitude level. From 1,500 m altitude (response threshold), several adaptive responses offset the effects of hypoxia, involving the respiratory and the cardiovascular systems, and the oxygen transport capacity of the blood. Fatigue and cognitive and sensory disorders are usually observed from 2,500 m (threshold of prolonged hypoxia). Above 3,500 m (the threshold for disorders), the effects are not completely compensated and maladaptive responses occur and individuals develop altitude headache or acute altitude illness [Acute Mountain Sickness (AMS)]. The magnitude of effects varies considerably between different physiological systems and exhibits significant inter-individual variability. In addition to comorbidities, the factors of vulnerability are still little known. They can be constitutive (genetic) or circumstantial (sleep deprivation, fatigue, speed of ascent.). In particular, sleep loss, a condition that is often encountered in real-life settings, could have an impact on the physiological and cognitive responses to hypoxia. In this review, we report the current state of knowledge on the impact of sleep loss on responses to environmental hypoxia in humans, with the aim of identifying possible consequences for AMS risk and cognition, as well as the value of behavioral and non-pharmacological countermeasures.
Collapse
Affiliation(s)
- Pierre Fabries
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,*Correspondence: Pierre Fabries,
| | - Danielle Gomez-Merino
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Fabien Sauvet
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Alexandra Malgoyre
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Nathalie Koulmann
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France
| | - Mounir Chennaoui
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| |
Collapse
|
9
|
Zironi I, Aicardi G. Hypoxia Depresses Synaptic Transmission in the Primary Motor Cortex of the Infant Rat-Role of Adenosine A 1 Receptors and Nitric Oxide. Biomedicines 2022; 10:2875. [PMID: 36359395 PMCID: PMC9687150 DOI: 10.3390/biomedicines10112875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 09/08/2024] Open
Abstract
The acute and long-term consequences of perinatal asphyxia have been extensively investigated, but only a few studies have focused on postnatal asphyxia. In particular, electrophysiological changes induced in the motor cortex by postnatal asphyxia have not been examined so far, despite the critical involvement of this cortical area in epilepsy. In this study, we exposed primary motor cortex slices obtained from infant rats in an age window (16-18 day-old) characterized by high incidence of hypoxia-induced seizures associated with epileptiform motor behavior to 10 min of hypoxia. Extracellular field potentials evoked by horizontal pathway stimulation were recorded in layers II/III of the primary motor cortex before, during, and after the hypoxic event. The results show that hypoxia reversibly depressed glutamatergic synaptic transmission and neuronal excitability. Data obtained in the presence of specific blockers suggest that synaptic depression was mediated by adenosine acting on pre-synaptic A1 receptors to decrease glutamate release, and by a nitric oxide (NO)/cGMP postsynaptic pathway. These effects are neuroprotective because they limit energy failure. The present findings may be helpful in the preclinical search for therapeutic strategies aimed at preventing acute and long-term neurological consequences of postnatal asphyxia.
Collapse
Affiliation(s)
- Isabella Zironi
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
10
|
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W, Jing W. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J 2022; 36:e22520. [PMID: 36065633 DOI: 10.1096/fj.202200329rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIFs) are core regulators of the hypoxia response. HIF signaling is activated in the local physiological and pathological hypoxic environment, acting on downstream target genes to synthesize the corresponding proteins and regulate the hypoxic stress response. HIFs belong to the hypoxia-activated transcription family and contain two heterodimeric transcription factors, HIF-α and HIF-β. Under hypoxia, the dimer formed by HIF-α binding to HIF-β translocates into the nucleus and binds to the hypoxia response element (HRE) to induce transcription of a series of genes. HIF-1α plays an important role in innate bone development and acquired bone regeneration. HIF-1α promotes bone regeneration mainly through the following two pathways: (1) By regulating angiogenesis-osteoblast coupling to promote bone regeneration; and (2) by inducing metabolic reprogramming in osteoblasts, promoting cellular anaerobic glycolysis, ensuring the energy supply of osteoblasts under hypoxic conditions, and further promoting bone regeneration and repair. This article reviews recent basic research on HIF-1α and its role in promoting osteogenesis, discusses the possible molecular mechanisms, introduces the hypoxia-independent role of HIF-1α and reviews the application prospects of HIF-1α in tissue engineering.
Collapse
Affiliation(s)
- Junming Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoning Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Baohua Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Chen H, Ma D, Yue F, Qi Y, Dou M, Cui L, Xing Y. The Potential Role of Hypoxia-Inducible Factor-1 in the Progression and Therapy of Central Nervous System Diseases. Curr Neuropharmacol 2022; 20:1651-1666. [PMID: 34325641 PMCID: PMC9881070 DOI: 10.2174/1570159x19666210729123137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimer protein composed of an oxygenregulated functional subunit, HIF-1α, and a structural subunit, HIF-1β, belonging to the basic helixloop- helix family. Strict regulation of HIF-1 protein stability and subsequent transcriptional activity involves various molecular interactions and is primarily controlled by post-transcriptional modifications. Hypoxia, owing to impaired cerebral blood flow, has been implicated in a range of central nervous system (CNS) diseases by exerting a deleterious effect on brain function. As a master oxygen- sensitive transcription regulator, HIF-1 is responsible for upregulating a wide spectrum of target genes involved in glucose metabolism, angiogenesis, and erythropoiesis to generate the adaptive response to avoid, or at least minimize, hypoxic brain injury. However, prolonged, severe oxygen deprivation may directly contribute to the role-conversion of HIF-1, namely, from neuroprotection to the promotion of cell death. Currently, an increasing number of studies support the fact HIF-1 is involved in a variety of CNS-related diseases, such as intracranial atherosclerosis, stroke, and neurodegenerative diseases. This review article chiefly focuses on the effect of HIF-1 on the pathogenesis and mechanism of progression of numerous CNS-related disorders by mediating the expression of various downstream genes and extensive biological functional events and presents robust evidence that HIF-1 may represent a potential therapeutic target for CNS-related diseases.
