1
|
Kolczyńska-Matysiak K, Karwen T, Loeffler M, Hawro I, Kassouf T, Stegner D, Sumara G. Dense but not alpha granules of platelets are required for insulin secretion from pancreatic β cells. Biochem Biophys Res Commun 2024; 734:150753. [PMID: 39366180 DOI: 10.1016/j.bbrc.2024.150753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Platelets, originally described for their role in blood coagulation, are now also recognized as key players in modulating inflammation, tissue regeneration, angiogenesis, and carcinogenesis. Recent evidence suggests that platelets also influence insulin secretion from pancreatic β cells. The multifaceted functions of platelets are mediated by the factors stored in their alpha granules (AGs) and dense granules (DGs). AGs primarily contain proteins, while DGs are rich in small molecules, and both types of granules are released during blood coagulation. Specific components stored in AGs and DGs are implicated in various inflammatory, regenerative, and tumorigenic processes. However, the relative contributions of AGs and DGs to the regulation of pancreatic β cell function have not been previously explored. METHODS In this study, we utilized mouse models deficient in AG content (neurobeachin-like 2 (Nbeal2) -deficient mice) and models with defective DG release (Unc13d-deficiency in bone marrow-derived cells) to investigate the impact of platelet granules on insulin secretion from pancreatic β cells. RESULTS Our findings indicate that AG deficiency has little to no effect on pancreatic β cell function and glucose homeostasis. Conversely, mice with defective DG release exhibited glucose intolerance and reduced insulin secretion. Furthermore, Unc13d-deficiency in hematopoietic stem cells led to a reduction in adipose tissue gain in obese mice. CONCLUSIONS Obtained data suggest that DGs, but not AGs, mediate the influence of platelets on pancreatic β cells, thereby modulating glucose metabolism.
Collapse
Affiliation(s)
| | - Till Karwen
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Mona Loeffler
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - David Stegner
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany; Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080, Würzburg, Germany.
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
2
|
Fang M, Liu R, Fang Y, Zhang D, Kong B. Emerging platelet-based drug delivery systems. Biomed Pharmacother 2024; 177:117131. [PMID: 39013224 DOI: 10.1016/j.biopha.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Drug delivery systems are becoming increasingly utilized; however, a major challenge in this field is the insufficient target of tissues or cells. Although efforts with engineered nanoparticles have shown some success, issues with targeting, toxicity and immunogenicity persist. Conversely, living cells can be used as drug-delivery vehicles because they typically have innate targeting mechanisms and minimal adverse effects. As active participants in hemostasis, inflammation, and tumors, platelets have shown great potential in drug delivery. This review highlights platelet-based drug delivery systems, including platelet membrane engineering, platelet membrane coating, platelet cytoplasmic drug loading, genetic engineering, and synthetic/artificial platelets for different applications.
Collapse
Affiliation(s)
- Mengkun Fang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Rui Liu
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Yile Fang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China.
| | - Dagan Zhang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China.
| | - Bin Kong
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China.
| |
Collapse
|
3
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Huelsboemer L, Knoedler L, Kochen A, Yu CT, Hosseini H, Hollmann KS, Choi AE, Stögner VA, Knoedler S, Hsia HC, Pomahac B, Kauke-Navarro M. Cellular therapeutics and immunotherapies in wound healing - on the pulse of time? Mil Med Res 2024; 11:23. [PMID: 38637905 PMCID: PMC11025282 DOI: 10.1186/s40779-024-00528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic, non-healing wounds represent a significant challenge for healthcare systems worldwide, often requiring significant human and financial resources. Chronic wounds arise from the complex interplay of underlying comorbidities, such as diabetes or vascular diseases, lifestyle factors, and genetic risk profiles which may predispose extremities to local ischemia. Injuries are further exacerbated by bacterial colonization and the formation of biofilms. Infection, consequently, perpetuates a chronic inflammatory microenvironment, preventing the progression and completion of normal wound healing. The current standard of care (SOC) for chronic wounds involves surgical debridement along with localized wound irrigation, which requires inpatient care under general anesthesia. This could be followed by, if necessary, defect coverage via a reconstructive ladder utilizing wound debridement along with skin graft, local, or free flap techniques once the wound conditions are stabilized and adequate blood supply is restored. To promote physiological wound healing, a variety of approaches have been subjected to translational research. Beyond conventional wound healing drugs and devices that currently supplement treatments, cellular and immunotherapies have emerged as promising therapeutics that can behave as tailored therapies with cell- or molecule-specific wound healing properties. However, in contrast to the clinical omnipresence of chronic wound healing disorders, there remains a shortage of studies condensing the current body of evidence on cellular therapies and immunotherapies for chronic wounds. This review provides a comprehensive exploration of current therapies, experimental approaches, and translational studies, offering insights into their efficacy and limitations. Ultimately, we hope this line of research may serve as an evidence-based foundation to guide further experimental and translational approaches and optimize patient care long-term.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Leonard Knoedler
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Alejandro Kochen
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Catherine T Yu
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Helia Hosseini
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Katharina S Hollmann
- School of Medicine, University of Wuerzburg, 97070, Würzburg, Germany
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ashley E Choi
- California University of Science and Medicine, Colton, CA, 92324, USA
| | - Viola A Stögner
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Samuel Knoedler
- School of Medicine, University of Regensburg, 93040, Regensburg, Germany
| | - Henry C Hsia
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Bohdan Pomahac
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
5
|
Shah R, M G T, Thomas R, A B TK. Advanced platelet rich fibrin demonstrates improved osteogenic induction potential in human periodontal ligament cells, growth factor production and mechanical properties as compared to leukocyte and platelet fibrin and injectable platelet rich fibrin. Oral Maxillofac Surg 2024; 28:413-424. [PMID: 37269407 DOI: 10.1007/s10006-023-01160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVES This cross-sectional invitro research aimed to compare and contrast the macroscopic and microscopic, mechanical and biochemical features of leukocyte-rich platelet-rich fibrin, advanced platelet-rich fibrin, and injectable platelet-rich fibrin. MATERIALS AND METHODS In all, 150 samples were taken from males aged 18 to 25 with good systemic health (n = 50 each for i-PRF, A-PRF, and L-PRF). The samples were assessed for clot length, clot width, membrane length and width. Microscopic parameters assessed were the distribution of cells and fibrin structure. Mechanical tests were performed for tensile strength using a universal testing machine and growth factor analysis was performed for platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)- β on Days 1, 3 and 7 using commercially available ELISA kits. The osteogenic potential was analyzed in a culture of human periodontal ligament cells for 21 days using cell viability assay, alkaline phosphatase formation and alizarin red staining for mineralization. RESULTS L-PRF demonstrates statistically superior clot length, width, weight, membrane length, width and weight in comparison to A-PRF (p < 0.05). L-PRF demonstrates a denser fibrin structure in comparison to A-PRF and i-PRF (p < 0.05). The cells in L-PRF are most commonly situated in the proximal of the clot where as they are distributed in the proximal and middle aspect for A-PRF(p < 0.05). A-PRF demonstrates the highest tensile strength followed by L-PRF (p < 0.05). When growth factor release was evaluated, A-PRF showed noticeably increased release of all growth factors, namely PDGF-BB, TGF-ß, and VEGF, in comparison to i-PRF and L-PRF (p < 0.05). On days 7 and 14, the cell viability of human periodontal ligament cells in co-culture with A-PRF was statistically substantially greater than that of L-PRF and i-PRF (p < 0.05). Alkaline phosphatase levels were statistically substantially higher in A-PRF, followed by i-PRF and L-PRF on days 14 and 21 (p < 0.05). After 21 days of culture, A-PRF treated cultures had much more Alizarin Red staining than L-PRF and i-PRF cultures did (p < 0.05). CONCLUSION It was determined that although L-PRF exhibits greater size and weight in comparison to A-PRF and i-PRF, A-PRF has superior mechanical properties, increased growth factor releases of TGF-b, PDGF-BB, and VEGF as well as superior cell viability, alkaline phosphatase production, and mineralization on human periodontal ligament cells. CLINICAL RELEVANCE Based on these findings, A-PRF can be recommended for improved delivery of growth factors and osteogenesis whereas L-PRF is better-suited for applications relying on the size of membrane.
