1
|
Brum ES, Landini L, Souza Monteiro de Araújo D, Marini M, Geppetti P, Nassini R, De Logu F, Oliveira SM. Characterisation of periorbital mechanical allodynia in the reserpine-induced fibromyalgia model in mice: The role of the Schwann cell TRPA1/NOX1 signalling pathway. Free Radic Biol Med 2025; 229:289-299. [PMID: 39842732 DOI: 10.1016/j.freeradbiomed.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear. Periorbital mechanical allodynia (PMA), which recapitulates one of the major symptoms of migraine, and the feed-forward mechanism driven by reactive oxygen species and TRPA1, were investigated in a reserpine-induced FM model in C57BL/6J mice, employing pharmacological interventions and genetic approaches. Reserpine-treated mice developed PMA (which was alleviated by antimigraine drugs) and increased endoneurial macrophages and oxidative stress markers in the trigeminal nerve tissues (neuroinflammation). These responses were absent upon macrophage depletion and by pharmacological inhibition or global genetic deletion of the TRPA1 channel. Furthermore, selective silencing of TRPA1 in Schwann cells attenuated both reserpine-induced PMA and neuroinflammation, while selective silencing of TRPA1 in sensory neurons reduced PMA but not neuroinflammation. In reserpine-treated mice, Schwann cell TRPA1 promoted NADPH oxidase 1-mediated reactive oxygen species generation and macrophage density increase in the mouse trigeminal nerve, which sustains PMA. Targeting TRPA1 channels in Schwann cells could offer a novel therapeutic strategy for FM-related headaches.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, 90035-003, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | | | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
2
|
Kim YJ, Choi SJ, Hong SI, Park JC, Lee Y, Ma SX, Hur KH, Lee Y, Kim KM, Kim HK, Kim HY, Lee SY, Choi SY, Jang CG. The ion channel TRPA1 is a modulator of the cocaine reward circuit in the nucleus accumbens. Mol Psychiatry 2024; 29:3607-3622. [PMID: 38822069 PMCID: PMC11541219 DOI: 10.1038/s41380-024-02623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Drug addiction therapies commonly fail because continued drug use promotes the release of excessive and pleasurable dopamine levels. Because the connection between pleasure and drug use becomes hard-wired in the nucleus accumbens (NAc), which interfaces motivation, effective therapies need to modulate this mesolimbic reward system. Here, we report that mice with knockdown of the cation channel TRPA1 (transient receptor potential ankyrin 1) were resistant to the drug-seeking behavior and reward effects of cocaine compared to their wildtype litter mates. In our study, we demonstrate that TRPA1 inhibition in the NAc reduces cocaine activity and dopamine release, and conversely, that TRPA1 is critical for cocaine-induced synaptic strength in dopamine receptor 1-expressing medium spiny neurons. Taken together, our data support that cocaine-induced reward-related behavior and synaptic release of dopamine in the NAc are controlled by TRPA1 and suggest that TRPA1 has therapeutic potential as a target for drug misuse therapies.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Su Jeong Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Cheol Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea.
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Yu H, Gao D, Yang Y, Liu L, Zhao X, Na R. The Interaction Mechanism Between C14-Polyacetylene Compounds and the Rat TRPA1 Receptor: An In Silico Study. Int J Mol Sci 2024; 25:11290. [PMID: 39457072 PMCID: PMC11508972 DOI: 10.3390/ijms252011290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Polyacetylene (PA) compounds, as natural products, exhibit remarkable properties and distinctive chemical activities. Three structurally similar C14-PA compounds-Echinophorin D, Echinophorin B, and Echinophorin A-extracted from plants demonstrate varying biological activities on the Transient Receptor Potential Channel A1 (TRPA1) protein, which belongs to the TRP (Transient Receptor Potential) family. In the current study, we investigated the binding modes of these three PA compounds with TRPA1 using molecular dynamics (MD), molecular docking, binding free energy calculations, and quantum mechanics/molecular mechanics (QM/MM) methods. Initially, a putative binding site (site-II) in TRPA1 was identified for these compounds; Echinophorin B was found to stabilize the upward A-loop of TRPA1, which is critical for its activation. Furthermore, the binding affinity calculations of PA compounds through molecular fragment decomposition indicate that the arrangement of two triple bonds and one double bond in C14-PA compounds is vital for regulating TRPA1 bioactivity. Additionally, the lipophilic and electronic properties of the three molecules were analyzed in relation to binding affinity, establishing a correlation between TRPA1 activity and these molecular properties.
Collapse
Affiliation(s)
- Hui Yu
- College of Science, Beihua University, Jilin 132013, China;
| | - Denghui Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China;
| | - Ying Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.Y.); (R.N.)
| | - Lu Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130000, China;
| | - Xi Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130000, China;
| | - Risong Na
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.Y.); (R.N.)
| |
Collapse
|
4
|
Huang Z, Yao J, Nie L, Nie X, Xiong X, Kõks S, Quinn JP, Kanhere A, Wang M. Gender-different effect of Src family kinases antagonism on photophobia and trigeminal ganglion activity. J Headache Pain 2024; 25:175. [PMID: 39390364 PMCID: PMC11468534 DOI: 10.1186/s10194-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Src family kinases (SFKs) contribute to migraine pathogenesis, yet its role in regulating photophobia behaviour, one of the most common forms of migraine, remains unknown. Here, we addressed whether SFKs antagonism alleviates photophobia behavior and explored the underlying mechanism involving hypothalamus and trigeminal ganglion activity, as measured by the alteration of neuropeptide levels and transcriptome respectively. METHODS A rapid-onset and injury-free mouse model of photophobia was developed following intranasal injection of the TRPA1 activator, umbellulone. The role of SFKs antagonism on light aversion was assessed by the total time the mouse stays in the light and transition times between the dark and light compartments. To gain insight to the preventive mechanism of SFKs antagonism, hypothalamic neuropeptides levels were assessed using enzyme linked immunofluorescent assay and trigeminal ganglion activity were assessed using RNA-sequencing and qPCR analysis. RESULTS SFKs antagonism by a clinically relevant SFKs inhibitor saracatinib reduced the total time in light and transition times in male mice, but not in females, suggesting SFKs play a crucial role in photophobia progressing and exhibit a male-only effect. SFKs antagonism had no effect on hypothalamic calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide levels of all mice investigated, suggesting the gender-different effect of saracatinib on light aversion appears to be independent of these hypothalamic neuropeptide levels. In trigeminal ganglion of male mice, photophobia is associated with profound alteration of differentially expressed genes, part of which were reversed by SFKs antagonism. Subsequent qPCR analysis showed SFKs antagonism displayed gender-different modulation of expression in some candidate genes, particularly noteworthy those encoding ion channels (trpm3, Scn8a), ATPase signaling (crebbp, Atp5α1) and kinase receptors (Zmynd8, Akt1). CONCLUSIONS In conclusion, our data revealed that SFKs antagonism reduced photophobia processing in male mice and exhibited gender-different modulation of trigeminal ganglion activity, primarily manifesting as alterations in the transcriptome profile. These findings underscore the potential of SFKs antagonism for allieving photophobia in males, highlighting its value in the emerging field of precision medicine.
Collapse
Affiliation(s)
- Zhuoan Huang
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Junyu Yao
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lingdi Nie
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Xinchen Nie
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuechunhui Xiong
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Perron Institute for Neurological and Translational Science, Murdoch University, Perth, WA, Australia
| | - John P Quinn
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Minyan Wang
- Department of Biological Sciences, School of Science, Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Al-Hassany L, Acarsoy C, Ikram MK, Bos D, MaassenVanDenBrink A. Sex-Specific Association of Cardiovascular Risk Factors With Migraine: The Population-Based Rotterdam Study. Neurology 2024; 103:e209700. [PMID: 39083723 PMCID: PMC11319068 DOI: 10.1212/wnl.0000000000209700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although several lines of evidence suggest a link between migraine and cardiovascular events, less is known about the association between cardiovascular risk factors (CVRFs) and migraine. This knowledge is clinically important to provide directions on mitigating the cardiovascular risk in patients with migraine. We hypothesized that CVRFs are associated with a higher migraine prevalence. Therefore, our primary objective was to investigate sex-specific associations between CVRFs and lifetime prevalence of migraine. METHODS We performed cross-sectional analyses within an ongoing population-based cohort study (Rotterdam Study), including middle-aged and elderly individuals. By means of (structured) interviews, physical examinations, and blood sampling, we obtained information on the lifetime prevalence of migraine and the following traditional CVRFs: current smoking, obesity, hypercholesterolemia, hypertension, and diabetes mellitus. Similarly, we obtained information on quantitative component data on these CVRFs, including pack-years of smoking, lipid levels, systolic and diastolic blood pressure (BP), body mass index, and fasting glucose levels. Patients with migraine were age-matched to individuals without migraine, and we performed conditional logistic regression analyses to investigate the sex-stratified association of CVRFs with migraine. RESULTS In total, 7,266 community-dwelling middle-aged and elderly persons were included (median age 66.6 [IQR 56.4-74.8] years, 57.5% females). The lifetime prevalence of migraine was 14.9%. In females, current smoking (odds ratio (OR) 0.72, 95% CI 0.58-0.90), more pack-years (OR per SD increase 0.91, 95% CI 0.84-1.00), diabetes mellitus (OR 0.74, 95% CI 0.56-0.98), and higher fasting glucose levels (OR per SD increase in glucose 0.90, 95% CI 0.82 - 0.98) were all related to a lower migraine prevalence while a higher diastolic BP related to a higher migraine prevalence (OR per SD increase 1.16, 95% CI 1.04-1.29). In males, no significant associations between CVRFs and migraine were observed. DISCUSSION Traditional CVRFs were either unrelated or inversely related to migraine in middle-aged and elderly individuals, but only in females. In males, we did not find any association between CVRFs and migraine. Because only an increased diastolic BP was related to a higher migraine prevalence in females, our study contributes to the hypothesis that migraine is not directly associated with traditional CVRFs. Future studies are warranted to extrapolate these findings to younger populations.