Collapse
Affiliation(s)
- Hongxiu Chen
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, China,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Feixue Yue
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yajie Qi
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Manman Dou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liuping Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingqi Xing
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Address correspondence to this author at the Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing Diagnostic Center of Vascular Ultrasound, Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, 45 Changchun Road, Xicheng District, Beijing, 100053, China; E-mail: This work is recommended by Pro Jiachun Feng, The First Hospital of Jilin University.
| |
Collapse
|
12
|
Tian Z, Ji X, Liu J. Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. Int J Mol Sci 2022; 23:ijms23116224. [PMID: 35682903 PMCID: PMC9181710 DOI: 10.3390/ijms23116224] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is a major heterogeneous brain disease caused by multiple factors, and it is the second most common type of dementia in the world. It is caused by long-term chronic low perfusion in the whole brain or local brain area, and it eventually develops into severe cognitive dysfunction syndrome. Because of the disease’s ambiguous classification and diagnostic criteria, there is no clear treatment strategy for VCID, and the association between cerebrovascular pathology and cognitive impairment is controversial. Neuroinflammation is an immunological cascade reaction mediated by glial cells in the central nervous system where innate immunity resides. Inflammatory reactions could be triggered by various damaging events, including hypoxia, ischemia, and infection. Long-term chronic hypoperfusion-induced ischemia and hypoxia can overactivate neuroinflammation, causing apoptosis, blood–brain barrier damage and other pathological changes, triggering or aggravating the occurrence and development of VCID. In this review, we will explore the mechanisms of neuroinflammation induced by ischemia and hypoxia caused by chronic hypoperfusion and emphasize the important role of neuroinflammation in the development of VCID from the perspective of immune cells, immune mediators and immune signaling pathways, so as to provide valuable ideas for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Zhengming Tian
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China;
| | - Xunming Ji
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China;
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
- Correspondence: (X.J.); (J.L.); Tel.: +86-13520729063 (J.L.)
| | - Jia Liu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China;
- Correspondence: (X.J.); (J.L.); Tel.: +86-13520729063 (J.L.)
| |
Collapse
|
13
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
14
|
Wielgat P, Narejko K, Car H. SARS-CoV-2 Attacks in the Brain: Focus on the Sialome. Cells 2022; 11:1458. [PMID: 35563764 PMCID: PMC9104523 DOI: 10.3390/cells11091458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
The epidemiological observations suggest that respiratory and gastrointestinal symptoms caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) are accompanied by short- and long-term neurological manifestations. There is increasing evidence that the neuroinvasive potential of SARS-CoV-2 is closely related to its capacity to interact with cell membrane sialome. Given the wide expression of sialylated compounds of cell membranes in the brain, the interplay between cell membrane sialoglycans and the virus is crucial for its attachment and cell entry, transport, neuronal damage and brain immunity. Here, we focus on the significance of the brain sialome in the progress of coronavirus disease 2019 (COVID-19) and SARS-CoV-2-induced neuropathology.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-265 Bialystok, Poland
| |
Collapse
|
15
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Ou G, Jiang X, Deng Y, Dong J, Xu W, Zhang X, Zhang J. Inhibition or Deletion of Hydroxylases-Prolyl-4-Hydroxyases 3 Alleviates Lipopolysaccharide-induced Neuroinflammation and Neurobehavioral Deficiency. Neuroscience 2022; 481:47-59. [PMID: 34801658 DOI: 10.1016/j.neuroscience.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
It is well known that neuroinflammation plays a key role in neurodegenerative diseases. Hypoxia-inducible factor (HIF) and its hydroxylases-Prolyl-4-hydroxyases (PHDs) have been found to modulate the inflammatory processes. Here, the effects of PHDs enzyme onlipopolysaccharide-induced neuroinflammation and neurocognitive deficits were investigated. BV2 microglia cells were stimulated by LPS (1 μg/ml) as neuroinflammation model in vitro. Dimethyloxalylglycine (DMOG, 100 μM) and PHD3-siRNA were used to suppress the expression of PHD3. In vivo, mice received consecutive intraperitoneal injection of LPS (500 μg/kg) for 7 days, and intraperitoneal injection of DMOG (100 mg/kg) was applied 1 h before LPS at the same days. Several neurobehavioral tests (Open field, Novel object recognition and Morris water maze) were used to measure cognitive function. RT-qPCR and Western blotting were used to investigate the expression of inflammatory cytokines, HIF-PHDs protein. Metabolic reprogramming was measured by seahorse method. The results revealed that LPS induced neuroinflammation and PHD3 expression in vivo and vitro. DMOG and PHD3knockout decreased expression of inflammatory cytokines and improved the metabolic reprogramming caused by LPS treatment. Furthermore, pretreatment of DMOG reversed learning and memory deficits in systemic LPS-exposed mice through anti-neuroinflammation, which is independent of DMOG angiogenesis. These findings suggested that PHD3 may mediate LPS-induced microglial activation and neuroinflammation-associated neurobehavioral deficits.
Collapse
Affiliation(s)
- Guoyao Ou
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jing Dong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Weilong Xu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiang Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China; Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
17
|
Wang X, Cui L, Ji X. Cognitive impairment caused by hypoxia: from clinical evidences to molecular mechanisms. Metab Brain Dis 2022; 37:51-66. [PMID: 34618295 DOI: 10.1007/s11011-021-00796-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Hypoxia is a state of reduced oxygen supply and excessive oxygen consumption. According to the duration of hypoxic period, it can be classified as acute and chronic hypoxia. Both acute and chronic hypoxia could induce abundant neurological deficits. Although there have been significant advances in the pathophysiological injuries, few studies have focused on the cognitive dysfunction. In this review, we focused on the clinical evidences and molecular mechanisms of cognitive impairment under acute and chronic hypoxia. Hypoxia can impair several cognitive domains such as attention, learning and memory, procession speed and executive function, which are similar in acute and chronic hypoxia. The severity of cognitive deficit correlates with the duration and degree of hypoxia. Recovery can be achieved after acute hypoxia, while sequelae or even dementia can be observed after chronic hypoxia, perhaps due to the different molecular mechanisms. Cardiopulmonary compensatory response, glycolysis, oxidative stress, calcium overload, adenosine, mitochondrial disruption, inflammation and excitotoxicity contribute to the molecular mechanisms of cognitive deficit after acute hypoxia. During the chronic stage of hypoxia, different adaptive responses, impaired neurovascular coupling, apoptosis, transcription factors-mediated inflammation, as well as Aβ accumulation and tau phosphorylation account for the neurocognitive deficit. Moreover, brain structural changes with hippocampus and cortex atrophy, ventricle enlargement, senile plaque and neurofibrillary tangle deposition can be observed under chronic hypoxia rather than acute hypoxia.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, No 45, Changchun Street, Beijing, 100053, Xicheng District, China.
| |
Collapse
|
18
|
Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther 2021; 27:1446-1457. [PMID: 34817133 PMCID: PMC8611781 DOI: 10.1111/cns.13754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.
