1
|
Islam J, Rahman MT, Ali M, Kc E, Park YS. Potential hypothalamic mechanisms in trigeminal neuropathic pain: a comparative analysis with migraine and cluster headache. J Headache Pain 2024; 25:205. [PMID: 39587517 PMCID: PMC11587712 DOI: 10.1186/s10194-024-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Trigeminal neuropathic pain (TNP), migraine, and cluster headache (CH) profoundly impact the quality of life and present significant clinical challenges due to their complex neurobiological underpinnings. This review delves into the pivotal role of the hypothalamus in the pathophysiology of these facial pain syndromes, highlighting its distinctive functions and potential as a primary target for research, diagnosis, and therapy. While the involvement of the hypothalamus in migraine and CH has been increasingly supported by imaging and clinical studies, the precise mechanisms of its role remain under active investigation. The role of the hypothalamus in TNP, in contrast, is less explored and represents a critical gap in our understanding. The hypothalamus's involvement varies significantly across these conditions, orchestrating a unique interplay of neural circuits and neurotransmitter systems that underlie the distinct characteristics of each pain type. We have explored advanced neuromodulation techniques, such as deep brain stimulation (DBS) and optogenetics, which show promise in targeting hypothalamic dysfunction to alleviate pain symptoms. Furthermore, we discuss the neuroplastic changes within the hypothalamus that contribute to the chronicity of these pains and the implications of these findings for developing targeted therapies. By offering a comprehensive examination of the hypothalamus's roles, this paper aims to bridge existing knowledge gaps and propel forward the understanding and management of facial neuralgias, underscoring the hypothalamus's critical position in future neurological research.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Muhammad Ali
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Rageh AH, Khashaba PY, El Zohny SA, Atia NN. QuEChERS-assisted ion pair chromatography/fluorescence detection method for determination of antimigraine combination therapy in rabbit plasma samples: Application to a pharmacokinetic study. J Pharm Biomed Anal 2023; 235:115653. [PMID: 37633167 DOI: 10.1016/j.jpba.2023.115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Antimigraine combination therapy has shown significant effectiveness in relieving pain, as well as reducing the frequency, duration, and severity of migraine attacks if compared to a single migraine medication. This work represents the first analytical investigation for emphasizing the synergistic effect of combining ophthalmic beta blockers with triptans in migraine treatment. The presented study was conducted to investigate the pharmacokinetic profile of almotriptan (ALM), a serotonin (5-HT1B/1D) receptor agonist used to treat migraine, when coadministered with timolol (TIM) or verapamil (VER) which are considered as an adjuvant therapy in migraine prevention. Ion pair chromatography (IPC) with online fluorescence detection was applied to simultaneously detect and quantify the binary mixtures of ALM/TIM and ALM/VER in rabbit plasma samples. The separation was achieved using a Platinum C18 analytical column with a mobile phase composed of methanol: 35 mmol L-1 phosphate buffer solution containing 10 mmol L-1 SDS at pH = 6.8 (60:40 v/v). Several parameters were evaluated during the optimization of separation conditions including mobile phase composition, buffer concentration, buffer pH and concentration of ion pair reagent. A thorough investigation of the retention mechanism was performed, and the results showed that Coulomb forces were the main contributors to the overall retention mechanism, which may be hydrophobically assisted. QuEChERS extraction technique was utilized to extract the investigated drugs from plasma samples and a detailed study was carried out to optimize partition/extraction solvents, pH, extraction salts, sample volume and clean-up step. The method had a limit of detection and quantitation of 5.6 and 16.9 ng mL-1 for ALM in ALM/TIM mixture and 2.5 and 7.6 ng mL-1 for ALM in ALM/VER mixture, with an overall recovery not less than 95.22%. This newly proposed method offers a faster alternative to existing chromatographic methods for extraction and determination of ALM in binary mixtures with TIM or VER in rabbit plasma and provides a platform for studying pharmacokinetic parameters. The coadministration of either TIM or VER with ALM resulted in a notable rise in Cmax (maximum plasma concentration) and AUC (area under the plasma concentration-time curve) of ALM, implying possible alterations in the absorption and overall exposure of ALM.
Collapse
Affiliation(s)
- Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Pakinaz Y Khashaba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Sally A El Zohny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Noha N Atia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
3
|
Yamanaka G, Hayashi K, Morishita N, Takeshita M, Ishii C, Suzuki S, Ishimine R, Kasuga A, Nakazawa H, Takamatsu T, Watanabe Y, Morichi S, Ishida Y, Yamazaki T, Go S. Experimental and Clinical Investigation of Cytokines in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:ijms24098343. [PMID: 37176049 PMCID: PMC10178908 DOI: 10.3390/ijms24098343] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The role of neuroinflammation in the pathophysiology of migraines is increasingly being recognized, and cytokines, which are important endogenous substances involved in immune and inflammatory responses, have also received attention. This review examines the current literature on neuroinflammation in the pathogenesis of migraine. Elevated TNF-α, IL-1β, and IL-6 levels have been identified in non-invasive mouse models with cortical spreading depolarization (CSD). Various mouse models to induce migraine attack-like symptoms also demonstrated elevated inflammatory cytokines and findings suggesting differences between episodic and chronic migraines and between males and females. While studies on human blood during migraine attacks have reported no change in TNF-α levels and often inconsistent results for IL-1β and IL-6 levels, serial analysis of cytokines in jugular venous blood during migraine attacks revealed consistently increased IL-1β, IL-6, and TNF-α. In a study on the interictal period, researchers reported higher levels of TNF-α and IL-6 compared to controls and no change regarding IL-1β levels. Saliva-based tests suggest that IL-1β might be useful in discriminating against migraine. Patients with migraine may benefit from a cytokine perspective on the pathogenesis of migraine, as there have been several encouraging reports suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kanako Hayashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Chiako Ishii
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Rie Ishimine
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Haruka Nakazawa
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takashi Yamazaki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
4
|