Collapse
Affiliation(s)
- Rucha Shah
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004.
| | - Triveni M G
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004
| | - Raison Thomas
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004
| | - Tarun Kumar A B
- Department of Periodontics, Bapuji Dental College & Hospital, MCC B Block, Davangere, Karnataka, India, 577004
| |
Collapse
|
6
|
Kullaya VI, Temba GS, Vadaq N, Njau J, Boahen CK, Nkambule BB, Thibord F, Chen MH, Pecht T, Lyamuya F, Kumar V, Netea MG, Mmbaga BT, van der Ven A, Johnson AD, de Mast Q. Genetic and nongenetic drivers of platelet reactivity in healthy Tanzanian individuals. J Thromb Haemost 2024; 22:805-817. [PMID: 38029856 DOI: 10.1016/j.jtha.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Platelets play a key role in hemostasis, inflammation, and cardiovascular diseases. Platelet reactivity is highly variable between individuals. The drivers of this variability in populations from Sub-Saharan Africa remain largely unknown. OBJECTIVES We aimed to investigate the nongenetic and genetic determinants of platelet reactivity in healthy adults living in a rapidly urbanizing area in Northern Tanzania. METHODS Platelet activation and reactivity were measured by platelet P-selectin expression and the binding of fibrinogen in unstimulated blood and after ex vivo stimulation with adenosine diphosphate and PAR-1 and PAR-4 ligands. We then analyzed the associations of platelet parameters with host genetic and nongenetic factors, environmental factors, plasma inflammatory markers, and plasma metabolites. RESULTS Only a few associations were found between platelet reactivity parameters and plasma inflammatory markers and nongenetic host and environmental factors. In contrast, untargeted plasma metabolomics revealed a large number of associations with food-derived metabolites, including phytochemicals that were previously reported to inhibit platelet reactivity. Genome-wide single-nucleotide polymorphism genotyping identified 2 novel single-nucleotide polymorphisms (rs903650 and rs4789332) that were associated with platelet reactivity at the genome-wide level (P < 5 × 10-8) as well as a number of variants in the PAR4 gene (F2RL3) that were associated with PAR4-induced reactivity. CONCLUSION Our study uncovered factors that determine variation in platelet reactivity in a population in East Africa that is rapidly transitioning to an urban lifestyle, including the importance of genetic ancestry and the gradual abandoning of the traditional East African diet.
Collapse
Affiliation(s)
- Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Godfrey S Temba
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith Njau
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Collins K Boahen
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Florian Thibord
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Ming-Huei Chen
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Furaha Lyamuya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Vinod Kumar
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Tobaruela EDC, Brasili E, Zeraik L, Milenkovic D, Hassimotto NMA, Lajolo FM. Plasma proteome profiling reveals molecular mechanisms underlying the effects of daily consumption of 'Bahia' and 'Cara Cara' orange juices. Food Funct 2024; 15:1031-1049. [PMID: 38193367 DOI: 10.1039/d3fo04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Orange juice is an important food source of bioactive compounds, mainly the flavanones hesperidin and narirutin. This study aimed to investigate the underlying molecular mechanisms of action of orange juice's health properties by analyzing changes in the plasma proteome of healthy Brazilian volunteers after consuming juices made from 'Bahia' (BOJ-source of flavanones) and 'Cara Cara' (CCOJ-source of flavanones and carotenoids) oranges cultivated in Brazil. We used an untargeted proteomic approach, with a particular emphasis on the juices' effects on blood coagulant activity. We identified 247 differentially expressed proteins, of which 170 significantly increased or decreased after BOJ consumption and 145 after CCOJ. These proteins are involved in 105 processes that can significantly regulate cell adhesion, cell signaling, cell metabolism, inflammation, or others. Bioinformatic analysis evidenced proteins with major cellular regulatory capacity (e.g., FN1 and GAPDH) and predicted transcription factors (TFs) (e.g., SP1 and CEBPA) and miRNAs (e.g., miR-1-3p and miR-615-3p) that could be involved in the regulation of differentially expressed proteins. In-silico docking analyses between flavanone metabolites and TFs evidenced the higher binding capacity of narirutin phase II metabolites with akt1 and p38, interactions that suggest how the expression of genes of differentially expressed proteins were activated or inhibited. Moreover, the study shed light on proteins of coagulation cascade that presented expression modulated by both juices, proposing the modulation of blood coagulant activity as a potential benefit of OJ (mainly CCOJ) consumption. Taken together, this study revealed that BOJ and CCOJ consumption affected plasma proteome in healthy individuals, suggesting potential molecular targets and mechanisms of OJ bioactive compounds in humans.
Collapse
Affiliation(s)
- Eric de Castro Tobaruela
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Laila Zeraik
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, 95616 Davis, CA, USA
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| | - Franco Maria Lajolo
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Baaten CCFMJ, Nagy M, Bergmeier W, Spronk HMH, van der Meijden PEJ. Platelet biology and function: plaque erosion vs. rupture. Eur Heart J 2024; 45:18-31. [PMID: 37940193 PMCID: PMC10757869 DOI: 10.1093/eurheartj/ehad720] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The leading cause of heart disease in developed countries is coronary atherosclerosis, which is not simply a result of ageing but a chronic inflammatory process that can lead to acute clinical events upon atherosclerotic plaque rupture or erosion and arterial thrombus formation. The composition and location of atherosclerotic plaques determine the phenotype of the lesion and whether it is more likely to rupture or to erode. Although plaque rupture and erosion both initiate platelet activation on the exposed vascular surface, the contribution of platelets to thrombus formation differs between the two phenotypes. In this review, plaque phenotype is discussed in relation to thrombus composition, and an overview of important mediators (haemodynamics, matrix components, and soluble factors) in plaque-induced platelet activation is given. As thrombus formation on disrupted plaques does not necessarily result in complete vessel occlusion, plaque healing can occur. Therefore, the latest findings on plaque healing and the potential role of platelets in this process are summarized. Finally, the clinical need for more effective antithrombotic agents is highlighted.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, School of Medicine, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
- Blood Research Center, School of Medicine, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Henri M H Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- Thrombosis Expertise Center, Heart+ Vascular Center, Maastricht University Medical Center+, P. Debeyelaan 25, Maastricht, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Thrombosis Expertise Center, Heart+ Vascular Center, Maastricht University Medical Center+, P. Debeyelaan 25, Maastricht, the Netherlands
| |
Collapse
|
9
|
Zhang L, Yan Y, Liao R, Dong H. Effect of Platelet Parameters on Linezolid-Related Thrombocytopenia in Hospitalized Patients. Infect Drug Resist 2023; 16:6145-6154. [PMID: 37719650 PMCID: PMC10505032 DOI: 10.2147/idr.s408102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Background Linezolid-induced thrombocytopenia incidence varies considerably. Linezolid-related thrombocytopenia in patients has received few studies which have investigated risk factors including platelet parameters except for platelet counts. The study aims to analyze the effect of platelet parameters, including mean platelet volume and platelet large cell ratio, on linezolid-related thrombocytopenia in patients. Methods The effect of platelet parameters on linezolid-related thrombocytopenia was identified by univariate and multivariate logistic regressions. A Kaplan-Meier survival analysis was carried out to compare the survival of patients who developed linezolid-related thrombocytopenia with patients who did not. Results Thrombocytopenia occurred at a rate of 41.5% (66/159) after linezolid therapy in hospitalized patients. Platelet parameters, including the difference in mean platelet volume (MPV/fL=0.08 (-1.2-0.9)vs-0.5 (-1.5-0.3), (OR, 0.459; P = 0.001), the difference in platelet large cell ratio (PLCR/fL=0.9 (-5.1-6.2)vs-3.8 (-8.6-2.4), (OR, 1.156; P = 0.001), baseline platelet counts (OR, 0.995; P = 0.006) and duration of linezolid therapy≥10d (OR, 1.346; P = 0.007), were significantly associated with linezolid-related thrombocytopenia in hospitalized patients. In addition, other risk factors which also are associated with linezolid-related thrombocytopenia include baseline red blood cells, co-medication with parecoxib and co-medication with caspofungin. Accumulated in-hospital mortality of patients with thrombocytopenia was significantly higher than that of patients without thrombocytopenia during linezolid treatment (19.7% vs 8.6%, P = 0.003). Conclusion The difference in mean platelet volume, the difference in large platelet ratio, baseline platelet counts and duration of linezolid therapy≥10d significantly affected the development of linezolid-related thrombocytopenia in hospitalized patients.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pharmacy, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Yan Yan
- Department of Pharmacy, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Ru Liao
- Department of Pharmacy, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| | - Haiyan Dong
- Department of Pharmacy, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
| |
Collapse
|
10
|
Karwen T, Kolczynska‐Matysiak K, Gross C, Löffler MC, Friedrich M, Loza‐Valdes A, Schmitz W, Wit M, Dziaczkowski F, Belykh A, Trujillo‐Viera J, El‐Merahbi R, Deppermann C, Nawaz S, Hastoy B, Demczuk A, Erk M, Wieckowski MR, Rorsman P, Heinze KG, Stegner D, Nieswandt B, Sumara G. Platelet-derived lipids promote insulin secretion of pancreatic β cells. EMBO Mol Med 2023; 15:e16858. [PMID: 37490001 PMCID: PMC10493578 DOI: 10.15252/emmm.202216858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from β cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting β cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on β cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.