Collapse
Affiliation(s)
- Gaifen Li
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|
20
|
Nouri-Vaskeh M, Sharifi A, Khalili N, Zand R, Sharifi A. Dyspneic and non-dyspneic (silent) hypoxemia in COVID-19: Possible neurological mechanism. Clin Neurol Neurosurg 2020; 198:106217. [PMID: 32947193 PMCID: PMC7480672 DOI: 10.1016/j.clineuro.2020.106217] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
SARS-CoV-2 mainly invades respiratory epithelial cells by adhesion to angiotensin-converting enzyme 2 (ACE-2) and thus, infected patients may develop mild to severe inflammatory responses and acute lung injury. Afferent impulses that result from the stimulation of pulmonary mechano-chemoreceptors, peripheral and central chemoreceptors by inflammatory cytokines are conducted to the brainstem. Integration and processing of these input signals occur within the central nervous system, especially in the limbic system and sensorimotor cortex, and importantly feedback regulation exists between O2, CO2, and blood pH. Despite the intensity of hypoxemia in COVID-19, the intensity of dyspnea sensation is inappropriate to the degree of hypoxemia in some patients (silent hypoxemia). We hypothesize that SARS-CoV-2 may cause neuronal damage in the corticolimbic network and subsequently alter the perception of dyspnea and the control of respiration. SARS-CoV-2 neuronal infection may change the secretion of numerous endogenous neuropeptides or neurotransmitters that distribute through large areas of the nervous system to produce cellular and perceptual effects. SARS-CoV-2 mainly enter to CNS via direct (neuronal and hematologic route) and indirect route. We theorize that SARS-CoV-2 infection-induced neuronal cell damage and may change the balance of endogenous neuropeptides or neurotransmitters that distribute through large areas of the nervous system to produce cellular and perceptual effects. Thus, SARS-CoV-2-associated neuronal damage may influence the control of respiration by interacting in neuromodulation. This would open up possible lines of study for the progress in the central mechanism of COVID-19-induced hypoxia. Future research is desirable to confirm or disprove such a hypothesis.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal, Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Sharifi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khalili
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal, Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Zand
- Department of Neurology, Neuroscience Institute, Geisinger Health System, Danville, PA, United States
| | - Akbar Sharifi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Sharma P, Tulsawani R. Ganoderma lucidum aqueous extract prevents hypobaric hypoxia induced memory deficit by modulating neurotransmission, neuroplasticity and maintaining redox homeostasis. Sci Rep 2020; 10:8944. [PMID: 32488040 PMCID: PMC7265456 DOI: 10.1038/s41598-020-65812-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 05/11/2020] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress due to hypobaric hypoxia at extreme altitudes causes severe neuronal damage and irreversible cognitive loss. Owing to contraindications of current drug therapies, the aim of the study was to investigate memory enhancing potential of aqueous extract of Ganoderma lucidum (GLAQ) and underlying neuroprotective mechanism using rat hypobaric hypoxia test model. Rats exposed to hypobaric hypoxia showed deranged spatial memory in morris water maze test with hippocampal damage and vasogenic cerebral edema. All these changes were prevented with GLAQ treatment. Blood and biochemical analysis revealed activation of hypoxic ventilatory response, red blood cells induction, reversal of electrolyte and redox imbalance, and restoration of cellular bioenergetic losses in GLAQ treated animals. Notably, GLAQ treatment ameliorated levels of neurotransmitters (catecholamines, serotonin, glutamate), prevented glucocorticoid and α-synuclein surge, improved neuroplasticity by upregulating CREB/p-CREB/BDNF expression via ERK1/ERK2 induction. Further, restoration of nuclear factor erythroid 2-related factor with stabilization of hypoxia inducible factors and inflammatory markers were evidenced in GLAQ treated rats which was additionally established in gene reporter array using an alternative HT22 cell test model. Conclusively, our studies provide novel insights into systemic to molecular level protective mechanism by GLAQ in combating hypobaric hypoxia induced oxidative stress and memory impairment.
Collapse
Affiliation(s)
- Purva Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajkumar Tulsawani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
22
|
Olson KR, Gao Y, DeLeon ER, Markel TA, Drucker N, Boone D, Whiteman M, Steiger AK, Pluth MD, Tessier CR, Stahelin RV. Extended hypoxia-mediated H 2 S production provides for long-term oxygen sensing. Acta Physiol (Oxf) 2020; 228:e13368. [PMID: 31442361 DOI: 10.1111/apha.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/23/2022]
Abstract
AIM Numerous studies have shown that H2 S serves as an acute oxygen sensor in a variety of cells. We hypothesize that H2 S also serves in extended oxygen sensing. METHODS Here, we compare the effects of extended exposure (24-48 hours) to varying O2 tensions on H2 S and polysulphide metabolism in human embryonic kidney (HEK 293), human adenocarcinomic alveolar basal epithelial (A549), human colon cancer (HTC116), bovine pulmonary artery smooth muscle, human umbilical-derived mesenchymal stromal (stem) cells and porcine tracheal epithelium (PTE) using sulphur-specific fluorophores and fluorometry or confocal microscopy. RESULTS All cells continuously produced H2 S in 21% O2 and H2 S production was increased at lower O2 tensions. Decreasing O2 from 21% to 10%, 5% and 1% O2 progressively increased H2 S production in HEK293 cells and this was partially inhibited by a combination of inhibitors of H2 S biosynthesis, aminooxyacetate, propargyl glycine and compound 3. Mitochondria appeared to be the source of much of this increase in HEK 293 cells. H2 S production in all other cells and PTE increased when O2 was lowered from 21% to 5% except for HTC116 cells where 1% O2 was necessary to increase H2 S, presumably reflecting the hypoxic environment in vivo. Polysulphides (H2 Sn , where n = 2-7), the key signalling metabolite of H2 S also appeared to increase in many cells although this was often masked by high endogenous polysulphide concentrations. CONCLUSION These results show that cellular H2 S is increased during extended hypoxia and they suggest this is a continuously active O2 -sensing mechanism in a variety of cells.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Indiana University School of Medicine‐South Bend South Bend Indiana
| | - Yan Gao
- Indiana University School of Medicine‐South Bend South Bend Indiana
| | - Eric R. DeLeon
- Indiana University School of Medicine‐South Bend South Bend Indiana
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana
| | - Troy A. Markel
