1
|
Wang X, Wei T, Luo J, Lang K, Song Y, Ning X, Chao Y, Gu Z, Wang L, Chen C, Yang D, Song Y. Iron Overload-Dependent Ferroptosis Aggravates LPS-Induced Acute Lung Injury by Impairing Mitochondrial Function. Inflammation 2024; 47:2013-2026. [PMID: 38722504 DOI: 10.1007/s10753-024-02022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 11/30/2024]
Abstract
Ferroptosis is a newly proposed form of programmed cell death that is iron-dependent and closely linked to oxidative stress. Its specific morphological changes include shrunken mitochondria, increased density of mitochondrial membrane, and rupture or disappearance of mitochondrial cristae. The main mechanism of ferroptosis involves excessive free iron reacting with membrane phospholipids, known as the Fenton reaction, resulting in lipid peroxidation. However, the role of iron in acute lung injury (ALI) remains largely unknown. In this study, LPS was instilled into the airway to induce ALI in mice. We observed a significant increase in iron concentration during ALI, accompanied by elevated levels of lipid peroxidation markers such as malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE). Treatment with the iron chelator deferoxamine (DFO) or ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed lipid peroxidation and significantly attenuates lung injury. Similarly, DFO or Fer-1 treatment improved the cell survival significantly in vitro. These results demonstrated that ferroptosis occurs during ALI and that targeting ferroptosis is an effective treatment strategy. Interestingly, we found that the increased iron was primarily concentrated in mitochondria and DFO treatment effectively restored normal mitochondria morphology. To further confirm the damaging effect of iron on mitochondria, we performed mitochondrial stress tests in vitro, which revealed that iron stimulation led to mitochondrial dysfunction, characterized by impaired basal respiratory capacity, ATP production capacity, and maximum respiratory capacity. MitoTEMPO, an antioxidant targeting mitochondria, exhibited superior efficacy in improving iron-induced mitochondrial dysfunction compared to the broad-spectrum antioxidant NAC. Treatment with MitoTEMPO more effectively alleviated ALI. In conclusion, ferroptosis contributes to the pathogenesis of ALI and aggravates ALI by impairing mitochondrial function.
Collapse
Affiliation(s)
- Xiaocen Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Tingting Wei
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jinlong Luo
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Ke Lang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yansha Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Xinyi Ning
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yencheng Chao
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zhaolin Gu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Linlin Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Cuicui Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Dong Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
- Shanghai Respiratory Research Institute, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Pulmonary Medicine, Qingpu Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Taveepanich S, Chayajarus K, Jittimanee J, Phusri N, Thongdee P, Sawatdee K, Kamsri P, Punkvang A, Suttisintong K, Pungpo P, Suwannaloet W, Thongrung R, Pangjit K. Iron chelating, antioxidant, and anti-inflammatory properties of brazilin from Caesalpinia sappan Linn. Heliyon 2024; 10:e38213. [PMID: 39397930 PMCID: PMC11470788 DOI: 10.1016/j.heliyon.2024.e38213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Background Iron overload and inflammation are severe conditions that can lead to various chronic diseases. However, the current iron chelator drugs have their limitations. The phytochemical compounds from herbals, such as brazilin, the major active compound in Caesalpinia sappan Linn., have significant therapeutic potential in various chronic diseases. Our study was designed to examine the effect of brazilin on iron chelating properties, antioxidant activity in hepatocytes, and anti-inflammatory potential in macrophages. Methods This study focused on the isolation, purification, and evaluation of brazilin, the principal bioactive constituent found in C. sappan wood. Brazilin was extracted via methanol maceration followed by column chromatography purification. The purified compound was characterized using high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). The antioxidant potential of brazilin was assessed by in vitro assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzthiazolin-6-sulfonic acid (ABTS), and ferric-reducing antioxidant power (FRAP). Furthermore, its cellular antioxidant activity was evaluated using hydrogen peroxide-induced oxidative stress in the hepatocellular carcinoma cell line (Huh-7). The iron-chelating capacity of brazilin was determined spectrophotometrically, and Job's plot method was used to elucidated the stoichiometry of the iron-brazilin complex formation. The anti-inflammatory properties of brazilin were investigated in lipopolysaccharide (LPS)-stimulated macrophages (RAW 264.7). Nitric oxide (NO) inhibition was quantified using the Griess reagent, while the expression levels of pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were evaluated by RT-qPCR. Results The results demonstrated that brazilin exhibited potent antioxidant activity in vitro and hepatocytes in a concentration-dependent manner. It also showed anti-inflammatory activity, in which NO production was significantly reduced and IL-6 and TNF-α expression in LPS-induced macrophages were repressed. Furthermore, it can bind ferric and ferrous ions. Brazilin acts as a bidentate iron chelator that forms a complex with iron in a 2:1 ratio, and two water molecules are used as additional chelators in this complex. Conclusions Our findings have significant implications. Brazilin can potentially alleviate the harmful effects of iron-induced oxidative stress and inflammatory disorders.
Collapse
Affiliation(s)
- Somjintana Taveepanich
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kampanart Chayajarus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Jutharat Jittimanee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Naruedon Phusri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Khemmisara Sawatdee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pornpan Pungpo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Wanwisa Suwannaloet
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Ruttiya Thongrung
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
3
|
Modi NB, Shames R, Lickliter JD, Gupta S. Pharmacokinetics, pharmacodynamics, and tolerability of an aqueous formulation of rusfertide (PTG-300), a hepcidin mimetic, in healthy volunteers: A double-blind first-in-human study. Eur J Haematol 2024; 113:340-350. [PMID: 38785334 DOI: 10.1111/ejh.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES Rusfertide is a potent peptide mimetic of hepcidin being investigated for the treatment of polycythemia vera. This randomized, placebo-controlled, double-blind study evaluated the safety, pharmacokinetics, and pharmacodynamics of single and repeated subcutaneous doses of an aqueous formulation of rusfertide in healthy adult males. METHODS Subjects received single doses of 1, 3, 10, 20, 40, or 80 mg rusfertide or placebo. A separate cohort of subjects received two doses of 40 mg rusfertide or placebo 1 week apart. Blood samples for pharmacokinetics and pharmacodynamics were collected, and adverse events, clinical laboratory tests, 12-lead electrocardiograms, and vital signs were monitored. RESULTS Rusfertide was well tolerated. There were no serious or severe treatment-emergent adverse events, and no patterns of clinically important adverse events, or laboratory, vital sign, or electrocardiogram abnormalities. Mean maximum rusfertide plasma concentration (Cmax) and area under the concentration-time curve increased with dose, but less than dose proportionally. Median time to Cmax was 2-4.5 h for 40 and 80 mg rusfertide and 8-24 h for lower doses. Apparent clearance and half-life increased with dose. Single doses of rusfertide 1-80 mg were associated with dose-dependent decreases in serum iron and transferrin-iron saturation. CONCLUSIONS Rusfertide was well tolerated and showed dose-dependent pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Nishit B Modi
- Protagonist Therapeutics, Inc., Newark, California, USA
| | | | | | - Suneel Gupta
- Protagonist Therapeutics, Inc., Newark, California, USA
| |
Collapse
|
4
|
Taylor J, Ayres-Galhardo PH, Brown BL. Elucidating the Role of Human ALAS2 C-terminal Mutations Resulting in Loss of Function and Disease. Biochemistry 2024; 63:1636-1646. [PMID: 38888931 PMCID: PMC11223264 DOI: 10.1021/acs.biochem.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.
Collapse
Affiliation(s)
- Jessica
L. Taylor
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Pedro H. Ayres-Galhardo
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Breann L. Brown
- Department
of Biochemistry, Center for Structural Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Gök V, Leblebisatan G, Gürlek Gökçebay D, Güler S, Doğan ME, Tuğ Bozdoğan S, Koca Yozgat A, Özcan A, Pekpak Şahinoğlu E, Tokgöz H, Çil M, Özemri Sağ Ş, Yilmaz E, Şaşmaz Hİ, Evim MS, Akbayram S, Karadoğan M, Mutlu FT, Boğa İ, Yeter Doğan B, Yarali N, Çalişkan Ü, Bişgin A, Temel ŞG, Proven M, Gibson K, Demir BŞ, Saraçoğlu H, Eken A, Karakükçü Ç, Karakükçü M, Güneş AM, Özbek NY, Kilinç Y, Patiroğlu T, Özdemir MA, Roy NBA, Ünal E. Pyruvate kinase deficiency in 29 Turkish patients with two novel intronic variants. Br J Haematol 2024; 205:236-242. [PMID: 38811201 DOI: 10.1111/bjh.19575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Pyruvate kinase (PK) is a key enzyme of anaerobic glycolysis. The genetic heterogeneity of PK deficiency (PKD) is high, and over 400 unique variants have been identified. Twenty-nine patients who had been diagnosed as PKD genetically in seven distinct paediatric haematology departments were evaluated. Fifteen of 23 patients (65.2%) had low PK levels. The PK:hexokinase ratio had 100% sensitivity for PKD diagnosis, superior to PK enzyme assay. Two novel intronic variants (c.695-1G>A and c.694+43C>T) have been described. PKD should be suspected in patients with chronic non-spherocytic haemolytic anaemia, even if enzyme levels are falsely normal. Total PKLR gene sequencing is necessary for the characterization of patients with PKD and for genetic counselling.