Collapse
Affiliation(s)
- Linda Al-Hassany
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Cevdet Acarsoy
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Daniel Bos
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Antoinette MaassenVanDenBrink
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (L.A-H., A.M.), and Departments of Epidemiology (C.A., M.K.I., D.B.), Neurology (M.K.I.), Radiology and Nuclear Medicine (D.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Fila M, Przyslo L, Derwich M, Sobczuk P, Pawlowska E, Blasiak J. The TRPA1 Ion Channel Mediates Oxidative Stress-Related Migraine Pathogenesis. Molecules 2024; 29:3385. [PMID: 39064963 PMCID: PMC11280075 DOI: 10.3390/molecules29143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Although the introduction of drugs targeting calcitonin gene-related peptide (CGRP) revolutionized migraine treatment, still a substantial proportion of migraine patients do not respond satisfactorily to such a treatment, and new therapeutic targets are needed. Therefore, molecular studies on migraine pathogenesis are justified. Oxidative stress is implicated in migraine pathogenesis, as many migraine triggers are related to the production of reactive oxygen and nitrogen species (RONS). Migraine has been proposed as a superior mechanism of the brain to face oxidative stress resulting from energetic imbalance. However, the precise mechanism behind the link between migraine and oxidative stress is not known. Nociceptive primary afferent nerve fiber endings express ion channel receptors that change harmful stimuli into electric pain signals. Transient receptor potential cation channel subfamily A member 1 (TRPA1) is an ion channel that can be activated by oxidative stress products and stimulate the release of CGRP from nerve endings. It is a transmembrane protein with ankyrin repeats and conserved cysteines in its N-terminus embedded in the cytosol. TRPA1 may be a central element of the signaling pathway from oxidative stress and NO production to CGRP release, which may play a critical role in headache induction. In this narrative review, we present information on the role of oxidative stress in migraine pathogenesis and provide arguments that TRPA1 may be "a missing link" between oxidative stress and migraine and therefore a druggable target in this disease.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (M.F.); (L.P.)
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (M.F.); (L.P.)
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, 92-209 Lodz, Poland;
- Department of Orthopaedics and Traumatology, Polish Mothers’ Memorial Hospital–Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| |
Collapse
|
7
|
Gao N, Li M, Wang W, Liu Z, Guo Y. Visual analysis of global research on the transient receptor potential ankyrin 1 channel: A literature review from 2002 to 2022. Heliyon 2024; 10:e31001. [PMID: 38770319 PMCID: PMC11103542 DOI: 10.1016/j.heliyon.2024.e31001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aims The transient receptor potential ankyrin 1 (TRPA1) channel has become a focus in pain research. However, there are no bibliometric studies that systematically analyze the existing research in this area. This study aimed to provide a systematic review of the existing literature on TRPA1 using a bibliometric analysis. Methods Published literature in the field of TRPA1 was collected from the Web of Science Core Collection database. Quantitative and qualitative analyses of publications, countries, institutions, authors, journals, and other entries were conducted using Excel, VOSview, and Citespace software to provide insight into global research hotspots and trends in the TRPA1 field. Results This study included 1189 scientific products published in 398 journals from 52 countries. The United States of America (n = 367) had the most publications, ahead of Japan (n = 212) and China (n = 199). The University of Florence (n = 55) was the most productive institution and Pierangelo Geppetti (n = 46) was the most productive author. PLoS One (n = 40) published the most articles on TRPA1. Pain, cold, inflammation, covalent modification, hyperalgesia, and oxidative stress were the most common keywords used in the studies. Conclusion This study provides the first bibliometric analysis of TRPA1 publications. The physiological functions of TRPA1, TRPA1, and neuropathic pain, TRPA1 as a therapeutic target, and agonists of TRPA1 are trending in TRPA1 research. Neuropathic pain, apoptosis, and sensitization could be focus areas of future research. This study provides important insight in the field of TRPA1 research.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
8
|
Li H, Wang C, Gong Z, Nie L, Xu J, Wang M. Transient Receptor Potential Ankyrin 1-dependent Activation of Extracellular Signal-regulated Kinase 2 in the Cerebral Cortices Contributes to Cortical Spreading Depolarization. Neuroscience 2024; 543:90-100. [PMID: 38417540 DOI: 10.1016/j.neuroscience.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Extracellular signal-regulated kinase (ERK) are serine/threonine-selective proteins and ERK1/2 can be phosphorylated in peripheral and central brain regions after cortical spreading depolarization (CSD) and calcitonin gene-related peptide; However, it remains unclear about whether and how ERK activity modulates CSD that correlates to migraine aura. Here, we determined the role of ERK in regulating CSD and explored the underlying mechanism involving transient receptor potential ankyrin 1 (TRPA1), a stress-sensing cation channel. CSD was recorded using intrinsic optical imaging in mouse brain slices, and electrophysiology in rats. Phosphorylated ERK (pERK1/2) and interleukin-1β (IL-1β) protein levels were detected using Western blot or enzyme-linked immunosorbent assay, respectively. IL-1β mRNA level was detected using qPCR. The results showed that an ERK inhibitor, SCH77298, markedly prolonged CSD latency and reduced propagation rate in mouse brain slices. Corresponding to this, CSD induction increased levels of cytosolic pERK1/2 in ipsilateral cerebral cortices of rats, the elevation of which correlated to the level of IL-1β mRNA. Mechanistic analysis showed that pre-treatment of an anti-TRPA1 antibody reduced the cytosolic pERK2 level but not pERK1 following CSD in cerebral cortices of rats and this level of pERK2 correlated with that of cerebral cortical IL-1β protein. Furthermore, an ERK activator, AES16-2M, but not its scrambled control, reversed the prolonged CSD latency by a TRPA1 inhibitor, HC-030031, in mouse brain slices. These data revealed a crucial role of ERK activity in regulating CSD, and elevation of pERK and IL-1β production induced by CSD is predominantly TRPA1 channel-dependent, thereby contributing to migraine pathogenesis.
Collapse
Affiliation(s)
- Haoyang Li
- Department of Biological Sciences, Centre for Neuroscience, School of Science, Xi'an Jiaotong-Liverpool University, China
| | - Chenyi Wang
- Department of Biological Sciences, Centre for Neuroscience, School of Science, Xi'an Jiaotong-Liverpool University, China
| | - Ziyang Gong
- Department of Biological Sciences, Centre for Neuroscience, School of Science, Xi'an Jiaotong-Liverpool University, China
| | - Lingdi Nie
- Department of Biological Sciences, Centre for Neuroscience, School of Science, Xi'an Jiaotong-Liverpool University, China
| | - Jiaxin Xu
- Department of Biological Sciences, Centre for Neuroscience, School of Science, Xi'an Jiaotong-Liverpool University, China
| | - Minyan Wang
- Department of Biological Sciences, Centre for Neuroscience, School of Science, Xi'an Jiaotong-Liverpool University, China.
| |
Collapse
|
9
|
Yeh PK, An YC, Hung KS, Yang FC. Influences of Genetic and Environmental Factors on Chronic Migraine: A Narrative Review. Curr Pain Headache Rep 2024; 28:169-180. [PMID: 38363449 DOI: 10.1007/s11916-024-01228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW In this narrative review, we aim to summarize recent insights into the complex interplay between environmental and genetic factors affecting the etiology, development, and progression of chronic migraine (CM). RECENT FINDINGS Environmental factors such as stress, sleep dysfunction, fasting, hormonal changes, weather patterns, dietary compounds, and sensory stimuli are critical triggers that can contribute to the evolution of episodic migraine into CM. These triggers are particularly influential in genetically predisposed individuals. Concurrently, genome-wide association studies (GWAS) have revealed over 100 genetic loci linked to migraine, emphasizing a significant genetic basis for migraine susceptibility. In CM, environmental and genetic factors are of equal importance and contribute to the pathophysiology of the condition. Understanding the bidirectional interactions between these elements is crucial for advancing therapeutic approaches and preventive strategies. This balanced perspective encourages continued research into the complex gene-environment nexus to improve our understanding and management of CM.