- Indiana University School of Medicine Riley Hospital for Children at IU Health Indianapolis Indiana
| | - Natalie Drucker
- Indiana University School of Medicine Riley Hospital for Children at IU Health Indianapolis Indiana
| | - David Boone
- Indiana University School of Medicine‐South Bend South Bend Indiana
| | | | - Andrea K. Steiger
- Department of Chemistry and Biochemistry University of Oregon Eugene Oregon
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry University of Oregon Eugene Oregon
| | | | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University West Lafayette Indiana
| |
Collapse
|
23
|
Lanigan S, Corcoran AE, Wall A, Mukandala G, O'Connor JJ. Acute hypoxic exposure and prolyl-hydroxylase inhibition improves synaptic transmission recovery time from a subsequent hypoxic insult in rat hippocampus. Brain Res 2018; 1701:212-218. [PMID: 30244114 DOI: 10.1016/j.brainres.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023]
Abstract
In the CNS short episodes of acute hypoxia can result in a decrease in synaptic transmission which may be fully reversible upon re-oxygenation. Stabilization of hypoxia-inducible factor (HIF) by inhibition of prolyl hydroxylase domain (PHD) enzymes has been shown to regulate the cellular response to hypoxia and confer neuroprotection both in vivo and in vitro. Hypoxic preconditioning has become a novel therapeutic target to induce neuroprotection during hypoxic insults. However, there is little understanding of the effects of repeated hypoxic insults or pharmacological PHD inhibition on synaptic signaling. In this study we have assessed the effects of hypoxic exposure and PHD inhibition on synaptic transmission in the rat CA1 hippocampus. Field excitatory postsynaptic potentials (fEPSPs) were elicited by stimulation of the Schaffer collateral pathway. 30 min hypoxia (gas mixture 95% N2/5% CO2) resulted in a significant and fully reversible decrease in fEPSP slope associated with decreases in partial pressures of tissue oxygen. 15-30 min of hypoxia was sufficient to induce stabilization of HIF in hippocampal slices. Exposure to a second hypoxic insult after 60 min resulted in a similar depression of fEPSP slope but with a significantly greater rate of recovery of the fEPSP. Prior single treatment of slices with the PHD inhibitor, dimethyloxalylglycine (DMOG) also resulted in a significantly greater rate of recovery of fEPSP post hypoxia. These results suggest that hypoxia and 'pseudohypoxia' preconditioning may improve the rate of recovery of hippocampal neurons to a subsequent acute hypoxia.
Collapse
Affiliation(s)
- Sinead Lanigan
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan E Corcoran
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Audrey Wall
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gatambwa Mukandala
- College of Natural and Applied Sciences, University of Dar-Es-Salaam (UDSM), P.O Box 35064, Dar-Es-Salaam, Tanzania
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
24
|
Ramesh S, Govindarajulu M, Suppiramaniam V, Moore T, Dhanasekaran M. Autotaxin⁻Lysophosphatidic Acid Signaling in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071827. [PMID: 29933579 PMCID: PMC6073975 DOI: 10.3390/ijms19071827] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
The brain contains various forms of lipids that are important for maintaining its structural integrity and regulating various signaling cascades. Autotaxin (ATX) is an ecto-nucleotide pyrophosphatase/phosphodiesterase-2 enzyme that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA). LPA is a major bioactive lipid which acts through G protein-coupled receptors (GPCRs) and plays an important role in mediating cellular signaling processes. The majority of synthesized LPA is derived from membrane phospholipids through the action of the secreted enzyme ATX. Both ATX and LPA are highly expressed in the central nervous system. Dysfunctional expression and activity of ATX with associated changes in LPA signaling have recently been implicated in the pathogenesis of Alzheimer’s disease (AD). This review focuses on the current understanding of LPA signaling, with emphasis on the importance of the autotaxin–lysophosphatidic acid (ATX–LPA) pathway and its alterations in AD and a brief note on future therapeutic applications based on ATX–LPA signaling.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
25
|
Hung KS, Hsiao CC, Pai TW, Hu CH, Tzou WS, Wang WD, Chen YR. Functional enrichment analysis based on long noncoding RNA associations. BMC SYSTEMS BIOLOGY 2018; 12:45. [PMID: 29745842 PMCID: PMC5998891 DOI: 10.1186/s12918-018-0571-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Differential gene expression analysis using RNA-seq data is a popular approach for discovering specific regulation mechanisms under certain environmental settings. Both gene ontology (GO) and KEGG pathway enrichment analysis are major processes for investigating gene groups that participate in common biological responses or possess related functions. However, traditional approaches based on differentially expressed genes only detect a few significant GO terms and pathways, which are frequently insufficient to explain all-inclusive gene regulation mechanisms. Methods Transcriptomes of survivin (birc5) gene knock-down experimental and wild-type control zebrafish embryos were sequenced and assembled, and a differential expression (DE) gene list was obtained for traditional functional enrichment analysis. In addition to including DE genes with significant fold-change levels, we considered additional associated genes near or overlapped with differentially expressed long noncoding RNAs (DE lncRNAs), which may directly or indirectly activate or inhibit target genes and play important roles in regulation networks. Both the original DE gene list and the additional DE lncRNA-associated genes were combined to perform a comprehensive overrepresentation analysis. Results In this study, a total of 638 DE genes and 616 DE lncRNA-associated genes (lncGenes) were leveraged simultaneously in searching for significant GO terms and KEGG pathways. Compared to the traditional approach of only using a differential expression gene list, the proposed method of employing DE lncRNA-associated genes identified several additional important GO terms and KEGG pathways. In GO enrichment analysis, 60% more GO terms were obtained, and several neuron development functional terms were retrieved as complete annotations. We also observed that additional important pathways such as the FoxO and MAPK signaling pathways were retrieved, which were shown in previous reports to play important roles in apoptosis and neuron development functions regulated by the survivin gene. Conclusions We demonstrated that incorporating genes near or overlapped with DE lncRNAs into the DE gene list outperformed the traditional enrichment analysis method for effective biological functional interpretations. These hidden interactions between lncRNAs and target genes could facilitate more comprehensive analyses.