Gazerani P. Human Brain Organoids in Migraine Research: Pathogenesis and Drug Development. Int J Mol Sci 2023; 24:3113. [PMID: 36834522 PMCID: PMC9961184 DOI: 10.3390/ijms24043113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human organoids are small, self-organized, three-dimensional (3D) tissue cultures that have started to revolutionize medical science in terms of understanding disease, testing pharmacologically active compounds, and offering novel ways to treat disease. Organoids of the liver, kidney, intestine, lung, and brain have been developed in recent years. Human brain organoids are used for understanding pathogenesis and investigating therapeutic options for neurodevelopmental, neuropsychiatric, neurodegenerative, and neurological disorders. Theoretically, several brain disorders can be modeled with the aid of human brain organoids, and hence the potential exists for understanding migraine pathogenesis and its treatment with the aid of brain organoids. Migraine is considered a brain disorder with neurological and non-neurological abnormalities and symptoms. Both genetic and environmental factors play essential roles in migraine pathogenesis and its clinical manifestations. Several types of migraines are classified, for example, migraines with and without aura, and human brain organoids can be developed from patients with these types of migraines to study genetic factors (e.g., channelopathy in calcium channels) and environmental stressors (e.g., chemical and mechanical). In these models, drug candidates for therapeutic purposes can also be tested. Here, the potential and limitations of human brain organoids for studying migraine pathogenesis and its treatment are communicated to generate motivation and stimulate curiosity for further research. This must, however, be considered alongside the complexity of the concept of brain organoids and the neuroethical aspects of the topic. Interested researchers are invited to join the network for protocol development and testing the hypothesis presented here.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway; or
- Centre for Intelligent Musculoskeletal Health (CIM), Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
5
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
6
|
Chang CL, Cai Z, Hsu SYT. Sustained Activation of CLR/RAMP Receptors by Gel-Forming Agonists. Int J Mol Sci 2022; 23:ijms232113408. [PMID: 36362188 PMCID: PMC9655119 DOI: 10.3390/ijms232113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan 20878, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD 20878, USA
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA 95138, USA
- Correspondence: ; Tel.: +1-650-799-3496
| |
Collapse
|
7
|
Thuraiaiyah J, Erritzøe-Jervild M, Al-Khazali HM, Schytz HW, Younis S. The role of cytokines in migraine: A systematic review. Cephalalgia 2022; 42:1565-1588. [PMID: 35962530 DOI: 10.1177/03331024221118924] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cytokines are important endogenous substances that are involved in immune and inflammatory responses. Neurogenic inflammation has been proposed to play a role in migraine involving altered cytokine levels. Therefore, we aimed to provide a systematic review on the current knowledge on cytokine levels in migraine patients during and outside attacks. METHODS Databases of PubMed and Embase were systematically searched for studies investigating cytokine levels in migraine patients during and outside attacks. RESULTS Screening yielded identification of 45 articles investigating 18 cytokines in total. We found that the interictal level of the anti-inflammatory cytokine, interleukin 10, was decreased, while the level of transforming growth factor beta 1 was increased in migraine patients compared to controls. Levels of pro-inflammatory cytokines, tumor necrosis factor α and interleukin 6, were increased outside attacks compared to controls. Ictal levels of cytokines were unchanged or varying compared to the interictal state in migraine patients. Three studies reported dynamic cytokines levels during the course of an attack. CONCLUSION The findings of the current review underline a possible involvement of cytokines in the proposed inflammatory mechanisms of migraine. However, future studies are needed to expand our knowledge of the exact role of cytokines in the migraine pathophysiology with focus on cytokines TNF-α, IL-1ß, IL-6 and IL-10 while applying refined methodology.
Collapse
Affiliation(s)
- Janu Thuraiaiyah
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mai Erritzøe-Jervild
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Haidar Muhsen Al-Khazali
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Samaira Younis
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Pak K, Kim J, Lee GH, Cho JW, Kim HW. Effectiveness of Calcitonin Gene-Related Peptide Receptor Antagonists for Migraine Treatment: A Meta-Analysis. Eur Neurol 2022; 85:195-201. [PMID: 35100579 DOI: 10.1159/000521697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/11/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The pathophysiology of migraine has been researched incessantly, and it has been suggested that calcitonin gene-related peptide (CGRP) is associated with migraine attacks. CGRP receptor blockers are attracting attention as potential agents for migraine prevention and treatment of acute episodes. This meta-analysis aimed to assess the effects of available CGRP receptor antagonists, focusing on their therapeutic doses for acute migraine treatment. METHODS We systematically searched MEDLINE and Embase from inception to March 27, 2021, for English-language publications using the keywords "migraine" and "calcitonin gene-related peptide"; the searches were limited to human studies. RESULTS Five studies that focused on examining the effects of CGRP receptor antagonists on acute migraine treatment met the eligibility criteria for this meta-analysis. A pooled analysis demonstrated that CGRP receptor antagonists significantly increased freedom from pain (odds ratio [OR] = 2.066, 95% confidence interval [CI] 1.766-2.418, I2 = 0%) and from bothersome symptoms in general (OR = 1.606, 95% CI = 1.408-1.830, I2 = 0%); reduced the intensity of pain (OR = 1.791, 95% CI = 1.598-2.008, I2 = 0%); and increased freedom from nausea (OR = 1.361, 95% CI = 1.196-1.548, I2 = 0%) compared to a placebo. CONCLUSIONS CGRP receptor antagonists are effective for acute migraine treatment and are expected to be used clinically as emerging therapeutic agents.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jiyoung Kim
- Department of Neurology and BioMedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Gha-Hyun Lee
- Department of Neurology and BioMedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jae Wook Cho
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyun-Woo Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Boucher ML, Conley G, Nowlin J, Qiu J, Kawata K, Bazarian JJ, Meehan WP, Mannix R. Titrating the Translational Relevance of a Low-Level Repetitive Head Impact Model. Front Neurol 2022; 13:857654. [PMID: 35785366 PMCID: PMC9246060 DOI: 10.3389/fneur.2022.857654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been increased attention in the scientific community to the phenomenon of sub-concussive impacts, those hits to the head that do not cause the signs and symptoms of a concussion. Some authors suggest that sub-concussive impacts may alter behavior and cognition, if sustained repetitively, but the mechanisms underlying these changes are not well-defined. Here, we adapt our well-established weight drop model of repetitive mild traumatic brain injury (rmTBI) to attempt to produce a model of low-level repetitive head impacts (RHI). The model was modified to eliminate differences in latency to right following impact and gross behavioral changes after a single cluster of hits. Further, we varied our model in terms of repetition of impact over a 4-h span to mimic the repeated sub-concussive impacts that may be experienced by an athlete within a single day of play. To understand the effects of a single cluster of RHIs, as well as the effect of an increased impact frequency within the cluster, we evaluated classical behavioral measures, serum biomarkers, cortical protein quantification, and immunohistochemistry both acutely and sub-acutely following the impacts. In the absence of gross behavioral changes, the impact protocol did generate pathology, in a dose-dependent fashion, in the brain. Evaluation of serum biomarkers revealed limited changes in GFAP and NF-L, which suggests that their diagnostic utility may not emerge until the exposure to low-level head impacts reaches a certain threshold. Robust decreases in both IL-1β and IL-6 were observed in the serum and the cortex, indicating downregulation of inflammatory pathways. These experiments yield initial data on pathology and biomarkers in a mouse model of low-level RHIs, with relevance to sports settings, providing a starting point for further exploration of the potential role of anti-inflammatory processes in low-level RHI outcomes, and how these markers may evolve with repeated exposure.