Collapse
Affiliation(s)
- Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Beitou Branch, Taipei, Taiwan
| | - Yu-Chin An
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Section 2, Cheng-Kung Road, Neihu 114, No. 325, Taipei, Taiwan.
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Liu X, Liu R, Liu W, Hua R, Xu H. Association between oxidative balance score and self-reported severe headache or migraine based on NHANES 1999 to 2004 data: A cross-sectional study. Heliyon 2024; 10:e27426. [PMID: 38500974 PMCID: PMC10945180 DOI: 10.1016/j.heliyon.2024.e27426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose The pathophysiological mechanisms underlying migraine remain elusive, with oxidative stress hypothesized as a potential etiological factor. The Oxidative Balance Score (OBS) is a comprehensive tool for assessing the impact of diet and lifestyle on oxidative stress, thereby gauging an individual's overall antioxidant capacity. In this cross-sectional study, we explored the correlation between OBS and migraine prevalence among a cohort of US adults. Methods We analyzed data from 6195 participants aged 20 years and above, drawn from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2004. We employed multiple logistic regression, coupled with sensitivity analyses, to investigate the relationship between OBS and migraine. Subsequent subgroup analyses and interaction tests were performed to assess the consistency of this association across the population. Results Multiple logistic regression revealed an inverse relationship between OBS and the likelihood of experiencing migraines. Specifically, individuals in the highest OBS quartile exhibited a significantly reduced migraine risk compared to those in the lowest quartile (OR = 0.98, 95% Confidence Interval (CI): 0.97-0.99, P = 0.0001). Furthermore, restricted cubic spline curves indicated a non-linear association between dietary OBS and migraine incidence (non-linear P = 0.0258). Discussion Our findings suggest that adherence to an antioxidant-rich diet may be an effective strategy for mitigating migraine, potentially by influencing oxidative balance.
Collapse
Affiliation(s)
- Xinxin Liu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ran Liu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Liu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Hua
- The Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoyou Xu
- The Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J, Xie R. Research Progress on TRPA1 in Diseases. J Membr Biol 2023; 256:301-316. [PMID: 37039840 PMCID: PMC10667463 DOI: 10.1007/s00232-023-00277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hongfei Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Junyu Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
12
|
Rasmussen RH, Christensen SL, Calloe K, Nielsen BS, Rehfeld A, Taylor-Clark TE, Haanes KA, Taboureau O, Audouze K, Klaerke DA, Olesen J, Kristensen DM. Xenobiotic Exposure and Migraine-Associated Signaling: A Multimethod Experimental Study Exploring Cellular Assays in Combination with Ex Vivo and In Vivo Mouse Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117003. [PMID: 37909725 PMCID: PMC10619430 DOI: 10.1289/ehp12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100 μ M . None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (N total = 144 ). DISCUSSION Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.
Collapse
Affiliation(s)
- Rikke H. Rasmussen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Sarah L. Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Brian Skriver Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Anders Rehfeld
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Kristian A. Haanes
- Department of Clinical Experimental Research, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Olivier Taboureau
- Unité de Biologie Fonctionnelle, Université Paris Cité, Centre national de la recherche scientifique (CNRS, French National Centre for Scientific Research), Institut national de la santé et de la recherche médicale (Inserm, National Institute of Health & Medical Research), Paris, France
| | | | - Dan A. Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - David M. Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Institut de recherche en santé, environnement et travail (Irset) – UMR_S 1085, Université de Rennes, Inserm, École des hautes études en santé publique (EHESP), Rennes, France
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
13
|
Petratou D, Gjikolaj M, Kaulich E, Schafer W, Tavernarakis N. A proton-inhibited DEG/ENaC ion channel maintains neuronal ionstasis and promotes neuronal survival under stress. iScience 2023; 26:107117. [PMID: 37416472 PMCID: PMC10320524 DOI: 10.1016/j.isci.2023.107117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The nervous system participates in the initiation and modulation of systemic stress. Ionstasis is of utmost importance for neuronal function. Imbalance in neuronal sodium homeostasis is associated with pathologies of the nervous system. However, the effects of stress on neuronal Na+ homeostasis, excitability, and survival remain unclear. We report that the DEG/ENaC family member DEL-4 assembles into a proton-inactivated sodium channel. DEL-4 operates at the neuronal membrane and synapse to modulate Caenorhabditis elegans locomotion. Heat stress and starvation alter DEL-4 expression, which in turn alters the expression and activity of key stress-response transcription factors and triggers appropriate motor adaptations. Similar to heat stress and starvation, DEL-4 deficiency causes hyperpolarization of dopaminergic neurons and affects neurotransmission. Using humanized models of neurodegenerative diseases in C. elegans, we showed that DEL-4 promotes neuronal survival. Our findings provide insights into the molecular mechanisms by which sodium channels promote neuronal function and adaptation under stress.
Collapse
Affiliation(s)
- Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Martha Gjikolaj
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - William Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| |
Collapse
|
14
|
Hu Z, Zhang Y, Yu W, Li J, Yao J, Zhang J, Wang J, Wang C. Transient receptor potential ankyrin 1 (TRPA1) modulators: Recent update and future perspective. Eur J Med Chem 2023; 257:115392. [PMID: 37269667 DOI: 10.1016/j.ejmech.2023.115392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/05/2023]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that senses irritant chemicals. Its activation is closely associated with pain, inflammation, and pruritus. TRPA1 antagonists are promising treatments for these diseases, and there has been a recent upsurge in their application to new areas such as cancer, asthma, and Alzheimer's disease. However, due to the generally disappointing performance of TRPA1 antagonists in clinical studies, scientists must pursue the development of antagonists with higher selectivity, metabolic stability, and solubility. Moreover, TRPA1 agonists provide a deeper understanding of activation mechanisms and aid in antagonist screening. Therefore, we summarize the TRPA1 antagonists and agonists developed in recent years, with a particular focus on structure-activity relationships (SARs) and pharmacological activity. In this perspective, we endeavor to keep abreast of cutting-edge ideas and provide inspiration for the development of more effective TRPA1-modulating drugs.
Collapse
Affiliation(s)
- Zelin Hu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenhan Yu
- College of Letters & Science, University of California, Berkeley, Berkeley, 94720, California, United States
| | - Junjie Li
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaqi Yao
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
16
|
Song J, Jiang M, Jin Y, Li H, Li Y, Liu Y, Yu H, Huang X. Phytol from Faeces Bombycis alleviated migraine pain by inhibiting Nav1.7 sodium channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116161. [PMID: 36646158 DOI: 10.1016/j.jep.2023.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Faeces Bombycis (silkworm excrement, called Cansha in Chinese), is the dried faeces of the larvae of silkworm. According to the theories of traditional Chinese medicine recorded in "Compendium of Materia Medica", Faeces Bombycis has often been prescribed in traditional Chinese medicine for the treatment of recurrent headache, rheumatalgia, rubella and itching et al. However, the bioactive components and their exact mechanisms underlying the pain-relieving effects remain to be revealed. AIM OF THE STUDY The present study aimed to evaluate the analgesic effect of Faeces Bombycis extract (FBE) on migraine, explore the main active constituents and investigate the pharmacological mechanisms for its pain relief. MATERIALS AND METHODS The bioactivity of different extracts from Faeces Bombycis was tracked by the nitroglycerin (NTG)-induced migraine model on rats and identified by NMR spectroscopic data. Whole-cell patch clamp technique, an electrophysiological method, was used to screen the potential targets and study the mechanism of action for the bioactive compound. The following targets have been screened and studied, including Nav1.7 sodium channels, Nav1.8 sodium channels, TRPV1 channels and TRPA1 channels. The trigeminal ganglion neurons were further used to study the effects of the identified compound on neuronal excitability. RESULTS By testing the bioactivity of the different extracts proceedingly, fraction petroleum ether showed higher anti-migraine activity. Through further step-by-step isolations, 7 compounds were isolated. Among them, phytol was identified with the highest yield and displayed a potent anti-migraine effect. By screening the potential ion channel targets for migraine, phytol was found to preferentially block the inactivated state of Nav1.7 sodium channels with half-inhibition concentration 0.32 ± 0.05 μM. Thus, the effects of phytol on the biophysical properties of Nav1.7 sodium channels were further characterized. Phytol induced a hyperpolarizing shift of voltage-dependent inactivation and slowed the recovery from inactivation. The affinity of phytol became weaker in the inactivation-deficient Nav1.7 channels (Nav1.7-WCW). And such an effect was independent on the local anesthetic site (Nav1.7 F1737A). Consistent with the data from recombinant channels, the compound also displayed state-dependent inhibition on neuronal sodium channels and further decreased the neuronal excitability in trigeminal ganglion neurons. Moreover, besides Nav1.7 channel, phytol also antagonized the activation of TRPV1 and TRPA1 channels at micromolar concentrations with a weaker affinity. CONCLUSION Our results demonstrated that phytol is the major anti-migraine ingredient of Faeces Bombycis and alleviates migraine behaviors by acting on Nav1.7 sodium channels in the trigeminal ganglion neurons. This study provided evidences for the therapeutic application of Faeces Bombycis and phytol on migraine disease.