Collapse
Affiliation(s)
- Kuo-Sheng Hung
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Chi Hsiao
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Der Wang
- Department of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Kraskura K, Nelson JA. Hypoxia and Sprint Swimming Performance of Juvenile Striped Bass, Morone saxatilis. Physiol Biochem Zool 2017; 91:682-690. [PMID: 29120695 DOI: 10.1086/694933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Annual hypoxia in the Chesapeake Bay has expanded to the point where Darwinian fitness of juvenile striped bass (Morone saxatilis) may depend on their ability to perform in low-oxygen environments. The locomotion they use in predator/prey dynamics relies primarily on white (type II) muscle that is powered by anaerobic metabolic pathways and has generally been thought to be immune to aquatic hypoxia. We tested the sprint performance of 15 juvenile striped bass twice under acute hypoxia (20% air saturation [AS]) 5 wk apart and once under normoxia (>85% AS) in between. Average sprint performance was lower under the first hypoxia exposure than in normoxia and increased in the second hypoxia test relative to the first. The rank order of individual sprint performance was significantly repeatable when comparing the two hypoxia tests but not when compared with sprint performance measured under normoxic conditions. The maximum sprint performance of each individual was also significantly repeatable within a given day. Thus, sprint performance of striped bass is reduced under hypoxia, is phenotypically plastic, and improves with repetitive hypoxia exposures but is unrelated to relative sprint performance under normoxia. Since energy to fuel a sprint comes from existing ATP and creatine phosphate stores, the decline in sprint performance probably reflects reduced function of a part of the reflex chain leading from detection of aversive stimuli to activation of the muscle used to power the escape response.
Collapse
|
27
|
Dai Y, Li W, Zhong M, Chen J, Cheng Q, Liu Y, Li T. The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behav Brain Res 2017; 332:99-109. [PMID: 28576310 DOI: 10.1016/j.bbr.2017.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI)-induced perinatal encephalopathy frequently causes chronic neurological morbidities and acute mortality. Bone mesenchymal stem cell (BMSC) transplantation could potentially promote functional and anatomical recovery of ischemic tissue. In vitro hypoxic preconditioning is an effective strategy to improve the survival of BMSCs in ischemic tissue. In this study, cobalt chloride (CoCl2) preconditioned medium from BMSC cultures was injected into the left lateral ventricle of HI rats using a micro-osmotic pump at a flow rate 1.0μl/h for 7 days. The protein levels of HIF-1α and its target genes, vascular endothelial growth factor and erythropoietin, markedly increased after CoCl2 preconditioning in BMSCs. In 7-week-old rats that received CoCl2 preconditioned BMSC medium, results of the Morris water maze test indicated ameliorated spatial working memory function following hypoxia-ischemia damage. Neuronal loss, cellular disorganization, and shrinkage in brain tissue were also ameliorated. Extracellular field excitatory postsynaptic potentials (fEPSPs) in the brain slices of 8-week-old rats were recorded; administration of CoCl2 preconditioned BMSC culture medium induced a progressive increment of baseline and amplitude of the fEPSPs. Immunohistochemical quantification showed that GluR2 protein expression increased. In conclusion, CoCl2 activates HIF-1α signals in BMSCs. CoCl2 preconditioned BMSC culture medium likely effects neuroprotection by inducing long-term potentiation (LTP), which could be associated with GluR2 expression. The paracrine effects of hypoxia preconditioning on BMSCs could have applications in novel cell-based therapeutic strategies for hypoxic and ischemic brain injury.
Collapse
Affiliation(s)
- Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wendi Li
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Youxue Liu
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| |
Collapse
|
28
|
Oxygen impairs oligodendroglial development via oxidative stress and reduced expression of HIF-1α. Sci Rep 2017; 7:43000. [PMID: 28230075 PMCID: PMC5322337 DOI: 10.1038/srep43000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
The premature increase of oxygen tension may contribute to oligodendroglial precursor cell (OPC) damage in preterm infants. Fetal OPCs are exposed to low oxygen tissue tensions not matched when cells are cultured in room air. Maturation (A2B5, O4, O1, MBP, CNP, arborization), oxidative stress (nitrotyrosine Western blot, NRF2 and SOD2 expression), apoptosis (TUNEL), proliferation (Ki67), and expression of transcription factors regulated by Hypoxia-Inducible-Factor-1-alpha (Hif-1α) expressed in OPCs (Olig1, Olig2, Sox9, Sox10) were assessed in rat OPCs and OLN93 cells cultured at 5% O2 and 21% O2. Influences of Hif-1α were investigated by Hif-1α luciferase reporter assays and Hif-1α-knockdown experiments. At 21% O2, cell proliferation was decreased and process arborization of OPCs was reduced. Expression of MBP, CNP, Olig1, Sox9 and Sox10 was lower at 21% O2, while Nrf2, SOD2, nitrotyrosine were increased. Apoptosis was unchanged. Luciferease reporter assay in OLN93 cells indicated increased Hif-1α activity at 5% O2. In OLN93 cells at 5% O2, Hif-1α knockdown decreased the expression of MBP and CNP, similar to that observed at 21% O2. These data indicate that culturing OPCs at 21% O2 negatively affects development and maturation. Both enhanced oxidative stress and reduced expression of Hif-1α-regulated genes contribute to these hyperoxia-induced changes.
Collapse
|
29
|
Schultz LE, Solin SL, Wierson WA, Lovan JM, Syrkin-Nikolau J, Lincow DE, Severin AJ, Sakaguchi DS, McGrail M. Vascular Endothelial Growth Factor A and Leptin Expression Associated with Ectopic Proliferation and Retinal Dysplasia in Zebrafish Optic Pathway Tumors. Zebrafish 2017; 14:343-356. [PMID: 28192065 PMCID: PMC5549800 DOI: 10.1089/zeb.2016.1366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the central nervous system injury induces cellular reprogramming and progenitor proliferation, but the molecular mechanisms that limit regeneration and prevent tumorigenesis are not completely understood. We previously described a zebrafish optic pathway tumor model in which transgenic Tg(flk1:RFP)is18/+ adults develop nonmalignant retinal tumors. Key pathways driving injury-induced glial reprogramming and regeneration contributed to tumor formation. In this study, we examine a time course of proliferation and present new analyses of the Tg(flk1:RFP)is18/+ dysplastic retina and tumor transcriptomes. Retinal dysplasia was first detected in 3-month-old adults, but was not limited to a specific stem cell or progenitor niche. Pathway analyses suggested a decrease in cellular respiration and increased expression of components of Hif1-α, VEGF, mTOR, NFκβ, and multiple interleukin pathways are associated with early retinal dysplasia. Hif-α targets VEGFA (vegfab) and Leptin (lepb) were both highly upregulated in dysplastic retina; however, each showed distinct expression patterns in neurons and glia, respectively. Phospho-S6 immunolabeling indicated that mTOR signaling is activated in multiple cell populations in wild-type retina and in the dysplastic retina and advanced tumor. Our results suggest that multiple pathways may contribute to the continuous proliferation of retinal progenitors and tumor growth in this optic pathway tumor model. Further investigation of these signaling pathways may yield insight into potential mechanisms to control the proliferative response during regeneration in the nervous system.
