1
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
2
|
Mukherjee R, Rana R, Mehan S, Khan Z, Das Gupta G, Narula AS, Samant R. Investigating the Interplay Between the Nrf2/Keap1/HO-1/SIRT-1 Pathway and the p75NTR/PI3K/Akt/MAPK Cascade in Neurological Disorders: Mechanistic Insights and Therapeutic Innovations. Mol Neurobiol 2025:10.1007/s12035-025-04725-8. [PMID: 39920438 DOI: 10.1007/s12035-025-04725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Neurological illnesses are debilitating diseases that affect brain function and balance. Due to their complicated aetiologies and progressive nature, neurodegenerative and neuropsychiatric illnesses are difficult to treat. These incurable conditions damage brain functions like mobility, cognition, and emotional regulation, but medication, gene therapy, and physical therapy can manage symptoms. Disruptions in cellular signalling pathways, especially those involving oxidative stress response, memory processing, and neurotransmitter modulation, contribute to these illnesses. This review stresses the interplay between key signalling pathways involved in neurological diseases, such as the Nrf2/Keap1/HO-1/SIRT-1 axis and the p75NTR/PI3K/Akt/MAPK cascade. To protect neurons from oxidative damage and death, the Nrf2 transcription factor promotes antioxidant enzyme production. The Keap1 protein releases Nrf2 during oxidative stress for nuclear translocation and gene activation. The review also discusses how neurotrophin signalling through the p75 neurotrophin receptor (p75NTR) determines cell destiny, whether pro-survival or apoptotic. The article highlights emerging treatment approaches targeting these signalling pathways by mapping these connections. Continued research into these molecular pathways may lead to new neurological disease treatments that restore cellular function and neuronal survival. In addition to enhanced delivery technologies, specific modulators and combination therapies should be developed to fine-tune signalling responses. Understanding these crosstalk dynamics is crucial to strengthening neurological illness treatment options and quality of life.
Collapse
Affiliation(s)
- Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ravi Rana
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Rajaram Samant
- Chief Scientific Officer, Celagenex Research, Mumbai, India
| |
Collapse
|
3
|
Biersack B, Nitzsche B, Höpfner M. Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:6. [PMID: 39935431 PMCID: PMC11810460 DOI: 10.20517/cdr.2024.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Small-molecule BRAF inhibitors (e.g., vemurafenib and dabrafenib) and MEK (MAPK/ERK) kinases inhibitors (e.g., trametinib) have distinctly improved the survival of patients suffering from BRAF-mutant cancers such as melanomas. However, the emergence of resistance to BRAF and MEK inhibitor-based melanoma therapy, as well as the reduced sensitivity of other BRAF-mutant cancers such as CRC, poses a considerable clinical problem. For instance, the reactivation of MAPK/ERK signaling hampering cell death induction mechanisms was responsible for BRAF inhibitor resistance, which can be correlated with distinct post-translational and epigenetic processes. Histone deacetylases (HDACs) are prominent epigenetic drug targets and some HDAC inhibitors have already been clinically approved for the therapy of various blood cancers. In addition, several HDACs were identified, which also play a crucial role in the drug resistance of BRAF-mutant cancers. Consequently, inhibition of HDACs was described as a promising approach to overcome resistance. This review summarizes the influence of HDACs (Zn2+-dependent HDACs and NAD+-dependent sirtuins) on BRAF-mutant cancers and BRAF inhibitor resistance based on upregulated survival mechanisms and the prevention of tumor cell death. Moreover, it outlines reasonable HDAC-based strategies to circumvent BRAF-associated resistance mechanisms based on downregulated cell death mechanisms.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth 95440, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| |
Collapse
|
4
|
Mousavi MA, Rezaei M, Pourhamzeh M, Salari M, Hossein-Khannazer N, Shpichka A, Nabavi SM, Timashev P, Vosough M. Translational Approach using Advanced Therapy Medicinal Products for Huntington's Disease. Curr Rev Clin Exp Pharmacol 2025; 20:14-31. [PMID: 38797903 DOI: 10.2174/0127724328300166240510071548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Current therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies. The evidence in gene therapy suggests various molecular techniques, including knocking down mHTT expression using antisense oligonucleotides and small interfering RNAs and gene editing with zinc finger proteins and CRISPR-Cas9-based techniques. Several post-transcriptional and post-translational modifications have also been proposed. However, the efficacy and long-term side effects of these modalities have yet to be verified. Currently, cell therapy can be employed in combination with conventional treatment and could be used for HD in which the structural and functional restoration of degenerated neurons can occur. Several animal models have been established recently to develop cell-based therapies using renewable cell sources such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stromal cells, and neural stem cells. These models face numerous challenges in translation into clinics. Nevertheless, investigations in Advanced Therapy Medicinal Products (ATMPs) open a promising window for HD research and their clinical application. In this study, the ATMPs entry pathway in HD management was highlighted, and their advantages and disadvantages were discussed.
Collapse
Affiliation(s)
- Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maliheh Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Mehri Salari
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 141-83 Stockholm, Sweden
| |
Collapse
|
5
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Sood S, Tiwari A, Sangwan J, Vohra M, Sinha NR, Tripathi R, Sangwan VS, Mohan RR. Role of epigenetics in corneal health and disease. Prog Retin Eye Res 2025; 104:101318. [PMID: 39547455 PMCID: PMC11710990 DOI: 10.1016/j.preteyeres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Epigenetics plays a vital role in corneal health and diseases. Epigenetic changes regulate the expression of genes by altering the accessibility of chromatin via histone modifications, DNA methylation and miRNAs without altering DNA sequence. Ocular trauma and infections are common causes of corneal damage, vision impairment, and mono/bilateral blindness worldwide. Mounting literature shows that epigenetic modifications can modulate corneal clarity, function, and pathogenesis including inflammation, wound healing, fibrosis, and neovascularization. Additionally, epigenetic modifications can be targeted to reverse corneal pathologies and develop interventional therapies. However, current understanding on how epigenetic modifications lead to corneal abnormalities and diseases is limited. This review provides in-depth knowledge and mechanistic understanding of epigenetics alterations in corneal pathogenesis, and information on potential epigenetic targets for treatment of corneal diseases.
