1
|
Adlam D, Berrandou TE, Georges A, Nelson CP, Giannoulatou E, Henry J, Ma L, Blencowe M, Turley TN, Yang ML, Chopade S, Finan C, Braund PS, Sadeg-Sayoud I, Iismaa SE, Kosel ML, Zhou X, Hamby SE, Cheng J, Liu L, Tarr I, Muller DWM, d'Escamard V, King A, Brunham LR, Baranowska-Clarke AA, Debette S, Amouyel P, Olin JW, Patil S, Hesselson SE, Junday K, Kanoni S, Aragam KG, Butterworth AS, Tweet MS, Gulati R, Combaret N, Kadian-Dodov D, Kalman JM, Fatkin D, Hingorani AD, Saw J, Webb TR, Hayes SN, Yang X, Ganesh SK, Olson TM, Kovacic JC, Graham RM, Samani NJ, Bouatia-Naji N. Genome-wide association meta-analysis of spontaneous coronary artery dissection identifies risk variants and genes related to artery integrity and tissue-mediated coagulation. Nat Genet 2023; 55:964-972. [PMID: 37248441 PMCID: PMC10260398 DOI: 10.1038/s41588-023-01410-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.
Collapse
Affiliation(s)
- David Adlam
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
- Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Adrien Georges
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Joséphine Henry
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamiel N Turley
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sandesh Chopade
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Chris Finan
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Peter S Braund
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ines Sadeg-Sayoud
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew L Kosel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephen E Hamby
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lu Liu
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France
| | - Ingrid Tarr
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - David W M Muller
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Valentina d'Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annette King
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Departments of Medicine and Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ania A Baranowska-Clarke
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stéphanie Debette
- Department of Neurology, Bordeaux University Hospital, Inserm, Bordeaux, France
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, RID-AGE - Labex DISTALZ - Risk Factors and Molecular Determinants of Aging-Related Disease, Lille, France
| | - Jeffrey W Olin
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Snehal Patil
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephanie E Hesselson
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicolas Combaret
- Department of Cardiology, CHU Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Aroon D Hingorani
- Institute for Cardiovascular Science, University College London, London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Jacqueline Saw
- Vancouver General Hospital, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom R Webb
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Program of Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nabila Bouatia-Naji
- Université Paris Cité, Paris Cardiovascular Research Center, Inserm, Paris, France.
| |
Collapse
|
2
|
Brennan S, Esposito S, Abdelaziz MIM, Martin CA, Makwana S, Sims MW, Squire IB, Sharma P, Chadwick AE, Rainbow RD. Selective protein kinase C inhibition switches time-dependent glucose cardiotoxicity to cardioprotection. Front Cardiovasc Med 2022; 9:997013. [PMID: 36158799 PMCID: PMC9489859 DOI: 10.3389/fcvm.2022.997013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperglycaemia at the time of myocardial infarction has an adverse effect on prognosis irrespective of a prior diagnosis of diabetes, suggesting glucose is the damaging factor. In ex vivo models of ischaemia, we demonstrated that deleterious effects of acutely elevated glucose are PKCα/β-dependent, and providing PKCα/β are inhibited, elevated glucose confers cardioprotection. Short pre-treatments with high glucose were used to investigate time-dependent glucose cardiotoxicity, with PKCα/β inhibition investigated as a potential mechanism to reverse the toxicity. Freshly isolated non-diabetic rat cardiomyocytes were exposed to elevated glucose to investigate the time-dependence toxic effects. High glucose challenge for >7.5 min was cardiotoxic, proarrhythmic and lead to contractile failure, whilst cardiomyocytes exposed to metabolic inhibition following 5-min high glucose, displayed a time-dependent protection lasting ∼15 min. This protection was further enhanced with PKCα/β inhibition. Cardioprotection was measured as a delay in contractile failure and KATP channel activation, improved contractile and Ca2+ transient recovery and increased cell survival. Finally, the effects of pre-ischaemic treatment with high glucose in a whole-heart coronary ligation protocol, where protection was evident with PKCα/β inhibition. Selective PKCα/β inhibition enhances protection suggesting glycaemic control with PKC inhibition as a potential cardioprotective therapeutics in myocardial infarction and elective cardiac surgery.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Sean Brennan,