Collapse
Affiliation(s)
- Till Karwen
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | | | - Carina Gross
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Werner Schmitz
- Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Filip Dziaczkowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Andrei Belykh
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Jonathan Trujillo‐Viera
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Carsten Deppermann
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Center for Thrombosis and HemostasisUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Sameena Nawaz
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Benoit Hastoy
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Agnieszka Demczuk
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Manuela Erk
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
- Department of Physiology, Institute of Neuroscience and PhysiologyUniversity of GöteborgGöteborgSweden
- Oxford National Institute for Health Research, Biomedical Research CentreChurchill HospitalOxfordUK
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
11
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Fang Z, Fang J, Gao C, Gao R, Lin P, Yu W. Recent trends in platelet membrane-cloaked nanoparticles for application of inflammatory diseases. Drug Deliv 2022; 29:2805-2814. [PMID: 36047245 PMCID: PMC9448372 DOI: 10.1080/10717544.2022.2117434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Platelets are multifunctional effectors of inflammatory responses and inseparable from the occurrence and development of various inflammatory diseases. The platelet membrane (PM) is integrated onto the surface of a nano-drug delivery system to form the PM-cloaked nanoparticles (PM@NPs), which can increase the biocompatibility of the nano-drug delivery system and mitigate adverse drug reactions. Owing to the strong affinity of immune regulation and adhesion-related antigens on the surface of PM to the focal sites of inflammatory diseases, which endows PM@NPs with the potential to actively target lesions and improve the therapeutic efficacy of drugs for inflammatory diseases. Based on latest developments in PM biomimetic technique and nanomedicine for the treatment of inflammatory diseases, this paper mainly elaborates three aspects: advantages of PM@NPs, experimental foundation of PM biomimetic nanotechnology, and applications of PM@NPs to the treatment of inflammatory diseases. The aim is to provide reference for the development and application of PM@NPs and novel insights into the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Fang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jie Fang
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, China
| | - Chunxiao Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Rui Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Peihong Lin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
14
|
Scopelliti F, Cattani C, Dimartino V, Mirisola C, Cavani A. Platelet Derivatives and the Immunomodulation of Wound Healing. Int J Mol Sci 2022; 23:ijms23158370. [PMID: 35955503 PMCID: PMC9368989 DOI: 10.3390/ijms23158370] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Besides their primary role in hemostasis, platelets contain a plethora of immunomodulatory molecules that profoundly affect the entire process of wound repair. Therefore, platelet derivatives, such as platelet-rich plasma or platelet lysate, have been widely employed with promising results in the treatment of chronic wounds. Platelet derivatives provide growth factors, cytokines, and chemokines targeting resident and immigrated cells belonging to the innate and adaptive immune system. The recruitment and activation of neutrophils and macrophages is critical for pathogen clearance in the early phase of wound repair. The inflammatory response begins with the release of cytokines, such as TGF-β, aimed at damping excessive inflammation and promoting the regenerative phase of wound healing. Dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wound. In this review, we summarize the role of the different immune cells involved in wound healing, particularly emphasizing the function of platelet and platelet derivatives in orchestrating the immunological response.
Collapse
|
15
|
Yuan Y, Wang G, Chen X, Ye XL, Li XK, Li R, Jiang WL, Zeng HL, Du J, Zhang XA, Li H, Fang LQ, Lu QB, Liu W. Thrombocytopenia and increased risk of adverse outcome in COVID-19 patients. PeerJ 2022; 10:e13608. [PMID: 35791362 PMCID: PMC9250762 DOI: 10.7717/peerj.13608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/27/2022] [Indexed: 01/17/2023] Open
Abstract
Background Thrombocytopenia was common in the coronavirus disease 2019 (COVID-19) patients during the infection, while the role of thrombocytopenia in COVID-19 pathogenesis and its relationship with systemic host response remained obscure. The study aimed to systematically evaluate the relationship between thrombocytopenia in COVID-19 patients and clinical, haematological and biochemical markers of the disease as well as adverse outcomes. Methods To assess the relationship between abnormal platelet levels and disease progression, a multi-center retrospective cohort study was conducted. COVID-19 patients with thrombocytopenia and a sub-cohort of matched patients without thrombocytopenia were compared for their clinical manifestations, haematological disorders, biochemical parameters, inflammatory markers and clinical outcome. Results Thrombocytopenia was present in 127 of 2,209 analyzed patients on admission. Compared with the control group, thrombocytopenia patients developed significantly higher frequency of respiratory failure (41.9% vs. 22.6%, P = 0.020), intensive care unit entrance (25.6% vs. 11.5%, P = 0.012), disseminated intravascular coagulation (45.2% vs. 10.6%, P < 0.001), more altered platelet morphology indexes and coagulation perturbation, higher levels of inflammatory markers. In addition, a significantly increased all-cause mortality (hazard ratio 3.08, 95% confidence interval 2.26-4.18, P < 0.001) was also observed in the patients with thrombocytopenia. Late development of thrombocytopenia beyond 14 days post-symptom was observed in 61 patients, from whom a comparable mortality rate yet longer duration to death was observed compared to those with early thrombocytopenia. Conclusions Our finding from this study adds to previous evidence that thrombocytopenia is associated with adverse outcome of the disease and recommend that platelet count and indices be included alongside other haematological, biochemical and inflammatory markers in COVID-19 patients' assessment during the hospital stay.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xi Chen
- Department of Thoracic and Vascular Surgery, Wuhan First Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Lei Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui Li
- Department of Healthcare, School of Health Sciences, Wuhan University, Wuhan, Hubei, Wuhan, China,Global Health Institute, Wuhan University, Wuhan, Hubei, Wuhan, China
| | - Wan-Li Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
16
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
17
|
Plasma profile of immune determinants predicts pathological complete response in locally advanced breast cancer patients: a pilot study. Clin Breast Cancer 2022; 22:705-714. [DOI: 10.1016/j.clbc.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
18
|
Váczi S, Barna L, Laczi K, Tömösi F, Rákhely G, Penke B, Fülöp L, Bogár F, Janáky T, Deli MA, Mezei Z. Effects of sub-chronic, in vivo administration of sigma non-opioid intracellular receptor 1 ligands on platelet and aortic arachidonate cascade in rats. Eur J Pharmacol 2022; 925:174983. [PMID: 35487254 DOI: 10.1016/j.ejphar.2022.174983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022]
Abstract
Platelets regulate cell-cell interactions and local circulation through eicosanoids from arachidonic acid. Sigma non-opioid intracellular receptor 1 (sigma-1 receptor) expressed in platelets and endothelial cells can regulate intracellular signalization. Our aim was to examine the influence of sub-chronic, in vivo-administered sigma-1 receptor ligands 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084); N-benzyl-2-[(1S)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl]ethan-1-amine; dihydrochloride, a new compound ((S)-L1); and N-[2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethyl]-N-propylpropan-1-amine (NE-100) on the ex vivo arachidonic acid metabolism of the platelets and aorta of male rats. The serum level of sigma-1 receptor ligands was determined by liquid chromatography-mass spectrometry. Sigma-1 receptor and cyclooxygenase gene expression in the platelets were determined by a reverse transcription-coupled quantitative polymerase chain reaction. The eicosanoid synthesis was examined using a radiolabeled arachidonic acid substrate and enzyme-linked immunosorbent assay. We confirmed the absorption of sigma-1 receptor ligands and confirmed that the ligands were not present during the ex vivo studies, so their acute effect could be excluded. We detected no changes in either sigma-1 receptor or cyclooxygenase mRNA levels in the platelets. Nevertheless, (S)-L1 and NE-100 increased the quantity of cyclooxygenases there. Both platelet and aortic eicosanoid synthesis was modified by the ligands, although in different ways. The effect of the new sigma-1 receptor ligand, (S)-L1, was similar to that of PRE-084 in most of the parameters studied but was found to be more potent. Our results suggest that sigma-1 receptor ligands may act at multiple points in arachidonic acid metabolism and play an important role in the control of the microcirculation by modulating the eicosanoid synthesis of the platelets and vessels.
Collapse
Affiliation(s)
- Sándor Váczi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary; Doctoral School of Theoretical Medicine, University of Szeged, H-6725, Szeged, Hungary.
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary; Doctoral School of Biology, University of Szeged, H-6725, Szeged, Hungary.
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, H-6725, Szeged, Hungary.
| | - Ferenc Tömösi
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Gábor Rákhely
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary; Department of Biotechnology, University of Szeged, H-6725, Szeged, Hungary.
| | - Botond Penke
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Lívia Fülöp
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary.
| | - Tamás Janáky
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), H-6725, Szeged, Hungary.
| | - Zsófia Mezei
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary; Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725, Szeged, Hungary.