Collapse
Affiliation(s)
- Swati Sood
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA
| | - Anil Tiwari
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Jyoti Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Nishant R Sinha
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Virender S Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Rajiv R Mohan
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Guo R, Wei Y, Du Y, Liu L, Zhang H, Ren R, Sun R, Zhang T, Xiong X, Zhao L, Wang H, Guo X, Zhu X. EX527, a sirtuins 1 inhibitor, sensitizes T-cell leukemia to death receptor-mediated apoptosis by downregulating cellular FLICE inhibitory protein. Cancer Biol Ther 2024; 25:2402588. [PMID: 39286953 PMCID: PMC11409494 DOI: 10.1080/15384047.2024.2402588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Death receptor-mediated extrinsic apoptosis system had been developed as a promising therapeutic strategy in clinical oncology, such as TRAIL therapy. However, multiple studies have demonstrated that TRAIL resistance is the biggest problem for disappointing clinical trials despite preclinical success. Targeting cellular FLICE inhibitory protein (cFLIP) is one strategy of combinatorial therapies to overcome resistance to DR-mediated apoptosis due to its negative regulator of extrinsic apoptosis. E × 527 (Selisistat) is a specific inhibitor of SIRT1 activity with safe and well tolerance in clinical trials. Here, we show that E × 527 could strengthen significantly activation of rhFasL-mediated apoptotic signaling pathway and increased apoptotic rate of T leukemia cells with high expression of cFLIP. Mechanically, Inhibition of SIRT1 by E × 527 increased polyubiquitination level of cFLIP via increasing acetylation of Ku70, which could promote proteosomal degradation of cFLIP protein. It implied that combinatorial therapies of E × 527 plus TRAIL may have a potential as a novel clinical application for TRAIL-resistant hematologic malignancies.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Yihui Wei
- Henan Red Cross Blood Center, Xinxiang, China
| | - Yating Du
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Luyue Liu
- Departments of Laboratory Medicine, Zhoukou Central Hospital, Zhoukou, China
| | - Haoqi Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang
Medical University, Xinxiang, China
| | - Ruiying Ren
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Tingting Zhang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang
Medical University, Xinxiang, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Hongfei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Xiaofang Guo
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang
Medical University, Xinxiang, China
| | - Xiaofei Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Satam S, Palekar N, Premkumar K, Shankar BS. Sirtinol, a SIRT1 inhibitor, inhibits the EMT and metastasis of 4T1 breast cancer cells and impacts the tumor microenvironment. Immunopharmacol Immunotoxicol 2024; 46:829-842. [PMID: 39373058 DOI: 10.1080/08923973.2024.2412110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION The impact of epigenetic drugs on metastasis and the immunological microenvironment is poorly understood. In this study, we looked at how sirtinol, a SIRT1 inhibitor, affected epithelial-mesenchymal transition (EMT), metastasis, and the immune cells. MATERIALS AND METHODS In vitro experiments were carried out using tumor conditioned medium (TCM). For in vivo experiments, sirtinol was administered i.p. in tumor bearing BALB/c mice at a dose of 2 mg/kg body weight either alone or in combination with cisplatin. Estimation of cytokines was carried out using ELISA or ELIspot. Estimation of different markers was done using flow cytometry or western blot. RESULTS Sirtinol, a SIRT1 inhibitor, was found to be cytotoxic to 4T1 breast cancer cells with no synergistic effects with cisplatin, both under in vitro and in vivo conditions (p < 0.05). Sirtinol significantly reduced cancer cell metastasis to the spleen which was supported by in vitro findings such as decreased vimentin expression and cell mobility in migration and wound healing assays (p < 0.01). Studies on the effects of 4T1 tumor-conditioned medium on spleen cells indicated changes in T cell proliferation as well as differentiation (p < 0.01). In tumor bearing mice, spleen cells showed elevated IFN-γ secretion, increased CD11b+ cells, and decreased T cells (p < 0.01). This was reversed by sirtinol as well as the combination treatment, which may also have contributed to metastasis inhibition (p < 0.01). CONCLUSION Sirtinol, a SIRT1 inhibitor inhibits EMT and metastasis of 4T1 breast cancer cells and also has an impact on the immune microenvironment.
Collapse
Affiliation(s)
- Sharvari Satam
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Nitya Palekar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Kavitha Premkumar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
9
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
10
|
Shin JH, Yang HJ, Ahn JH, Jo S, Chung SJ, Lee JY, Kim HS, Kim M. Evidence-Based Review on Symptomatic Management of Huntington's Disease. J Mov Disord 2024; 17:369-386. [PMID: 39117301 PMCID: PMC11540544 DOI: 10.14802/jmd.24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, behavioral, and cognitive impairments and significant impacts on patient quality of life. This evidence-based review, conducted by the Korean Huntington Disease Society task force, systematically examines current pharmacological and nonpharmacological interventions for symptomatic management of HD. Following PRISMA guidelines, databases were searched for studies up to August 2022 that focused on 23 symptoms across four domains: motor, neuropsychological, cognition, and others. This review provides a comprehensive and systematic approach to the management of HD, highlighting the need for more high-quality clinical trials to develop robust evidence-based guidelines.
Collapse
Affiliation(s)
- Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hui-Jun Yang
- Department of Neurology, Ulsan University Hospital, Ulsan, Korea
| | - Jong Hyun Ahn
- Department of Neurology, Seoul Samsung Medical Center, Seoul, Korea
| | - Sungyang Jo
- Department of Neurology, Seoul Asan Medical Center, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - on behalf of the Korean Huntington’s Disease Society
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Ulsan University Hospital, Ulsan, Korea
- Department of Neurology, Seoul Samsung Medical Center, Seoul, Korea
- Department of Neurology, Seoul Asan Medical Center, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
11
|
Temgire P, Arthur R, Kumar P. Neuroinflammation and the role of epigenetic-based therapies for Huntington's disease management: the new paradigm. Inflammopharmacology 2024; 32:1791-1804. [PMID: 38653938 DOI: 10.1007/s10787-024-01477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.