Collapse
Affiliation(s)
- Masen L Boucher
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Grace Conley
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jordan Nowlin
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jianhua Qiu
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, IN, United States
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Harvard Medical School, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, United States.,The Micheli Center for Sports Injury Prevention, Waltham, MA, United States
| | - Rebekah Mannix
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Africk BN, Heiferman DM, Wozniak AW, Behzadi F, Ballard MS, Chazaro JM, Zsigray BM, Shanker RM, Reynolds MR, Anderson DE, Serrone JC. Angioarchitectural features amongst patients with unruptured brain arteriovenous malformations presenting with headache: findings from a single center retrospective review of 76 patients. J Headache Pain 2021; 22:122. [PMID: 34627140 PMCID: PMC8501699 DOI: 10.1186/s10194-021-01331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Background Brain arteriovenous malformations (AVMs) consist of abnormal connections between arteries and veins via an interposing nidus. While hemorrhage is the most common presentation, unruptured AVMs can present with headaches, seizures, neurological deficits, or be found incidentally. It remains unclear as to what AVM characteristics contribute to pain generation amongst unruptured AVM patients with headaches. Methods To assess this relationship, the current study evaluates angiographic and clinical features amongst patients with unruptured brain AVMs presenting with headache. Loyola University Medical Center medical records were queried for diagnostic codes corresponding to AVMs. In patients with unruptured AVMs, we analyzed the correlation between the presenting symptom of headache and various demographic and angiographic features. Results Of the 144 AVMs treated at our institution between 1980 and 2017, 76 were unruptured and had sufficient clinical data available. Twenty-three presented with headaches, while 53 patients had other presenting symptoms. Patients presenting with headache were less likely to have venous stenosis compared to those with a non-headache presentation (13 % vs. 36 %, p = 0.044). Conclusions Our study suggests that the absence of venous stenosis may contribute to headache symptomatology. This serves as a basis for further study of correlations between AVM angioarchitecture and symptomatology to direct headache management in AVM patients.
Collapse
Affiliation(s)
- Benjamin N Africk
- Department of Pediatric Neurology, Lucile Packard Children's Hospital at Stanford, 725 Welch Road, CA, 94304, Palo Alto, USA
| | | | - Amy W Wozniak
- Clinical Research Office, Stritch School of Medicine, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Faraz Behzadi
- Loyola Stritch School of Medicine, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Matthew S Ballard
- Loyola Stritch School of Medicine, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Joshua M Chazaro
- Loyola Stritch School of Medicine, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Brandon M Zsigray
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Rachyl M Shanker
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Matthew R Reynolds
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA
| | - Douglas E Anderson
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA.,Edward Hines Jr Veteran Administration Hospital, 5000 5th Avenue, IL, 60141, Hines, USA
| | - Joseph C Serrone
- Department of Neurological Surgery, Loyola University Medical Center, 2160 S. First Avenue, IL, 60153, Maywood, USA. .,Edward Hines Jr Veteran Administration Hospital, 5000 5th Avenue, IL, 60141, Hines, USA. .,Loyola University Medical Center, 2160 S 1st Avenue, IL, 60153, Maywood, USA.
| |
Collapse
|
12
|
Won L, Kraig RP. Insulin-like growth factor-1 inhibits nitroglycerin-induced trigeminal activation of oxidative stress, calcitonin gene-related peptide and c-Fos expression. Neurosci Lett 2021; 751:135809. [PMID: 33713748 DOI: 10.1016/j.neulet.2021.135809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/06/2023]
Abstract
Migraineurs experience increased oxidative stress which drives the initiation and maintenance of migraine-related pain in animal models and, by extension, migraine in humans. Oxidative stress augments calcitonin gene-related peptide (CGRP) levels, a mediator of migraine pain. Insulin-like growth factor-1 (IGF-1), a neuroprotective growth factor, reduces susceptibility to spreading depression, a preclinical model of migraine, in cultured brain slices by blocking oxidative stress and neuroinflammation from microglia. Similarly, nasal delivery of IGF-1 inhibits spreading depression in vivo. After recurrent cortical spreading depression, nasal administration of IGF-1 also significantly reduces trigeminal ganglion oxidative stress and CGRP levels as well as trigeminocervical c-Fos activation. Here, we probed for the impact of nasal IGF-1 pretreatment on trigeminal system activation using a second well-established preclinical model of migraine, systemic nitroglycerin injection. Adult male rats were treated with one of three doses of IGF-1 (37.5, 75 or 150 μg) and the optimal dose found in males was subsequently used for treatment of female rats. One day later, animals received an intraperitoneal injection of nitroglycerin. Measurements taken two hours later after nitroglycerin alone showed increased surrogate markers of trigeminal activation - oxidative stress and CGRP in the trigeminal ganglion and c-Fos in the trigeminocervical complex compared to vehicle control. These effects were significantly reduced at all doses of IGF-1 for trigeminal ganglion metrics of oxidative stress and CGRP and only at the lowest dose in both males and females for c-Fos. The latter inverted U-shaped or hormetic response is seen in enzyme-targeting drugs. While the specific mechanisms remain to be explored, our data here supports the ability of IGF-1 to preserve mitochondrial and antioxidant pathway homeostasis as means to prevent nociceptive activation in the trigeminal system produced by an experimental migraine model.
Collapse
Affiliation(s)
- Lisa Won
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Richard P Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Guo Y, Cheng Y, An J, Qi Y, Luo G. Neuropeptide changes in an improved migraine model with repeat stimulations. Transl Neurosci 2021; 12:523-532. [PMID: 34963819 PMCID: PMC8662580 DOI: 10.1515/tnsci-2020-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a medical condition with a severe recursive headache. The activation of the trigeminovascular system is an important mechanism. The neuropeptide calcitonin gene-related peptide (CGRP) plays a crucial role in the pathogenesis of migraine. Several other neuropeptides are also involved; however, their roles in migraine remain unclear. In this study, using a rat model of migraine induced by electrical stimulation of the trigeminal ganglia (TG) and an improved version induced with repeated stimulation, we observed the dynamic changes of these peptides in TG and blood. We demonstrated that the expression of CGRP, pituitary adenylate cyclase activating polypeptide (PACAP), neuropeptide Y (NPY), vasoactive intestinal peptide, and nociceptin in TG was significantly elevated and peaked at different time points after a single stimulation. Their levels in the blood plasma were significantly increased at 12 h after stimulation. The peptides were further elevated with repeated stimulation. The improved rat model of migraine with repeated stimulation of TG resulted in a more pronounced elevation of CGRP, PACAP, and NPY. Thus, the dynamic changes in neuropeptides after stimulation suggest that these neuropeptides may play an important role in the pathogenesis of migraine. Additionally, the migraine model with repetitive stimulation would be a novel model for future research.