Collapse
Affiliation(s)
- Jianan Song
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Department of Neurobiology, Harbin Medical University, Harbin, 150086, China.
| | - Mengyuan Jiang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongrui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yanhong Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Harbin, 150086, China.
| | - Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Xiangzhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| |
Collapse
|
17
|
Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol Dis 2023; 180:106072. [PMID: 36907522 DOI: 10.1016/j.nbd.2023.106072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
The implications of neurogenic inflammation and neuroinflammation in the pathophysiology of migraine have been clearly demonstrated in preclinical migraine models involving several sites relevant in the trigemino-vascular system, including dural vessels and trigeminal endings, the trigeminal ganglion, the trigeminal nucleus caudalis as well as central trigeminal pain processing structures. In this context, a relevant role has been attributed over the years to some sensory and parasympathetic neuropeptides, in particular calcitonin gene neuropeptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Several preclinical and clinical lines of evidence also support the implication of the potent vasodilator and messenger molecule nitric oxide in migraine pathophysiology. All these molecules are involved in vasodilation of the intracranial vasculature, as well as in the peripheral and central sensitization of the trigeminal system. At meningeal level, the engagement of some immune cells of innate immunity, including mast-cells and dendritic cells, and their mediators, has been observed in preclinical migraine models of neurogenic inflammation in response to sensory neuropeptides release due to trigemino-vascular system activation. In the context of neuroinflammatory events implicated in migraine pathogenesis, also activated glial cells in the peripheral and central structures processing trigeminal nociceptive signals seem to play a relevant role. Finally, cortical spreading depression, the pathophysiological substrate of migraine aura, has been reported to be associated with inflammatory mechanisms such as pro-inflammatory cytokine upregulation and intracellular signalling. Reactive astrocytosis consequent to cortical spreading depression is linked to an upregulation of these inflammatory markers. The present review summarizes current findings on the roles of immune cells and inflammatory responses in the pathophysiology of migraine and their possible exploitation in the view of innovative disease-modifying strategies.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Ricovero e Cura dell'Anziano a carattere scientifico, IRCCS-INRCA, Ancona, Italy.
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Gross EC, Putananickal N, Orsini AL, Schoenen J, Fischer D, Soto-Mota A. Defining metabolic migraine with a distinct subgroup of patients with suboptimal inflammatory and metabolic markers. Sci Rep 2023; 13:3787. [PMID: 36882474 PMCID: PMC9992685 DOI: 10.1038/s41598-023-28499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/19/2023] [Indexed: 03/09/2023] Open
Abstract
Emerging evidence suggest migraine is a response to cerebral energy deficiency or oxidative stress in the brain. Beta-hydroxybutyrate (BHB) is likely able to circumvent some of the meta-bolic abnormalities reported in migraine. Exogenous BHB was given to test this assumption and, in this post-hoc analysis, multiple metabolic biomarkers were identified to predict clinical improvements. A randomized clinical trial, involving 41 patients with episodic migraine. Each treatment period was 12 weeks long, followed by eight weeks of washout phase / second run-in phase before entering the corresponding second treatment period. The primary endpoint was the number of migraine days in the last 4 weeks of treatment adjusted for baseline. BHB re-sponders were identified (those with at least a 3-day reduction in migraine days over placebo) and its predictors were evaluated using Akaike's Information Criterion (AIC) stepwise boot-strapped analysis and logistic regression. Responder analysis showed that metabolic markers could identify a "metabolic migraine" subgroup, which responded to BHB with a 5.7 migraine days reduction compared to the placebo. This analysis provides further support for a "metabolic migraine" subtype. Additionally, these analyses identified low-cost and easily accessible biomarkers that could guide recruitment in future research on this subgroup of patients.This study is part of the trial registration: ClinicalTrials.gov: NCT03132233, registered on 27.04.2017, https://clinicaltrials.gov/ct2/show/NCT03132233.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Niveditha Putananickal
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Anna-Lena Orsini
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB) & Neurology Department, University Hospital Basel (USB), University of Basel, Basel, Switzerland
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Dirk Fischer
- Division of Pediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Tlalpan, Mexico.,School of Medicine, Tecnologico de Monterrey, Mexico City, Mexico
| |
Collapse
|
19
|
Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24044114. [PMID: 36835524 PMCID: PMC9959352 DOI: 10.3390/ijms24044114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless, the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic targets for pain management. This scoping review focuses on human studies of common pathogenic factors in migraine and NP, with reference to available preclinical evidence to explore potential novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release of nociceptive substances, and modifying the endocannabinoid system may open a path toward discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine (KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial excitation, which is observed in both conditions, may be a possible approach. Those are several potential analgesic targets which deserve to be explored in search of novel analgesics; however, much evidence remains missing. This review highlights the need for more studies on CGRP modifiers for subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in search of innovative pain management methods for migraine and NP.
Collapse
|
20
|
TRPA1 participation in behavioral impairment induced by chronic corticosterone administration. Psychopharmacology (Berl) 2023; 240:157-169. [PMID: 36520197 DOI: 10.1007/s00213-022-06290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is one of the most diagnosed mental disorders. Despite this, its pathophysiology remains poorly understood. In this context, basic research aims to unravel the pathophysiological mechanisms of MDD as well as investigate new targets and substances with therapeutic potential. Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane channel considered a sensor for inflammation and oxidative stress. Importantly, both inflammation and oxidative stress have been suggested as participants in the pathophysiology of MDD. However, the potential participation of TRPA1 in depressive disorder remains poorly investigated. OBJECTIVE To investigate the involvement of the TRPA1 channel in the behavioral changes induced by chronic corticosterone administration (CCA) in male mice. METHODS Swiss male mice were exposed to 21 days of CCA protocol and then treated with HC-030031 or A-967079, TRPA1 antagonists. Behavioral tests, analyzes of oxidative parameters and TRPA1 immunocontent were performed in the prefrontal cortex (PFC) and hippocampus (HIP). RESULTS CCA induced despair-like behavior in mice accompanied by an increase in the levels of hydrogen peroxide (H2O2), a TRPA1 agonist, which was reversed by TRPA1 antagonists and ketamine (positive control). In addition, CCA protocol reduced the immunocontent of this channel in the HIP and showed a tendency to increase the TRPA1 protein expression in the PFC. CONCLUSION Our work suggests that TRPA1 channel appears crucial to mediate the behavioral impairment induced by CCA in male Swiss mice.