Collapse
Affiliation(s)
- Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
12
|
Rogina B, Tissenbaum HA. SIRT1, resveratrol and aging. Front Genet 2024; 15:1393181. [PMID: 38784035 PMCID: PMC11112063 DOI: 10.3389/fgene.2024.1393181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Aging is linked to a time-associated decline in both cellular function and repair capacity leading to malfunction on an organismal level, increased frailty, higher incidence of diseases, and death. As the population grows older, there is a need to reveal mechanisms associated with aging that could spearhead treatments to postpone the onset of age-associated decline, extend both healthspan and lifespan. One possibility is targeting the sirtuin SIRT1, the founding member of the sirtuin family, a highly conserved family of histone deacetylases that have been linked to metabolism, stress response, protein synthesis, genomic instability, neurodegeneration, DNA damage repair, and inflammation. Importantly, sirtuins have also been implicated to promote health and lifespan extension, while their dysregulation has been linked to cancer, neurological processes, and heart disorders. SIRT1 is one of seven members of sirtuin family; each requiring nicotinamide adenine dinucleotide (NAD+) as co-substrate for their catalytic activity. Overexpression of yeast, worm, fly, and mice SIRT1 homologs extend lifespan in each animal, respectively. Moreover, lifespan extension due to calorie restriction are associated with increased sirtuin activity. These findings led to the search for a calorie restriction mimetic, which revealed the compound resveratrol; (3, 5, 4'-trihydroxy-trans-stilbene) belonging to the stilbenoids group of polyphenols. Following this finding, resveratrol and other sirtuin-activating compounds have been extensively studied for their ability to affect health and lifespan in a variety of species, including humans via clinical studies.
Collapse
Affiliation(s)
- Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Institute for Systems Genomics, Farmington, CT, United States
| | - Heidi A. Tissenbaum
- Department of Molecular, Cell and Cancer Biology UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
13
|
Scarano N, Brullo C, Musumeci F, Millo E, Bruzzone S, Schenone S, Cichero E. Recent Advances in the Discovery of SIRT1/2 Inhibitors via Computational Methods: A Perspective. Pharmaceuticals (Basel) 2024; 17:601. [PMID: 38794171 PMCID: PMC11123952 DOI: 10.3390/ph17050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| |
Collapse
|
14
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
15
|
Wang Y, Liu Y, Wang Y, Bai P, Hallisey MR, Varela BL, Siewko A, Wang C, Xu Y. Development and Characterization of a Novel Carbon-11 Labeled Positron Emission Tomography Radiotracer for Neuroimaging of Sirtuin 1 with Benzoxazine-Based Compounds. Drug Des Devel Ther 2024; 18:819-827. [PMID: 38511202 PMCID: PMC10950555 DOI: 10.2147/dddt.s439589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Sirtuins (SIRTs) comprise a group of histone deacetylase enzymes crucial for regulating metabolic pathways and contributing significantly to various disease mechanisms. Sirtuin 1 (SIRT1), among the seven known mammalian homologs, is extensively investigated and understood, playing a key role in neurodegenerative disorders and cancer. This study focuses on potential as a therapeutic target for conditions such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). Methods Utilizing positron emission tomography (PET) as a noninvasive molecular imaging modality, we aimed to expedite the validation of a promising sirtuin 1 inhibitor for clinical trials. However, the absence of a validated sirtuin 1 PET radiotracer impedes clinical translation. We present the development of [11C]1, and 11C-labeled benzoxazine-based derivative, as a lead imaging probe. The radiosynthesis of [11C]1 resulted in a radiochemical yield of 31 ± 4%. Results Baseline studies demonstrated that [11C]1 exhibited excellent blood-brain barrier (BBB) penetration capability, with uniform accumulation throughout various brain regions. Self-blocking studies revealed that introducing an unlabeled compound 1, effectively blocking sirtuin 1, led to a substantial reduction in whole-brain uptake, emphasizing the in vivo specificity of [11C]1 for sirtuin 1. Discussion The development of [11C]1 provides a valuable tool for noninvasive imaging investigations in rodent models with aberrant sirtuin 1 expression. This novel radiotracer holds promise for advancing our understanding of sirtuin 1's role in disease mechanisms and may facilitate the validation of sirtuin 1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Yanli Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yongle Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- School of Pharmacy, Minzu University of China, Beijing, 100081, People’s Republic of China
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Madelyn Rose Hallisey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Breanna Lizeth Varela
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anne Siewko
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
16
|
Bursch KL, Goetz CJ, Smith BC. Current Trends in Sirtuin Activator and Inhibitor Development. Molecules 2024; 29:1185. [PMID: 38474697 DOI: 10.3390/molecules29051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
18
|
Pannek M, Alhalabi Z, Tomaselli D, Menna M, Fiorentino F, Robaa D, Weyand M, Puhlmann M, Tomassi S, Barreca F, Tafani M, Zaganjor E, Haigis MC, Sippl W, Rotili D, Mai A, Steegborn C. Specific Inhibitors of Mitochondrial Deacylase Sirtuin 4 Endowed with Cellular Activity. J Med Chem 2024; 67:1843-1860. [PMID: 38253001 DOI: 10.1021/acs.jmedchem.3c01496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sirtuins are NAD+-dependent protein lysine deacylases implicated in aging-related diseases. Mammalian Sirtuin 4 (Sirt4) is located in mitochondria and a potential therapeutic target for cancer and metabolic diseases, but no potent and selective Sirt4 inhibitors have been reported. Here, we describe the identification of potent Sirt4-specific small-molecule inhibitors. Testing hits from a target-based virtual screen revealed 12 active compounds. A focused screen based on two top compounds, followed by structure-assisted design of derivatives, yielded four first-in-class potent Sirt4 inhibitors. Kinetic analyses indicate compound competition with the acyl peptide substrate, consistent with the docking models and implicating Sirt4's unique acyl binding site. The compounds indeed show preference for Sirt4 over other isoforms, with one of them (69) being highly isoform selective, and they are active in cells. Our results provide first lead compounds and mechanistic insights for optimization toward Sirt4-specific inhibitors useful as experimental tools and potential therapeutics.