Collapse
Affiliation(s)
- Yichen Guo
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Yawen Cheng
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Jiaqi An
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Yi Qi
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| | - Guogang Luo
- Stroke Center, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China
| |
Collapse
|
14
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Laborc KF, Spekker E, Bohár Z, Szűcs M, Nagy-Grócz G, Fejes-Szabó A, Vécsei L, Párdutz Á. Trigeminal activation patterns evoked by chemical stimulation of the dura mater in rats. J Headache Pain 2020; 21:101. [PMID: 32799798 PMCID: PMC7429748 DOI: 10.1186/s10194-020-01169-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although migraine is one of the most common primary headaches, its therapy is still limited in many cases. The use of animal models is crucial in the development of novel therapeutic strategies, but unfortunately, none of them show all aspects of the disease, therefore, there is a constant need for further improvement in this field. The application of inflammatory agents on the dura mater is a widely accepted method to mimic neurogenic inflammation in rodents, which plays a key role in the pathomechanism of migraine. Complete Freund's Adjuvant (CFA), and a mixture of inflammatory mediators, called inflammatory soup (IS) are often used for this purpose. METHODS To examine the activation pattern that is caused by chemical stimulation of dura mater, we applied CFA or IS over the right parietal lobe. After 2 h and 4 h (CFA groups), or 2.5 h and 4 h (IS groups), animals were perfused, and c-Fos immunoreactive cells were counted in the caudal trigeminal nucleus. To explore every pitfall, we examined whether our surgical procedure (anesthetic drug, stereotaxic apparatus, local lidocaine) can alter the results under the same experimental settings. c-Fos labeled cells were counted in the second-order neuron area based on the somatotopic organization of the trigeminal nerve branches. RESULTS We could not find any difference between the CFA and physiological saline group neither 2 h, nor 4 h after dural stimulation. IS caused significant difference after both time points between IS treated and control group, and between treated (right) and control (left) side. Stereotaxic frame usage had a substantial effect on the obtained results. CONCLUSIONS Counting c-Fos immunoreactive cells based on somatotopic organization of the trigeminal nerve helped to examine the effect of chemical stimulation of dura in a more specific way. As a result, the use of IS over the parietal lobe caused activation in the area of the ophthalmic nerve. To see this effect, the use of lidocaine anesthesia is indispensable. In conclusion, application of IS on the dura mater induces short-term, more robust c-Fos activation than CFA, therefore it might offer a better approach to model acute migraine headache in rodents.
Collapse
Affiliation(s)
- Klaudia Flóra Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
- Interdisciplinary Excellence Center, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
16
|
Lin YT, Yu Z, Tsai SC, Hsu PH, Chen JC. Neuropeptide FF receptor 2 inhibits capsaicin-induced CGRP Upregulation in mouse trigeminal ganglion. J Headache Pain 2020; 21:87. [PMID: 32640973 PMCID: PMC7346335 DOI: 10.1186/s10194-020-01152-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stimulation of trigeminovascular pathway is widely used to establish the headache animal model. Headache is a common neurological disorder, in which symptomatic attacks are mediated by calcitonin-gene-related peptide (CGRP). CGRP is synthesized and released from the trigeminal ganglion to transmit pain signals under stimulation. On the other hand, Neuropeptide FF (NPFF) is a candidate transmitter/modulator for migraine, and stimulation of its receptor, NPFFR2, increases the expression and release of CGRP in mice sensory neurons. Here, we investigate the impact of NPFFR2 on trigeminal CGRP level in a capsaicin-induced headache mouse model. METHODS Mice were intracisternally injected with capsaicin into the cisterna magna to activate the trigeminovascular pathway and induce headache symptoms. Mice pretreated with Npffr2-shRNA or NPFFR2 knockouts were adopted to test the impact of NPFFR2 on capsaicin-induced CGRP upregulation in trigeminal ganglion. The gene silencing effect of Npffr2-shRNA in trigeminal ganglion was confirmed by real-time PCR. Trigeminal CGRP level was determined by immunofluorescence staining, and the percentage of CGRP-positive cell was calculated after setting the signal intensity threshold by Image J software. Amount of trigeminal CGRP in NPFFR2 overexpressed mice was also measured by CGRP ELISA. FINDINGS Infusion of capsaicin into the cisterna magna upregulated the CGRP in trigeminal ganglion and induced spontaneous pain behaviors including the reduction of locomotor activity and the increase of freezing behavior. Intracisternal injection of Npffr2-shRNA reduced the mRNA of Npffr2 in trigeminal ganglion. Mice pretreatment with Npffr2-shRNA prevented capsaicin-induced CGRP upregulation in trigeminal ganglion. Similarly, CGRP upregulation was also reduced in NPFFR2 knockout mice. On the contrary, trigeminal CGRP was increased in NPFFR2 overexpressed mice. CONCLUSIONS Reducing the level of NPFFR2 leads to the downregulation of capsaicin-induced CGRP in trigeminal ganglion, which would consequently attenuate the activation of trigeminovascular pathway. Thus, NPFFR2 could serve as a potential target for neuromodulation of cephalic pain.
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan City, 33302, Taiwan.,Healthy Aging Research Center, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Zachary Yu
- Department of Medicine, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Sze-Chi Tsai
- Department of Biomedical Sciences, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Po-Hung Hsu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, 5 Fu-Hsing Street. Guishan Dist, Taoyuan City, 33302, Taiwan.,Department of Electrical Engineering, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan City, 33302, Taiwan. .,Healthy Aging Research Center, Chang Gung University, 259 Wenhua 1st Road, Guishan Dist, Taoyuan City, 33302, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, 5 Fu-Hsing Street. Guishan Dist, Taoyuan City, 33302, Taiwan.
| |
Collapse
|
17
|
Güler Ö, Güler M, Tuğan Yıldız CB, Hakkoymaz H. Are Retinal and Peripapillary Blood Flows Affected during Migraine Attack? Neuroophthalmology 2020; 44:299-306. [PMID: 33012919 DOI: 10.1080/01658107.2020.1752260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Migraine pathophysiology is complex and partially includes the vasculature. This study compared retinal and peripapillary blood flow parameters in migraine patients during an attack with healthy controls using optical coherence tomography angiography (OCTA). A prospective clinical study was conducted including 52 eyes from 26 migraineurs and 48 eyes from 24 healthy controls. OCTAs were performed with RTVue XR Avanti using AngioVue software. OCTA imaging was performed during the attack period in migraineurs before any treatment for the attack. Vascular densities in the whole image, fovea, superior hemisphere, inferior hemisphere, and temporal, superior, nasal, and inferior regions of the parafoveal area and in the superficial and deep capillary plexuses were acquired and statistically analysed. The flow density parameters were measured in the superficial retinal capillary plexus, deep retinal capillary plexus, outer retinal capillary plexus, and choriocapillaris layers of the macula in a 3-mm diameter area. The peripapillary flow densities were measured for the optic nerve head, vitreous, radial peripapillary capillaries, and choroid in a 4.50-mm diameter area around the optic disc. Vascular density measurements in the superficial plexus were similar between migraineurs and controls (p > .05). Vascular densities in the deep capillary plexus were similar between groups (p > .05), except in the deep superior area (p = .05). Flow areas in the nerve head, vitreous, peripapillary capillary, and choroid segments were similar between migraineurs and controls (p > .05). Macular thickness parameters were also similar between groups (p > .05). The results suggest that an acute migraine attack does not affect retinal or peripapillary blood flow.