Collapse
|
21
|
Yao K, Dou B, Zhang Y, Chen Z, Li Y, Fan Z, Ma Y, Du S, Wang J, Xu Z, Liu Y, Lin X, Wang S, Guo Y. Inflammation-the role of TRPA1 channel. Front Physiol 2023; 14:1093925. [PMID: 36875034 PMCID: PMC9977828 DOI: 10.3389/fphys.2023.1093925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Gao N, Li M, Wang W, Liu Z, Guo Y. A bibliometrics analysis and visualization study of TRPV1 channel. Front Pharmacol 2023; 14:1076921. [PMID: 37025492 PMCID: PMC10070874 DOI: 10.3389/fphar.2023.1076921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Background: At the end of the 1990s, transient receptor potential vanilloid 1 (TRPV1) was first identified and cloned, serving as a key pain and heat sensor in humans. A large body of evidence have revealed its polymodal structure, complex function and wide-spread distribution, the specific mechanism of the ion channel remains unclear. Our goal here is to perform a bibliometric analysis and visualization study to present hotspots and trends in TRPV1 channel. Materials and Methods: TRPV1-related publications from inception to 2022 were retrieved from the Web of Science database. Excel, VOSviewer, and CiteSpace software were utilized for co-authorship, co-citation and co-occurrence analysis. Results: There were 9,113 publications included in the study, the number of publications increased rapidly after 1989, from 7 in 1990 to 373 in 2007, during which the number of citations per publication (CPP) also reached a peak in 2000 (CPP = 106.52). A total of 1,486 journals published TRPV1 articles, mainly belong to Q1 or Q2 divisions; The United States published the most articles (TP = 3,080), followed by Japan (TP = 1,221), China (TP = 1,217), and England (TP = 734); In recent years, the TRPV1-related research direction has been broaden to multiple fields related to inflammation, oxidative stress, and apoptosis; Keyword clustering refined the topic distributions and could be generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. Conclusion: By conducting an exhaustive bibliographic search, this review refined the topic distributions and generalized as neuralgia, endogenous cannabinoid system, TRPV1 mediated airway hyperresponsiveness, involvement of apoptosis, TRPV1 antagonists as therapy targets. It is currently being clarified how exactly TRPV1 works as an ion channel, and much more in-depth basic research is needed in the future.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhen Liu, ; Yufeng Guo,
| |
Collapse
|
23
|
Spekker E, Körtési T, Vécsei L. TRP Channels: Recent Development in Translational Research and Potential Therapeutic Targets in Migraine. Int J Mol Sci 2022; 24:ijms24010700. [PMID: 36614146 PMCID: PMC9820749 DOI: 10.3390/ijms24010700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Migraine is a chronic neurological disorder that affects approximately 12% of the population. The cause of migraine headaches is not yet known, however, when the trigeminal system is activated, neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP) are released, which cause neurogenic inflammation and sensitization. Advances in the understanding of migraine pathophysiology have identified new potential pharmacological targets. In recent years, transient receptor potential (TRP) channels have been the focus of attention in the pathophysiology of various pain disorders, including primary headaches. Genetic and pharmacological data suggest the role of TRP channels in pain sensation and the activation and sensitization of dural afferents. In addition, TRP channels are widely expressed in the trigeminal system and brain regions which are associated with the pathophysiology of migraine and furthermore, co-localize several neuropeptides that are implicated in the development of migraine attacks. Moreover, there are several migraine trigger agents known to activate TRP channels. Based on these, TRP channels have an essential role in migraine pain and associated symptoms, such as hyperalgesia and allodynia. In this review, we discuss the role of the certain TRP channels in migraine pathophysiology and their therapeutic applicability.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Tamás Körtési
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545351; Fax: +36-62-545597
| |
Collapse
|
24
|
Zhang H, Wang C, Zhang K, Kamau PM, Luo A, Tian L, Lai R. The role of TRPA1 channels in thermosensation. CELL INSIGHT 2022; 1:100059. [PMID: 37193355 PMCID: PMC10120293 DOI: 10.1016/j.cellin.2022.100059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/18/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
| | - Chengsan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lifeng Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
25
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
26
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
27
|
Liu L, Li W, Wang L, Gong P, Lyu T, Liu D, Zhang Y, Guo Y, Liu X, Tang M, Hu H, Liu C, Li B. Proteomic and metabolomic profiling of acupuncture for migraine reveals a correlative link via energy metabolism. Front Neurosci 2022; 16:1013328. [PMID: 36248663 PMCID: PMC9557737 DOI: 10.3389/fnins.2022.1013328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a neurovascular disease with a high disability rate. Acupuncture treatment has emerged as a safe and viable alternative prophylactic therapy that can effectively alleviate the duration and frequency of migraine attacks. However, the therapeutic mechanisms underlying the effects of acupuncture are yet to be systematically elucidated. In this study, we enrolled female patients with migraine without aura (n = 20) and healthy controls (n = 10). Patients received acupuncture treatment on DU20, DU24, bilateral GB13, GB8, and GB20, applied three times per week over the course of 4 weeks for 12 sessions in total. Blood samples were collected from the median cubital vein before and after acupuncture treatment. Proteomic and metabolomic profiling was performed using liquid chromatography-mass spectrometry to determine the characteristics of differentially expressed molecules and expression of their corresponding biological pathways as well as to elucidate the pathogenesis of migraine and the biological effects underlying the treatment of migraine with acupuncture. Proteomic and metabolomic profiling of plasma samples from patients with migraine without aura before and after acupuncture treatment revealed enrichment of immune-related pathway functions and the arginine synthesis pathway. Joint pathway analyses revealed significant enrichment of the pentose phosphate and glycolysis/gluconeogenesis pathways in patients with migraine. The glycolysis/gluconeogenesis and riboflavin metabolism pathways were significantly enriched after acupuncture treatment. The expression levels of various key proteins and metabolites, including α-D-glucose, flavin adenine dinucleotide, biliverdin reductase B, and L-glutamate, were significantly differentially expressed before and after acupuncture treatment in patients with migraine without aura. Treatment of migraine with acupuncture was associated with significant changes in key molecules and pathways, indicative of physiological changes in the trigeminovascular system, glutamate neurotoxicity, and other migraine-related physiological changes. Overall, our comprehensive analysis using proteomic and metabolomic profiling demonstrates that energy metabolism may serve as a key correlative link in the occurrence of migraine and the therapeutic effects of acupuncture treatment. Our findings may facilitate the identification of diagnostic and therapeutic modalities in the ongoing search for effective treatments for migraine attacks.
Collapse
Affiliation(s)
- Lu Liu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weizheng Li
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Linpeng Wang
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Pengyun Gong
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Tianli Lyu
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dapeng Liu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Zhang
- Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan, China
| | - Yijie Guo
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Xiang Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Min Tang
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Hongke Hu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Chao Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- *Correspondence: Chao Liu,
| | - Bin Li
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Bin Li,
| |
Collapse
|
28
|
ATP-Sensitive Potassium Channels in Migraine: Translational Findings and Therapeutic Potential. Cells 2022; 11:cells11152406. [PMID: 35954249 PMCID: PMC9367966 DOI: 10.3390/cells11152406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, migraine is a leading cause of disability with a huge impact on both the work and private life of affected persons. To overcome the societal migraine burden, better treatment options are needed. Increasing evidence suggests that ATP-sensitive potassium (KATP) channels are involved in migraine pathophysiology. These channels are essential both in blood glucose regulation and cardiovascular homeostasis. Experimental infusion of the KATP channel opener levcromakalim to healthy volunteers and migraine patients induced headache and migraine attacks in 82-100% of participants. Thus, this is the most potent trigger of headache and migraine identified to date. Levcromakalim likely induces migraine via dilation of cranial arteries. However, other neuronal mechanisms are also proposed. Here, basic KATP channel distribution, physiology, and pharmacology are reviewed followed by thorough review of clinical and preclinical research on KATP channel involvement in migraine. KATP channel opening and blocking have been studied in a range of preclinical migraine models and, within recent years, strong evidence on the importance of their opening in migraine has been provided from human studies. Despite major advances, translational difficulties exist regarding the possible anti-migraine efficacy of KATP channel blockage. These are due to significant species differences in the potency and specificity of pharmacological tools targeting the various KATP channel subtypes.
Collapse
|
29
|
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are multi-modally activated cation permeable channels that are expressed most organ tissues including the skin. TRPV4 is highly expressed in the skin and functions in skin resident cells such as epidermal keratinocytes, melanocytes, immune mast cells and macrophages, and cutaneous neurons. TRPV4 plays many crucial roles in skin homeostasis to affect an extensive range of processes such as temperature sensation, osmo-sensation, hair growth, cell apoptosis, skin barrier integrity, differentiation, nociception and itch. Since TRPV4 functions in a plenitude of pathological states, TRPV4 can become a versatile therapeutic target for diseases such as chronic pain, itch and skin cancer.
Collapse
Affiliation(s)
- Carlene Moore
- Division of Headache and Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
30
|