Collapse
Affiliation(s)
- Martin Pannek
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Zayan Alhalabi
- Department of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Daniela Tomaselli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Martina Menna
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Michael Weyand
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elma Zaganjor
- Department of Cell Biology, Harvard Medical School, Boston, 02115 Massachusetts, United States
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, 02115 Massachusetts, United States
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute Italy, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
19
|
Alrouji M, Alhumaydhi FA, Alsayari A, Sharaf SE, Shafi S, Anwar S, Shahwan M, Atiya A, Shamsi A. Targeting Sirtuin 1 for therapeutic potential: Drug repurposing approach integrating docking and molecular dynamics simulations. PLoS One 2023; 18:e0293185. [PMID: 38117829 PMCID: PMC10732437 DOI: 10.1371/journal.pone.0293185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/08/2023] [Indexed: 12/22/2023] Open
Abstract
Identifying novel therapeutic agents is a fundamental challenge in contemporary drug development, especially in the context of complex diseases like cancer, neurodegenerative disorders, and metabolic syndromes. Here, we present a comprehensive computational study to identify potential inhibitors of SIRT1 (Sirtuin 1), a critical protein involved in various cellular processes and disease pathways. Leveraging the concept of drug repurposing, we employed a multifaceted approach that integrates molecular docking and molecular dynamics (MD) simulations to predict the binding affinities and dynamic behavior of a diverse set of FDA-approved drugs from DrugBank against the SIRT1. Initially, compounds were shortlisted based on their binding affinities and interaction analyses to identify safe and promising binding partners for SIRT1. Among these candidates, Doxercalciferol and Timiperone emerged as potential candidates, displaying notable affinity, efficiency, and specificity towards the binding pocket of SIRT1. Extensive evaluation revealed that these identified compounds boast a range of favorable biological properties and prefer binding to the active site of SIRT1. To delve deeper into the interactions, all-atom MD simulations were conducted for 500 nanoseconds (ns). These simulations assessed the conformational dynamics, stability, and interaction mechanism of the SIRT1-Doxercalciferol and SIRT1-Timiperone complexes. The MD simulations illustrated that the SIRT1-Doxercalciferol and SIRT1-Timiperone complexes maintain stability over a 500 ns trajectory. These insightful outcomes propose that Doxercalciferol and Timiperone hold promise as viable scaffolds for developing potential SIRT1 inhibitors, with implications for tackling complex diseases such as cancer, neurodegenerative disorders, and metabolic syndromes.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Abha, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University Makkah, Makkah, Saudi Arabia
| | - Sheeba Shafi
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences, Ajman University, Ajman, UAE
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences, Ajman University, Ajman, UAE
| |
Collapse
|
20
|
Cho Y, Hwang JW, Park NJ, Moon J, Ali KH, Seo YH, Kim IS, Kim SN, Kim YK. SPC-180002, a SIRT1/3 dual inhibitor, impairs mitochondrial function and redox homeostasis and represents an antitumor activity. Free Radic Biol Med 2023; 208:73-87. [PMID: 37536458 DOI: 10.1016/j.freeradbiomed.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Since sirtuins (SIRTs) are closely associated with reactive oxygen species (ROS) and antioxidant system, the development of their selective inhibitors is drawing attention for understanding of cellular redox homeostasis. Here, we describe the pharmacological properties of SPC-180002, which incorporates a methyl methacrylate group as a key pharmacophore, along with its comprehensive molecular mechanism as a novel dual inhibitor of SIRT1/3. The dual inhibition of SIRT1/3 by SPC-180002 disturbs redox homeostasis via ROS generation, which leads to an increase in both p21 protein stability and mitochondrial dysfunction. Increased p21 interacts with and inhibits CDK, thereby interfering with cell cycle progression. SPC-180002 leads to mitochondrial dysfunction by inhibiting mitophagy, which is accompanied by a reduction in oxygen consumption rate. Consequently, SPC-180002 strongly suppresses the proliferation of cancer cells and exerts anticancer effect in vivo. Taken together, the novel SIRT1/3 dual inhibitor, SPC-180002, impairs mitochondrial function and redox homeostasis, thereby strongly inhibiting cell cycle progression and cancer cell growth.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Hwang
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - No-June Park
- Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea; Division of Bio-Medical Science and Technology, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Su-Nam Kim
- Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea; Division of Bio-Medical Science and Technology, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea.
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
21
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
22
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
23
|
Bi S, Tu Z, Chen D, Zhang S. Histone modifications in embryo implantation and placentation: insights from mouse models. Front Endocrinol (Lausanne) 2023; 14:1229862. [PMID: 37600694 PMCID: PMC10436591 DOI: 10.3389/fendo.2023.1229862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Embryo implantation and placentation play pivotal roles in pregnancy by facilitating crucial maternal-fetal interactions. These dynamic processes involve significant alterations in gene expression profiles within the endometrium and trophoblast lineages. Epigenetics regulatory mechanisms, such as DNA methylation, histone modification, chromatin remodeling, and microRNA expression, act as regulatory switches to modulate gene activity, and have been implicated in establishing a successful pregnancy. Exploring the alterations in these epigenetic modifications can provide valuable insights for the development of therapeutic strategies targeting complications related to pregnancy. However, our current understanding of these mechanisms during key gestational stages remains incomplete. This review focuses on recent advancements in the study of histone modifications during embryo implantation and placentation, while also highlighting future research directions in this field.
Collapse
Affiliation(s)
- Shilei Bi
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Shuang Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| |
Collapse
|
24
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
25
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
26
|
Therapeutic targeting of Huntington's disease: Molecular and clinical approaches. Biochem Biophys Res Commun 2023; 655:18-24. [PMID: 36913762 DOI: 10.1016/j.bbrc.2023.02.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant ailment that affects a larger population. Due to its complex pathology operating at DNA, RNA, and protein levels, it is regarded as a protein-misfolding disease and an expansion repeat disorder. Despite the availability of early genetic diagnostics, disease-modifying treatments are still missing. Importantly, potential therapies are starting to make their way through clinical trials. Still, clinical trials are ongoing to discover potential drugs to relieve HD symptoms. However, now being aware of the root cause, the clinical studies are focused on molecular therapies to target it. The road to success has not been without bumps since a big phase III trial of tominersen was unexpectedly discontinued due to exceeding risks than drug's benefit to the patients. Although the trial's conclusion was disappointing, there is still cause to be optimistic about what this technique may achieve. We have reviewed the present disease-modifying therapies in clinical development for HD and examined the current landscape of developing clinical therapies. We further investigated the pharmaceutical development of Huntington's medicine in the pharma industries and addressed the existing challenges in their therapeutic success.