Collapse
Affiliation(s)
- Özlem Güler
- School of Medicine, Department of Emergency Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Mete Güler
- School of Medicine, Department of Emergency Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Cemile Buket Tuğan Yıldız
- School of Medicine, Department of Emergency Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Hakan Hakkoymaz
- School of Medicine, Department of Emergency Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
18
|
Yang Q, Luo C, Zhang X, Liu Y, Wang Z, Cacciamani P, Shi J, Cui Y, Wang C, Sinha B, Peng B, Tong G, Das G, Shah E, Gao Y, Li W, Tu Y, Qian D, Shah K, Akbar M, Zhou S, Song BJ, Wang X. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. Am J Transl Res 2020; 12:70-89. [PMID: 32051738 PMCID: PMC7013218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Alcohol use disorder (AUD) is an enormous public health problem that poses significant social, medical, and economic burdens. Under AUD, the liver is one of the most adversely affected organs. As current therapies and protective drugs for AUD-mediated liver injury are very limited, the prevention and therapy of alcoholic liver disease are urgently needed. The present study aims to investigate the beneficial effects of tartary buckwheat extract (TBE), the important component of Maopu tartary buckwheat liquor, on both alcoholic-induced acute and chronic liver injuries. We show that the TBE administration, similar to curcumin, significantly reduces the elevated serum aspartate aminotransferase and alanine aminotransferase levels, improves liver index, alleviates the elevated contents of hepatic malondialdehye, and restores the decreased contents of hepatic glutathione both in acute and chronic liver injuries in alcohol-exposed rats. Furthermore, histopathological analyses show that a medium dose of TBE (16.70 ml/kg body weight) alleviates hepatocyte morphology changes in both acute and chronic alcohol exposure models. We also show the protective effects of TBE on the cell death rates of alcohol-exposed primary cultured hepatocytes, HepG2 hepatoma, and Huh 7 hepatoma cells. Furthermore, we demonstrate that TBE exerts hepatoprotection partly through inhibiting the mitochondrial cell death pathway by reducing cytochrome c release, caspase-9 and -3 activities, and the number of TUNEL-positive cells. These effects of TBE were accompanied by enhanced levels of Bcl-2 and Bcl-xL and autophagic cell death pathway by reducing Beclin-1 expression, as well as through promoting its anti-oxidant capacity by suppressing reactive oxygen species production. This study demonstrates, for the first time, the protective effect of TBE against alcohol-induced acute and chronic liver injury in vivo and in vitro. Given the dietary nature of tartary buckwheat, pueraria, lycium barbarum, and hawthorn, the oral intake of TBE or liquor contained TBE, e.g., Maopu Tartary buckwheat liquor, compared with pure liquor consumption alone, may have the potential to alleviate alcoholic-induced liver injuries.
Collapse
Affiliation(s)
- Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Chengliang Luo
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
- Department of Forensic Medicine, Medical College of Soochow UniversitySuzhou, Jiangsu, China
| | - Xinmu Zhang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Zufeng Wang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
- Department of Forensic Medicine, Medical College of Soochow UniversitySuzhou, Jiangsu, China
| | | | - Jiao Shi
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Yongchun Cui
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Chunling Wang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Bharati Sinha
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Bin Peng
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Guoqiang Tong
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research InstituteDaye, Hubei, China
| | - Gapika Das
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Elisha Shah
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Yuan Gao
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Wei Li
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Yanyang Tu
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Dongyang Qian
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Khalid Shah
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockville, MD, USA
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthRockville, MD, USA
| | - Xin Wang
- Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
19
|
Studies on the Mechanism of Glutamate Metabolism in NTG-Induced Migraine Rats Treated with DCXF. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1324797. [PMID: 32082393 PMCID: PMC7011483 DOI: 10.1155/2019/1324797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Objective To explore the mechanism of the antimigraine effect by active components extracted from the Dachuanxiong prescription (DCXF), nitroglycerin- (NTG-) induced migraine rats were used to detect the change of glutamate metabolism and the overall metabolic profile at different time points in the serum and Trigeminocervical complex(TCC) samples. Method The biological samples that were obtained at 30 minutes, 60 minutes, and 90 minutes after model establishment or drug administration were tested by GC-TOF-MS. Then, real-time PCR and western blot were applied to detect changes in the expression of some substances involved in glutamate metabolism. Result DCXF could improve the metabolic profile of serum and TCC in migraine rats and showed the time trend of treatment, mainly involved by amino acid metabolism (glutamate, aspartic acid, and alanine metabolism). In addition, DCXF could increase the expressions of GS at 60 min and 90 min and EAAT1 at 90 min. The results of GS protein were similar to that of mRNA. Conclusion The antimigraine effect of DCXF could be achieved by improving the metabolic profile and increasing the expressions of GS and EAAT1 to promote the glutamate cycle of TCC and serum samples in NTG-induced migraine rats to a certain extent.