Fila M, Jablkowska A, Pawlowska E, Blasiak J. DNA Damage and Repair in Migraine: Oxidative Stress and Beyond. Neuroscientist 2022; 29:277-286. [PMID: 35658694 DOI: 10.1177/10738584221090836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Energy generation in the brain to ameliorate energy deficit in migraine leads to oxidative stress as it is associated with reactive oxygen species (ROS) that may damage DNA and show a pronociceptive action in meninges mediated by transient receptor potential cation channel subfamily A member 1 (TRPA1). Recent studies show high levels of single-strand breaks (SSBs) at specific sites in the genome of postmitotic neurons and point at SSB repair (SSBR) as an important element of homeostasis of the central nervous system. DNA topoisomerase 1 (TOP1) is stabilized in the DNA damage-inducing state by neuronal stimulation, including cortical spreading depression. Impairment in poly (ADP-ribose) polymerase 1 (PARP-1) and X-ray repair cross complementing 1 (XRCC1), key SSBR proteins, may be linked with migraine by transient receptor potential melastatin 2 (TRPM2). TRPM2 may also mediate the involvement of migraine-related neuroinflammation with PARP-1 activated by oxidative stress-related SSBs. In conclusion, aberrant activity of SSBR evoked by compromised PARP-1 and XRCC1 may contribute to pathological phenomena in the migraine brain. Such aberrant SSBR results in the lack of repair or misrepair of SSBs induced by ROS or resulting from impaired TOP1. Therefore, components of SSBR may be considered a prospective druggable target in migraine.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
31
|
Simonetta I, Riolo R, Todaro F, Tuttolomondo A. New Insights on Metabolic and Genetic Basis of Migraine: Novel Impact on Management and Therapeutical Approach. Int J Mol Sci 2022; 23:3018. [PMID: 35328439 PMCID: PMC8955051 DOI: 10.3390/ijms23063018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Collapse
Affiliation(s)
- Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
32
|
Cohen CF, Prudente AS, Berta T, Lee SH. Transient Receptor Potential Channel 4 Small-Molecule Inhibition Alleviates Migraine-Like Behavior in Mice. Front Mol Neurosci 2021; 14:765181. [PMID: 34790097 PMCID: PMC8591066 DOI: 10.3389/fnmol.2021.765181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Migraine is a common neurological disorder with few available treatment options. Recently, we have demonstrated the role of transient receptor potential cation channel subfamily C member 4 (TRPC4) in itch and the modulation of the calcitonin gene-related peptide (CGRP), a biomarker and emerging therapeutic target for migraine. In this study, we characterized the role of TRPC4 in pain and evaluated its inhibition as anti-migraine pain therapy in preclinical mouse models. First, we found that TRPC4 is highly expressed in trigeminal ganglia and its activation not only mediates itch but also pain. Second, we demonstrated that the small-molecule inhibitor ML204, a specific TRPC4 antagonist, significantly reduced episodic and chronic migraine-like behaviors in male and female mice after injection of nitroglycerin (NTG), a well-known migraine inducer in rodents and humans. Third, we found a significant decrease in CGRP protein levels in the plasma of both male and female mice treated with ML-204, which largely prevented the development of chronic migraine-like behavior. Using sensory neuron cultures, we confirmed that activation of TRPC4 elicited release of CGRP, which was significantly diminished by ML-204. Collectively, our findings identify TRPC4 in peripheral sensory neurons as a mediator of CGRP release and NTG-evoked migraine. Since a TRPC4 antagonist is already in clinical trials, we expect that this study will rapidly lead to novel and effective clinical treatments for migraineurs.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| |
Collapse
|
33
|
Nie L, Jiang L, Quinn JP, Grubb BD, Wang M. TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. Int J Mol Sci 2021; 22:12273. [PMID: 34830154 PMCID: PMC8620265 DOI: 10.3390/ijms222212273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) plays a role in migraine and is proposed as a promising target for migraine therapy. However, TRPA1-induced signaling in migraine pathogenesis is poorly understood. In this study, we explored the hypothesis that Src family kinases (SFKs) transmit TRPA1 signaling in regulating cortical spreading depression (CSD), calcitonin gene-related peptide (CGRP) release and neuroinflammation. CSD was monitored in mouse brain slices via intrinsic optical imaging, and in rats using electrophysiology. CGRP level and IL-1β gene expression in mouse trigeminal ganglia (TG) was detected using Enzyme-linked Immunosorbent Assay and Quantitative Polymerase Chain Reaction respectively. The results showed a SFKs activator, pYEEI (EPQY(PO3H2)EEEIPIYL), reversed the reduced cortical susceptibility to CSD by an anti-TRPA1 antibody in mouse brain slices. Additionally, the increased cytosolic phosphorylated SFKs at Y416 induced by CSD in rat ipsilateral cerebral cortices was attenuated by pretreatment of the anti-TRPA1 antibody perfused into contralateral ventricles. In mouse TG, a SFKs inhibitor, saracatinib, restored the CGRP release and IL-1β mRNA level increased by a TRPA1 activator, umbellulone. Moreover, umbellulone promoted SFKs phosphorylation, which was reduced by a PKA inhibitor, PKI (14-22) Amide. These data reveal a novel mechanism of migraine pathogenesis by which TRPA1 transmits signaling to SFKs via PKA facilitating CSD susceptibility and trigeminovascular system sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Liwen Jiang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Blair D. Grubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| |
Collapse
|
34
|
Yamamoto T, Mulpuri Y, Izraylev M, Li Q, Simonian M, Kramme C, Schmidt BL, Seltzman HH, Spigelman I. Selective targeting of peripheral cannabinoid receptors prevents behavioral symptoms and sensitization of trigeminal neurons in mouse models of migraine and medication overuse headache. Pain 2021; 162:2246-2262. [PMID: 33534356 PMCID: PMC8277668 DOI: 10.1097/j.pain.0000000000002214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Migraine affects ∼15% of the world's population greatly diminishing their quality of life. Current preventative treatments are effective in only a subset of migraine patients, and although cannabinoids seem beneficial in alleviating migraine symptoms, central nervous system side effects limit their widespread use. We developed peripherally restricted cannabinoids (PRCBs) that relieve chronic pain symptoms of cancer and neuropathies, without appreciable central nervous system side effects or tolerance development. Here, we determined PRCB effectiveness in alleviating hypersensitivity symptoms in mouse models of migraine and medication overuse headache. Long-term glyceryl trinitrate (GTN, 10 mg/kg) administration led to increased sensitivity to mechanical stimuli and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment, but not posttreatment, prevented behavioral and biochemical correlates of GTN-induced sensitization. Low pH-activated and allyl isothiocyanate-activated currents in acutely isolated trigeminal neurons were reversibly attenuated by PRCB application. Long-term GTN treatment significantly enhanced these currents. Long-term sumatriptan treatment also led to the development of allodynia to mechanical and cold stimuli that was slowly reversible after sumatriptan discontinuation. Subsequent challenge with a previously ineffective low-dose GTN (0.1-0.3 mg/kg) revealed latent behavioral sensitization and increased expression of phosphorylated protein kinase A, neuronal nitric oxide synthase, and transient receptor potential ankyrin 1 proteins in trigeminal ganglia. Peripherally restricted cannabinoid pretreatment prevented all behavioral and biochemical correlates of allodynia and latent sensitization. Importantly, long-term PRCB treatment alone did not produce any behavioral or biochemical signs of sensitization. These data validate peripheral cannabinoid receptors as potential therapeutic targets in migraine and medication overuse headache.
Collapse
Affiliation(s)
- Toru Yamamoto
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Mikhail Izraylev
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Qianyi Li
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Menooa Simonian
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Christian Kramme
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
| | - Brian L. Schmidt
- Department of Oral & Maxillofacial Surgery and Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY
| | - Herbert H. Seltzman
- Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
35
|
Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines. Nutrients 2021; 13:nu13082612. [PMID: 34444772 PMCID: PMC8401857 DOI: 10.3390/nu13082612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Riboflavin, a water-soluble member of the B-vitamin family, plays a vital role in producing energy in mitochondria and reducing inflammation and oxidative stress. Migraine pathogenesis includes neuroinflammation, oxidative stress, and mitochondrial dysfunction. Therefore, riboflavin is increasingly being recognized for its preventive effects on migraines. However, there is no concrete evidence supporting its use because the link between riboflavin and migraines and the underlying mechanisms remains obscure. This review explored the current experimental and clinical evidence of conditions involved in migraine pathogenesis and discussed the role of riboflavin in inhibiting these conditions. Experimental research has demonstrated elevated levels of various oxidative stress markers and pro-inflammatory cytokines in migraines, and riboflavin’s role in reducing these marker levels. Furthermore, clinical research in migraineurs showed increased marker levels and observed riboflavin’s effectiveness in reducing migraines. These findings suggest that inflammation and oxidative stress are associated with migraine pathogenesis, and riboflavin may have neuroprotective effects through its clinically useful anti-inflammatory and anti-oxidative stress properties. Riboflavin’s safety and efficacy suggests its usefulness in migraine prophylaxis; however, insufficient evidence necessitates further study.
Collapse
|
36
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|
37
|
Kleeberg-Hartmann J, Vogler B, Messlinger K. Petasin and isopetasin reduce CGRP release from trigeminal afferents indicating an inhibitory effect on TRPA1 and TRPV1 receptor channels. J Headache Pain 2021; 22:23. [PMID: 33849430 PMCID: PMC8042690 DOI: 10.1186/s10194-021-01235-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background Butterbur root extract with its active ingredients petasin and isopetasin has been used in the prophylactic treatment of migraine for years, while its sites of action are not completely clear. Calcitonin gene-related peptide (CGRP) is known as a biomarker and promoting factor of migraine. We set out to investigate the impact of petasins on the CGRP release from trigeminal afferents induced by activation of the calcium conducting transient receptor potential channels (TRPs) of the subtypes TRPA1 and TRPV1. Methods We used well-established in vitro preparations, the hemisected rodent skull and dissected trigeminal ganglia, to examine the CGRP release from rat and mouse cranial dura mater and trigeminal ganglion neurons, respectively, after pre-incubation with petasin and isopetasin. Mustard oil and capsaicin were used to stimulate TRPA1 and TRPV1 receptor channels. CGRP concentrations were measured with a CGRP enzyme immunoassay. Results Pre-incubation with either petasin or isopetasin reduced mustard oil- and capsaicin-evoked CGRP release compared to vehicle in an approximately dose-dependent manner. These results were validated by additional experiments with mice expressing functionally deleted TRPA1 or TRPV1 receptor channels. Conclusions Earlier findings of TRPA1 receptor channels being involved in the site of action of petasin and isopetasin are confirmed. Furthermore, we suggest an important inhibitory effect on TRPV1 receptor channels and assume a cooperative action between the two TRP receptors. These mechanisms may contribute to the migraine prophylactic effect of petasins.