Collapse
Affiliation(s)
- Laura E Schultz
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| | - Staci L Solin
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| | - Wesley A Wierson
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| | - Janna M Lovan
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| | - Judith Syrkin-Nikolau
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| | - Deborah E Lincow
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| | - Andrew J Severin
- 2 Genome Informatics Facility, Office of Biotechnology, Iowa State University , Ames, Iowa
| | - Donald S Sakaguchi
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| | - Maura McGrail
- 1 Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa
| |
Collapse
|
30
|
Heyman SN, Leibowitz D, Mor-Yosef Levi I, Liberman A, Eisenkraft A, Alcalai R, Khamaisi M, Rosenberger C. Adaptive response to hypoxia and remote ischaemia pre-conditioning: a new hypoxia-inducible factors era in clinical medicine. Acta Physiol (Oxf) 2016; 216:395-406. [PMID: 26449466 DOI: 10.1111/apha.12613] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/01/2015] [Accepted: 10/02/2015] [Indexed: 01/30/2023]
Abstract
Transient ischaemia leads to tolerance to subsequent protracted ischaemia. This 'ischaemia pre-conditioning' results from the induction of numerous protective genes, involved in cell metabolism, proliferation and survival, in antioxidant capacity, angiogenesis, vascular tone and erythropoiesis. Hypoxia-inducible factors (HIF) play a pivotal role in this transcriptional adaptive response. HIF prolyl hydroxylases (PHDs), serving as oxygen sensors, control HIFα degradation. HIF-mediated ischaemic pre-conditioning can be achieved with the administration of PHD inhibitors, with the attenuation of organ injury under various hypoxic and toxic insults. Clinical trials are currently under way, evaluating PHD inhibitors as inducers of erythropoietin. Once their safety is established, their potential use might be further tested in clinical trials in various forms of acute ischaemic and toxic organ damage. Repeated transient limb ischaemia was also found to attenuate ischaemic injury in remote organs. This 'remote ischaemic pre-conditioning' phenomenon (RIP) has been extensively studied recently in small clinical trials, preceding, or in parallel with an abrupt insult, such as myocardial infarction, cardiac surgery or radiocontrast administration. Initial results are promising, suggesting organ protection. Large-scale multi-centre studies are currently under way, evaluating the protective potential of RIP in cardiac surgery, in the management of myocardial infarction and in organ transplantation. The mechanisms of organ protection provided by RIP are poorly understood, but HIF seemingly play a role as well. Thus, Inhibition of HIF degradation with PHD inhibitors, as well as RIP (in part through HIF), might develop into novel clinical interventions in organ protection in the near future.
Collapse
Affiliation(s)
- S. N. Heyman
- Department of Medicine; Hadassah Hebrew University Hospitals; Jerusalem Israel
| | - D. Leibowitz
- Department of Medicine; Hadassah Hebrew University Hospitals; Jerusalem Israel
- Department of Cardiology; Hadassah Hebrew University Hospitals; Jerusalem Israel
| | - I. Mor-Yosef Levi
- Department of Nephrology; Hadassah Hebrew University Hospitals; Jerusalem Israel
| | - A. Liberman
- Department of Neurology; Hadassah Hebrew University Hospitals; Jerusalem Israel
| | - A. Eisenkraft
- The Research Institute for Military Medicine; The Hebrew University Medical School and the Israeli Defense Force Medical Corps; Jerusalem Israel
| | - R. Alcalai
- Department of Medicine; Hadassah Hebrew University Hospitals; Jerusalem Israel
- Department of Cardiology; Hadassah Hebrew University Hospitals; Jerusalem Israel
| | | | | |
Collapse
|
31
|
The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS. Brain Sci 2016; 6:brainsci6010006. [PMID: 26901230 PMCID: PMC4810176 DOI: 10.3390/brainsci6010006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Normal brain function is highly dependent on oxygen and nutrient supply and when the demand for oxygen exceeds its supply, hypoxia is induced. Acute episodes of hypoxia may cause a depression in synaptic activity in many brain regions, whilst prolonged exposure to hypoxia leads to neuronal cell loss and death. Acute inadequate oxygen supply may cause anaerobic metabolism and increased respiration in an attempt to increase oxygen intake whilst chronic hypoxia may give rise to angiogenesis and erythropoiesis in order to promote oxygen delivery to peripheral tissues. The effects of hypoxia on neuronal tissue are exacerbated by the release of many inflammatory agents from glia and neuronal cells. Cytokines, such as TNF-α, and IL-1β are known to be released during the early stages of hypoxia, causing either local or systemic inflammation, which can result in cell death. Another growing body of evidence suggests that inflammation can result in neuroprotection, such as preconditioning to cerebral ischemia, causing ischemic tolerance. In the following review we discuss the effects of acute and chronic hypoxia and the release of pro-inflammatory cytokines on synaptic transmission and plasticity in the central nervous system. Specifically we discuss the effects of the pro-inflammatory agent TNF-α during a hypoxic event.
Collapse
|
32
|
Pei L, Wang S, Jin H, Bi L, Wei N, Yan H, Yang X, Yao C, Xu M, Shu S, Guo Y, Yan H, Wu J, Li H, Pang P, Tian T, Tian Q, Zhu LQ, Shang Y, Lu Y. A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau. Cereb Cortex 2015; 25:4559-71. [PMID: 25995053 PMCID: PMC4816799 DOI: 10.1093/cercor/bhv096] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synaptic spine loss is one of the major preceding consequences of stroke damages, but its underlying molecular mechanisms remain unknown. Here, we report that a direct interaction of DAPK1 with Tau causes spine loss and subsequently neuronal death in a mouse model with stroke. We found that DAPK1 phosphorylates Tau protein at Ser262 (pS(262)) in cortical neurons of stroke mice. Either genetic deletion of DAPK1 kinase domain (KD) in mice (DAPK1-KD(-/-)) or blocking DAPK1-Tau interaction by systematic application of a membrane permeable peptide protects spine damages and improves neurological functions against stroke insults. Thus, disruption of DAPK1-Tau interaction is a promising strategy in clinical management of stroke.