Collapse
Affiliation(s)
- Veysel Gök
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Göksel Leblebisatan
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Dilek Gürlek Gökçebay
- Department of Paediatric Haematology and Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Salih Güler
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Uludağ University, Bursa, Türkiye
| | - Muhammet Ensar Doğan
- Department of Medical Genetics, Faculty of Health Sciences, Kayseri City Hospital, Kayseri, Türkiye
| | - Sevcan Tuğ Bozdoğan
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Türkiye
- Adana Genetic Diseases Diagnosis and Treatment Center (AGENTEM), Cukurova University, Adana, Türkiye
| | - Ayça Koca Yozgat
- Department of Paediatric Haematology and Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Alper Özcan
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Esra Pekpak Şahinoğlu
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | - Hüseyin Tokgöz
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Metin Çil
- Department of Paediatric Haematology and Oncology, Faculty of Health Sciences, Adana City Hospital, Adana, Türkiye
| | - Şebnem Özemri Sağ
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Türkiye
| | - Ebru Yilmaz
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hatice İlgen Şaşmaz
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Çukurova University, Adana, Türkiye
- Department of Paediatric Bone Marrow Transplantation, Adana Acıbadem Hospital, Adana, Türkiye
| | - Melike Sezgin Evim
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Uludağ University, Bursa, Türkiye
| | - Sinan Akbayram
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| | - Meriban Karadoğan
- Department of Paediatric Haematology and Oncology, Faculty of Health Sciences, Kayseri City Hospital, Kayseri, Türkiye
| | - Fatma Türkan Mutlu
- Department of Paediatric Haematology and Oncology, Faculty of Health Sciences, Kayseri City Hospital, Kayseri, Türkiye
| | - İbrahim Boğa
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Türkiye
- Adana Genetic Diseases Diagnosis and Treatment Center (AGENTEM), Cukurova University, Adana, Türkiye
| | - Burcu Yeter Doğan
- Department of Paediatric Genetic, Faculty of Health Sciences, Kayseri City Hospital, Kayseri, Türkiye
| | - Neşe Yarali
- Department of Paediatric Haematology and Oncology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ümran Çalişkan
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
- Department of Paediatric Haematology and Oncology, Faculty of Medicine, KTO Karatay University, Konya, Türkiye
| | - Atil Bişgin
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Türkiye
- Adana Genetic Diseases Diagnosis and Treatment Center (AGENTEM), Cukurova University, Adana, Türkiye
| | - Şehime Gülsün Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Türkiye
- Department of Histology, Faculty of Medicine, Uludağ University, Bursa, Türkiye
| | - Melanie Proven
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kate Gibson
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Büşra Şeniz Demir
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hatice Saraçoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Drug Application and Research Center, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Molecular Biology and Genetics Department, Genome and Stem Cell Centre (GENKOK), Gevher Nesibe Genom and Stem Cell Institution, Erciyes University, Kayseri, Türkiye
| | - Çiğdem Karakükçü
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Drug Application and Research Center, Erciyes University, Kayseri, Türkiye
| | - Musa Karakükçü
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Adalet Meral Güneş
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Uludağ University, Bursa, Türkiye
| | - Namık Yaşar Özbek
- Department of Paediatric Haematology and Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Yurdanur Kilinç
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Türkan Patiroğlu
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Mehmet Akif Özdemir
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Noemi B A Roy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Molecular Haematology Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ekrem Ünal
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
- Medical Point Hospital, Paediatric Haematology and Oncology Clinic, Gaziantep, Türkiye
- School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Türkiye
| |
Collapse
|
6
|
Guerra A, Hamilton N, Rivera A, Demsko P, Guo S, Rivella S. Combination of a TGF-β ligand trap (RAP-GRL) and TMPRSS6-ASO is superior for correcting β-thalassemia. Am J Hematol 2024; 99:1300-1312. [PMID: 38659383 PMCID: PMC11166515 DOI: 10.1002/ajh.27332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
A recently approved drug that induces erythroid cell maturation (luspatercept) has been shown to improve anemia and reduce the need for blood transfusion in non-transfusion-dependent as well as transfusion-dependent β-thalassemia (BT) patients. Although these results were predominantly positive, not all the patients showed the expected increase in hemoglobin (Hb) levels or transfusion burden reduction. Additional studies indicated that administration of luspatercept in transfusion-dependent BT was associated with increased erythropoietic markers, decreased hepcidin levels, and increased liver iron content. Altogether, these studies suggest that luspatercept may necessitate additional drugs for improved erythroid and iron management. As luspatercept does not appear to directly affect iron metabolism, we hypothesized that TMPRSS6-ASO could improve iron parameters and iron overload when co-administered with luspatercept. We used an agent analogous to murine luspatercept (RAP-GRL) and another novel therapeutic, IONIS TMPRSS6-LRx (TMPRSS6-ASO), a hepcidin inducer, to treat non-transfusion-dependent BT-intermedia mice. Our study shows that RAP-GRL alone improved red blood cell (RBC) production, with no or limited effect on splenomegaly and iron parameters. In contrast, TMPRSS6-ASO improved RBC measurements, ameliorated splenomegaly, and improved iron overload most effectively. Our results provide pre-clinical support for combining TMPRSS6-ASO and luspatercept in treating BT, as these drugs together show potential for simultaneously improving both erythroid and iron parameters in BT patients.
Collapse
Affiliation(s)
- Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Nolan Hamilton
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Ariel Rivera
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Perry Demsko
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania, Philadelphia, PA, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania, Philadelphia, PA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics-CHOP
- Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
8
|
Tatsumi Y, Yano M, Wakusawa S, Miyajima H, Ishikawa T, Imashuku S, Takano A, Nihei W, Kato A, Kato K, Hayashi H, Yoshioka K, Hayashi K. A Revised Classification of Primary Iron Overload Syndromes. J Clin Transl Hepatol 2024; 12:346-356. [PMID: 38638373 PMCID: PMC11022062 DOI: 10.14218/jcth.2023.00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND AIMS The clinical introduction of hepcidin25 (Hep25) has led to a more detailed understanding of its relationship with ferroportin (FP) and divalent metal transporter1 in primary iron overload syndromes (PIOSs). In 2012, we proposed a classification of PIOSs based on the Hep25/FP system, which consists of prehepatic aceruloplasminemia, hepatic hemochromatosis (HC), and posthepatic FP disease (FP-D). However, in consideration of accumulated evidence on PIOSs, we aimed to renew the classification. METHODS We reviewed the 2012 classification and retrospectively renewed it according to new information on PIOSs. RESULTS Iron-loading anemia was included in PIOSs as a prehepatic form because of the newly discovered erythroferrone-induced suppression of Hep25, and the state of traditional FP-D was remodeled as the BIOIRON proposal. The key molecules responsible for prehepatic PIOSs are low transferrin saturation in aceruloplasminemia and increased erythroferrone production by erythroblasts in iron-loading anemia. Hepatic PIOSs comprise four genotypes of HC, in each of which the synthesis of Hep25 is inappropriately reduced in the liver. Hepatic Hep25 synthesis is adequate in posthepatic PIOSs; however, two mutant FP molecules may resist Hep25 differently, resulting in SLC40A1-HC and FP-D, respectively. PIOS phenotypes are diagnosed using laboratory tests, including circulating Hep25, followed by suitable treatments. Direct sequencing of the candidate genes may be outsourced to gene centers when needed. Laboratory kits for the prevalent mutations, such as C282Y, may be the first choice for a genetic analysis of HC in Caucasians. CONCLUSIONS The revised classification may be useful worldwide.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Japan
| | - Motoyoshi Yano
- Department of Gastroenterology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Shinya Wakusawa
- Department of Medical Technology, Shubun University, Ichinomiya, Japan
| | - Hiroaki Miyajima
- Department of Medicine and Neurology, Tenryu Kohseikai Clinic, Hamamatsu, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsaku Imashuku
- Department of Laboratory Medicine, Uji-Tokushukai Medical Center, Uji, Japan
| | - Atsuko Takano
- Department of Medicine, Saiseikai Takaoka Hospital, Takaoka, Japan
| | - Wataru Nihei
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Ayako Kato
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Koichi Kato
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Hayashi
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Nagoya, Japan
| | - Kentaro Yoshioka
- Department of Gastroenterology, FNPS Meijo Hospital, Nagoya, Japan
| | - Kazuhiko Hayashi
- Department of Gastroenterology, FNPS Meijo Hospital, Nagoya, Japan
| |
Collapse
|
9
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
10
|
Han Y, Gao C, Liu Y, Zhang H, Wang S, Zhao H, Bao W, Guo X, Vinchi F, Lobo C, Shi P, Mendelson A, Luchsinger L, Zhong H, Yazdanbakhsh K, An X. Hemolysis-driven IFNα production impairs erythropoiesis by negatively regulating EPO signaling in sickle cell disease. Blood 2024; 143:1018-1031. [PMID: 38127913 PMCID: PMC10950476 DOI: 10.1182/blood.2023021658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.
Collapse
Affiliation(s)
- Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Chengjie Gao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Yunfeng Liu
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | - Huan Zhang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Shihui Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Huizhi Zhao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Weili Bao
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Francesca Vinchi
- Laboratory of Iron Research, New York Blood Center, New York, NY
| | - Cheryl Lobo
- Laboratory of Blood Borne Parasites, New York Blood Center, New York, NY
| | - Patricia Shi
- Sickle Cell Clinical Research Program, New York Blood Center, New York, NY
| | - Avital Mendelson
- Laboratory of Stem Cell Biology and Engineering Research, New York Blood Center, New York, NY
| | - Larry Luchsinger
- Laboratory of Stem Cell Regenerative Research, New York Blood Center, New York, NY
| | - Hui Zhong
- Laboratory of Immune Regulation, New York Blood Center, New York, NY
| | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| |
Collapse
|
11
|
Ebea PO, Vidyasagar S, Connor JR, Frazer DM, Knutson MD, Collins JF. Oral iron therapy: Current concepts and future prospects for improving efficacy and outcomes. Br J Haematol 2024; 204:759-773. [PMID: 38253961 PMCID: PMC10939879 DOI: 10.1111/bjh.19268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.