Collapse
|
20
|
Tardiolo G, Bramanti P, Mazzon E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int J Mol Sci 2019; 20:E2932. [PMID: 31208068 PMCID: PMC6628212 DOI: 10.3390/ijms20122932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a disorder affecting an increasing number of subjects. Currently, this disorder is not entirely understood, and limited therapeutic solutions are available. Migraine manifests as a debilitating headache associated with an altered sensory perception that may compromise the quality of life. Animal models have been developed using chemical, physical or genetic modifications, to evoke migraine-like hallmarks for the identification of novel molecules for the treatment of migraine. In this context, experimental models based on the use of chemicals as nitroglycerin or inflammatory soup were extensively used to mimic the acute state and the chronicity of the disorder. This manuscript is aimed to provide an overview of murine models used to investigate migraine pathophysiology. Pharmacological targets as 5-HT and calcitonin gene-related peptide (CGRP) receptors were evaluated for their relevance in the development of migraine therapeutics. Drug delivery systems using nanoparticles may be helpful for the enhancement of the brain targeting and bioavailability of anti-migraine drugs as triptans. In conclusion, the progresses in migraine management have been reached with the development of emerging agonists of 5-HT receptors and novel antagonists of CGRP receptors. The nanoformulations may represent a future perspective in which already known anti-migraine drugs showed to better exert their therapeutic effects.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
21
|
Chang CL, Hsu SYT. Development of chimeric and bifunctional antagonists for CLR/RAMP receptors. PLoS One 2019; 14:e0216996. [PMID: 31150417 PMCID: PMC6544337 DOI: 10.1371/journal.pone.0216996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are
important neuropeptides and hormones for the regulation of neurotransmission,
vasotone, cardiovascular morphogenesis, vascular integrity, and feto‒placental
development. These peptides signal through CLR/RAMP1, 2 and 3 receptor
complexes. CLR/RAMP1, or CGRP receptor, antagonists have been developed for the
treatment of migraine headache and osteoarthritis pain; whereas CLR/RAMP2, or
ADM receptor, antagonists are being developed for the treatment of tumor
growth/metastasis. Based on the finding that an acylated chimeric ADM/ADM2
analog potently stimulates CLR/RAMP1 and 2 signaling, we hypothesized that the
binding domain of this analog could have potent inhibitory activity on CLR/RAMP
receptors. Consistent with this hypothesis, we showed that acylated truncated
ADM/ADM2 analogs of 27–31 residues exhibit potent antagonistic activity toward
CLR/RAMP1 and 2. On the other hand, nonacylated analogs have minimal activity.
Further truncation at the junctional region of these chimeric analogs led to the
generation of CLR/RAMP1-selective antagonists. A 17-amino-acid analog
(Antagonist 2–4) showed 100-fold selectivity for CLR/RAMP1 and was >100-fold
more potent than the classic CGRP receptor antagonist CGRP8-37. In addition, we
showed (1) a lysine residue in the Antagonist 2–4 is important for enhancing the
antagonistic activity, (2) an analog consisted of an ADM sequence motif and a
12-amino-acid binding domain of CGRP exhibits potent CLR/RAMP1-inhibitory
activity, and (3) a chimeric analog consisted of a somatostatin analog and an
ADM antagonist exhibits dual activities on somatostatin and CLR/RAMP receptors.
Because the blockage of CLR/RAMP signaling prevents migraine pain and suppresses
tumor growth/metastasis, further studies of these analogs, which presumably have
better access to the tumor microenvironment and nerve endings at the trigeminal
ganglion and synovial joints as compared to antibody-based therapies, may lead
to the development of better anti-CGRP therapy and alternative antiangiogenesis
therapy. Likewise, the use of bifunctional somatostatin-ADM antagonist analogs
could be a promising strategy for the treatment of high-grade neuroendocrine
tumors by targeting an antiangiogenesis agent to the neuroendocrine tumor
microenvironment.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital
Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan,
Taiwan
| | | |
Collapse
|
22
|
Koyuncu Irmak D, Kilinc E, Tore F. Shared Fate of Meningeal Mast Cells and Sensory Neurons in Migraine. Front Cell Neurosci 2019; 13:136. [PMID: 31024263 PMCID: PMC6460506 DOI: 10.3389/fncel.2019.00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a primary headache disorder which has complex neurogenic pathophysiological mechanisms still requiring full elucidation. The sensory nerves and meningeal mast cell couplings in the migraine target tissue are very effective interfaces between the central nervous system and the immune system. These couplings fall into three categories: intimacy, cross-talk and a shared fate. Acting as the immediate call-center of the neuroimmune system, mast cells play fundamental roles in migraine pathophysiology. Considerable evidence shows that neuroinflammation in the meninges is the key element resulting in the sensitization of trigeminal nociceptors. The successive events such as neuropeptide release, vasodilation, plasma protein extravasation, and mast cell degranulation that form the basic characteristics of the inflammation are believed to occur in this persistent pain state. In this regard, mast cells and sensory neurons represent both the target and source of the neuropeptides that play autocrine, paracrine, and neuro-endocrine roles during this inflammatory process. This review intends to contribute to a better understanding of the meningeal mast cell and sensory neuron bi-directional interactions from molecular, cellular, functional points of view. Considering the fact that mast cells play a sine qua non role in expanding the opportunities for targeted new migraine therapies, it is of crucial importance to explore these multi-faceted interactions.
Collapse
Affiliation(s)
- Duygu Koyuncu Irmak
- Department of Histology and Embryology, School of Medicine, Biruni University, Istanbul, Turkey
| | - Erkan Kilinc
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Fatma Tore
- Department of Physiology, School of Medicine, Biruni University, Istanbul, Turkey
| |
Collapse
|
23
|
Gazerani P, Cairns BE, Yassin H, Yousefi JT, Sherzaman AR, Nedergaard BS, Boldsen SK. Amplification of glyceryl trinitrate-induced headache features by noxious craniofacial stimuli in pain-free healthy humans. Pain Manag 2019; 9:17-35. [PMID: 30501556 DOI: 10.2217/pmt-2018-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Glyceryl trinitrate (GTN) provokes an immediate migraine-like headache, followed by a delayed migraine attack in migraineurs. In healthy volunteers, only an immediate, less severe and shorter headache occurs. The presence of an already sensitized nervous system in migraineurs may underlie the more intense and prolonged GTN-evoked headaches. We tested if in healthy humans, application of noxious cutaneous and/or mechanical stimulation within craniofacial region would enhance or prolong GTN-evoked headache. MATERIALS & METHODS Noxious stimuli with a capsaicin patch on forehead, a mechanical headband, or both were applied prior to sublingual GTN (0.5 mg) in 20 healthy volunteers. GTN-induced headache characteristics and sensory responsiveness were recorded. RESULTS A more intense GTN-evoked headache was produced following application of headband. CONCLUSION Noxious mechanical stimulation prior to GTN resulted in a more intense GTN-evoked headache.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Brian Edwin Cairns
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Hanim Yassin
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Jasmin Tannaz Yousefi
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Asiah Rahi Sherzaman
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | | | - Søren Kjærgaard Boldsen
- Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital North, Aalborg, Denmark
| |
Collapse
|
24
|
Affiliation(s)
- Parisa Gazerani
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Brian Edwin Cairns
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Peterson NC, Nunamaker EA, Turner PV. To Treat or Not to Treat: The Effects of Pain on Experimental Parameters. Comp Med 2017; 67:469-482. [PMID: 29212578 PMCID: PMC5713161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
A common dilemma faced by all animal bioethics committees arises when exceptions are proposed to the use of analgesics in painful procedures. The committee and researcher must weigh the possible confounding effects of including additional drugs (analgesics) in their treatment regimen against the moral obligation to perform humane research. Often neglected in these considerations are the potential confounding effects of unrelieved pain and consistency with pain-relieving practices in human medicine. In this review, we summarize what is currently known regarding the molecular and physiologic effects of pain and analgesics in common animal models used across several therapeutic areas. This work is intended to help provide guidance and assurance that a comprehensive approach has been taken when contemplating how pain relief will be applied in animal research protocols.