Collapse
|
27
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
28
|
Pérez-Arancibia R, Cisternas-Olmedo M, Sepúlveda D, Troncoso-Escudero P, Vidal RL. Small molecules to perform big roles: The search for Parkinson's and Huntington's disease therapeutics. Front Neurosci 2023; 16:1084493. [PMID: 36699535 PMCID: PMC9868863 DOI: 10.3389/fnins.2022.1084493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Neurological motor disorders (NMDs) such as Parkinson's disease and Huntington's disease are characterized by the accumulation and aggregation of misfolded proteins that trigger cell death of specific neuronal populations in the central nervous system. Differential neuronal loss initiates the impaired motor control and cognitive function in the affected patients. Although major advances have been carried out to understand the molecular basis of these diseases, to date there are no treatments that can prevent, cure, or significantly delay the progression of the disease. In this context, strategies such as gene editing, cellular therapy, among others, have gained attention as they effectively reduce the load of toxic protein aggregates in different models of neurodegeneration. Nevertheless, these strategies are expensive and difficult to deliver into the patients' nervous system. Thus, small molecules and natural products that reduce protein aggregation levels are highly sought after. Numerous drug discovery efforts have analyzed large libraries of synthetic compounds for the treatment of different NMDs, with a few candidates reaching clinical trials. Moreover, the recognition of new druggable targets for NMDs has allowed the discovery of new small molecules that have demonstrated their efficacy in pre-clinical studies. It is also important to recognize the contribution of natural products to the discovery of new candidates that can prevent or cure NMDs. Additionally, the repurposing of drugs for the treatment of NMDs has gained huge attention as they have already been through clinical trials confirming their safety in humans, which can accelerate the development of new treatment. In this review, we will focus on the new advances in the discovery of small molecules for the treatment of Parkinson's and Huntington's disease. We will begin by discussing the available pharmacological treatments to modulate the progression of neurodegeneration and to alleviate the motor symptoms in these diseases. Then, we will analyze those small molecules that have reached or are currently under clinical trials, including natural products and repurposed drugs.
Collapse
Affiliation(s)
- Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Departamento de Ciencias Básicas, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marisol Cisternas-Olmedo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Denisse Sepúlveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Molecular Diagnostic and Biomarkers Laboratory, Department of Pathology, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
29
|
Chen J, Lou R, Zhou F, Li D, Peng C, Lin L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front Immunol 2022; 13:1068986. [PMID: 36505468 PMCID: PMC9730827 DOI: 10.3389/fimmu.2022.1068986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity, a complex disease involving an excessive amount of body fat and a major threat to public health all over the world, is the determining factor of the onset and development of metabolic disorders, including type 2 diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease. Long-term overnutrition results in excessive expansion and dysfunction of adipose tissue, inflammatory responses and over-accumulation of extracellular matrix in adipose tissue, and ectopic lipid deposit in other organs, termed adipose tissue remodeling. The mammalian Sirtuins (SIRT1-7) are a family of conserved NAD+-dependent protein deacetylases. Mounting evidence has disclosed that Sirtuins and their prominent substrates participate in a variety of physiological and pathological processes, including cell cycle regulation, mitochondrial biogenesis and function, glucose and lipid metabolism, insulin action, inflammatory responses, and energy homeostasis. In this review, we provided up-to-date and comprehensive knowledge about the roles of Sirtuins in adipose tissue remodeling, focusing on the fate of adipocytes, lipid mobilization, adipose tissue inflammation and fibrosis, and browning of adipose tissue, and we summarized the clinical trials of Sirtuin activators and inhibitors in treating metabolic diseases, which might shed light on new therapeutic strategies for obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China,Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China,*Correspondence: Cheng Peng, ; Ligen Lin,
| |
Collapse
|
30
|
SIRT1 activation and its circadian clock control: a promising approach against (frailty in) neurodegenerative disorders. Aging Clin Exp Res 2022; 34:2963-2976. [DOI: 10.1007/s40520-022-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 11/01/2022]
|
31
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
32
|
Chojdak-Łukasiewicz J, Bizoń A, Waliszewska-Prosół M, Piwowar A, Budrewicz S, Pokryszko-Dragan A. Role of Sirtuins in Physiology and Diseases of the Central Nervous System. Biomedicines 2022; 10:2434. [PMID: 36289696 PMCID: PMC9598817 DOI: 10.3390/biomedicines10102434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Silent information regulators, sirtuins (SIRTs), are a family of enzymes which take part in major posttranslational modifications of proteins and contribute to multiple cellular processes, including metabolic and energetic transformations, as well as regulation of the cell cycle. Recently, SIRTs have gained increased attention as the object of research because of their multidirectional activity and possible role in the complex pathomechanisms underlying human diseases. The aim of this study was to review a current literature evidence of SIRTs' role in the physiology and pathology of the central nervous system (CNS). SIRTs have been demonstrated to be crucial players in the crosstalk between neuroinflammation, neurodegeneration, and metabolic alterations. The elucidation of SIRTs' role in the background of various CNS diseases offers a chance to define relevant markers of their progression and promising candidates for novel therapeutic targets. Possible diagnostic and therapeutic implications from SIRTs-related investigations are discussed, as well as their future directions and associated challenges.
Collapse
Affiliation(s)
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | | | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
33
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
34
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
35
|
Wu S, Liu H. Sirtuins-Novel Regulators of Epigenetic Alterations in Airway Inflammation. Front Genet 2022; 13:862577. [PMID: 35620467 PMCID: PMC9127257 DOI: 10.3389/fgene.2022.862577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Histone modification is an important epigenetic alteration, and histone deacetylases are involved in the occurrence and development of various respiratory diseases. Sirtuins (SIRTs) have been demonstrated to play an important role in the formation and progression of chronic inflammatory diseases of the respiratory tract. SIRTs participate in the regulation of oxidative stress and inflammation and are related to cell structure and cellular localization. This paper summarizes the roles and mechanisms of SIRTs in airway inflammation and describes the latest research on SIRT modulators, aiming to provide a theoretical basis for the study of potential epigenetic alteration-inducing drug targets.