Collapse
Affiliation(s)
- Pearl O. Ebea
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | | | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - David M. Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mitchell D. Knutson
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - James F. Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Duarte TL, Lopes M, Oliveira M, Santos AG, Vasco C, Reis JP, Antunes AR, Gonçalves A, Chacim S, Oliveira C, Porto B, Teles MJ, Moreira AC, Silva AMN, Schwessinger R, Drakesmith H, Henrique R, Porto G, Duarte D. Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice. Leukemia 2024; 38:96-108. [PMID: 37857886 DOI: 10.1038/s41375-023-02067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2-/- with hemochromatosis (Hfe-/-) or hepcidin-null (Hamp1-/-) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1-/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1-/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.
Collapse
Affiliation(s)
- Tiago L Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Marta Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mónica Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Catarina Vasco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Joana P Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Rita Antunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Andreia Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sérgio Chacim
- Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria José Teles
- Departmento de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Ana C Moreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - André M N Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- LAQV-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ron Schwessinger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rui Henrique
- Serviço de Anatomia Patológica, IPO Porto, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Graça Porto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Serviço de Imuno-hemoterapia, Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Portugal
| | - Delfim Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal.
- Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- P.CCC - Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal.
| |
Collapse
|
13
|
Nai A, Cordero-Sanchez C, Tanzi E, Pagani A, Silvestri L, Di Modica SM. Cellular and animal models for the investigation of β-thalassemia. Blood Cells Mol Dis 2024; 104:102761. [PMID: 37271682 DOI: 10.1016/j.bcmd.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
β-Thalassemia is a genetic form of anemia due to mutations in the β-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of β-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.
Collapse
Affiliation(s)
- Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy.
| | - Celia Cordero-Sanchez
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| |
Collapse
|
14
|
Hodroj MH, Akiki N, Bou-Fakhredin R, Taher AT. Beta-thalassemia: is cure still a dream? Minerva Med 2023; 114:850-860. [PMID: 37534831 DOI: 10.23736/s0026-4806.23.08501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
β-thalassemia is a monogenic disorder characterized by decreased hemoglobin production, resulting in chronic anemia. There are several factors affecting the clinical presentation of patients with β-thalassemia, and several complications such as iron overload or ineffective erythropoiesis have been linked to this disease. Until nowadays, several conservative therapies namely blood transfusions, iron chelation, and the FDA-approved drug Luspatercept have been adopted alongside other debatable permanent cures. Other clinical trials are being conducted to develop better and safer management techniques for these patients. This review will discuss the different treatment strategies of β-thalassemia including novel therapies, besides all possible curative therapies that are being developed for this disease.
Collapse
Affiliation(s)
- Mohammad H Hodroj
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Akiki
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ali T Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon -
| |
Collapse
|
15
|
Kardasis W, Naquin ER, Garg R, Arun T, Gopianand JS, Karmakar E, Gnana-Prakasam JP. The IRONy in Athletic Performance. Nutrients 2023; 15:4945. [PMID: 38068803 PMCID: PMC10708480 DOI: 10.3390/nu15234945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Iron is an essential micronutrient for athletes, intricately linked to their performance, by regulating cellular respiration and metabolism. Impaired iron levels in the body can significantly hinder athletic performance. The increased demand for iron due to exercise, coupled with potential dietary iron insufficiencies, particularly among endurance athletes, amplifies the risk of iron deficiency. Moreover, prolonged exercise can impact iron absorption, utilization, storage, and overall iron concentrations in an athlete. On the contrary, iron overload may initially lead to enhanced performance; however, chronic excess iron intake or underlying genetic conditions can lead to detrimental health consequences and may negatively impact athletic performance. Excess iron induces oxidative damage, not only compromising muscle function and recovery, but also affecting various tissues and organs in the body. This narrative review delineates the complex relationship between exercise and iron metabolism, and its profound effects on athletic performance. The article also provides guidance on managing iron intake through dietary adjustments, oral iron supplementation for performance enhancement in cases of deficiency, and strategies for addressing iron overload in athletes. Current research is focused on augmenting iron absorption by standardizing the route of administration while minimizing side effects. Additionally, there is ongoing work to identify inhibitors and activators that affect iron absorption, aiming to optimize the body's iron levels from dietary sources, supplements, and chelators. In summary, by refining the athletic diet, considering the timing and dosage of iron supplements for deficiency, and implementing chelation therapies for iron overload, we can effectively enhance athletic performance and overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | - Eshani Karmakar
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA; (W.K.); (E.R.N.); (R.G.); (T.A.); (J.S.G.)
| | - Jaya P. Gnana-Prakasam
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA; (W.K.); (E.R.N.); (R.G.); (T.A.); (J.S.G.)
| |
Collapse
|
16
|
Mottaghi S, Abbaszadeh H. Grape seed extract in combination with deferasirox ameliorates iron overload, oxidative stress, inflammation, and liver dysfunction in beta thalassemia children. Complement Ther Clin Pract 2023; 53:101804. [PMID: 37832335 DOI: 10.1016/j.ctcp.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND PURPOSE Iron overload in the body is associated with serious and irreversible tissue damage. This study aimed to investigate the iron-chelating, antioxidant, anti-inflammatory, and hepatoprotective activities of grape seed extract (GSE) supplement as well as its safety in β-thalassemia major (β-TM) pediatric patients receiving deferasirox as a standard iron-chelation therapy. MATERIALS AND METHODS The children were randomly allocated to either GSE group (n = 30) or control group (n = 30) to receive GSE (100 mg/day) or placebo capsules, respectively, for 4 weeks. The serum levels of iron, ferritin, total iron-binding capacity (TIBC), alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and glutathione (GSH) as well as superoxide dismutase (SOD) activity and hemoglobin (Hb) concentration were measured pre-and post-intervention. RESULTS GSE supplement significantly attenuated the serum levels of iron (p = 0.030), ferritin (p = 0.017), ALT (p = 0.000), AST (p = 0.000), TNF-α (p = 0.000), and hs-CRP (p = 0.001). The TIBC level (p = 0.020) significantly enhanced in the GSE group compared with the placebo group. Moreover, GSE supplement remarkably improved the oxidative stress markers, MDA (p = 0.000) and GSH (p = 0.001). The changes in the SOD activity (p = 0.590) and Hb concentration (p = 0.670) were not statistically different between the groups. CONCLUSION GSE supplement possesses several health beneficial influences on children with β-TM by alleviating iron burden, oxidative stress, inflammation, and liver dysfunction.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Keith J, Christakopoulos GE, Fernandez AG, Yao Y, Zhang J, Mayberry K, Telange R, Sweileh RBA, Dudley M, Westbrook C, Sheppard H, Weiss MJ, Lechauve C. Loss of miR-144/451 alleviates β-thalassemia by stimulating ULK1-mediated autophagy of free α-globin. Blood 2023; 142:918-932. [PMID: 37339583 PMCID: PMC10517214 DOI: 10.1182/blood.2022017265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Most cells can eliminate unstable or misfolded proteins through quality control mechanisms. In the inherited red blood cell disorder β-thalassemia, mutations in the β-globin gene (HBB) lead to a reduction in the corresponding protein and the accumulation of cytotoxic free α-globin, which causes maturation arrest and apoptosis of erythroid precursors and reductions in the lifespan of circulating red blood cells. We showed previously that excess α-globin is eliminated by Unc-51-like autophagy activating kinase 1 (ULK1)-dependent autophagy and that stimulating this pathway by systemic mammalian target of rapamycin complex 1 (mTORC1) inhibition alleviates β-thalassemia pathologies. We show here that disrupting the bicistronic microRNA gene miR-144/451 alleviates β-thalassemia by reducing mTORC1 activity and stimulating ULK1-mediated autophagy of free α-globin through 2 mechanisms. Loss of miR-451 upregulated its target messenger RNA, Cab39, which encodes a cofactor for LKB1, a serine-threonine kinase that phosphorylates and activates the central metabolic sensor adenosine monophosphate-activated protein kinase (AMPK). The resultant enhancement of LKB1 activity stimulated AMPK and its downstream effects, including repression of mTORC1 and direct activation of ULK1. In addition, loss of miR-144/451 inhibited the expression of erythroblast transferrin receptor 1, causing intracellular iron restriction, which has been shown to inhibit mTORC1, reduce free α-globin precipitates, and improve hematological indices in β-thalassemia. The beneficial effects of miR-144/451 loss in β-thalassemia were inhibited by the disruption of Cab39 or Ulk1 genes. Together, our findings link the severity of β-thalassemia to a highly expressed erythroid microRNA locus and a fundamental, metabolically regulated protein quality control pathway that is amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Julia Keith
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Yu Yao
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kalin Mayberry
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rahul Telange
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Razan B. A. Sweileh
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael Dudley
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Camilla Westbrook
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
18
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
19
|
Bou-Fakhredin R, Rivella S, Cappellini MD, Taher AT. Pathogenic Mechanisms in Thalassemia I: Ineffective Erythropoiesis and Hypercoagulability. Hematol Oncol Clin North Am 2023; 37:341-351. [PMID: 36907607 DOI: 10.1016/j.hoc.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Erythropoiesis is the physiological process that results in the production of red blood cells (RBCs). In conditions of pathologically altered erythropoiesis or ineffective erythropoiesis, as in the case of β-thalassemia, the reduced ability of erythrocytes to differentiate, survive and deliver oxygen stimulates a state of stress that leads to the ineffective production of RBCs. We herein describe the main features of erythropoiesis and its regulation in addition to the mechanisms behind ineffective erythropoiesis development in β-thalassemia. Finally, we review the pathophysiology of hypercoagulability and vascular disease development in β-thalassemia and the currently available prevention and treatment modalities.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; UOC General Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ali T Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
20
|
Cappellini MD, Taher AT, Verma A, Shah F, Hermine O. Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Rev 2022; 59:101039. [PMID: 36577601 DOI: 10.1016/j.blre.2022.101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The hematologic disorders myelodysplastic syndromes and beta-thalassemia are characterized by ineffective erythropoiesis and anemia, often managed with regular blood transfusions. Erythropoiesis, the process by which sufficient numbers of functional erythrocytes are produced from hematopoietic stem cells, is highly regulated, and defects can negatively affect the proliferation, differentiation, and survival of erythroid precursors. Treatments that directly target the underlying mechanisms of ineffective erythropoiesis are limited, and management of anemia with regular blood transfusions imposes a significant burden on patients, caregivers, and health care systems. There is therefore a strong unmet need for treatments that can restore effective erythropoiesis. Novel therapies are beginning to address this need by targeting a variety of mechanisms underlying erythropoiesis. Herein, we provide an overview of the role of ineffective erythropoiesis in myelodysplastic syndromes and beta-thalassemia, discuss unmet needs in targeting ineffective erythropoiesis, and describe current management strategies and emerging treatments for these disorders.