| |
Collapse
|
19
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
The conundrum of thrombosis with thrombocytopenia syndrome following COVID-19 vaccines. Am J Emerg Med 2022; 57:156-157. [PMID: 35489990 PMCID: PMC9023077 DOI: 10.1016/j.ajem.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/21/2022] Open
|
21
|
Menter DG, Afshar-Kharghan V, Shen JP, Martch SL, Maitra A, Kopetz S, Honn KV, Sood AK. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev 2022; 41:147-172. [PMID: 35022962 PMCID: PMC8754476 DOI: 10.1007/s10555-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023]
Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Collapse
Affiliation(s)
- David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie L Martch
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Dai XP, Wu FY, Cui C, Liao XJ, Jiao YM, Zhang C, Song JW, Fan X, Zhang JY, He Q, Wang FS. Increased Platelet-CD4+ T Cell Aggregates Are Correlated With HIV-1 Permissiveness and CD4+ T Cell Loss. Front Immunol 2021; 12:799124. [PMID: 34987521 PMCID: PMC8720770 DOI: 10.3389/fimmu.2021.799124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-1 infection is associated with persistent inflammation, which contributes to disease progression. Platelet-T cell aggregates play a critical role in maintaining inflammation. However, the phenotypic characteristics and clinical significance of platelet-CD4+ T cell aggregates remain unclear in different HIV-infected populations. In this study, we quantified and characterized platelet-CD4+ T cell aggregates in the peripheral blood of treatment-naïve HIV-1-infected individuals (TNs), immunological responders to antiretroviral therapy (IRs), immunological non-responders to antiretroviral therapy (INRs), and healthy controls (HCs). Flow cytometry analysis and immunofluorescence microscopy showed increased platelet-CD4+ T cell aggregate formation in TNs compared to HCs during HIV-1 infection. However, the frequencies of platelet-CD4+ T cell aggregates decreased in IRs compared to TNs, but not in INRs, which have shown severe immunological dysfunction. Platelet-CD4+ T cell aggregate frequencies were positively correlated with HIV-1 viral load but negatively correlated with CD4+ T cell counts and CD4/CD8 ratios. Furthermore, we observed a higher expression of CD45RO, HIV co-receptors, HIV activation/exhaustion markers in platelet-CD4+ T cell aggregates, which was associated with HIV-1 permissiveness. High levels of caspase-1 and caspase-3, and low levels of Bcl-2 in platelet-CD4+ T cell aggregates imply the potential role in CD4+ T cell loss during HIV-1 infection. Furthermore, platelet-CD4+ T cell aggregates contained more HIV-1 gag viral protein and HIV-1 DNA than their platelet-free CD4+ T cell counterparts. The platelet-CD4+ T cell aggregate levels were positively correlated with plasma sCD163 and sCD14 levels. Our findings demonstrate that platelet-CD4+ T cell aggregate formation has typical characteristics of HIV-1 permissiveness and is related to immune activation during HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Peng Dai
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Feng-Ying Wu
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Cui
- Noncommissioned Officer School, Army Medical University, Shijiazhuang, China
| | - Xue-Jiao Liao
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Qing He
- The Third People’s Hospital of Shenzhen, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| | - Fu-Sheng Wang
- Medical School of Chinese People’s Liberation Army of China (PLA), Beijing, China
- Department of Infectious Diseases, The Fifth Medical Centre of Chinese People’s Liberation Army of China (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- *Correspondence: Fu-Sheng Wang, ; Ji-Yuan Zhang, ; Qing He,
| |
Collapse
|
23
|
The Value of the Systemic Immune-Inflammation Index in Predicting Survival Outcomes in Patients with Brain Metastases of Non-Small-Cell Lung Cancer Treated with Stereotactic Radiotherapy. Mediators Inflamm 2021; 2021:2910892. [PMID: 34744510 PMCID: PMC8570891 DOI: 10.1155/2021/2910892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Background As a parameter integrating platelet (P), neutrophil (N), and lymphocyte (L) levels, the systemic immune-inflammation index (SII) has been used as a prognostic marker for patient survival in various types of solid malignant tumors. However, there is no in-depth study in non-small-cell lung cancer (NSCLC) patients with brain metastases after stereotactic radiotherapy. Therefore, we performed a retrospective analysis to determine the clinical and prognostic value of the SII in NSCLC patients with brain metastases who underwent stereotactic radiotherapy. Materials and Methods We enrolled 124 NSCLC patients with brain metastases treated with stereotactic radiotherapy in our hospital between May 2015 and June 2018. We obtained all baseline blood samples within one week prior to stereotactic radiotherapy. The SII was calculated by the following formula: neutrophil counts × platelet counts/lymphocyte counts. The optimal cutoff value of the SII for predicting prognosis was assessed by receiver operating characteristic (ROC) curves with the maximum log-rank values. The discriminative ability of predicting prognosis was calculated and compared using the Kaplan–Meier method and log-rank test. The hazard ratio (HR) and 95% confidence interval (CI) were combined to evaluate the prognostic impact of the blood index on overall survival (OS) and progression-free survival (PFS). Only those parameters that proved to be associated with statistically significant differences in clinical outcomes were compared in multivariate analysis using a multiple Cox proportional hazard regression model to identify independent prognostic factors. Results Of the total enrolled patients, 53.2% and 46.8% have high SII and low SII, respectively. In this study, Kaplan–Meier curve analysis revealed that the median PFS was 9 months (range: 2–22 months) and the median OS was 18 months (range: 4–37 months). Applying an optimal cutoff of 480 (SII), the median PFS was better in the low SII group patients (11.5 vs. 9 months), and the median OS was significantly longer in the low SII group patients (20 vs. 18 months). A SII > 480 was significantly associated with worse OS (HR: 2.196; 95% CI 1.259–3.832; P = 0.006) and PFS (HR: 2.471; 95% CI 1.488–4.104; P < 0.001) according to univariate analysis. In multivariate analysis, only age (HR: 2.159; 95% CI 1.205–3.869; P = 0.010), KPS (HR: 1.887; 95% CI 1.114–3.198; P = 0.018), and SII (HR: 1.938; 95% CI 1.046–3.589; P = 0.035) were independently correlated with OS, and SII (HR: 2.224; 95% CI 1.298–3.810; P = 0.004) was an independent prognostic predictor of PFS, whereas we found that other inflammation-based indices lost their independent value. Conclusions The SII, which is an integrated blood parameter based on platelet, neutrophil, and lymphocyte counts, may be an independent prognostic indicator and may be useful for the identification of NSCLC patients with brain metastases after stereotactic radiotherapy at high risk for recurrence.
Collapse
|
24
|
Abstract
Significance: Since protein disulfide isomerase (PDI) was first described in 1963, researchers have shown conclusively that PDI and sibling proteins are quintessential for thrombus formation. PDI, endoplasmic reticulum protein (ERp)5, ERp57, and ERp72 are released from platelets and vascular cells and interact with integrin αIIbβ3 on the outer surface of platelets. Recent Advances: At the cell surface they influence protein folding and function, propagating thrombosis and maintaining hemostasis. TMX1, which is a transmembrane thiol isomerase, is the first family member shown to negatively regulate platelets. Targets of thiol isomerases have been identified, including integrin α2β1, Von Willebrand Factor, GpIbα, nicotinamide adenine dinucleotide phosphate oxidase (Nox)-1, Nox-2, and tissue factor, all of which are pro-thrombotic, and several of which are on the cell surface. In spite of this, PDI can paradoxically catalyze the delivery of nitric oxide to platelets, which decrease thrombus formation. Critical Issues: Although the overall effect of PDI is to positively regulate platelet activation, it is still unclear how thiol isomerases function in pro-thrombotic states, such as obesity, diabetes, and cancer. In parallel, there has been a surge in the development of novel thiol isomerase inhibitors, which display selectivity, potency and modulate thrombosis and hemostasis. The availability of selective thiol isomerase inhibitors has culminated in clinical trials, with promising outcomes for the prevention of cancer-associated thrombosis. Future Directions: Altogether, thiol isomerases are perceived as an orchestrating force that regulates thrombus development. In the current review, we will explore the history of PDI in cardiovascular biology, detail known mechanisms of action, and summarize known thiol isomerase inhibitors.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
25
|
Mikaelsdottir E, Thorleifsson G, Stefansdottir L, Halldorsson G, Sigurdsson JK, Lund SH, Tragante V, Melsted P, Rognvaldsson S, Norland K, Helgadottir A, Magnusson MK, Ragnarsson GB, Kristinsson SY, Reykdal S, Vidarsson B, Gudmundsdottir IJ, Olafsson I, Onundarson PT, Sigurdardottir O, Sigurdsson EL, Grondal G, Geirsson AJ, Geirsson G, Gudmundsson J, Holm H, Saevarsdottir S, Jonsdottir I, Thorgeirsson G, Gudbjartsson DF, Thorsteinsdottir U, Rafnar T, Stefansson K. Genetic variants associated with platelet count are predictive of human disease and physiological markers. Commun Biol 2021; 4:1132. [PMID: 34580418 PMCID: PMC8476563 DOI: 10.1038/s42003-021-02642-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play an important role in hemostasis and other aspects of vascular biology. We conducted a meta-analysis of platelet count GWAS using data on 536,974 Europeans and identified 577 independent associations. To search for mechanisms through which these variants affect platelets, we applied cis-expression quantitative trait locus, DEPICT and IPA analyses and assessed genetic sharing between platelet count and various traits using polygenic risk scoring. We found genetic sharing between platelet count and counts of other blood cells (except red blood cells), in addition to several other quantitative traits, including markers of cardiovascular, liver and kidney functions, height, and weight. Platelet count polygenic risk score was predictive of myeloproliferative neoplasms, rheumatoid arthritis, ankylosing spondylitis, hypertension, and benign prostate hyperplasia. Taken together, these results advance understanding of diverse aspects of platelet biology and how they affect biological processes in health and disease. Evgenia Mikaelsdottir et al. report a study of variants associated with platelet count among European individuals where they identify 577 associations. They also report a genetic overlap between platelet count and human diseases, including myeloproliferative neoplasms, rheumatoid arthritis, and hypertension, as well as a genetic overlap between platelet count and various physiological markers.