Collapse
Affiliation(s)
- Shunyu Wu
- Department of Otolaryngological, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Huanhai Liu
- Department of Otolaryngological, the Second Affiliated Hospital of the Naval Military Medical University (Shanghai Changzheng Hospital), Shanghai, China
| |
Collapse
|
36
|
Abstract
Sirtuins are NAD+-dependent protein lysine deacylase and mono-ADP ribosylases present in both prokaryotes and eukaryotes. The sirtuin family comprises seven isoforms in mammals, each possessing different subcellular localization and biological functions. Sirtuins have received increasing attention in the past two decades given their pivotal functions in a variety of biological contexts, including cytodifferentiation, transcriptional regulation, cell cycle progression, apoptosis, inflammation, metabolism, neurological and cardiovascular physiology and cancer. Consequently, modulation of sirtuin activity has been regarded as a promising therapeutic option for many pathologies. In this review, we provide an up-to-date overview of sirtuin biology and pharmacology. We examine the main features of the most relevant inhibitors and activators, analyzing their structure-activity relationships, applications in biology, and therapeutic potential.
Collapse
|
37
|
Huang SB, Rivas P, Yang X, Lai Z, Chen Y, Schadler KL, Hu M, Reddick RL, Ghosh R, Kumar AP. SIRT1 inhibition-induced senescence as a strategy to prevent prostate cancer progression. Mol Carcinog 2022; 61:702-716. [PMID: 35452563 PMCID: PMC10161240 DOI: 10.1002/mc.23412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Emerging evidence suggests an important role for SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase in cancer development, progression and therapeutic resistance; making it a viable therapeutic target. Here, we examined the impact of resveratrol-mediated pharmacological activation of SIRT1 on the progression of HGPIN lesions (using the Pten-/- mouse model) and on prostate tumor development (using an orthotopic model of prostate cancer cells stably silenced for SIRT1). We show that precise SIRT1 modulation could benefit both cancer prevention and treatment. Positive effect of SIRT1 activation can prevent Pten deletion-driven development of HGPIN lesions in mice if resveratrol is administered early (pre-cancer stage) with little to no benefit after the establishment of HGPIN lesions or tumor cell implantation. Mechanistically, our results show that under androgen deprivation conditions, SIRT1 inhibition induces senescence as evidenced by decreased gene signature associated with negative regulators of senescence and increased senescence-associated β-galactosidase activity. Furthermore, pharmacological inhibition of SIRT1 potentiated growth inhibitory effects of clinical androgen receptor blockade agents and radiation. Taken together, our findings provide an explanation for the discrepancy regarding the role of SIRT1 in prostate tumorigenesis. Our results reveal that the bifurcated roles for SIRT1 may occur in stage and context-dependent fashion by functioning in an antitumor role in prevention of early-stage prostate lesion development while promoting tumor development and disease progression post-lesion development. Clinically, these data highlight the importance of precise SIRT1 modulation to provide benefits for cancer prevention and treatment including sensitization to conventional therapeutic approaches.
Collapse
Affiliation(s)
- Shih-Bo Huang
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Paul Rivas
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Xiaoyu Yang
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Zhao Lai
- Department of Epidemiology and Biostatistics, UT Health at San Antonio Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, UT Health at San Antonio Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Keri L Schadler
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ming Hu
- College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Robert L Reddick
- Department of Pathology, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Rita Ghosh
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Department of Urology, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, The University of Texas Health San Antonio MD Anderson, San Antonio, Texas, USA
| | - Addanki P Kumar
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Department of Urology, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, The University of Texas Health San Antonio MD Anderson, San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
38
|
Devadiga SJ, Bharate SS. Recent developments in the management of Huntington's disease. Bioorg Chem 2022; 120:105642. [PMID: 35121553 DOI: 10.1016/j.bioorg.2022.105642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a rare, incurable, inheritedneurodegenerative disorder manifested by chorea, hyperkinetic, and hypokinetic movements. The FDA has approved only two drugs, viz. tetrabenazine, and deutetrabenazine, to manage the chorea associated with HD. However, several other drugs are used as an off-label to manage chorea and other symptoms such as depression, anxiety, muscle tremors, and cognitive dysfunction associated with HD. So far, there is no disease-modifying treatment available. Drug repurposing has been a primary drive to search for new anti-HD drugs. Numerous molecular targets along with a wide range of small molecules and gene therapies are currently under clinical investigation. More than 200 clinical studies are underway for HD, 75% are interventional, and 25% are observational studies. The present review discusses the small molecule clinical pipeline and molecular targets for HD. Furthermore, the biomarkers, diagnostic tests, gene therapies, behavioral and observational studies for HD were also deliberated.
Collapse
Affiliation(s)
- Shanaika J Devadiga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
39
|
Curry AM, White DS, Donu D, Cen Y. Human Sirtuin Regulators: The "Success" Stories. Front Physiol 2021; 12:752117. [PMID: 34744791 PMCID: PMC8568457 DOI: 10.3389/fphys.2021.752117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
The human sirtuins are a group of NAD+-dependent protein deacylases. They “erase” acyl modifications from lysine residues in various cellular targets including histones, transcription factors, and metabolic enzymes. Through these far-reaching activities, sirtuins regulate a diverse array of biological processes ranging from gene transcription to energy metabolism. Human sirtuins have been intensely pursued by both academia and industry as therapeutic targets for a broad spectrum of diseases such as cancer, neurodegenerative diseases, and metabolic disorders. The last two decades have witnessed a flood of small molecule sirtuin regulators. However, there remain relatively few compounds targeting human sirtuins in clinical development. This reflects the inherent issues concerning the development of isoform-selective and potent molecules with good drug-like properties. In this article, small molecule sirtuin regulators that have advanced into clinical trials will be discussed in details as “successful” examples for future drug development. Special attention is given to the discovery of these compounds, the mechanism of action, pharmacokinetics analysis, formulation, as well as the clinical outcomes observed in the trials.