Collapse
Affiliation(s)
- Lei Pei
- Department of Neurobiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Wang
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Bi
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wei
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Honglin Yan
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Yao
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Xu
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Shu
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Guo
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Yan
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Wu
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Pang
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathophysiology, School of Basic Medicine and The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine and The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Wuhan, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China Department of Critical Care Medicine, Institute of Anesthesia and Critical Care, Union Hospital, Wuhan, China
| |
Collapse
|
33
|
Abstract
The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.
Collapse
Affiliation(s)
- Yun C Yung
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole C Stoddard
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Hope Mirendil
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2015; 66:815-68. [PMID: 24958636 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
35
|
Chen PY, Ho YR, Wu MJ, Huang SP, Chen PK, Tai MH, Ho CT, Yen JH. Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells. Food Funct 2015; 6:287-96. [DOI: 10.1039/c4fo00948g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fisetin protects cells under hypoxia through ROS scavenging and the HIF1α-, MAPK/ERK-, p38 MAPK- and PI3 K/Akt-dependent pathways in PC12 cells.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics
- Buddhist Tzu Chi General Hospital
- Hualien 970
- Taiwan
| | - Yi-Ru Ho
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology
- Chia Nan University of Pharmacy and Science
- Tainan 717
- Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Po-Kong Chen
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Mi-Hsueh Tai
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 970
- Taiwan
| |
Collapse
|
36
|
Persson PB. Life, death and immortality. Acta Physiol (Oxf) 2015; 213:1-2. [PMID: 25409866 DOI: 10.1111/apha.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pontus B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin; Berlin Germany
| |
Collapse
|
37
|
Fibroblast growth factor 10 protects neuron against oxygen-glucose deprivation injury through inducing heme oxygenase-1. Biochem Biophys Res Commun 2014; 456:225-31. [PMID: 25446127 DOI: 10.1016/j.bbrc.2014.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related heparin-binding proteins with diverse biological functions. FGFs participate in mitogenesis, angiogenesis, cell proliferation, development, differentiation and cell migration. Here, we investigated the potential effect of FGF10, a member of FGFs, on neuron survival in oxygen-glucose deprivation (OGD) model. In primary cultured mouse cortical neurons upon OGD, FGF10 treatment (100 and 1000 ng/ml) attenuated the decrease of cell viability and rescued the LDH release. Tuj-1 immunocytochemistry assay showed that FGF10 promoted neuronal survival. Apoptosis assay with Annexin V+PI by flow cytometry demonstrated that FGF10 treatment reduced apoptotic cell proportion. Moreover, immunoblotting showed that FGF10 alleviated the cleaved caspase-3 upregulation caused by OGD. FGF10 treatment also depressed the OGD-induced increase of caspase-3, -8 and -9 activities. At last, we found FGF10 triggered heme oxygenase-1 (HO-1) protein expression rather than hypoxia-inducible factor-1 (HIF-1), AMP-activated protein kinase (AMPK) signaling and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling. Knockdown of HO-1 by siRNA partly abolished the neuroprotection of FGF10 in OGD model. In summary, our observations provide the first evidence for the neuroprotective function of FGF10 against ischemic neuronal injury and suggest that FGF10 may be a promising agent for treatment of ischemic stroke.
Collapse
|
38
|
Hypoxia-Related Brain Dysfunction in Forensic Medicine. NEUROTRANSMITTER INTERACTIONS AND COGNITIVE FUNCTION 2014; 837:49-56. [DOI: 10.1007/5584_2014_84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Ghose P, Park EC, Tabakin A, Salazar-Vasquez N, Rongo C. Anoxia-reoxygenation regulates mitochondrial dynamics through the hypoxia response pathway, SKN-1/Nrf, and stomatin-like protein STL-1/SLP-2. PLoS Genet 2013; 9:e1004063. [PMID: 24385935 PMCID: PMC3873275 DOI: 10.1371/journal.pgen.1004063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/12/2013] [Indexed: 12/04/2022] Open
Abstract
Many aerobic organisms encounter oxygen-deprived environments and thus must have adaptive mechanisms to survive such stress. It is important to understand how mitochondria respond to oxygen deprivation given the critical role they play in using oxygen to generate cellular energy. Here we examine mitochondrial stress response in C. elegans, which adapt to extreme oxygen deprivation (anoxia, less than 0.1% oxygen) by entering into a reversible suspended animation state of locomotory arrest. We show that neuronal mitochondria undergo DRP-1-dependent fission in response to anoxia and undergo refusion upon reoxygenation. The hypoxia response pathway, including EGL-9 and HIF-1, is not required for anoxia-induced fission, but does regulate mitochondrial reconstitution during reoxygenation. Mutants for egl-9 exhibit a rapid refusion of mitochondria and a rapid behavioral recovery from suspended animation during reoxygenation; both phenotypes require HIF-1. Mitochondria are significantly larger in egl-9 mutants after reoxygenation, a phenotype similar to stress-induced mitochondria hyperfusion (SIMH). Anoxia results in mitochondrial oxidative stress, and the oxidative response factor SKN-1/Nrf is required for both rapid mitochondrial refusion and rapid behavioral recovery during reoxygenation. In response to anoxia, SKN-1 promotes the expression of the mitochondrial resident protein Stomatin-like 1 (STL-1), which helps facilitate mitochondrial dynamics following anoxia. Our results suggest the existence of a conserved anoxic stress response involving changes in mitochondrial fission and fusion. Oxygen deprivation plays a role in multiple human diseases ranging from heart attack, ischemic stroke, and traumatic injury. Aerobic organisms use oxygen to generate cellular energy in mitochondria; thus, oxygen deprivation results in energy depletion. Low oxygen can be catastrophic in tissues like the nervous system, which has high-energy demands and few glycolytic reserves. By contrast, other cells, including stem cells and cancerous cells within tumors, adapt and thrive in low oxygen. We are just beginning to understand how different organisms and even different cell types within the same organism respond to low oxygen conditions. The response of mitochondria to oxygen deprivation is particularly critical given their role in aerobic energy production. In addition, mitochondria actively injure cells during oxygen deprivation through the generation of reactive oxygen species, the disruption of calcium homeostasis, and the activation of cell death pathways. Here we use a genetic approach to show that mitochondria undergo fission during oxygen deprivation and refusion upon oxygen restoration. The hypoxia response pathway and the oxidative stress response pathway together modulate this response. We identify a new factor, stomatin-like protein, as a promoter of mitochondrial fusion in response to oxygen deprivation stress. Our findings uncover a new mechanism – regulated mitochondrial dynamics – by which cells adapt to oxygen deprivation stress.