Collapse
Affiliation(s)
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Halim and Aida Daniel Academic and Clinical Center, Beirut, Lebanon.
| | - Amit Verma
- Albert Einstein College of Medicine, New York, NY, USA.
| | - Farrukh Shah
- Department of Haematology, Whittington Health NHS Trust, London, UK.
| | - Olivier Hermine
- Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Cité, Paris, France; INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
21
|
Duan G, Li J, Duan Y, Zheng C, Guo Q, Li F, Zheng J, Yu J, Zhang P, Wan M, Long C. Mitochondrial Iron Metabolism: The Crucial Actors in Diseases. Molecules 2022; 28:29. [PMID: 36615225 PMCID: PMC9822237 DOI: 10.3390/molecules28010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Iron is a trace element necessary for cell growth, development, and cellular homeostasis, but insufficient or excessive level of iron is toxic. Intracellularly, sufficient amounts of iron are required for mitochondria (the center of iron utilization) to maintain their normal physiologic function. Iron deficiency impairs mitochondrial metabolism and respiratory activity, while mitochondrial iron overload promotes ROS production during mitochondrial electron transport, thus promoting potential disease development. This review provides an overview of iron homeostasis, mitochondrial iron metabolism, and how mitochondrial iron imbalances-induced mitochondrial dysfunction contribute to diseases.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cimin Long
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Hof L, Old O, Steinbicker A, Meybohm P, Choorapoikayil S, Zacharowski K. Iron deficiency in cardiac surgical patients. ACTA ANAESTHESIOLOGICA BELGICA 2022; 73:235-239. [DOI: 10.56126/73.4.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Iron is an essential element and involved in a variety of metabolic processes including oxygen transport, cellular energy production, energy metabolism of heart muscles, brain function, cell growth and cell differentiation. Preoperative anaemia is an independent risk factor for poor outcome. Recently, iron deficiency was considered only in the context of anaemia. However, negative consequences of iron deficiency in the absence of anaemia have been described for patients undergoing cardiac surgery. To date, the benefit of intravenous iron supplementation in these patients has been controversially debated. In this review, we discuss the latest progress in studies of intravenous iron supplementation in iron deficient cardiac surgical patients.
Collapse
|
23
|
Zhang Y, Qian Y, Song LX, Xiao C, Chang CK. The use of carbon monoxide breath test to detect the effect of iron overload on erythrocyte lifespan in MDS. Front Oncol 2022; 12:1058482. [DOI: 10.3389/fonc.2022.1058482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
ObjectiveTo investigate the effect of iron overload (IO) on red blood cell (RBC) lifespan in MDS patients with the use of carbon monoxide breath testMethodsThe red blood cell lifespan of 93 patients with myelodysplastic syndrome (MDS) and 22 healthy volunteers in the control group were measured by alveolar gas carbon monoxide (CO) assay, with the detection of liver iron concentration, iron metabolism index, erythropoietin (EPO) concentration, peripheral blood inflammatory cytokines, etc. The MDS patients were divided into the severe IO group, mild IO group and non IO group according to liver iron concentration. The effect of IO on RBC lifespan was analyzed in MDS patients.ResultsThe RBC lifespan of MDS patients in the severe IO group was significantly lower than that in the mild IO group (p<0.05), while the RBC life span in the mild IO group was significantly lower than that in the non IO group (p<0.05). The expression of inflammatory cytokines in the severe IO group was significantly higher than that of the mild and non IO groups. After receiving iron removal treatment(ICT), the expression of inflammatory cytokines was decreased significantly, and the RBC lifespan was significantly prolonged (p<0.05).Besides, liver iron concentration was significantly positively correlated with EPO concentration, while EPO concentration was significantly negatively correlated with RBC lifespan, especially in the MDS-RS subgroup. The RBC lifespan in the EPO>1000 group was significantly lower than that in the EPO<1000 group.ConclusionIO can shorten RBC lifespan in MDS patients, which may be result from the increase of endogenous EPO and the over-expression of inflammatory cytokines. After ICT, the ineffective hematopoiesis caused by increased EPO may reduced and the decrease of inflammatory cytokine may significantly prolong the RBC lifespan in MDS patients.
Collapse
|
24
|
Tsuge M, Kodera A, Sumitomo H, Araki T, Yoshida R, Yasui K, Sato H, Washio Y, Washio K, Shigehara K, Yashiro M, Yagi T, Tsukahara H. Neonatal hemochromatosis with εγδβ-thalassemia: a case report and analysis of serum iron regulators. BMC Pediatr 2022; 22:622. [PMID: 36309641 PMCID: PMC9617355 DOI: 10.1186/s12887-022-03706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
Background Neonatal hemochromatosis causes acute liver failure during the neonatal period, mostly due to gestational alloimmune liver disease (GALD). Thalassemia causes hemolytic anemia and ineffective erythropoiesis due to mutations in the globin gene. Although neonatal hemochromatosis and thalassemia have completely different causes, the coexistence of these diseases can synergistically exacerbate iron overload. We report that a newborn with εγδβ-thalassemia developed neonatal hemochromatosis, which did not respond to iron chelators and rapidly worsened, requiring living-donor liver transplantation. Case presentation A 1-day-old Japanese boy with hemolytic anemia and targeted red blood cells was diagnosed with εγδβ-thalassemia by genetic testing, and required frequent red blood cell transfusions. At 2 months after birth, exacerbation of jaundice, grayish-white stool, and high serum ferritin levels were observed, and liver biopsy showed iron deposition in hepatocytes and Kupffer cells. Magnetic resonance imaging scans showed findings suggestive of iron deposits in the liver, spleen, pancreas, and bone marrow. The total amount of red blood cell transfusions administered did not meet the criteria for post-transfusion iron overload. Administration of an iron-chelating agent was initiated, but iron overload rapidly progressed to liver failure without improvement in jaundice and liver damage. He underwent living-donor liver transplantation from his mother, after which iron overload disappeared, and no recurrence of iron overload was observed. Immunohistochemical staining for C5b-9 in the liver was positive. Serum hepcidin levels were low and serum growth differentiation factor-15 levels were high prior to living-donor liver transplantation. Conclusions We reported that an infant with εγδβ-thalassemia developed NH due to GALD, and that coexistence of ineffective erythropoiesis in addition to erythrocyte transfusions may have exacerbated iron overload. Low serum hepcidin levels, in this case, might have been caused by decreased hepcidin production arising from fetal liver damage due to neonatal hemochromatosis and increased hepcidin-inhibiting hematopoietic mediators due to the ineffective hematopoiesis observed in thalassemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03706-3.
Collapse
|
25
|
Shash H. Non-Transfusion-Dependent Thalassemia: A Panoramic Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101496. [PMID: 36295656 PMCID: PMC9608723 DOI: 10.3390/medicina58101496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Non-transfusion-dependent thalassemia (NTDT) has been considered less severe than its transfusion-dependent variants. The most common forms of NTDT include β-thalassemia intermedia, hemoglobin E/beta thalassemia, and hemoglobin H disease. Patients with NTDT develop several clinical complications, despite their regular transfusion independence. Ineffective erythropoiesis, iron overload, and hypercoagulability are pathophysiological factors that lead to morbidities in these patients. Therefore, an early and accurate diagnosis of NTDT is essential to ascertaining early interventions. Currently, several conventional management options are available, with guidelines suggested by the Thalassemia International Federation, and novel therapies are being developed in light of the advancement of the understanding of this disease. This review aimed to increase clinicians’ awareness of NTDT, from its basic medical definition and genetics to its pathophysiology. Specific complications to NTDT were reviewed, along with the risk factors for its development. The indications of different therapeutic options were outlined, and recent advancements were reviewed.
Collapse
Affiliation(s)
- Hwazen Shash
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar 31952, Saudi Arabia
| |
Collapse
|
26
|
Di Modica SM, Tanzi E, Olivari V, Lidonnici MR, Pettinato M, Pagani A, Tiboni F, Furiosi V, Silvestri L, Ferrari G, Rivella S, Nai A. Transferrin receptor 2 (Tfr2) genetic deletion makes transfusion-independent a murine model of transfusion-dependent β-thalassemia. Am J Hematol 2022; 97:1324-1336. [PMID: 36071579 PMCID: PMC9540808 DOI: 10.1002/ajh.26673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
β-thalassemia is a genetic disorder caused by mutations in the β-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with β-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.