Collapse
Affiliation(s)
- Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
40
|
Bajrami I, Walker C, Krastev DB, Weekes D, Song F, Wicks AJ, Alexander J, Haider S, Brough R, Pettitt SJ, Tutt ANJ, Lord CJ. Sirtuin inhibition is synthetic lethal with BRCA1 or BRCA2 deficiency. Commun Biol 2021; 4:1270. [PMID: 34750509 PMCID: PMC8575930 DOI: 10.1038/s42003-021-02770-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
PARP enzymes utilise NAD+ as a co-substrate for their enzymatic activity. Inhibition of PARP1 is synthetic lethal with defects in either BRCA1 or BRCA2. In order to assess whether other genes implicated in NAD+ metabolism were synthetic lethal with BRCA1 or BRCA2 gene defects, we carried out a genetic screen, which identified a synthetic lethality between BRCA1 and genetic inhibition of either of two sirtuin (SIRT) enzymes, SIRT1 or SIRT6. This synthetic lethal interaction was replicated using small-molecule SIRT inhibitors and was associated with replication stress and increased cellular PARylation, in contrast to the decreased PARylation associated with BRCA-gene/PARP inhibitor synthetic lethality. SIRT/BRCA1 synthetic lethality was reversed by genetic ablation of either PARP1 or the histone PARylation factor-coding gene HPF1, implicating PARP1/HPF1-mediated serine ADP-ribosylation as part of the mechanistic basis of this synthetic lethal effect. These observations suggest that PARP1/HPF1-mediated serine ADP-ribosylation, when driven by SIRT inhibition, can inadvertently inhibit the growth of BRCA-gene mutant cells.
Collapse
Affiliation(s)
- Ilirjana Bajrami
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Callum Walker
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Daniel Weekes
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Andrew J Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - John Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
41
|
Hong JY, Lin H. Sirtuin Modulators in Cellular and Animal Models of Human Diseases. Front Pharmacol 2021; 12:735044. [PMID: 34650436 PMCID: PMC8505532 DOI: 10.3389/fphar.2021.735044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Sirtuins use NAD+ to remove various acyl groups from protein lysine residues. Through working on different substrate proteins, they display many biological functions, including regulation of cell proliferation, genome stability, metabolism, and cell migration. There are seven sirtuins in humans, SIRT1-7, each with unique enzymatic activities, regulatory mechanisms, subcellular localizations, and substrate scopes. They have been indicated in many human diseases, including cancer, neurodegeneration, microbial infection, metabolic and autoimmune diseases. Consequently, interests in development of sirtuin modulators have increased in the past decade. In this brief review, we specifically summarize genetic and pharmacological modulations of sirtuins in cancer, neurological, and cardiovascular diseases. We further anticipate this review will be helpful for scrutinizing the significance of sirtuins in the studied diseases.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
42
|
Mohamed FA, Thangavelu G, Rhee SY, Sage PT, O’Connor RS, Rathmell JC, Blazar BR. Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Front Immunol 2021; 12:757836. [PMID: 34712243 PMCID: PMC8546182 DOI: 10.3389/fimmu.2021.757836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Roddy S. O’Connor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
43
|
SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 2021; 40:6081-6092. [PMID: 34471236 DOI: 10.1038/s41388-021-01999-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023]
Abstract
There are unmet clinical needs for novel therapeutic targets and drugs for bladder cancer. Majority of previous work relied on limited bladder cancer cell lines, which could not well represent the tumor heterogeneity and pathology of this disease. Recently, it has been shown that cancer organoids can recapitulate pathological and molecular properties of bladder cancer. Here, we report, by our knowledge, the first bladder cancer organoid-based small molecule screening for epigenetic drugs. We found that SRT1720, a Sirtuin 1 (SIRT1) activator, significantly inhibits the growth of both mouse and human bladder cancer organoids. And it also restrains the development of mouse in situ bladder cancer and human PDX bladder cancer. Mutation of Sirt1 promotes the growth of cancer organoids and decreases their sensitivity to SRT1720, which validate Sirt1 as the target of SRT1720 in bladder cancer. Mechanistically, SRT1720 treatment represses the hypoxia pathway through deacetylating HIF1α by activating Sirt1. Genetic or pharmaceutic inhibitions of HIF mimic the anti-tumor effect of SRT1720. Furthermore, the SIRT1-repressed gene signature is associated with the hypoxia target gene signature and poor prognosis in human bladder cancers. Thus, our study demonstrates the power of cancer organoid-based drug discovery and, in principle, identifies SRT1720 as a new treatment for bladder cancer.
Collapse
|
44
|
Kim C, Ye Z, Weyand CM, Goronzy JJ. miR-181a-regulated pathways in T-cell differentiation and aging. Immun Ageing 2021; 18:28. [PMID: 34130717 PMCID: PMC8203492 DOI: 10.1186/s12979-021-00240-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are regulatory noncoding RNAs important for many aspects of cellular processes including cell differentiation and proliferation. Functions of numerous miRNAs have been identified in T cells, with miR-181a regulating T cell activation thresholds during thymic T cell development and during activation of peripheral T cells. Intriguingly, miR-181a is implicated in defective antiviral and vaccine responses in older individuals, as its expression declines in naïve T cells with increasing age. Here, we review the pathways that are regulated by miR-181a and that explain the unique role of miR-181a in T cell development, T cell activation and antiviral T cell responses. These studies provide a framework for understanding how a decline in miR-181a expression in T cells could contribute to age-related defects in adaptive immunity. We furthermore review the mechanisms that cause the age-related decline in miR-181a expression and discuss the potential of restoring miR-181a expression or targeting miR-181a-regulated pathways to improve impaired T cell responses in older individuals.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Zhongde Ye
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
45
|
Pawge G, Khatik GL. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem Pharmacol 2021; 190:114651. [PMID: 34118220 DOI: 10.1016/j.bcp.2021.114651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Multiple co-morbidities are associated with age, and there is a need for the broad-spectrum drug to prevent multiple regimens that may cause an adverse effect in the geriatric population. Cellular senescence is a primary mechanism for ageing in various tissues. p53, a tumor suppressor protein, plays a significant role in forming DNA damage foci and post different stress responses. DNA damage foci can be transient or persistent that can progress to DNA-SCARS inducing senescence. p53 also plays a role in apoptosis and negative regulation of SASP. Few upstream targets like FOXO4, MDM2, MDM4, USP7 control the availability of p53 for apoptosis. Hence, the senolytic therapies, modulating p53 upstream targets, can be a good approach for preventing age-related disorders. This review discusses the insights on the role of p53 in the formation of DNA-SCARS, various upstream target proteins, and pathways involved in p53 regulation. Further, the review aimed to include recently discovered small molecules acting on these upstream targets, and those can be modified using medicinal chemistry approaches to give successful senotherapeutics.