Collapse
Affiliation(s)
- Johanna Kleeberg-Hartmann
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstraße 17, 91054, Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstraße 17, 91054, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstraße 17, 91054, Erlangen, Germany.
| |
Collapse
|
38
|
Won L, Kraig RP. Insulin-like growth factor-1 inhibits nitroglycerin-induced trigeminal activation of oxidative stress, calcitonin gene-related peptide and c-Fos expression. Neurosci Lett 2021; 751:135809. [PMID: 33713748 DOI: 10.1016/j.neulet.2021.135809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/06/2023]
Abstract
Migraineurs experience increased oxidative stress which drives the initiation and maintenance of migraine-related pain in animal models and, by extension, migraine in humans. Oxidative stress augments calcitonin gene-related peptide (CGRP) levels, a mediator of migraine pain. Insulin-like growth factor-1 (IGF-1), a neuroprotective growth factor, reduces susceptibility to spreading depression, a preclinical model of migraine, in cultured brain slices by blocking oxidative stress and neuroinflammation from microglia. Similarly, nasal delivery of IGF-1 inhibits spreading depression in vivo. After recurrent cortical spreading depression, nasal administration of IGF-1 also significantly reduces trigeminal ganglion oxidative stress and CGRP levels as well as trigeminocervical c-Fos activation. Here, we probed for the impact of nasal IGF-1 pretreatment on trigeminal system activation using a second well-established preclinical model of migraine, systemic nitroglycerin injection. Adult male rats were treated with one of three doses of IGF-1 (37.5, 75 or 150 μg) and the optimal dose found in males was subsequently used for treatment of female rats. One day later, animals received an intraperitoneal injection of nitroglycerin. Measurements taken two hours later after nitroglycerin alone showed increased surrogate markers of trigeminal activation - oxidative stress and CGRP in the trigeminal ganglion and c-Fos in the trigeminocervical complex compared to vehicle control. These effects were significantly reduced at all doses of IGF-1 for trigeminal ganglion metrics of oxidative stress and CGRP and only at the lowest dose in both males and females for c-Fos. The latter inverted U-shaped or hormetic response is seen in enzyme-targeting drugs. While the specific mechanisms remain to be explored, our data here supports the ability of IGF-1 to preserve mitochondrial and antioxidant pathway homeostasis as means to prevent nociceptive activation in the trigeminal system produced by an experimental migraine model.
Collapse
Affiliation(s)
- Lisa Won
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Richard P Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
39
|
Gross EC, Putananickal N, Orsini AL, Vogt DR, Sandor PS, Schoenen J, Fischer D. Mitochondrial function and oxidative stress markers in higher-frequency episodic migraine. Sci Rep 2021; 11:4543. [PMID: 33633187 PMCID: PMC7907128 DOI: 10.1038/s41598-021-84102-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Increasing evidence points towards the role of mitochondrial functioning, energy metabolism, and oxidative stress in migraine. However not all previous research has been conclusive and some mitochondrial function/oxidative stress markers have not yet been examined. To this end, alpha-lipoic acid (ALA), total thiols, total plasma antioxidant capacity (TAC), lipid peroxide (PerOx), oxidised LDL (oxLDL), HbA1c and lactate were determined in the serum of 32 higher frequency episodic migraineurs (5-14 migraine days/ months, 19 with aura, 28 females) in this cross-sectional study. The majority of patients had abnormally low ALA and lactate levels (87.5% and 78.1%, respectively). 46.9% of the patients had abnormally high PerOx values, while for thiols and TAC over one third of patients had abnormally low values (31.2% and 37.5%, respectively). 21.9% of patients had abnormally low HbA1c and none had an HbA1c level above 5.6%. oxLDL was normal in all but one patient. This study provides further evidence for a role of oxidative stress and altered metabolism in migraine pathophysiology, which might represent a suitable therapeutic target. ALA, being too low in almost 90% of patients, might represent a potential biomarker for migraine. Further research is needed to replicate these results, in particular a comparison with a control group.This study is part of the trial registration: ClinicalTrials.gov: NCT03132233, registered on 27.04.2017, https://clinicaltrials.gov/ct2/show/NCT03132233 .
Collapse
Affiliation(s)
- Elena C Gross
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Niveditha Putananickal
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Anna-Lena Orsini
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
- Neurology Department, University Hospital Basel (USB), University of Basel, Basel, Switzerland
| | - Deborah R Vogt
- Clinical Trail Unit (CTU), Department of Clinical Research, University Hospital Basel (USB), University of Basel, Basel, Switzerland
| | - Peter S Sandor
- RehaClinic Group, Bad Zurzach, University of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Jean Schoenen
- Headache Research Unit, Dept of Neurology-Citadelle Hospital., University of Liège, Liège, Belgium
| | - Dirk Fischer
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Yamanaka G, Kanou K, Takamatsu T, Takeshita M, Morichi S, Suzuki S, Ishida Y, Watanabe Y, Go S, Oana S, Kawashima H. Complementary and Integrative Medicines as Prophylactic Agents for Pediatric Migraine: A Narrative Literature Review. J Clin Med 2021; 10:jcm10010138. [PMID: 33401551 PMCID: PMC7794736 DOI: 10.3390/jcm10010138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Complementary and integrative medicines (CIMs) are increasingly used as a preventive antimigraine therapy. In this review, we aimed to summarize the evidence for the efficacy and safety of eight CIMs (riboflavin, coenzyme Q10, magnesium, melatonin, polyunsaturated fatty acids, and combination therapy of feverfew, vitamin D, and ginkgolide B) in pediatric migraine prevention. The level of evidence for riboflavin was relatively high; it was investigated by many studies with five/seven studies demonstrating its efficacy. Five studies investigated the use of melatonin, with one reporting negative results. There was insufficient evidence on the effectiveness of coenzyme Q10, magnesium, and polyunsaturated fatty acids. Combination therapy showed positive potential; however, reports on the individual antimigraine effects of the CIMs were lacking. A definitive conclusion was not reached regarding the specific integrative drugs clinicians should choose for pediatric migraines, owing to low-quality evidence and a limited number of studies. Integrative medications are becoming more common for pediatric migraine prevention as they do not produce serious side effects, and underlying research data suggest their efficacy in preventing migraine. Additional studies are warranted to confirm the role of CIMs in treating patients with migraines.
Collapse
|
41
|
Neurophysiological Model of Migraine Pathophysiology: Bringing the Past into the Future. NEUROPHYSIOLOGY OF THE MIGRAINE BRAIN 2021. [DOI: 10.1007/978-3-030-56538-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Pavone P, Pappalardo XG, Ohazuruike UNN, Striano P, Parisi P, Corsello G, Marino SD, Ruggieri M, Parano E, Falsaperla R. Chromosome 15q BP4-BP5 Deletion in a Girl with Nocturnal Frontal Lobe Epilepsy, Migraine, Circumscribed Hypertrichosis, and Language Impairment. J Epilepsy Res 2020; 10:84-91. [PMID: 33659201 PMCID: PMC7903043 DOI: 10.14581/jer.20014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
The 15q13.3 microdeletion (microdel15q13.3) syndrome (OMIM 612001) has been reported in healthy subjects as well as in individuals with a wide spectrum of clinical manifestations ranging from mild to severe neurological disorders, including developmental delay/intellectual disability, autism spectrum disorder, schizophrenia, epilepsy, behavioral problems and speech dysfunction. This study explored the link between this genomic rearrangement and nocturnal frontal lobe epilepsy (NFLE), which could improve the clinical interpretation. A clinical and genomic investigation was carried out on an 8-year-girl with a de novo deletion flanking the breakpoints (BPs) 4 and 5 of 15q13.3 detected by array comparative genomic hybridization analysis, affected by NFLE, migraine with aura, minor facial features, mild cognitive and language impairment, and circumscribed hypertrichosis. Literature survey of clinical studies was included. Nine years follow-up have displayed a benign course of the epileptic disorder with a progressive reduction and disappearance of the epileptic seizures, mild improvement of cognitive and language skills, partial cutaneous hypertrichosis regression, but stable ongoing of migraine episodes. A likely relationship between the BP4–BP5 deletion and NFLE with other symptoms presented by the girl is discussed together with a review of the literature on phenotypic features in microdel15q13.3.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, Genoa, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine & Psychology, "Sapienza" University, c/o Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Enrico Parano
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Neonatology University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
43
|
Kazanasmaz H, Calik M, Gümüş H, Koyuncu I, Kazanasmaz Ö. Investigation of the plasma copeptin level in cases with childhood migraine. Hum Exp Toxicol 2020; 40:952-959. [PMID: 33295228 DOI: 10.1177/0960327120979349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Copeptin is a hypothalamic stress hormone that is synthesized in the hypothalamus together with Arginine-vasopressin and circulated from the neurohypophysis in equimolar amounts and can indicate the individual stress level. The aim of this study was to investigate the plasma copeptin level for childhood migraine headache. In this study, total oxidant status (TOS); total antioxidant status (TAS); oxidative stress index (OSI); and copeptin were measured in the plasma samples of 61 migraine patients and 60 matched healthy participants. The median plasma copeptin levels in the patients group and control group were 298.25 and 194.35 pg/mL, respectively. Copeptin levels were significantly higher in migraine patients than in the healthy control group. The specificity and sensitivity of copeptin for 249.5 pg/dL cut off value predicting diagnosis of migraine were 67% and 64%, respectively. In addition, TOS and OSI levels were found to be higher and TAS levels were significantly lower in patients with migraine than healthy controls. Plasma copeptin levels are thought to increase in cases of childhood migraine secondary to increased oxidative stress. In the diagnosis of childhood migraine cases, it can be used together with oxidative stress biomarkers such as TAS, TOS and OSI as a complementary parameter.