Collapse
Affiliation(s)
- Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Francesca Tiboni
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Giuliana Ferrari
- Vita Salute San Raffaele UniversityMilanItaly,San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Stefano Rivella
- Division of Hematology, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
27
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. Pharmacol Res 2022; 183:106386. [PMID: 35933006 DOI: 10.1016/j.phrs.2022.106386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Iron participates in myriad processes necessary to sustain life. During the past decades, great efforts have been made to understand iron regulation and function in health and disease. Indeed, iron is associated with both physiological (e.g., immune cell biology and function and hematopoiesis) and pathological (e.g., inflammatory and infectious diseases, ferroptosis and ferritinophagy) processes, yet few studies have addressed the potential functional link between iron, the aforementioned processes and extramedullary hematopoiesis, despite the obvious benefits that this could bring to clinical practice. Further investigation in this direction will shape the future development of individualized treatments for iron-linked diseases and chronic inflammatory disorders, including extramedullary hematopoiesis, metabolic syndrome, cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
28
|
Longo F, Piga A. Does Hepcidin Tuning Have a Role among Emerging Treatments for Thalassemia? J Clin Med 2022; 11:5119. [PMID: 36079046 PMCID: PMC9457499 DOI: 10.3390/jcm11175119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 01/19/2023] Open
Abstract
The treatments available for thalassemia are rapidly evolving, with major advances made in gene therapy and the modulation of erythropoiesis. The latter includes the therapeutic potential of hepcidin tuning. In thalassemia, hepcidin is significantly depressed, and any rise in hepcidin function has a positive effect on both iron metabolism and erythropoiesis. Synthetic hepcidin and hepcidin mimetics have been developed to the stage of clinical trials. However, they have failed to produce an acceptable efficacy/safety profile. It seems difficult to avoid iron over-restricted erythropoiesis when directly using hepcidin as a drug. Indirect approaches, each one with their advantages and disadvantages, are many and in full development. The ideal approach is to target erythroferrone, the main inhibitor of hepcidin expression, the plasma concentrations of which are greatly increased in iron-loading anemias. Potential means of improving hepcidin function in thalassemia also include acting on TMPRSS6, TfR1, TfR2 or ferroportin, the target of hepcidin. Only having a better understanding of the crosslinks between iron metabolism and erythropoiesis will elucidate the best single option. In the meantime, many potential combinations are currently being explored in preclinical studies. Any long-term clinical study on this approach should include the wide monitoring of functions, as the effects of hepcidin and its modulators are not limited to iron metabolism and erythropoiesis. It is likely that some of the aspects of hepcidin tuning described briefly in this review will play a role in the future treatment of thalassemia.
Collapse
Affiliation(s)
- Filomena Longo
- Thalassemia Reference Centre, 10043 Orbassano, Italy
- Regional HUB Centre for Thalassaemia and Haemoglobinopathies, Department of Medicine, Azienda Ospedaliero Universitaria S. Anna, 44124 Ferrara, Italy
| | - Antonio Piga
- Thalassemia Reference Centre, 10043 Orbassano, Italy
- University of Torino, 10043 Torino, Italy
| |
Collapse
|
29
|
van Vuren A, Kerkhoffs JL, Schols S, Rijneveld A, Nur E, Peereboom D, Gandon Y, Welsing P, van Wijk R, Schutgens R, van Solinge W, Marx J, Leiner T, Biemond B, van Beers E. Proton pump inhibition for secondary hemochromatosis in hereditary anemia: a phase III placebo-controlled randomized cross-over clinical trial. Am J Hematol 2022; 97:924-932. [PMID: 35472008 PMCID: PMC9325377 DOI: 10.1002/ajh.26581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/19/2023]
Abstract
Iron overload is a severe general complication of hereditary anemias. Treatment with iron chelators is hampered by important side‐effects, high costs, and the lack of availability in many countries with a high prevalence of hereditary anemias. In this phase III randomized placebo‐controlled trial, we assigned adults with non‐transfusion‐dependent hereditary anemias with mild‐to‐moderate iron overload to receive esomeprazole (at a dose of 40 mg twice daily) or placebo for 12 months in a cross‐over design. The primary end point was change of liver iron content measured by MRI. A total of 30 participants were enrolled in the trial. Treatment with esomeprazole resulted in a statistically significant reduction in liver iron content that was 0.55 mg Fe/g dw larger than after treatment with placebo (95%CI [0.05 to 1.06]; p = 0.03). Median baseline liver iron content at the start of esomeprazole was 4.99 versus 4.49 mg Fe/g dw at start of placebo. Mean delta liver iron content after esomeprazole treatment was −0.57 (SD 1.20) versus −0.11 mg Fe/g dw (SD 0.75) after placebo treatment. Esomeprazole was well tolerated, reported adverse events were mild and none of the patients withdrew from the study due to side effects. In summary, esomeprazole resulted in a significant reduction in liver iron content when compared to placebo in a heterogeneous group of patients with non‐transfusion‐dependent hereditary anemias. From an international perspective this result can have major implications given the fact that proton pump inhibitors may frequently be the only realistic therapy for many patients without access to or not tolerating iron chelators.
Collapse
Affiliation(s)
- Annelies van Vuren
- Center for Benign Haematology Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | | | - Saskia Schols
- Department of Hematology Radboud university medical center Nijmegen The Netherlands
| | - Anita Rijneveld
- Department of Hematology Erasmus Medical Center Cancer Institute Rotterdam The Netherlands
| | - Erfan Nur
- Department of Hematology Amsterdam University Centers, University of Amsterdam Amsterdam The Netherlands
- Department of Blood Cell Research Sanquin Research Amsterdam The Netherlands
| | - Dore Peereboom
- Contactgroep Pyruvaatkinasedeficiëntie Stichting Zeldzame Bloedziekten Medemblik The Netherlands
| | - Yves Gandon
- Department of Radiology CHU Rennes, University of Rennes Rennes France
| | - Paco Welsing
- Division of Internal Medicine and Dermatology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory ‐ Research, Division of Laboratories Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Roger Schutgens
- Center for Benign Haematology Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Wouter van Solinge
- Central Diagnostic Laboratory ‐ Research, Division of Laboratories Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Joannes Marx
- University Medical Center Utrecht Utrecht The Netherlands
| | - Tim Leiner
- Department of Radiology Mayo Clinic Rochester Minnesota USA
- Department of Radiology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Bart Biemond
- Department of Hematology Amsterdam University Centers, University of Amsterdam Amsterdam The Netherlands
| | - Eduard van Beers
- Center for Benign Haematology Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| |
Collapse
|
30
|
Gurr A, Brook AH, Kumaratilake J, Anson T, Pate FD, Henneberg M. Was it worth migrating to the new British industrial colony of South Australia? Evidence from skeletal pathologies and historic records of a sample of 19th-century settlers. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2022; 37:41-52. [PMID: 35489278 DOI: 10.1016/j.ijpp.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To examine pathological evidence present in a sample of 19th -century settlers to South Australia in the context of an early industrial society. MATERIALS Skeletal remains of 20 adults and 45 nonadults from the government funded burial site (free ground) of St Mary's Anglican Church Cemetery, gravestones of privately funded burials and local parish records. METHODS Investigation of pathological manifestations of skeletal remains, church records and historic literature. Comparison with similar samples from Britain and from New South Wales. RESULTS Joint disease seen in 35% of adults. Porosity in bone cortices indicative of vitamin C deficiency seen in 32% of the total sample and porous lesions in the orbit (cribra orbitalia) in 7% of nonadults. Traumatic fractures identified in two adult males. Gastrointestinal conditions were the leading cause of death for nonadults, most adults died of pulmonary conditions. Life expectancy of people buried at the expense of the government was 23.8-42.6 years, those in private burials 57.1 years. CONCLUSION Health of migrant settlers from the St Mary's free ground did not differ much from that of a similar population in Britain nor of settlers in New South Wales. Thus, it is characteristic for lower socioeconomic groups in early industrialised societies. SIGNIFICANCE St Mary's sample is a rarity due scarcity of similar Australian skeletal samples. LIMITATIONS Small sample size and lack of similar samples for comparison. SUGGESTIONS FOR FURTHER RESEARCH Comprehensive investigation of dentitions in St Mary's sample and studies of more skeletal samples of early settlers in other Australian locations.
Collapse
Affiliation(s)
- Angela Gurr
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Australia; Biological Anthropology and Comparative Anatomy Research Unit, The University of Adelaide, Australia.
| | - Alan Henry Brook
- School of Dentistry, The University of Adelaide, Australia; Institute of Dentistry, Queen Mary, University of London, UK
| | - Jaliya Kumaratilake
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Australia; Biological Anthropology and Comparative Anatomy Research Unit, The University of Adelaide, Australia
| | | | | | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, The University of Adelaide, Australia; Archaeology, Flinders University, Australia; Institute of Evolutionary Medicine, University of Zurich, Switzerland
| |
Collapse
|
31
|
The mutual crosstalk between iron and erythropoiesis. Int J Hematol 2022; 116:182-191. [PMID: 35618957 DOI: 10.1007/s12185-022-03384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023]
Abstract
Iron homeostasis and erythropoiesis are strongly interconnected. On one side iron is essential to terminal erythropoiesis for hemoglobin production, on the other erythropoiesis may increase iron absorption through the production of erythroferrone, the erythroid hormone that suppresses hepcidin expression Also erythropoietin production is modulated by iron through the iron regulatory proteins-iron responsive elements that control the hypoxia inducible factor 2-α. The second transferrin receptor, an iron sensor both in the liver and in erythroid cells modulates erythropoietin sensitivity and is a further link between hepcidin and erythropoiesis. When erythropoietin is decreased in iron deficiency the erythropoietin sensitivity is increased because the second transferrin receptor is removed from cell surface. A deranged balance between erythropoiesis and iron/hepcidin may lead to anemia, as in the case of iron deficiency, defective iron uptake and erythroid utilization or subnormal recycling. Defective control of hepcidin production may cause iron deficiency, as in the recessive disorder iron refractory iron deficiency anemia or in anemia of inflammation, or in iron loading anemias, which are characterized by excessive but ineffective erythropoiesis. The elucidation of the mechanisms that regulates iron homeostasis and erythropoiesis is leading to the development of drugs for the benefit of both iron and erythropoiesis disorders.