Collapse
Affiliation(s)
- Girija Pawge
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India.
| |
Collapse
|
46
|
Kim C, Jin J, Ye Z, Jadhav RR, Gustafson CE, Hu B, Cao W, Tian L, Weyand CM, Goronzy JJ. Histone deficiency and accelerated replication stress in T cell aging. J Clin Invest 2021; 131:143632. [PMID: 34060486 PMCID: PMC8159689 DOI: 10.1172/jci143632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
With increasing age, individuals are more vulnerable to viral infections such as with influenza or the SARS-CoV-2 virus. One age-associated defect in human T cells is the reduced expression of miR-181a. miR-181ab1 deficiency in peripheral murine T cells causes delayed viral clearance after infection, resembling human immune aging. Here we show that naive T cells from older individuals as well as miR-181ab1-deficient murine T cells develop excessive replication stress after activation, due to reduced histone expression and delayed S-phase cell cycle progression. Reduced histone expression was caused by the miR-181a target SIRT1 that directly repressed transcription of histone genes by binding to their promoters and reducing histone acetylation. Inhibition of SIRT1 activity or SIRT1 silencing increased histone expression, restored cell cycle progression, diminished the replication-stress response, and reduced the production of inflammatory mediators in replicating T cells from old individuals. Correspondingly, treatment with SIRT1 inhibitors improved viral clearance in mice with miR-181a-deficient T cells after LCMV infection. In conclusion, SIRT1 inhibition may be beneficial to treat systemic viral infection in older individuals by targeting antigen-specific T cells that develop replication stress due to miR-181a deficiency.
Collapse
Affiliation(s)
- Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Jun Jin
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Zhongde Ye
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Rohit R. Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Claire E. Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
| |
Collapse
|
47
|
Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NOS. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 2021; 179:1496-1511. [PMID: 34029375 DOI: 10.1111/bph.15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions.
Collapse
Affiliation(s)
- Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor P Targhetta
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Liu J, Gong Z, Wu J, Liu S, Wang X, Wang J, Xu J, Li J, Zhao Y. Hypoxic postconditioning-induced neuroprotection increases neuronal autophagy via activation of the SIRT1/FoxO1 signaling pathway in rats with global cerebral ischemia. Exp Ther Med 2021; 22:695. [PMID: 33986859 PMCID: PMC8111876 DOI: 10.3892/etm.2021.10127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 09/02/2020] [Indexed: 11/27/2022] Open
Abstract
Hypoxic postconditioning (HPC) has been reported to be a beneficial and promising treatment for global cerebral ischemia (GCI). However, its neuroprotective mechanism remains unclear. The aim of the present study was to determine whether the protective effects of HPC in a rat model of GCI were due to the upregulation of autophagy via the silent information regulator transcript-1 (SIRT1)/Forkhead box protein 1 (FoxO1) pathway. Morris water maze test revealed that HPC attenuated cognitive damage in GCI rats. HPC also significantly increased the levels of the autophagy-related protein LC3-II, SIRT1 and FoxO1 compared with those in the GCI group. However, the HPC-induced LC3-II upregulation was blocked by the SIRT1 inhibitor EX527. These results suggested that the beneficial effects of HPC on GCI rats were due to the upregulation of ischemiainduced autophagy and involved the SIRT1/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Junjie Liu
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Zehua Gong
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Juan Wu
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Shaopeng Liu
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Xue Wang
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jingyao Wang
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jiwei Xu
- Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jianmin Li
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yaning Zhao
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
49
|
Garg G, Singh AK, Singh S, Rizvi SI. Promising drug discovery strategies for sirtuin modulators: what lessons have we learnt? Expert Opin Drug Discov 2021; 16:915-927. [PMID: 33880981 DOI: 10.1080/17460441.2021.1915980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Sirtuins, NAD-dependent protein deacetylases, require NAD+ for enzymatic activity. Recent research has indicated that sirtuins have a key role in the regulation of gene expression, the cell cycle, apoptosis, neurodegeneration and several age-related diseases. In mammals, there are seven sirtuin isoforms (SIRT-1-7) that catalyze specific lysine substrate deacetylation. AREAS COVERED This review explains the current information on the structure, function and importance of sirtuin modulators. It also explores the possible therapeutic applications of sirtuin modulators and related small molecules in the context of various diseases. EXPERT OPINION Sirtuin's modulators open a new area of research for targeting pathological conditions. Sirtuin modulators, through their targeted function, may provide a possible tool for the amelioration of various diseases. However, the search of activators/inhibitors for sirtuins needs further research. The structural elucidation of sirtuins will create an understanding for the development of isoform-specific selective modulators. This could be a useful tool to determine the functions of individual sirtuins as potential therapeutic agents.
Collapse
Affiliation(s)
- Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India.,Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
50
|
Khan H, Tiwari P, Kaur A, Singh TG. Sirtuin Acetylation and Deacetylation: a Complex Paradigm in Neurodegenerative Disease. Mol Neurobiol 2021; 58:3903-3917. [PMID: 33877561 DOI: 10.1007/s12035-021-02387-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Sirtuins are the class III of histone deacetylases that depend on nicotinamide adenine dinucleotide for their activity. Sirtuins can influence the progression of neurodegenerative disorders by switching between deacetylation and acetylation processes. Histone acetylation occurs when acetyl groups are added to lysine residues on the N-terminal part of histone proteins. Deacetylation, on the other hand, results in the removal of acetyl groups. Pharmacological modulation of sirtuin activity has been shown to influence various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. In this review, mechanistic perspective of sirtuins has been discussed in anti-inflammatory, antiapoptotic, and neuroprotective effects in various disorders. We have discussed the structure, neurobiology, and physiology of sirtuins in neurodegenerative disease. Recent preclinical and clinical studies and their outcome have also been elucidated. The aim of this review is to fill in the gaps in our understanding of sirtuins' role in histone acetylation and deacetylation in all neurodegenerative diseases. Here, we emphasized on reviewing all the studies carried out in various labs depicting the role of sirtuin modulators in neuroprotection and highlighted the ideas that can be considered for future perspectives. Taken together, sirtuins may serve as a promising therapeutic target for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Palak Tiwari
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|