Collapse
Affiliation(s)
- Halil Kazanasmaz
- 111374Harran University, Faculty of Medicine, Department of Pediatrics, Sanliurfa, Turkey
| | - Mustafa Calik
- 111374Harran University, Faculty of Medicine, Department of Pediatric Neurology, Sanliurfa, Turkey
| | - Huseyin Gümüş
- 111374Harran University, Faculty of Medicine, Department of Pediatrics, Sanliurfa, Turkey
| | - Ismail Koyuncu
- 111374Harran University, Faculty of Medicine, Department of Medical Biochemistry, Sanliurfa, Turkey
| | - Özlem Kazanasmaz
- 218511Şanlıurfa Mehmet Akif İnan Training and Research Hospital, Department of Pediatrics, Sanliurfa, Turkey
| |
Collapse
|
44
|
Oh EH, Shin JH, Cho JW, Choi SY, Choi KD, Choi JH. TRPM7 as a Candidate Gene for Vestibular Migraine. Front Neurol 2020; 11:595042. [PMID: 33193064 PMCID: PMC7649787 DOI: 10.3389/fneur.2020.595042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives: Vestibular migraine (VM) is a common vestibular disorder, and familial aggregation of VM with autosomal-dominant inheritance has been described, which supports a genetic background. This study aimed to describe the clinical phenotype of a family with VM, and identify a candidate gene for VM. Methods: We recruited six individuals (four affected and two unaffected) from three consecutive generations of a Korean family with VM, and performed whole-exome sequencing to search for candidate genes. Results: All affected individuals presented with recurrent vertigo, headache, and nausea/vomiting that fulfilled the diagnostic criteria of VM. Two individuals also experienced transient hemiparesis or dysarthria during the episodes. The symptoms were triggered by physical or emotional stress. Interictal examinations showed uni- or bi-directional horizontal gaze-evoked nystagmus in three of the individuals. They had no causative mutations in genes causing familial hemiplegic migraine or episodic ataxia. Through whole-exome sequencing from three affected individuals, we identified a nonsense mutation c.3526C>T in TRPM7 that encodes a cation channel selective to Ca2+ and Mg2+. Conclusions: Alterations in intracellular Ca2+ and Mg2+ homeostasis by TRPM7 mutation may contribute to the development of the VM phenotype. Our result suggest that TRPM7 is a novel candidate gene for VM.
Collapse
Affiliation(s)
- Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae Wook Cho
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seo-Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
45
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
46
|
Souza Monteiro de Araujo D, Nassini R, Geppetti P, De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin Ther Targets 2020; 24:997-1008. [PMID: 32838583 PMCID: PMC7610834 DOI: 10.1080/14728222.2020.1815191] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Chronic pain affects approximatively 30–50% of the population globally. Pathologies such as migraine, diabetic neuropathy, nerve injury and treatment with chemotherapeutic agents, can induce chronic pain. Members of the transient receptor potential (TRP) channels, including the TRP ankyrin 1 (TRPA1), have a major role in pain. Areas covered We focus on TRPA1 as a therapeutic target for pain relief. The structure, localization, and activation of the channel and its implication in different pathways to signal pain are described. This paper underlines the role of pharmacological interventions on TRPA1 to reduce pain in numerous pain conditions. We conducted a literature search in PubMed up to and including July 2020. Expert opinion Our understanding of the molecular mechanisms underlying the sensitization of central and peripheral nociceptive pathways is limited. Preclinical evidence indicates that, in murine models of pain diseases, numerous mechanisms converge on the pathway that encompasses oxidative stress and Schwann cell TRPA1 to sustain chronic pain. Programs to identify and develop treatments to attenuate TRPA1-mediated chronic pain have emerged from this knowledge. Antagonists explored as a novel class of analgesics have a new and promising target in the TRPA1 expressed by peripheral glial cells.
Collapse
Affiliation(s)
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence , Florence, Italy
| |
Collapse
|
47
|
Zhou S, Han M, Ren Y, Yang X, Duan L, Zeng Y, Li J. Dibutyl phthalate aggravated asthma-like symptoms through oxidative stress and increasing calcitonin gene-related peptide release. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110740. [PMID: 32446102 DOI: 10.1016/j.ecoenv.2020.110740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most ubiquitous phthalate esters found in everyday products, and is receiving increased attention as an immunologic adjuvant. However, information regarding DBP-aggravated allergic asthma is still limited. This study used a mouse model sensitized with ovalbumin (OVA) to determine any adverse effects of DBP on allergic asthma. Our results reveal that allergic asthmatic mice exposed to DBP for an extended period had a significant increase in inflammatory cell infiltration; a significant increase in levels of serum immunoglobulin and T helper 2 cell (Th2) and T helper 17 cell (Th17) cytokines in lung tissue; and significant changes in lung histology and AHR, all of which are typical asthmatic symptoms. The levels of oxidative stress and levels of the neuropeptide, calcitonin gene related peptide (CGRP), were also elevated after DBP exposure. Interestingly, blocking oxidative stress by administering melatonin (MT) not only reduced oxidative stress and CGRP levels, but also ameliorated the asthmatic symptoms. Collectively, these results show that DBP exacerbates asthma-like pathologies by increasing the expression of CGRP mediated by oxidative stress.
Collapse
Affiliation(s)
- Sangyu Zhou
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Man Han
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yaolin Ren
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Liju Duan
- School of Public Health, Huazhong University of Science and Technology, Wuhan, 430030, 430079, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
48
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
49
|
Hansted AK, Jensen LJ, Olesen J, Jansen-Olesen I. Localization of TRPA1 channels and characterization of TRPA1 mediated responses in dural and pial arteries in vivo after intracarotid infusion of Na 2S. Cephalalgia 2020; 40:1310-1320. [PMID: 32611244 DOI: 10.1177/0333102420937724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Transient Receptor Potential Ankyrin 1 (TRPA1) channel might play a role in migraine. However, different mechanisms for this have been suggested. The purpose of our study was to investigate the localization and significance of TRPA1 channels in rat pial and dural arteries. METHODS Immunofluorescence microscopy was used to localize TRPA1 channels in dural arteries, pial arteries, dura mater and trigeminal ganglion. The genuine closed cranial window model was used to examine the effect of Na2S, a donor of the TRPA1 channel opener H2S, on the diameter of pial and dural arteries. Further, we performed blocking experiments with TRPA1 antagonist HC-030031, calcitonin gene-related peptide (CGRP) receptor antagonist olcegepant and KCa3.1 channel blocker TRAM-34. RESULTS TRPA1 channels were localized to the endothelium of both dural and pial arteries and in nerve fibers in dura mater. Further, we found TRPA1 expression in the membrane of trigeminal ganglia neuronal cells, some of them also staining for CGRP. Na2S caused dilation of both dural and pial arteries. In dural arteries, this was inhibited by HC-030031 and olcegepant. In pial arteries, the dilation was inhibited by TRAM-34, suggesting involvement of the KCa3.1 channel. CONCLUSION Na2S causes a TRPA1- and CGRP-dependent dilation of dural arteries and a KCa3.1 channel-dependent dilation of pial arteries in rats.
Collapse
Affiliation(s)
- Anna Koldbro Hansted
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
50
|
Bulboacă AE, Stănescu IC, Bolboacă SD, Bulboacă AC, Bodizs GI, Nicula CA. Retinal Nerve Fiber Layer Thickness and Oxidative Stress Parameters in Migraine Patients without Aura: A Pilot Study. Antioxidants (Basel) 2020; 9:E494. [PMID: 32516927 PMCID: PMC7346136 DOI: 10.3390/antiox9060494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Migraine is one of the most common disorders and its pathophysiological mechanisms are still under research, oxidative stress being emphasized as an important contributor. This study aimed to analyze the retinal nerve fiber layer (RNFL) thickness and oxidative/anti-oxidant balance in migraine patients. METHODS Two groups of subjects were evaluated: a group of patients with migraine and a control group of healthy volunteers. RNFL thickness was assessed for all subjects by the ocular coherence tomography spectral domain (OCT-SD). The oxidative stress parameter, namely nitric oxide (NOx), malondialdehyde (MDA), and total oxidative stress (TOS) were assessed. The antioxidant capacity of plasma was evaluated by assessing the level of catalase, and total anti-oxidative (TOS) capacity. Migraine severity was graded using the Migraine Disability Assessment Score (MIDAS) questionnaire. RESULTS All the oxidative stress parameters (NOx, MDA, and TOS) were significantly increased, and both parameters for anti-oxidative status were significantly decreased in the migraine group compared with the control group (p < 0.0001). Significant correlations with all the quadrants and different oxidative stress parameters were found, most involved being temporal quadrant. A significant positive correlation between catalase and macular RNFL thickness (inner ring, temporal quadrant) in migraine patients, for both eyes, was observed (p = 0.014 for the right eye and p = 0.12 for the left eye). CONCLUSION The assessment of the oxidative stress/anti-oxidative balance together with RFLN thickness can constitute a promising method to evaluate the progression of the diseases. It can also contribute to the estimation of the efficiency of various therapies targeting oxidative stress and associated inflammation.
Collapse
Affiliation(s)
- Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Ioana C. Stănescu
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Angelo C. Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | | | - Cristina A. Nicula
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| |
Collapse
|