Collapse
|
32
|
Girelli D, Busti F, Brissot P, Cabantchik I, Muckenthaler MU, Porto G, on behalf of the Nomenclature Committee of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society). Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood 2022; 139:3018-3029. [PMID: 34601591 PMCID: PMC11022970 DOI: 10.1182/blood.2021011338] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron absorption may lead to progressive iron overload (IO) responsible for disabling and life-threatening complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular carcinoma. The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have highlighted that HC is caused by mutations in at least 5 genes, resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This has led to an HC classification based on different molecular subtypes, mainly reflecting successive gene discovery. This scheme was difficult to adopt in clinical practice and therefore needs revision. Here we present recommendations for unambiguous HC classification developed by a working group of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society), including both clinicians and basic scientists during a meeting in Heidelberg, Germany. We propose to deemphasize the use of the molecular subtype criteria in favor of a classification addressing both clinical issues and molecular complexity. Ferroportin disease (former type 4a) has been excluded because of its distinct phenotype. The novel classification aims to be of practical help whenever a detailed molecular characterization of HC is not readily available.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Pierre Brissot
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
| | - Ioav Cabantchik
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Martina U. Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
| | - Graça Porto
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| | - on behalf of the Nomenclature Committee of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society)
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| |
Collapse
|
33
|
Sanchez-Villalobos M, Blanquer M, Moraleda JM, Salido EJ, Perez-Oliva AB. New Insights Into Pathophysiology of β-Thalassemia. Front Med (Lausanne) 2022; 9:880752. [PMID: 35492364 PMCID: PMC9041707 DOI: 10.3389/fmed.2022.880752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia is a disease caused by genetic mutations including a nucleotide change, small insertions or deletions in the β-globin gene, or in rare cases, gross deletions into the β-globin gene. These mutations affect globin-chain subunits within the hemoglobin tetramer what induces an imbalance in the α/β-globin chain ratio, with an excess of free α-globin chains that triggers the most important pathogenic events of the disease: ineffective erythropoiesis, chronic anemia/chronic hypoxia, compensatory hemopoietic expansion and iron overload. Based on advances in our knowledge of the pathophysiology of β-thalassemia, in recent years, emerging therapies and clinical trials are being conducted and are classified into three major categories based on the different approach features of the underlying pathophysiology: correction of the α/β-globin disregulation; improving iron overload and reverse ineffective erythropoiesis. However, pathways such as the dysregulation of transcriptional factors, activation of the inflammasome, or approach to mechanisms of bone mineral loss, remain unexplored for future therapeutic targets. In this review, we update the main pathophysiological pathways involved in β-thalassemia, focusing on the development of new therapies directed at new therapeutic targets.
Collapse
Affiliation(s)
| | - Miguel Blanquer
- Hematology Service, Virgen de la Arrixaca University Hospital, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jose M Moraleda
- Hematology Service, Virgen de la Arrixaca University Hospital, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Eduardo J Salido
- Hematology Service, Virgen de la Arrixaca University Hospital, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Ana B Perez-Oliva
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.,Centro de Investigaci3n Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
34
|
Chauhan W, Shoaib S, Fatma R, Zaka‐ur‐Rab Z, Afzal M. β‐thalassemia, and the advent of new Interventions beyond Transfusion and Iron chelation. Br J Clin Pharmacol 2022; 88:3610-3626. [DOI: 10.1111/bcp.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Shoaib Shoaib
- Department of Biochemistry, JNMC Aligarh Muslim University Aligarh India
| | - Rafat Fatma
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Zeeba Zaka‐ur‐Rab
- Department of Pediatrics, JNMC Aligarh Muslim University Aligarh India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| |
Collapse
|
35
|
Cai C, Hu W, Chu T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol 2022; 9:817104. [PMID: 35096841 PMCID: PMC8795893 DOI: 10.3389/fcell.2021.817104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
36
|
Buzzetti E, Ventura P, Corradini E. Iron in Porphyrias: Friend or Foe? Diagnostics (Basel) 2022; 12:272. [PMID: 35204362 PMCID: PMC8870839 DOI: 10.3390/diagnostics12020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is a trace element that is important for many vital processes, including oxygen transport, oxidative metabolism, cellular proliferation, and catalytic reactions. Iron supports these functions mainly as part of the heme molecule. Heme synthesis is an eight-step process which, when defective at the level of one of the eight enzymes involved, can cause the development of a group of diseases, either inherited or acquired, called porphyrias. Despite the strict link between iron and heme, the role of iron in the different types of porphyrias, particularly as a risk factor for disease development/progression or as a potential therapeutic target or molecule, is still being debated, since contrasting results have emerged from clinical observations, in vitro studies and animal models. In this review we aim to deepen such aspects by drawing attention to the current evidence on the role of iron in porphyrias and its potential implication. Testing for iron status and its metabolic pathways through blood tests, imaging techniques or genetic studies on patients affected by porphyrias can provide additional diagnostic and prognostic value to the clinical care, leading to a more tailored and effective management.
Collapse
Affiliation(s)
- Elena Buzzetti
- Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, 41124 Modena, Italy;
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paolo Ventura
- Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, 41124 Modena, Italy;
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Corradini
- Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, 41124 Modena, Italy;
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
37
|
Saad HKM, Abd Rahman AA, Ab Ghani AS, Taib WRW, Ismail I, Johan MF, Al-Wajeeh AS, Al-Jamal HAN. Activation of STAT and SMAD Signaling Induces Hepcidin Re-Expression as a Therapeutic Target for β-Thalassemia Patients. Biomedicines 2022; 10:biomedicines10010189. [PMID: 35052868 PMCID: PMC8773737 DOI: 10.3390/biomedicines10010189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Iron homeostasis is regulated by hepcidin, a hepatic hormone that controls dietary iron absorption and plasma iron concentration. Hepcidin binds to the only known iron export protein, ferroportin (FPN), which regulates its expression. The major factors that implicate hepcidin regulation include iron stores, hypoxia, inflammation, and erythropoiesis. When erythropoietic activity is suppressed, hepcidin expression is hampered, leading to deficiency, thus causing an iron overload in iron-loading anemia, such as β-thalassemia. Iron overload is the principal cause of mortality and morbidity in β-thalassemia patients with or without blood transfusion dependence. In the case of thalassemia major, the primary cause of iron overload is blood transfusion. In contrast, iron overload is attributed to hepcidin deficiency and hyperabsorption of dietary iron in non-transfusion thalassemia. Beta-thalassemia patients showed marked hepcidin suppression, anemia, iron overload, and ineffective erythropoiesis (IE). Recent molecular research has prompted the discovery of new diagnostic markers and therapeutic targets for several diseases, including β-thalassemia. In this review, signal transducers and activators of transcription (STAT) and SMAD (structurally similar to the small mothers against decapentaplegic in Drosophila) pathways and their effects on hepcidin expression have been discussed as a therapeutic target for β-thalassemia patients. Therefore, re-expression of hepcidin could be a therapeutic target in the management of thalassemia patients. Data from 65 relevant published experimental articles on hepcidin and β-thalassemia between January 2016 and May 2021 were retrieved by using PubMed and Google Scholar search engines. Published articles in any language other than English, review articles, books, or book chapters were excluded.
Collapse
Affiliation(s)
- Hanan Kamel M. Saad
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Alawiyah Awang Abd Rahman
- Pathology Department, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Terengganu, Malaysia; (A.A.A.R.); (A.S.A.G.)
| | - Azly Sumanty Ab Ghani
- Pathology Department, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Terengganu, Malaysia; (A.A.A.R.); (A.S.A.G.)
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia; (H.K.M.S.); (W.R.W.T.); (I.I.)
- Correspondence: ; Tel.: +60-1747-29012
| |
Collapse
|
38
|
Ineffective erythropoiesis and its treatment. Blood 2021; 139:2460-2470. [PMID: 34932791 DOI: 10.1182/blood.2021011045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
The erythroid marrow and circulating red blood cells (RBCs) are the key components of the human erythron. Abnormalities of the erythron that are responsible for anemia can be distinguished into 3 major categories, that is, erythroid hypoproliferation, ineffective erythropoiesis, and peripheral hemolysis. Ineffective erythropoiesis is characterized by erythropoietin-driven expansion of early-stage erythroid precursors, associated with apoptosis of late-stage precursors. This mechanism is primarily responsible for anemia in inherited disorders like β-thalassemia, inherited sideroblastic anemias, and congenital dyserythropoietic anemias, as well as in acquired conditions like some subtypes of myelodysplastic syndromes (MDS). The inherited anemias due to ineffective erythropoiesis are also defined as iron loading anemias because of the associated parenchymal iron loading caused by the release of erythroid factors that suppress hepcidin production. Novel treatments specifically targeting ineffective erythropoiesis are being developed. Iron restriction through enhancement of hepcidin activity or inhibition of ferroportin function has been shown to reduce ineffective erythropoiesis in murine models of β-thalassemia. Luspatercept is a TGF-β ligand trap that inhibits SMAD2/3 signaling. Based on pre-clinical and clinical studies, this compound is now approved for the treatment of anemia in adult patients with β-thalassemia who require regular RBC transfusions. Luspatercept is also approved for the treatment of transfusion-dependent anemia in patients with MDS with ring sideroblasts, most of whom carry a somatic SF3B1mutation. While long-term efficacy and safety of luspatercept need to be evaluated both in β-thalassemia and MDS, defining the molecular mechanisms of ineffective erythropoiesis in different disorders might allow the discovery of new effective compounds.