Collapse
Affiliation(s)
| | | | | | | | | | - Sigrun H Lund
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | - Pall Melsted
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Magnus K Magnusson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gunnar B Ragnarsson
- Department of Oncology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigurdur Y Kristinsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigrun Reykdal
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Brynjar Vidarsson
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Laboratory Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, 600, Akureyri, Iceland
| | | | - Gerdur Grondal
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Arni J Geirsson
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Gudmundur Geirsson
- Department of Urology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Department of Cardiology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Thorunn Rafnar
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
26
|
Nations CC, Pavani G, French DL, Gadue P. Modeling genetic platelet disorders with human pluripotent stem cells: mega-progress but wanting more on our plate(let). Curr Opin Hematol 2021; 28:308-314. [PMID: 34397590 PMCID: PMC8371829 DOI: 10.1097/moh.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Megakaryocytes are rare hematopoietic cells that play an instrumental role in hemostasis, and other important biological processes such as immunity and wound healing. With the advent of cell reprogramming technologies and advances in differentiation protocols, it is now possible to obtain megakaryocytes from any pluripotent stem cell (PSC) via hematopoietic induction. Here, we review recent advances in PSC-derived megakaryocyte (iMK) technology, focusing on platform validation, disease modeling and current limitations. RECENT FINDINGS A comprehensive study confirmed that iMK can recapitulate many transcriptional and functional aspects of megakaryocyte and platelet biology, including variables associated with complex genetic traits such as sex and race. These findings were corroborated by several pathological models in which iMKs revealed molecular mechanisms behind inherited platelet disorders and assessed the efficacy of novel pharmacological interventions. However, current differentiation protocols generate primarily embryonic iMK, limiting the clinical and translational potential of this system. SUMMARY iMK are strong candidates to model pathologic mutations involved in platelet defects and develop innovative therapeutic strategies. Future efforts on generating definitive hematopoietic progenitors would improve current platelet generation protocols and expand our capacity to model neonatal and adult megakaryocyte disorders.
Collapse
Affiliation(s)
- Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Li F, Xu D, Hou K, Gou X, Li Y. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 2021; 50:874-885. [PMID: 32248335 DOI: 10.1007/s11239-020-02098-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.
Collapse
Affiliation(s)
- Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
28
|
Scopelliti F, Caterina C, Valentina D, Gianfranco C, Concetta M, Andrea C. Platelet lysate converts M (IFNγ+LPS) macrophages in CD206 + TGF-β + arginase + M2-like macrophages that affect fibroblast activity and T lymphocyte migration. J Tissue Eng Regen Med 2021; 15:788-797. [PMID: 34311512 DOI: 10.1002/term.3229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/06/2023]
Abstract
Macrophages, thanks to their extreme plasticity, exert critical roles in wound healing by orchestrating tissue defenses in the early inflammatory phase, and by promoting tissue regeneration and angiogenesis at a later time point. In parallel, platelets release a large number of preformed molecules that could affect immunocyte functions. Platelet-rich plasma and platelet lysate (PL) have been widely used as a therapeutic preside for ulcers, although little is known about the effects of platelet-derived biomolecules on macrophage functions during wound healing. In this study, we analyze the effects of PL on macrophages phenotype and functions. Monocyte-derived macrophages were cultured in the presence of interferon-γ and lipopolysaccharides to induce the M1 polarization and were further exposed to 10% PL. PL treatment reduced CD80, CD86, and PDL-1 and enhanced CD206 and CD200R expression on macrophages analyzed by cytofluorimetry. Additionally, macrophage cultures show reduced TNF-α and CXCL10, while increased arginase protein, PPAR, TGF-β, and VEGF. TGF-β secretion was paralleled by the decrease of NFkB and increase of STAT3, STAT6, and SMAD2 and SMAD4. Supernatants of PL-treated macrophages induced a significant increase of type-I collagen and to a lesser extent of type-III collagen production by fibroblasts. Finally, the supernatant of PL-treated macrophages showed significantly reduced capacity to induce the in vitro migration of T lymphocytes. Our results demonstrate that PL dampens the macrophage secretion of pro-inflammatory cytokines and induces the release of arginase, TGF-β, and VEGF that may affect angiogenesis and tissue regeneration, thus facilitating the wound healing process.
Collapse
Affiliation(s)
- Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Rome, Italy
| | - Cattani Caterina
- National Institute for Health, Migration and Poverty INMP/NIHMP, Rome, Italy
| | - Dimartino Valentina
- National Institute for Health, Migration and Poverty INMP/NIHMP, Rome, Italy
| | - Costanzo Gianfranco
- National Institute for Health, Migration and Poverty INMP/NIHMP, Rome, Italy
| | - Mirisola Concetta
- National Institute for Health, Migration and Poverty INMP/NIHMP, Rome, Italy
| | - Cavani Andrea
- National Institute for Health, Migration and Poverty INMP/NIHMP, Rome, Italy
| |
Collapse
|
29
|
Effect of platelet large cell ratio (PLCR) and immature granulocyte (%IG) values on prognosis in surgical site infections. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.741869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Pretorius E. Platelets in HIV: A Guardian of Host Defence or Transient Reservoir of the Virus? Front Immunol 2021; 12:649465. [PMID: 33968041 PMCID: PMC8102774 DOI: 10.3389/fimmu.2021.649465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
The immune and inflammatory responses of platelets to human immunodeficiency virus 1 (HIV-1) and its envelope proteins are of great significance to both the treatment of the infection, and to the comorbidities related to systemic inflammation. Platelets can interact with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1 replication, or the virus can temporarily hide from the immune system inside platelets, whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the host defence system, and transient reservoirs of the virus. Such reservoirs may be of particular significance during combination antiretroviral therapy (cART) interruption, as it may drive viral persistence, and result in significant implications for treatment. Both HIV-1 envelope proteins and circulating inflammatory molecules can also initiate platelet complex formation with immune cells and erythrocytes. Complex formation cause platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively short lifespan, platelets are important signalling entities, and could be targeted more directly during HIV-1 infection and cART.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
31
|
Collado A, Domingo E, Marques P, Perello E, Martínez-Hervás S, Piqueras L, Ascaso JF, Real JT, Sanz MJ. Oral Unsaturated Fat Load Impairs Postprandial Systemic Inflammation in Primary Hypercholesterolemia Patients. Front Pharmacol 2021; 12:656244. [PMID: 33959024 PMCID: PMC8093814 DOI: 10.3389/fphar.2021.656244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Context: Primary hypercholesterolemia (PH) is a lipid disorder characterized by elevated levels of cholesterol and low-density lipoprotein (LDL). Low-grade systemic inflammation is associated with PH, which might explain the higher incidence of cardiovascular diseases in this setting. Objective: To evaluate the effect of an oral unsaturated fat load (OUFL) on different immune parameters and functional consequences in patients with PH in postprandial state. Design: A commercial liquid preparation of long-chain triglycerides (Supracal®; ω6/ω3 ratio >20/1, OUFL) was administered to 20 patients and 10 age-matched controls. Whole blood was collected before (fasting state) and 4 h after administration (postprandial state). Flow cytometry was employed to determine platelet and leukocyte activation, and the levels of circulating platelet-leukocyte aggregates. Soluble markers were determined by ELISA, and the parallel-plate flow chamber was employed to study leukocyte adhesion to the dysfunctional arterial endothelium. Results: The PH group had a lower percentage of activated platelets and circulating type 1 monocytes, and blunted neutrophil activation after the OUFL, accompanied by a significant increase in the percentage of regulatory T lymphocytes. In this group, the OUFL led to a significant impairment of leukocyte adhesion to the dysfunctional [tumor necrosis factor α (TNFα)-stimulated] endothelium and reduced the plasma levels of soluble P-selectin, platelet factor-4 (PF-4)/CXCL4, CXCL8, CCL2, CCL5, and TNFα. Conclusion: The OUFL has a beneficial impact on the pro-thrombotic and pro-inflammatory state of PH patients and might be a promising macronutrient approach to dampen the systemic inflammation associated with PH and the development of further cardiovascular events.