Collapse
Affiliation(s)
| | | | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Grinberg YY, Zitzow LA, Kraig RP. Intranasally administered IGF-1 inhibits spreading depression in vivo. Brain Res 2017; 1677:47-57. [PMID: 28951235 DOI: 10.1016/j.brainres.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Abstract
Spreading depression (SD) is a wave of cellular depolarization that travels slowly through susceptible gray matter brain areas. SD is the most likely cause of migraine aura and perhaps migraine pain, and is a well-accepted animal model of migraine. Identification of therapeutics that can prevent SD may have clinical relevance toward migraine treatment. Here we show that insulin-like growth factor-1 (IGF-1) significantly inhibited neocortical SD in vivo after intranasal delivery to rats. A single dose of IGF-1 inhibited SD within an hour, and continued to protect for at least seven days thereafter. A two-week course of IGF-1, administered every third day, further decreased SD susceptibility and showed no aberrant effects on glial activation, nasal mucosa, or serum markers of toxicity. SD begets SD in vitro by mechanisms that involve microglial activation. We add to this relationship by showing that recurrent SD in vivo increased susceptibility to subsequent SD, and that intervention with IGF-1 significantly interrupted this pathology. These findings support nasal administration of IGF-1 as a novel intervention capable of mitigating SD susceptibility, and as a result, potentially migraine.
Collapse
Affiliation(s)
- Yelena Y Grinberg
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, United States
| | - Lois A Zitzow
- Animal Resources Center, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, United States
| | - Richard P Kraig
- Department of Neurology, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637-1470, United States.
| |
Collapse
|
27
|
Moye LS, Pradhan AAA. Animal Model of Chronic Migraine-Associated Pain. ACTA ACUST UNITED AC 2017; 80:9.60.1-9.60.9. [PMID: 28678396 DOI: 10.1002/cpns.33] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a debilitating condition that affects hundreds of millions of people worldwide. A subset of these patients experience chronic migraine, resulting in long-term disability and a severely lowered quality of life. The development of novel migraine therapies has been slow, partially due to the small number of predictive animal models. We have recently developed a novel model of chronic migraine-associated pain, using the known human migraine trigger, nitroglycerin. Injection of nitroglycerin evokes an acute mechanical hyperalgesia, which is sensitive to the acute migraine therapy sumatriptan. In addition, chronic administration of nitroglycerin produces a progressive and sustained decrease in basal mechanical responses, and this hypersensitivity is blocked by migraine preventatives such as topiramate. This mouse model of chronic migraine can be used to study the mechanisms underlying progression of migraine from an episodic to a chronic disorder, and for identifying and screening novel acute and preventive migraine therapies. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Amynah A A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
28
|
Targeting of calcitonin gene-related peptide action as a new strategy for migraine treatment. Neurol Neurochir Pol 2016; 50:463-467. [DOI: 10.1016/j.pjnns.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
|
29
|
Tipton AF, Tarash I, McGuire B, Charles A, Pradhan AA. The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia 2016; 36:1048-1056. [PMID: 26682574 DOI: 10.1177/0333102415623070] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background The development of novel migraine therapies has been slow, in part because of the small number of clinically relevant animal models. We have recently developed a new mouse model of chronic migraine using chronic intermittent nitroglycerin, a known human migraine trigger. The objective of this study was to validate this model by testing known and potential migraine-preventive treatments. Methods Migraine therapies were administered to male and female mice for 11 days. On day 3, mice were tested with nitroglycerin every second day for nine days. Basal and nitroglycerin-evoked mechanical hypersensitivity was evaluated using von Frey filaments. Results Chronic intermittent nitroglycerin produced acute hyperalgesia with each administration, and progressive and sustained basal hypersensitivity. The established preventive migraine therapy propranolol effectively blocked the development of acute and chronic nitroglycerin-induced hyperalgesia, while valproate had no effect. Potential migraine-preventive therapies were also tested: Amiloride inhibited nitroglycerin-induced acute and chronic hyperalgesia; while memantine was ineffective. We also tested the acute migraine therapy sumatriptan, which did not alter nitroglycerin-induced hyperalgesia, but instead resulted in acute and chronic hyperalgesia similar to that observed following nitroglycerin administration. Conclusions This study establishes the chronic nitroglycerin model as an additional screening tool to test novel migraine-preventive therapies.
Collapse
Affiliation(s)
- Alycia F Tipton
- 1 Department of Psychiatry, University of Illinois at Chicago, USA
| | - Igal Tarash
- 2 Headache Research and Treatment Program, Department of Neurology, David Geffen School of Medicine, UCLA, USA
| | - Brenna McGuire
- 2 Headache Research and Treatment Program, Department of Neurology, David Geffen School of Medicine, UCLA, USA
| | - Andrew Charles
- 2 Headache Research and Treatment Program, Department of Neurology, David Geffen School of Medicine, UCLA, USA
| | - Amynah A Pradhan
- 1 Department of Psychiatry, University of Illinois at Chicago, USA
| |
Collapse
|
30
|
Ellis JA, Mejia Munne JC, Lavine SD, Meyers PM, Connolly ES, Solomon RA. Arteriovenous malformations and headache. J Clin Neurosci 2016; 23:38-43. [DOI: 10.1016/j.jocn.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 01/03/2023]
|
31
|
Russo AF. CGRP as a neuropeptide in migraine: lessons from mice. Br J Clin Pharmacol 2015; 80:403-14. [PMID: 26032833 DOI: 10.1111/bcp.12686] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/25/2015] [Accepted: 05/18/2015] [Indexed: 01/04/2023] Open
Abstract
Migraine is a neurological disorder that is far more than just a bad headache. A hallmark of migraine is altered sensory perception. A likely contributor to this altered perception is the neuropeptide calcitonin gene-related peptide (CGRP). Over the past decade, CGRP has become firmly established as a key player in migraine. Although the mechanisms and sites of action by which CGRP might trigger migraine remain speculative, recent advances with mouse models provide some hints. This brief review focuses on how CGRP might act as both a central and peripheral neuromodulator to contribute to the migraine-like symptom of light aversive behaviour in mice.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.,Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.,Veterans Affairs Medical Center, Iowa City, IA, 52246, USA
| |
Collapse
|
32
|
Lawrence AJ, Cryan JF. Found in translation? Commentary on a BJP themed issue about animal models in neuropsychiatry research. Br J Pharmacol 2015; 171:4521-3. [PMID: 25257223 DOI: 10.1111/bph.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This themed issue of Br J Pharmacol is dedicated to the utility and needs of animal models in psychiatry research. The following articles document strengths and weaknesses, indicate areas where better models are sorely needed and provide examples where pharmacological studies may result in mechanistic breakthrough and aid in drug development. In addition, complicating factors both in disease and treatment strategies are canvassed, such as sex differences, genetic and environmental influences. While not exhaustive, the intention was to use a number of exemplars to stimulate discussion around how animal models can aid in improving our understanding and treatment of many devastating conditions.