Collapse
|
39
|
Gattermann N, Muckenthaler M, Kulozik AE, Metzgeroth G, Hastka J. The Evaluation Of Iron Deficiency And Iron Overload. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:847-856. [PMID: 34755596 DOI: 10.3238/arztebl.m2021.0290] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/10/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the western world, 2-5% of women of child-bearing age suffer from irondeficiency anemia. Iron overload due to chronic treatment with blood transfusions or hereditary hemochromatosis is much rarer. METHODS This review is based on pertinent publications retrieved by a selective search on the pathophysiology, clinical features, and diagnostic evaluation of iron deficiency and iron overload. RESULTS The main causes of iron deficiency are malnutrition and blood loss. Its differential diagnosis includes iron-refractory iron deficiency anemia (IRIDA), a rare congenital disease in which the hepcidin level is pathologically elevated, as well as the more common anemia of chronic disease (anemia of chronic inflammation), in which increased amounts of hepcidin are formed under the influence of interleukin-6 and enteric iron uptake is blocked as a result. Iron overload comes about through long-term transfusion treatment or a congenital disturbance of iron metabolism (hemochromatosis). Its diagnostic evaluation is based on clinical and laboratory findings, imaging studies, and specific mutation analyses. CONCLUSION Our improving understanding of the molecular pathophysiology of iron metabolism aids in the evaluation of iron deficiency and iron overload and may in future enable treatment not just with iron supplementation or iron chelation, but also with targeted pharmacological modulation of the hepcidin regulatory system.
Collapse
|
40
|
Changes in Hepcidin Levels in an Animal Model of Anemia of Chronic Inflammation: Mechanistic Insights Related to Iron Supplementation and Hepcidin Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4357756. [PMID: 34873429 PMCID: PMC8643261 DOI: 10.1155/2021/4357756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
We examined changes in hepcidin (closely associated with anemia of chronic inflammation (ACI)) and upstream regulatory pathways after intravenous (IV) iron supplementation in an ACI animal model. ACI was induced in male Sprague-Dawley rats by intraperitoneally administering complete Freund's adjuvant (CFA). Two weeks after starting CFA treatment, ACI rats received IV iron (CFA-iron) or vehicle (CFA-saline). Three days after IV iron treatment, iron profiles, hepcidin levels, and expression of proteins involved in the signaling pathways upstream of hepcidin transcription in the liver were measured. In CFA-treated rats, anemia with a concomitant increase in the levels of serum inflammatory cytokines and reactive oxygen species occurred. In CFA-iron rats, hemoglobin (Hb) concentration was still lower than that in control rats. In CFA-saline rats, hepatic hepcidin and ferritin levels increased compared with those in control rats and were further increased in CFA-iron rats. In CFA-saline rats, NADPH oxidase- (NOX-) 2, NOX-4, and superoxide dismutase levels in the liver were upregulated compared with those in control rats and their levels were further increased in CFA-iron rats. In CFA-saline rats, activities of the IL-6/STAT and BMP/SMAD pathways were enhanced in the liver compared with those in control rats and their levels were further increased in CFA-iron rats, whereas IL-6 expression remained unaffected after IV iron administration. In HepG2 cells, iron caused phosphorylation of STAT-3 and SMAD1/5 and knockdown of STAT-3 and SMAD1/5 using siRNAs reduced iron-induced hepcidin upregulation to levels similar to those in corresponding control cells. Renal erythropoietin expression and serum erythroferrone concentration were lower in CFA-iron rats than those in control rats. In ACI rats, IV iron supplementation did not recover Hb within three days despite an increase in hepatic ferritin levels, which might be attributable to an additional increase in hepcidin levels that was already upregulated under ACI conditions. Both STAT-3 phosphorylation and SMAD1/5 phosphorylation were associated with hepcidin upregulation after IV iron treatment, and this seems to be linked to iron-induced oxidative stress.
Collapse
|
41
|
Allam MFAB, Samra MFA, Rahman ASMA. The added value of chemical shift imaging in evaluation of bone marrow changes in sickle cell disease. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-020-00384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The aim of this study was to assess the added value of chemical shift imaging when used with routine MRI study in evaluation of bone marrow changes in SCD. Forty-two patients with SCD and bone pain were included in the study; they underwent CSI and routine MRI study on the symptomatic anatomic part of the skeleton.
Results
Four patterns of diffuse bone marrow changes were recognized; they varied from persistent red marrow to diffuse hypointense patterns with abnormal signal loss percentage on CSI that suggest presence of iron overload (n = 28, 66.6%). Serum ferritin level was increasing in accordance to the degree of signal changes found on CSI with significant high negative correlation between the percentage of signal loss on CSI obtained from IP-OP/IP formula and serum ferritin level. In focal marrow lesions, all T1 hyperintense lesions demonstrated corresponding hyperintensity on IP and OP; the detection frequency on CSI was relatively higher on OP compared with IP images.
Conclusion
CSI has high diagnostic performance in detecting diffuse marrow changes and development of iron overload in SCD. In SCD-related focal marrow lesions, CSI could have a complementary role in detection of T1 hyperintensity and lesion conspicuity.
Collapse
|
42
|
Jaing TH, Chang TY, Chen SH, Lin CW, Wen YC, Chiu CC. Molecular genetics of β-thalassemia: A narrative review. Medicine (Baltimore) 2021; 100:e27522. [PMID: 34766559 PMCID: PMC8589257 DOI: 10.1097/md.0000000000027522] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT β-thalassemia is a hereditary hematological disease caused by over 350 mutations in the β-globin gene (HBB). Identifying the genetic variants affecting fetal hemoglobin (HbF) production combined with the α-globin genotype provides some prediction of disease severity for β-thalassemia. However, the generation of an additive composite genetic risk score predicts prognosis, and guide management requires a larger panel of genetic modifiers yet to be discovered.Presently, using data from prior clinical trials guides the design of further research and academic studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene therapy approaches.Genetic studies have successfully characterized the causal variants and pathways involved in HbF regulation, providing novel therapeutic targets for HbF reactivation. In addition to these HBB mutation-independent strategies involving HbF synthesis de-repression, the expanding genome editing toolkit provides increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin restoration for personalized treatment of hemoglobinopathies. Allogeneic hematopoietic stem cell transplantation was, until very recently, the curative option available for patients with transfusion-dependent β-thalassemia. Gene therapy currently represents a novel therapeutic promise after many years of extensive preclinical research to optimize gene transfer protocols.We summarize the current state of developments in the molecular genetics of β-thalassemia over the last decade, including the mechanisms associated with ineffective erythropoiesis, which have also provided valid therapeutic targets, some of which have been shown as a proof-of-concept.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Yen Chang
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
43
|
Wang Y, Huang L, Hua Y, Liu H, Jiang H, Wang H, Zhang W, Fu R, Shao Z. Impact of iron overload by transfusion on survival and leukemia transformation of myelodysplastic syndromes in a single center of China. ACTA ACUST UNITED AC 2021; 26:874-880. [PMID: 34753406 DOI: 10.1080/16078454.2021.1989806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases which are prone to progress into acute myeloid leukemia (AML). Iron overload (IOL) caused by transfusion occurred in most MDS patients. But how IOL influences MDS progression has not been clarified yet. METHODS Herein, we collected clinical data from 143 MDS patients to investigate the impacts of IOL on patients survival and AML transformation. RESULTS We found that median survival time, 3-year survival rate, leukemia-free survival (LFS) time were significantly shorter in patients with IOL than those with non-iron overload (NIOL) (P = 0.040; P = 0.044; P = 0.037). Besides, IOL was more likely to be found in higher-risk subgroups (assessed by IPSS and WPSS) of MDS patients which also promoted 2-year AML transformation. Furthermore, the serum ferritin (SF) was significantly correlated with the overall survival (OS) of MDS patients (r = -0.311, P < 0.05). The concentrations of both intracellular iron and reactive oxygen species (ROS) in CD34+ cells of bone marrow were higher in the IOL group than the NIOL group, respectively (P = 0.0426; P = 0.0185). Moreover, ROS level was closely correlated with the percentage of bone marrow blasts (r = 0.7200, P = 0.0370). Collectively, IOL threatened the survival of MDS patients and promoted AML transformation. CONCLUSION Elevated intracellular iron and ROS in CD34+ cells of bone marrow could accelerate the abnormal proliferation of blasts.
Collapse
Affiliation(s)
- Yihao Wang
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Lei Huang
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yanni Hua
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Liu
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Huijuan Jiang
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Huaquan Wang
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Wei Zhang
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rong Fu
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Zonghong Shao
- Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
44
|
Ali S, Mumtaz S, Shakir HA, Khan M, Tahir HM, Mumtaz S, Mughal TA, Hassan A, Kazmi SAR, Sadia, Irfan M, Khan MA. Current status of beta-thalassemia and its treatment strategies. Mol Genet Genomic Med 2021; 9:e1788. [PMID: 34738740 PMCID: PMC8683628 DOI: 10.1002/mgg3.1788] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/15/2020] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Background Thalassemia is an inherited hematological disorder categorized by a decrease or absence of one or more of the globin chains synthesis. Beta‐thalassemia is caused by one or more mutations in the beta‐globin gene. The absence or reduced amount of beta‐globin chains causes ineffective erythropoiesis which leads to anemia. Methods Beta‐thalassemia has been further divided into three main forms: thalassemia major, intermedia, and minor/silent carrier. A more severe form among these is thalassemia major in which individuals depend upon blood transfusion for survival. The high level of iron deposition occurs due to regular blood transfusion therapy. Results Overloaded iron raises the synthesis of reactive oxygen species (ROS) that are noxious and prompting the injury to the hepatic, endocrine, and vascular system. Thalassemia can be analyzed and diagnosed via prenatal testing (genetic testing of amniotic fluid), blood smear, complete blood count, and DNA analysis (genetic testing). Treatment of thalassemia intermediate is symptomatic; however; it can also be accomplished by folic supplementation and splenectomy. Conclusion Thalassemia major can be cured through regular transfusion of blood, transplantation of bone marrow, iron chelation management, hematopoietic stem cell transplantation, stimulation of fetal hemoglobin production, and gene therapy.