Collapse
Affiliation(s)
- Aida Collado
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Elena Domingo
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Eva Perello
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Sergio Martínez-Hervás
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Laura Piqueras
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Juan F Ascaso
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - José T Real
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
32
|
Feldman C, Anderson R. Platelets and Their Role in the Pathogenesis of Cardiovascular Events in Patients With Community-Acquired Pneumonia. Front Immunol 2020; 11:577303. [PMID: 33042161 PMCID: PMC7527494 DOI: 10.3389/fimmu.2020.577303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains an important cause of morbidity and mortality throughout the world with much recent and ongoing research focused on the occurrence of cardiovascular events (CVEs) during the infection, which are associated with adverse short-term and long-term survival. Much of the research directed at unraveling the pathogenesis of these events has been undertaken in the settings of experimental and clinical CAP caused by the dangerous, bacterial respiratory pathogen, Streptococcus pneumoniae (pneumococcus), which remains the most common bacterial cause of CAP. Studies of this type have revealed that although platelets play an important role in host defense against infection, there is also increasing recognition that hyperactivation of these cells contributes to a pro-inflammatory, prothrombotic systemic milieu that contributes to the etiology of CVEs. In the case of the pneumococcus, platelet-driven myocardial damage and dysfunction is exacerbated by the direct cardiotoxic actions of pneumolysin, a major pore-forming toxin of this pathogen, which also acts as potent activator of platelets. This review is focused on the role of platelets in host defense against infection, including pneumococcal infection in particular, and reviews the current literature describing the potential mechanisms by which platelet activation contributes to cardiovascular complications in CAP. This is preceded by an evaluation of the burden of pneumococcal infection in CAP, the clinical features and putative pathogenic mechanisms of the CVE, and concludes with an evaluation of the potential utility of the anti-platelet activity of macrolides and various adjunctive therapies.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, Institute of Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Yan Q, Ertao Z, Zhimei Z, Weigang D, Jianjun P, Jianhui C, Chuangqi C. Systemic immune-inflammation index (SII): A More Promising Inflammation-Based Prognostic Marker for Patients with synchronic colorectal peritoneal carcinomatosis. J Cancer 2020; 11:5264-5272. [PMID: 32742472 PMCID: PMC7391211 DOI: 10.7150/jca.46446] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Synchronic colorectal peritoneal carcinomatosis (SCRPC) was recognized as a predictor of poor prognosis. The aim of this study was to investigate the role of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) on the survival outcome, which might help determine the treatment management of SCRPC patients. Methods: A total of 103 SCRPC patients following cytoreduction surgery (CRS) and systematic chemotherapy (CT) between 1997 and 2013 in the First Affiliated Hospital of Sun Yat-sen University were retrospectively analyzed. The comparison of the clinicopathological variables and systematic inflammatory biomarkers, including NLR, PLR and SII, was performed by Chi-test and Cox regression analysis. According to the results of multivariate analysis, a prognostic nomogram was generated, and its prediction ability was measured by the concordance index (C-index). The survival curves were generated using the Kaplan-Meier method and survival comparison between groups was conducted via the log-rank test. Results: Univariate analysis revealed that elevated NLR, PLR and SII were significantly correlate with worse survival outcome. Only low SII value was recognized as an independent favorable prognostic factor for overall survival (HR=1.772, 95% CI=1.015-3.095, P=0.044), except for NLR and PLR. The nomogram could perform well in the prediction of overall survival in SCRPC patients (c-index 0.782). Moreover, SII had strong prognostic discriminatory ability to predict survival outcome for the patients receiving completeness of cytoreduction score (CCR) 0/1 or CCR2/3, rather than NLR and PLR. Conclusions: SII was a better inflammation factor to predict the outcomes of SCRPC patients receiving CRS and systematic CT. Low SII value was the most favorable factor benefiting from different level of CRS and it was useful for determining the appropriate treatment strategy for SCRPC patients.
Collapse
Affiliation(s)
- Qian Yan
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhai Ertao
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhang Zhimei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dai Weigang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Peng Jianjun
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Jianhui
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Gastric Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Chuangqi
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
34
|
Lucchesi A. Platelets beyond their count, as a key element of the innate immune system in the fight against malaria. Br J Haematol 2020; 190:648-649. [PMID: 32406549 PMCID: PMC7540259 DOI: 10.1111/bjh.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Lucchesi
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
35
|
Platelet Indices as the Predictor of Antibiotics Response in Surgical Wound Infections Following Total Abdominal Hysterectomy. MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL 2020; 53:132-136. [PMID: 32377071 PMCID: PMC7199835 DOI: 10.14744/semb.2019.46693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/01/2019] [Indexed: 12/04/2022]
Abstract
Objectives: The mean platelet volume (MPV) and the MPV-to-platelet (PLT) count ratio have long been reported as inflammation markers. In this study, we aimed to investigate the predictive value of the MPV and the MPV-to-PLT ratio on surgical wound healing in patients who underwent abdominal hysterectomy and experienced infections at the surgical site following surgery, despite adequate antimicrobial treatment. Methods: A total of 100 patients who encountered surgical wound infection (SWI) after abdominal hysterectomy were enrolled retrospectively. Samples for complete blood count were drawn the day before the operation. All patients received preoperative and postoperative antibiotic prophylaxis and proper antimicrobial treatment following the SWI development. Patients’ condition resolved after standard care and antimicrobial agents were classified as the standard care group. Others, in whom an improvement despite the standard care was not observed, underwent delayed primary closure and were classified as the delayed primary closure group. Results: The PLT count was decreased (319.5±66 103/µL vs. 392±121 103/µL; p<0.05), MPV(9.2±1.3 fL vs. 8.2±1.5 fL; p<0.05), and the MPV-to-PLT ratio (0.030±0.006 vs. 0.024±0.014; p<0.05) was increased in the delayed primary closure group compared to the standard care group. A receiver operating characteristic curve analysis was performed to determine the predictive value of these parameters on the response to standard care measures providing 8.28fL as a cut-off value for MPV (AUC=0.647, 72% sensitivity and 52% specificity) and 0.025 as a cut-off value for the MPV-to-PLT ratio (AUC=0.750, 75% sensitivity and 67% specificity) for predicting nonresponsiveness. Conclusion: An increased preoperative MPV and the MPV-to-PLT ratio may predict poor wound healing following total abdominal hysterectomy.
Collapse
|
36
|
Luu S, Woolley IJ, Andrews RK. Platelet phenotype and function in the absence of splenic sequestration (Review). Platelets 2020; 32:47-52. [PMID: 32106750 DOI: 10.1080/09537104.2020.1732322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spleen, in addition to its role in immunity, plays key roles in erythrocyte maintenance and platelet sequestration. Loss of the spleen via splenectomy occurs in approximately 6.4 to 7.1 per 100 000 people per year globally, commonly as a life-saving emergency procedure in trauma and a therapeutic procedure in hematological and hematological malignant conditions. It is associated with increased risk of life-threatening infection and thromboembolism, presumably via loss of splenic function, but the underlying mechanisms behind post-splenectomy thromboembolism are unclear. The splenectomized individual has a two-fold risk of thromboembolism as compared to non-splenectomized individuals and the risk of thromboembolism is elevated both post-operatively and in the longer term. Although those splenectomized for hematological conditions or hematological malignant conditions are at highest risk for thromboembolism, an increase in thromboembolic outcomes is also observed amongst individuals splenectomized for trauma, suggesting underlying disease state is only a partial factor. Although the physiological role of the splenic platelet pool on platelets is unclear, platelet changes after splenectomy suggest that the spleen may play a role in maintaining platelet quality and function. In hypersplenic conditions, sequestration can increase to sequester up to 72% of the total platelet mass. Following splenectomy, a thrombocytosis is commonly seen secondary to the loss of the ability to sequester platelets. Abnormal platelet quality and function have been observed as a consequence of splenectomy. These platelet defects seen after splenectomy may likely contribute to the increase in post-splenectomy thromboembolism. Here we draw upon the literature to characterize the post-splenectomy platelet and its potential role in post-splenectomy thromboembolism.
Collapse
Affiliation(s)
- Sarah Luu
- Australian Centre for Blood Diseases, Monash University , Melbourne, Australia
| | - Ian J Woolley
- Centre for Inflammatory Diseases, Monash University , Melbourne, Australia.,Monash Infectious Diseases, Monash Health , Melbourne, Australia
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University , Melbourne, Australia
| |
Collapse
|
37
|
de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells 2019; 8:E1209. [PMID: 31591302 PMCID: PMC6829615 DOI: 10.3390/cells8101209] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding cell-nanoparticle interactions is critical to developing effective nanosized drug delivery systems. Nanoparticles have already advanced the treatment of several challenging conditions including cancer and human immunodeficiency virus (HIV), yet still hold the potential to improve drug delivery to elusive target sites. Even though most nanoparticles will encounter blood at a certain stage of their transport through the body, the interactions between nanoparticles and blood cells is still poorly understood and the importance of evaluating nanoparticle hemocompatibility is vastly understated. In contrast to most review articles that look at the interference of nanoparticles with the intricate coagulation cascade, this review will explore nanoparticle hemocompatibility from a cellular angle. The most important functions of the three cellular components of blood, namely erythrocytes, platelets and leukocytes, in hemostasis are highlighted. The potential deleterious effects that nanoparticles can have on these cells are discussed and insight is provided into some of the complex mechanisms involved in nanoparticle-blood cell interactions. Throughout the review, emphasis is placed on the importance of undertaking thorough, all-inclusive hemocompatibility studies on newly engineered nanoparticles to facilitate their translation into clinical application.