Collapse
Affiliation(s)
- Andrew J Lawrence
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
33
|
Abstract
Cephalic pain and psychiatric disease physiopathology is one of the most elusive issues in medical research, and the cause might be common. Going through the possible reasons of the failure in understanding the physiopathology of these diseases might be helpful to project new studies that might overcome the difficulties encountered and thus open a window on cephalic pain and psychiatric disease. New approaches to psychiatric disease might be applied to cephalic pain.
Collapse
Affiliation(s)
- Alberto E Panerai
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy,
| |
Collapse
|
34
|
Coles JA, Myburgh E, Ritchie R, Hamilton A, Rodgers J, Mottram JC, Barrett MP, Brewer JM. Intravital imaging of a massive lymphocyte response in the cortical dura of mice after peripheral infection by trypanosomes. PLoS Negl Trop Dis 2015; 9:e0003714. [PMID: 25881126 PMCID: PMC4400075 DOI: 10.1371/journal.pntd.0003714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 11/23/2022] Open
Abstract
Peripheral infection by Trypanosoma brucei, the protozoan responsible for sleeping sickness, activates lymphocytes, and, at later stages, causes meningoencephalitis. We have videoed the cortical meninges and superficial parenchyma of C56BL/6 reporter mice infected with T.b.brucei. By use of a two-photon microscope to image through the thinned skull, the integrity of the tissues was maintained. We observed a 47-fold increase in CD2+ T cells in the meninges by 12 days post infection (dpi). CD11c+ dendritic cells also increased, and extravascular trypanosomes, made visible either by expression of a fluorescent protein, or by intravenous injection of furamidine, appeared. The likelihood that invasion will spread from the meninges to the parenchyma will depend strongly on whether the trypanosomes are below the arachnoid membrane, or above it, in the dura. Making use of optical signals from the skull bone, blood vessels and dural cells, we conclude that up to 40 dpi, the extravascular trypanosomes were essentially confined to the dura, as were the great majority of the T cells. Inhibition of T cell activation by intraperitoneal injection of abatacept reduced the numbers of meningeal T cells at 12 dpi and their mean speed fell from 11.64 ± 0.34 μm/min (mean ± SEM) to 5.2 ± 1.2 μm/min (p = 0.007). The T cells occasionally made contact lasting tens of minutes with dendritic cells, indicative of antigen presentation. The population and motility of the trypanosomes tended to decline after about 30 dpi. We suggest that the lymphocyte infiltration of the meninges may later contribute to encephalitis, but have no evidence that the dural trypanosomes invade the parenchyma. African trypanosomes are motile parasites that cause sleeping sickness. They multiply first in the blood then cause death mainly by effects on the brain: immune system cells, including T cells and dendritic cells, play major roles in this. Thinking we might see the attack on the brain, we infected mice with trypanosomes and used a two-photon microscope, which allowed us to image the superficial brain and the delicate tissue between the skull and the brain called the meninges without making a hole in the skull. The mice (which were anesthetized) had been genetically modified so that T cells and dendritic cells were fluorescent, as were the trypanosomes. We did not notice much happening in the brain itself, but in the meninges, in a compartment called the dura, huge numbers of T cells and dendritic cells appeared. Trypanosomes also moved from the blood into this compartment. Since T cells, dendritic cells and trypanosomes had not been videoed in the meninges before, we began by observing them carefully: their numbers, their movements and their interactions. The accumulation of lymphocytes is a sign of meningitis, a feature of infection by a wide range of pathogens and our results suggest interesting future work.
Collapse
Affiliation(s)
- Jonathan A. Coles
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alana Hamilton
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jean Rodgers
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Hoehlig K, Johnson KW, Pryazhnikov E, Maasch C, Clemens-Smith A, Purschke WG, Vauléon S, Buchner K, Jarosch F, Khiroug L, Vater A, Klussmann S. A novel CGRP-neutralizing Spiegelmer attenuates neurogenic plasma protein extravasation. Br J Pharmacol 2015; 172:3086-98. [PMID: 25659966 DOI: 10.1111/bph.13110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) plays an important role in the pathology of migraine, and recent clinical trials suggest the inhibition of CGRP-mediated processes as a new therapeutic option in migraine. In this study, we describe the generation of NOX-L41, a CGRP-neutralizing mirror-image (L-)aptamer (Spiegelmer) and investigate its in vitro and in vivo function. EXPERIMENTAL APPROACH A CGRP-binding Spiegelmer was identified by in vitro selection. Binding studies were performed using surface plasmon resonance (SPR), and the inhibitory activity was determined in cell-based assays. The pharmacokinetic profile comparing i.v. and s.c. dosing was analysed in rats. Intravital two-photon microscopy was employed to follow extravasation from meningeal vessels. Finally, in vivo efficacy was tested in a model of electrically evoked meningeal plasma protein extravasation (PPE) in rats. KEY RESULTS We identified NOX-L41, a novel CGRP-neutralizing Spiegelmer. SPR studies showed that NOX-L41 binds to human and rat/mouse CGRP with sub-nanomolar affinities and is highly selective against related peptides such as amylin. In vitro, NOX-L41 effectively inhibited CGRP-induced cAMP formation in SK-N-MC cells. In rats, NOX-L41 had a plasma half-life of 8 h. Pharmacodynamic studies showed that NOX-L41 extravasates from blood vessels in the dura mater and inhibits neurogenic meningeal PPE for at least 18 h after single dosing. CONCLUSIONS AND IMPLICATIONS This is the first description of the CGRP-neutralizing Spiegelmer NOX-L41. Preclinical studies confirmed a role for CGRP in neurogenic PPE and provided proof-of-concept for the potential use of this new drug candidate for the treatment or prevention of migraine.
Collapse
Affiliation(s)
| | - K W Johnson
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - C Maasch
- NOXXON Pharma AG, Berlin, Germany
| | | | | | | | | | | | | | - A Vater
- NOXXON Pharma AG, Berlin, Germany
| | | |
Collapse
|