Collapse
Affiliation(s)
- Piya Ghose
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- The Graduate Program in Neuroscience, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Eun Chan Park
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Alexandra Tabakin
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Nathaly Salazar-Vasquez
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- The Graduate Program in Genetics and Microbiology, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
40
|
Rivera-Angulo AJ, Peña-Ortega F. Isocitrate supplementation promotes breathing generation, gasping, and autoresuscitation in neonatal mice. J Neurosci Res 2013; 92:375-88. [DOI: 10.1002/jnr.23330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/15/2013] [Accepted: 10/25/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Ana-Julia Rivera-Angulo
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto de Neurobiología; Universidad Nacional Autónoma de México-Campus Juriquilla; Querétaro México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto de Neurobiología; Universidad Nacional Autónoma de México-Campus Juriquilla; Querétaro México
| |
Collapse
|
41
|
Hendrickson SL. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the páramo. BMC Evol Biol 2013; 13:273. [PMID: 24344830 PMCID: PMC3878729 DOI: 10.1186/1471-2148-13-273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/03/2013] [Indexed: 12/25/2022] Open
Abstract
Background Life at high altitude results in physiological and metabolic challenges that put strong evolutionary pressure on performance due to oxidative stress, UV radiation and other factors dependent on the natural history of the species. To look for genes involved in altitude adaptation in a large herbivore, this study explored genome differentiation between a feral population of Andean horses introduced by the Spanish in the 1500s to the high Andes and their Iberian breed relatives. Results Using allelic genetic models and Fst analyses of ~50 K single nucleotide polymorphisms (SNPs) across the horse genome, 131 candidate genes for altitude adaptation were revealed (Bonferoni of p ≤ 2 × 10–7). Significant signals included the EPAS1 in the hypoxia-induction-pathway (HIF) that was previously discovered in human studies (p = 9.27 × 10-8); validating the approach and emphasizing the importance of this gene to hypoxia adaptation. Strong signals in the cytochrome P450 3A gene family (p = 1.5 ×10-8) indicate that other factors, such as highly endemic vegetation in altitude environments are also important in adaptation. Signals in tenuerin 2 (TENM2, p = 7.9 × 10-14) along with several other genes in the nervous system (gene categories representation p = 5.1 × 10-5) indicate the nervous system is important in altitude adaptation. Conclusions In this study of a large introduced herbivore, it becomes apparent that some gene pathways, such as the HIF pathway are universally important for high altitude adaptation in mammals, but several others may be selected upon based on the natural history of a species and the unique ecology of the altitude environment.
Collapse
Affiliation(s)
- Sher L Hendrickson
- Department of Biology, Shepherd University, Shepherdstown WV 25443, USA.
| |
Collapse
|
42
|
Li YN, Xi MM, Guo Y, Hai CX, Yang WL, Qin XJ. NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity. Toxicol Lett 2013; 224:165-74. [PMID: 24188932 DOI: 10.1016/j.toxlet.2013.10.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 12/17/2022]
Abstract
Arsenic exposure has been shown to induce hypoxia inducible factor 1α (HIF-1α) accumulation, however the underlying mechanism remains unknown. In the present study, we tested the hypothesis that arsenic exposure triggered the interaction between NADPH oxidase and mitochondria to promote reactive oxygen species (ROS) production, which inactivate prolyl hydroxylases (PHDs) activity, leading to the stabilization of HIF-1α protein. Exposure of human immortalized liver cell line HL-7702 cells to arsenite induced HIF-1α accumulation in a dose-dependent manner, which was abolished by SOD mimetic MnTMPyP. Inhibition of NADPH oxidase with diphenyleneiodonium chloride (DPI) or inhibition of mitochondrial respiratory chain with rotenone significantly blocked arsenite-induced ROS production, and the mitochondria appeared to be the major source of ROS production. Arsenite treatment inhibited HIF-1α hydroxylation by prolyl hydroxylases (PHDs) and increased HIF-1α stabilization, but did not affect HIF-1α mRNA expression and Akt activation. Supplementation of ascorbate or Fe(II) completely abolished arsenite-induced PHDs inhibition and HIF-1α stabilization. In conclusion, these results define a unique mechanism of HIF-1α accumulation following arsenic exposure, that is, arsenic activates NADPH oxidase-mitochondria axis to produce ROS, which deplete intracellular ascorbate and Fe(II) to inactivate PHDs, leading to HIF-1α stabilization.
Collapse
Affiliation(s)
- Ying-Na Li
- Department of Geriatrics, The Second Affiliated Hospital of Medicine School, The Xi'an Jiaotong University, Xi'an 710004, China
| | | | | | | | | | | |
Collapse
|
43
|
Wall AM, Corcoran AE, O'Halloran KD, O'Connor JJ. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis 2013; 62:8-17. [PMID: 24055213 DOI: 10.1016/j.nbd.2013.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 01/11/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is an underlying component of obstructive sleep apnoea and has been shown to have deleterious and damaging effects on central neurons and to impair synaptic plasticity in the CA1 region of the rat hippocampus. CIH has previously been shown to impair synaptic plasticity and working memory. CIH is a potent inducer of hypoxia inducible factor (HIF), a key regulator in a cell's adaptation to hypoxia that plays an important role in the fate of neurons during ischemia. Levels of HIF-1α are regulated by the activity of a group of enzymes called HIF-prolyl 4-hydroxylases (PHDs) and these have become potential pharmacological targets for preconditioning against ischemia. However little is known about the effects of prolyl hydroxylase inhibition and CIH on synaptic transmission and plasticity in sub-regions of the hippocampus. Male Wistar rats were treated for 7-days with either saline, CIH or PHD inhibition (dimethyloxaloylglycine, DMOG; 50mg/kg, i.p.). At the end of treatment all three groups showed no change in synaptic excitability using paired pulse paradigms. However long-term potentiation (LTP) was impaired in the CA1 region of the hippocampus in both CIH and DMOG treated animals. LTP induced in the dentate gyrus was not significantly affected by either CIH or DMOG treatment. We also investigated the effect of 7-day CIH and DMOG treatment on the recovery of synaptic transmission following an acute 30min hypoxic insult. CIH treated animals showed an improved rate of recovery of synaptic transmission following re-oxygenation in both the CA1 and the dentate gyrus. These results suggest that LTP induction in the CA1 region is more sensitive to both CIH and DMOG treatments than the dentate gyrus.
Collapse
Affiliation(s)
- Audrey M Wall
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan E Corcoran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|