Collapse
Affiliation(s)
- Kara M de la Harpe
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
38
|
Marhoume FZ, Laaradia MA, Zaid Y, Laadraoui J, Oufquir S, Aboufatima R, Chait A, Bagri A. Anti-aggregant effect of butanolic extract of Rubia tinctorum L on platelets in vitro and ex vivo. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111971. [PMID: 31153862 DOI: 10.1016/j.jep.2019.111971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Fatima Zahra Marhoume
- Laboratory of Biochemistry & Neuroscience, Applied Biochemistry and Toxicology Team, Faculty of Sciences and Technology, Hassan First University, Settat, Morocco.
| | - Mehdi Ait Laaradia
- Laboratory of Neurobiology, Pharmacology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Younes Zaid
- Laboratory of Thrombosis and Hemostasis, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco
| | - Jawad Laadraoui
- Laboratory of Neurobiology, Pharmacology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Sara Oufquir
- Laboratory of Neurobiology, Pharmacology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Rachida Aboufatima
- Laboratory of Génie Biologique, Sultan Moulay Slimane University, Faculty of Sciences and Techniques, Béni Mellal, Morocco
| | - Abderrahmane Chait
- Laboratory of Neurobiology, Pharmacology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco.
| | - Abdallah Bagri
- Laboratory of Biochemistry & Neuroscience, Applied Biochemistry and Toxicology Team, Faculty of Sciences and Technology, Hassan First University, Settat, Morocco.
| |
Collapse
|
39
|
Dupré A, Jones RP, Diaz-Nieto R, Fenwick SW, Poston GJ, Malik HZ. Preoperative Leucocyte-Based Inflammatory Scores in Patients with Colorectal Liver Metastases: Can We Count on Them? World J Surg 2019; 43:1351-1359. [PMID: 30673814 DOI: 10.1007/s00268-019-04914-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and lymphocyte-to-monocyte ratio (LMR) have been identified as potential prognostic factors for overall survival (OS) in primary colorectal cancer, and there is a growing interest in their use in colorectal liver metastases (CLMs). However, optimal cut-off values for these ratios have not been defined by making comparison between series difficult. This study aimed to confirm the prognostic value of inflammatory scores in patients undergoing resection for CLM. METHODS We retrospectively analysed data from 376 consecutive patients who underwent liver surgery for CLM between June 2010 and August 2015. We assessed the reproducibility of previously published ratios and determined new cut-off values using the Cut-off Finder web-based tool. Relations between cut-off values and OS were analysed with Kaplan-Meier log-rank survival analysis and multivariate Cox models. RESULTS Three hundred and forty-three patients had full preoperative blood tests for calculation of NLR, PLR and LMR. The number of cut-off values which showed a significant discrimination for OS was 49/249 (19.7%) for NLR, 28/316 (8.9%) for PLR and 22/214 (10.3%) for LMR, all with a scattered nonlinear distribution. CONCLUSIONS This study showed that inflammatory scores expressed as ratios do not seem to be consistently reliable prognostic markers in patients with resectable CLM.
Collapse
Affiliation(s)
- Aurélien Dupré
- Liverpool Hepatobiliary Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
- Department of Surgical Oncology, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France.
| | - Robert P Jones
- Liverpool Hepatobiliary Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
- Institute of Translational Medicine, School of Cancer Studies, University of Liverpool, Liverpool, L69 3GA, UK
| | - Rafael Diaz-Nieto
- Liverpool Hepatobiliary Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - Stephen W Fenwick
- Liverpool Hepatobiliary Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - Graeme J Poston
- Liverpool Hepatobiliary Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| | - Hassan Z Malik
- Liverpool Hepatobiliary Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK
| |
Collapse
|
40
|
Rehman AH, Jones RP, Poston G. Prognostic and predictive markers in liver limited stage IV colorectal cancer. Eur J Surg Oncol 2019; 45:2251-2256. [PMID: 31279594 DOI: 10.1016/j.ejso.2019.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the third most commonly diagnosed cancer among both men and women. Personalised treatment options remain complex, although there is broad agreement over which patients with colorectal liver metastases (CRLM) should and should not be offered resection. Decisions on an optimal management strategy involves careful assessment of both technical and oncological factors. In this review we aim to summarise current prognostic biomarkers for metastatic colorectal cancers, specifically patients considered for resection. A number of clinico-pathological factors have been identified as prognostically important with good internal validity, but limited external validity. Furthermore, these prognostic scoring systems do not take factor in modern chemotherapeutic agents and the disease modification these agents produce. Histopathological response to chemotherapy is of significant prognostic importance. Molecular markers can help predict the efficacy of a biological agent. An important prognostic factor of liver metastasis is the recognition that location of the primary colorectal cancer impacts on metastatic phenotype and represents difference in genotype, i.e. proximal tumours are more aggressive than distal tumours with an increased likelihood of disease progression. Several mutational molecular markers identified include microsatellite instability, BRAF, and KRAS/NRAS and combination mutations, which confer poorer outcomes. Accurate prognostication in patients with liver limited colorectal metastases remains crucial, as this allows tailoring treatment options to each disease and improving outcomes. Access to tissue before treatment remains a limitation although advances in ability to assess tumour biology by non-invasive methods are promising.
Collapse
Affiliation(s)
- Adeeb H Rehman
- Liverpool Hepatobiliary Unit, University Hospital Aintree NHS Foundation Trust, England, UK.
| | - Robert P Jones
- Liverpool Hepatobiliary Unit, University Hospital Aintree NHS Foundation Trust, England, UK
| | - Graeme Poston
- Liverpool Hepatobiliary Unit, University Hospital Aintree NHS Foundation Trust, England, UK
| |
Collapse
|
41
|
Luo H, Wei L, Lu L, Kang L, Cao Y, Yang X, Bai X, Fan W, Zhao BQ. Transfusion of Resting Platelets Reduces Brain Hemorrhage After Intracerebral Hemorrhage and tPA-Induced Hemorrhage After Cerebral Ischemia. Front Neurosci 2019; 13:338. [PMID: 31024246 PMCID: PMC6460946 DOI: 10.3389/fnins.2019.00338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/22/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Exacerbated blood-brain barrier (BBB) damage is related with tissue plasminogen activator (tPA)-induced brain hemorrhage after stroke. Platelets have long been recognized as the cellular orchestrators of primary haemostasis. Recent studies have demonstrated further that platelets are required for supporting intact mature blood vessels and play a crucial role in maintaining vascular integrity during inflammation. Therefore, we sought to investigate whether platelets could reduce tPA-induced deterioration of cerebrovascular integrity and lead to less hemorrhagic transformation. METHODS Mice were subjected to models of collagenase-induced intracerebral hemorrhage (ICH) and transient middle cerebral artery (MCA) occlusion. After 2 h of MCA occlusion, tPA (10 mg/kg) was administered as an intravenous bolus injection of 1 mg/kg followed by a 9 mg/kg infusion for 30 min. Immediately after tPA treatment, mice were transfused with platelets. Hemorrhagic volume, infarct size, neurological deficit, tight junction and basal membrane damages, endothelial cell apoptosis, and extravascular accumulation of circulating dextran and IgG, and Evans blue were quantified at 24 h. RESULTS Platelet transfusion resulted in a significant decrease in hematoma volume after ICH. In mice after ischemia, tPA administration increased brain hemorrhage transformation and this was reversed by resting but not activated platelets. Consistent with this, we observed that tPA-induced brain hemorrhage was dramatically exacerbated in thrombocytopenic mice. Transfusion of resting platelets ameliorated tPA-induced loss of cerebrovascular integrity and reduced extravascular accumulation of circulating serum proteins and Evans blue, associated with improved neurological functions after ischemia. No changes were found for infarct volume. Inhibition of platelet receptor glycoprotein VI (GPVI) blunted the ability of platelets to attenuate tPA-induced BBB disruption and hemorrhage after ischemia. CONCLUSION Our findings demonstrate the importance of platelets in safeguarding BBB integrity and suggest that transfusion of resting platelets may be useful to improve the safety of tPA thrombolysis in ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenying Fan
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Nurden AT. Acquired Glanzmann thrombasthenia: From antibodies to anti-platelet drugs. Blood Rev 2019; 36:10-22. [PMID: 31010659 DOI: 10.1016/j.blre.2019.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
In contrast to the inherited platelet disorder given by mutations in the ITGA2B and ITGB3 genes, mucocutaneous bleeding from a spontaneous inhibition of normally expressed αIIbβ3 characterizes acquired Glanzmann thrombasthenia (GT). Classically, it is associated with autoantibodies or paraproteins that block platelet aggregation without causing a fall in platelet count. However, inhibitory antibodies to αIIbβ3 are widely associated with primary immune thrombocytopenia (ITP), occur in secondary ITP associated with leukemia and related disorders, solid cancers and myeloma, other autoimmune diseases, following organ transplantation while cytoplasmic dysregulation of αIIbβ3 function features in myeloproliferative and myelodysplastic syndromes. Antibodies to αIIbβ3 occur during viral and bacterial infections, while drug-dependent antibodies reacting with αIIbβ3 are a special case. Direct induction of acquired GT is a feature of therapies that block platelets in coronary artery disease. This review looks at these conditions, emphasizing molecular mechanisms, therapy, patient management and future directions for research.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
43
|
Abstract
Liquid biopsies have been considered the holy grail in achieving effective cancer management, with blood tests offering a minimally invasive, safe, and sensitive alternative or complementary approach for tissue biopsies. Currently, blood-based liquid biopsy measurements focus on the evaluation of biomarker types, including circulating tumor DNA, circulating tumor cells, extracellular vesicles (exosomes and oncosomes), and tumor-educated platelets (TEPs). Despite the potential of individual techniques, each has its own advantages and disadvantages. Here, we provide further insight into TEPs.
Collapse
|
44
|
Pluthero FG, Kahr WHA. The Birth and Death of Platelets in Health and Disease. Physiology (Bethesda) 2019; 33:225-234. [PMID: 29638183 DOI: 10.1152/physiol.00005.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Blood platelets are involved in a wide range of physiological responses and pathological processes. Recent studies have considerably advanced our understanding of the mechanisms of platelet production and clearance, revealing new connections between the birth and death of these tiny, abundant cells. Key insights have also been gained into how physiological challenges such as inflammation, infection, and chemotherapy can affect megakaryocytes, the cells that produce platelets.