Collapse
Affiliation(s)
- Shaukat Ali
- Applied Entomology and Medical Toxicology, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Applied Entomology and Medical Toxicology, Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Muhammad Khan
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology, Department of Zoology, Government College University, Lahore, Pakistan
| | - Samaira Mumtaz
- Applied Entomology and Medical Toxicology, Department of Zoology, Government College University, Lahore, Pakistan
| | - Tafail Akbar Mughal
- Applied Entomology and Medical Toxicology, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ali Hassan
- Applied Entomology and Medical Toxicology, Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Sadia
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Adeeb Khan
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To review available data on the relationship of MDS and aging and to address the question if biological changes of (premature) aging are a prerequisite for the development of MDS. RECENT FINDINGS Whereas the association of MDS with advanced age and some common biologic features of aging and MDS are well established, additional evidence for both, especially on the role of stem cells, the stem cell niche, and inflammation, has been recently described. Biologically, many but not all drivers of aging also play a role in the development and propagation of MDS and vice versa. As a consequence, aging contributes to the development of MDS which can be seen as an interplay of clonal disease and normal and premature aging. The impact of aging may be different in specific MDS subtypes and risk groups.
Collapse
Affiliation(s)
- Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen, Wels, Austria
- Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Stauder
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Pfeilstöcker
- 3rd Medical Department, Hanusch Hospital, H.Collinstr 30, 1140, Vienna, Austria.
| |
Collapse
|
46
|
Palumbo GA, Galimberti S, Barcellini W, Cilloni D, Di Renzo N, Elli EM, Finelli C, Maurillo L, Ricco A, Musto P, Russo R, Latagliata R. From Biology to Clinical Practice: Iron Chelation Therapy With Deferasirox. Front Oncol 2021; 11:752192. [PMID: 34692534 PMCID: PMC8527180 DOI: 10.3389/fonc.2021.752192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) has become a mainstay in heavily transfused hematological patients, with the aim to reduce iron overload (IOL) and prevent organ damage. This therapeutic approach is already widely used in thalassemic patients and in low-risk Myelodysplastic Syndrome (MDS) patients. More recently, ICT has been proposed for high-risk MDS, especially when an allogeneic bone marrow transplantation has been planned. Furthermore, other hematological and hereditary disorders, characterized by considerable transfusion support to manage anemia, could benefit from this therapy. Meanwhile, data accumulated on how iron toxicity could exacerbate anemia and other clinical comorbidities due to oxidative stress radical oxygen species (ROS) mediated by free iron species. Taking all into consideration, together with the availability of approved oral iron chelators, we envision a larger use of ICT in the near future. The aim of this review is to better identify those non-thalassemic patients who can benefit from ICT and give practical tips for management of this therapeutic strategy.
Collapse
Affiliation(s)
- Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia, ” University of Catania, Catania, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Wilma Barcellini
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico di Milano and University of Milan, Milan, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nicola Di Renzo
- Hematology and Transplant Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Elena Maria Elli
- Division of Hematology and Bone Marrow Unit, Ospedale San Gerardo, Aziende Socio Sanitarie Territoriali (ASST), Monza, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Luca Maurillo
- Department of Onco-hematology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandra Ricco
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Rodolfo Russo
- Clinica Nefrologica, Dialisi e Trapianto, Department of Integrated Medicine with the Territory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Latagliata
- Unità Operativa Complessa (UOC) Ematologia, Ospedale Belcolle, Viterbo and Division of Cellular Biotechnology and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
47
|
Ceuleers B, Stappers S, Lemmens J, Rutsaert L. Cobalamin and folic acid deficiencies presenting with features of a thrombotic microangiopathy: a case series. Acta Clin Belg 2021; 77:787-791. [PMID: 34559604 DOI: 10.1080/17843286.2021.1983707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CASE PRESENTATION We report three cases of vitamin B12 and/or folic acid deficiencies presenting with non-immune hemolytic anemia and thrombocytopenia. This presentation, with features of a thrombotic microangiopathy (TMA), has earlier been described as 'pseudo-TMA'.
Collapse
Affiliation(s)
- Britt Ceuleers
- Department of Internal Medicine, GZA Hospitals, Antwerp, Belgium
| | - Sofie Stappers
- Department of Internal Medicine, GZA Hospitals, Antwerp, Belgium
| | - Jan Lemmens
- Department of Hematology and Oncology, GZA Hospitals, Antwerp, Belgium
| | - Lynn Rutsaert
- Department of Hematology and Oncology, GZA Hospitals, Antwerp, Belgium
- Department of Intensive Care, ZNA Hospitals, Antwerp, Belgium
| |
Collapse
|
48
|
de Gennes C, Lamoril J, Borgel A, Boi C, Yao R, Boileau C, Tchernitchko D. Severe iron overload in a woman with homeostatic iron regulator (HFE) and a novel 5'-aminolevulinate synthase 2 (ALAS2) mutations: interactions of multiple genetic determinants. Br J Haematol 2021; 196:e17-e20. [PMID: 34490613 DOI: 10.1111/bjh.17810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian de Gennes
- Département de Médecine Interne, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jérôme Lamoril
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Adrien Borgel
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Camille Boi
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Raphael Yao
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Catherine Boileau
- Département de Génétique, AP-HP, Hôpital Bichat, Paris, France.,INSERM U1148, Université de Paris, Paris, France
| | | |
Collapse
|
49
|
Lal A, Wong T, Keel S, Pagano M, Chung J, Kamdar A, Rao L, Ikeda A, Puthenveetil G, Shah S, Yu J, Vichinsky E. The transfusion management of beta thalassemia in the United States. Transfusion 2021; 61:3027-3039. [PMID: 34453453 PMCID: PMC9292563 DOI: 10.1111/trf.16640] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Affiliation(s)
- Ashutosh Lal
- Pediatric Hematology, University of California, San Francisco, California, USA
| | - Trisha Wong
- Pediatric Hematology/Oncology, Oregon Health and Science University, Portland, Oregon, USA
| | - Siobán Keel
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Monica Pagano
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jong Chung
- Pediatric Hematology/Oncology, University of California, Davis, California, USA
| | - Aditi Kamdar
- Pediatric Hematology/Oncology, Stanford University, Stanford, California, USA
| | - Latha Rao
- Pediatric Hematology/Oncology, Valley Children's Hospital, Madera, California, USA
| | - Alan Ikeda
- Pediatric Hematology/Oncology, Children's Specialty Center of Nevada, Las Vegas, Nevada, USA
| | - Geetha Puthenveetil
- Pediatric Hematology/Oncology, Children's Hospital of Orange County, Orange, California, USA
| | - Sanjay Shah
- Pediatric Hematology/Oncology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Jennifer Yu
- Pediatric Hematology/Oncology, Rady Children's Hospital, San Diego, California, USA
| | - Elliott Vichinsky
- Pediatric Hematology, University of California, San Francisco, California, USA
| |
Collapse
|
50
|
Teawtrakul N, Sirijerachai C, Chansung K, Jetsrisuparb A. The serum ferritin levels and liver iron concentrations in patients with alpha -thalassemia : is there a good correlation? ACTA ACUST UNITED AC 2021; 26:473-477. [PMID: 34238133 DOI: 10.1080/16078454.2021.1943829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Liver iron overload is common in patients with thalassemia. In patients with beta-thalassemia, the correlation between serum ferritin and liver iron concentration is well established. The correlation between serum ferritin levels and liver iron concentrations in patients with alpha-thalassemia remains limited. METHODS This is a cross-sectional study in patients with alpha-thalassemia aged ≥ 18 years old at Srinagarind Hospital, Khon Kaen University, Thailand. Liver iron concentration (LIC) was evaluated by the MRI-T2* technique. Linear logistic regression analysis was used to determine the correlation between serum ferritin levels and liver iron concentrations. RESULTS One hundred and thirty-one of the MRI-T2* measurements from 65 patients with alpha-thalassemia were evaluated. Patients with non-deletional alpha-thalassemia had higher LIC compared to patients with deletional alpha-thalassemia. The serum ferritin levels were relatively low at the same levels of LIC in patients with non-deletional alpha-thalassemia compared to deletional alpha-thalassemia. CONCLUSIONS The correlation of serum ferritin levels and LIC was modest and different among alpha-thalassemia genotypes. A different serum ferritin threshold is needed to guide iron chelation therapy in patients with alpha-thalassemia. Evaluation of liver iron concentration is necessary for patients with alpha-thalassemia, especially in patients with non-deletional alpha-thalassemia.
Collapse
Affiliation(s)
- Nattiya Teawtrakul
- Division of Hematology, Department of Internal Medicine, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chittima Sirijerachai
- Division of Hematology, Department of Internal Medicine, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanchana Chansung
- Division of Hematology, Department of Internal Medicine, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arunee Jetsrisuparb
- Division of Hematology, Department of Pedriatrics, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|