Collapse
Affiliation(s)
- Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada.,Department of Biochemistry, University of Toronto , Toronto, Ontario , Canada.,Department of Paediatrics, Division of Haematology/Oncology, University of Toronto and The Hospital for Sick Children , Toronto, Ontario , Canada
| |
Collapse
|
45
|
Zhang N, Newman PJ. Packaging functionally important plasma proteins into the α-granules of human-induced pluripotent stem cell-derived megakaryocytes. J Tissue Eng Regen Med 2019; 13:244-252. [PMID: 30556311 DOI: 10.1002/term.2785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/06/2018] [Indexed: 11/11/2022]
Abstract
The contents of platelet α-granules arrive via a number of pathways; some are synthesized by megakaryocytes (MKs), for example, von Willebrand factor (VWF), whereas others are endocytosed from plasma, for example, fibrinogen (Fgn) and factor V (FV). Currently, almost all in vitro-induced pluripotent stem cell (iPSC)-derived MKs are generated under serum-free conditions, and their α-granule cargoes lack components that would normally be taken up from plasma during the course of megakaryopoiesis. How this might affect the ability of in vitro-derived platelets to contribute fully to haemostasis is not known. The purpose of this investigation was to examine whether "feeding" human plasma to iPSC-derived MKs might result in loading their α-granules with physiologically important proteins. iPSCs were differentiated to CD41+ /CD42b+ MKs using a serum-free protocol. The resulting MKs were polyploid, expressed a number of platelet-specific surface receptors, and spread on Fgn or collagen-coated surfaces. Reverse transcription-polymerase chain reaction analysis detected mRNA transcripts for FV and VWF but not Fgn chains. Fluorescence immunocytochemistry and confocal microscopy confirmed constitutive VWF distribution in granule-like structures in MKs cultured under plasma-free conditions, and the granules became positive for Fgn upon incubation with human plasma. iPSC-derived MKs showed a low level of constitutive FV expression that increased dramatically upon incubation with human plasma. Taken together, these data suggest that human iPSC-derived MKs are capable of endocytosing and storing plasma components in their α-granules. Incorporating this methodology into current protocols for producing in vitro-derived MKs should provide novel insights into MK biology and lead to the generation of large numbers of MKs and platelets with improved functionality.
Collapse
Affiliation(s)
- Nanyan Zhang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin
| | - Peter J Newman
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
46
|
Paes AMDA, Gaspar RS, Fuentes E, Wehinger S, Palomo I, Trostchansky A. Lipid Metabolism and Signaling in Platelet Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:97-115. [PMID: 31140174 DOI: 10.1007/978-3-030-11488-6_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern society has changed its diet composition, transitioning to a higher intake of saturated fat with a 50% increase of cardiovascular risk (CVD). Within the context of increased CVD, there is an induction of a prothrombotic phenotype mainly due to increased platelet reactivity as well as decreased platelet response to inhibitors. Platelets maintain haemostasis through both blood components and endothelial cells that secrete inhibitory or stimulatory molecules to regulate thrombus formation. There exist a correlation between platelets' polyunsaturated fatty acid (PUFA) and the increase in platelet reactivity. The aim of this chapter is to review the metabolism of the main PUFAs involved in platelet function associated with the role that their enzyme-derived oxidized metabolites exert in platelet function and fate. Finally, how lipid metabolism in the organism affect platelet aggregation and activation and the pharmacological modulation of these processes will also be discussed.
Collapse
Affiliation(s)
- Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Renato Simões Gaspar
- Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Sergio Wehinger
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
47
|
Mechanisms of Cardiovascular Disease in the Setting of HIV Infection. Can J Cardiol 2018; 35:238-248. [PMID: 30825947 DOI: 10.1016/j.cjca.2018.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Although the initial reports of increased cardiovascular (CV) disease in the setting of advanced AIDS were reported approximately 30 years ago, advances in antiretroviral therapy and immediate initiation of therapy on diagnosis have transformed what was once a deadly infectious disease into a chronic health condition. Accordingly, the types of CV diseases occurring in HIV have shifted from pericardial effusions and dilated cardiomyopathy to atherosclerosis and heart failure. The underlying pathophysiology of HIV-associated CV disease remains poorly understood, partly because of the rapidly evolving nature of HIV treatment and because clinical endpoints take many years to develop. The gut plays an important role in the early pathogenesis of HIV infection as HIV preferentially infects CD4+ T cells, 80% of which are located in gut mucosa. The loss of these T cells damages gut mucosa resulting in increased gut permeability and microbial translocation, which incites chronic inflammation and immune activation. Antiretroviral therapy does not cure HIV infection and immune abnormalities persist. These abnormalities correlate with mortality and CV events. The effects of antiretroviral therapy on CV risk are complex; treatment reduces inflammation and other markers of CV risk but induces lipid abnormalities, most commonly hypertriglyceridemia. On a molecular level, monocytes/macrophages, platelet reactivity, and immune cell activation, which play a role in the general population, may be heightened in the setting of HIV and contribute to HIV-associated atherosclerosis. Chronic inflammation represents an inviting therapeutic target in HIV, as it does in uninfected persons with atherosclerosis.
Collapse
|
48
|
Mechanisms of receptor shedding in platelets. Blood 2018; 132:2535-2545. [DOI: 10.1182/blood-2018-03-742668] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
The ability to upregulate and downregulate surface-exposed proteins and receptors is a powerful process that allows a cell to instantly respond to its microenvironment. In particular, mobile cells in the bloodstream must rapidly react to conditions where infection or inflammation are detected, and become proadhesive, phagocytic, and/or procoagulant. Platelets are one such blood cell that must rapidly acquire and manage proadhesive and procoagulant properties in order to execute their primary function in hemostasis. The regulation of platelet membrane properties is achieved via several mechanisms, one of which involves the controlled metalloproteolytic release of adhesion receptors and other proteins from the platelet surface. Proteolysis effectively lowers receptor density and reduces the reactivity of platelets, and is a mechanism to control robust platelet activation. Recent research has also established clear links between levels of platelet receptors and platelet lifespan. In this review, we will discuss the current knowledge of metalloproteolytic receptor regulation in the vasculature with emphasis on the platelet receptor system to highlight how receptor density can influence both platelet function and platelet survival.
Collapse
|
49
|
Montagnana M, Danese E, Angelino D, Mena P, Rosi A, Benati M, Gelati M, Salvagno GL, Favaloro EJ, Del Rio D, Lippi G. Dark chocolate modulates platelet function with a mechanism mediated by flavan-3-ol metabolites. Medicine (Baltimore) 2018; 97:e13432. [PMID: 30544424 PMCID: PMC6310571 DOI: 10.1097/md.0000000000013432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cocoa is a rich source bioactive compounds, i.e., flavan-3-ols, and its consumption has been associated with several beneficial effects, such as the positive modulation of the hemostasis targeted by the platelet function. However, these phenolic compounds have a very low bioavailability and extensively undergo phase I and II metabolism, with the appearing into the bloodstream of (epi)catechin conjugates and phenyl-γ-valerolactones and their conjugates, at different times.The aims of this study were to explore the effect of dark chocolate on platelet function and to investigate the relationship between this interplay and flavan-3-ol derived metabolites.Eighteen healthy male volunteers ingested 50 g of 90% cocoa chocolate within 5 minutes. Blood samples were collected immediately before chocolate ingestion (T0) and 4 hours afterwards (T1). Platelet function analyzer (PFA)-100 closure time was assessed using collagen/adenosine-5'-diphosphate (COL/ADP) and collagen/epinephrine (COL/EPI) cartridges. Plasma flavan-3-ol metabolites were identified and quantified by means of liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-ESI-MS/MS).Results evidenced a significant increase of COL/ADP-induced PFA-100 closure time, but not COL/EPI, 4 hours after ingestion of dark chocolate. Total plasma structurally-related (epi)catechin metabolite (SREM) concentration significantly increased at T1, together with 4 out of the 6 detected metabolites. Total phenyl-γ-valerolactone concentrations remained unchanged. Spearman correlations evidenced a strong correlation between COL/ADP closure time and SREMs, mainly led by (epi)catechin-sulfate isomers.These data confirm that the potential beneficial effect of dark chocolate on primary hemostasis may be mediated by flavan-3-ol circulating metabolites.
Collapse
Affiliation(s)
- Martina Montagnana
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona
| | - Elisa Danese
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona
| | - Donato Angelino
- Laboratory of Phytochemicals in Physiology, Department of Food & Drug
| | - Pedro Mena
- Laboratory of Phytochemicals in Physiology, Department of Food & Drug
| | - Alice Rosi
- Human Nutrition Unit, University of Parma, Parma, Italy
| | - Marco Benati
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona
| | - Matteo Gelati
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona
| | - Gian Luca Salvagno
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona
| | - Emmanuel J. Favaloro
- Haematology,Sydney Centres for Haemostasis and Thrombosis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Daniele Del Rio
- Laboratory of Phytochemicals in Physiology, Department of Food & Drug
- Laboratory of Phytochemicals in Physiology, Department of Veterinary Science, University of Parma, Parma, Italy
| | - Giuseppe Lippi
- Department of Neurological, Biomedical and Movement Sciences, Clinical Biochemistry Section, University of Verona, Verona
| |
Collapse
|
50
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|