| | - Simona Esposito
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Muhammad I. M. Abdelaziz
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Christopher A. Martin
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Mark W. Sims
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
| | - Iain B. Squire
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, United Kingdom
- Leicester NIHR Biomedical Research Centre, Glenfield General Hospital, Leicester, United Kingdom
| | - Parveen Sharma
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Amy E. Chadwick
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, United Kingdom
| | - Richard D. Rainbow
- Department of Cardiovascular, Metabolic Medicine and Liverpool Centre for Cardiovascular Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Richard D. Rainbow,
| |
Collapse
|
3
|
Liu J, Cheng NN, Zhou ZY, Zhang Y, Yang J, Liu LS, Song Y, Huang X, Tang GF, Wang BY, Qin XH, Xu XP, Kong XQ. Effect of fasting blood glucose on risk of new-onset hypertension in rural Chinese population: a 15-year follow-up cohort. BMC Cardiovasc Disord 2021; 21:531. [PMID: 34749652 PMCID: PMC8573915 DOI: 10.1186/s12872-021-02336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to examine the correlation between fasting blood glucose and new-onset hypertension and examine any synergistically effect modification with multiple risk factors. METHODS We conducted post-hoc analyses of repeated-measures data in the original Dongzhi osteoporosis cohort study. In total, 3985 participants without hypertension aged 25-64 years were included in the current analyses. Generalized estimating equation models were used to assess the relationship between fasting blood glucose and risk of new-onset hypertension after adjusting for pertinent covariates and autocorrelations among siblings. RESULTS 393 men (19.4%) and 398 women (20.3%) without hypertension at the baseline developed hypertension by the end of the study period. Compared to lower baseline fasting blood glucose levels (Q1-Q3: < 5.74 mmol/L; clinical cut points: < 5.6 mmol/L), higher baseline fasting blood glucose levels (Q4: ≥ 5.74 mmol/L; clinical cut points: ≥ 5.6 mmol/L and < 7.0 mmol/L) increased the risk of new-onset hypertension significantly [(OR: 1.54, 95% CI 1.19-1.98, P < 0.001); (OR: 1.38, 95% CI 1.09-1.75, P = 0.008)] in women. Additionally, a stronger significant association was found in women with elevated fasting blood glucose on risk of new-onset of hypertension with higher total cholesterol (≥ 5.2 mmol/L) [(OR: 2.76; 95% CI: (1.54, 4.96), P < 0.001)]. However, no association was found between fasting blood glucose and risk of new-onset hypertension in men. CONCLUSIONS High fasting blood glucose may be significantly associated with risk of new-onset hypertension in Chinese women, especially in women with higher total cholesterol. Further randomized studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Nan N Cheng
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zi Y Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Yue Zhang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Li S Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Yun Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China.,School of Health Administration, Anhui Medical University, Hefei, People's Republic of China
| | - Xiao Huang
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Gen F Tang
- School of Health Administration, Anhui Medical University, Hefei, People's Republic of China
| | - Bin Y Wang
- School of Health Administration, Anhui Medical University, Hefei, People's Republic of China
| | - Xian H Qin
- National Clinical Research Study Center for Kidney Disease, The State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xi P Xu
- National Clinical Research Study Center for Kidney Disease, The State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiang Q Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Melo BF, Prieto-Lloret J, Cabral MD, Martins FO, Martins IB, Sacramento JF, Ruivo P, Carvalho T, Conde SV. Type 2 diabetes progression differently affects endothelial function and vascular contractility in the aorta and the pulmonary artery. Sci Rep 2021; 11:6052. [PMID: 33723367 PMCID: PMC7960698 DOI: 10.1038/s41598-021-85606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Type 2 diabetes (T2D) is associated with cardiovascular and pulmonary disease. How T2D affects pulmonary endothelial function is not well characterized. We investigated the effects of T2D progression on contractility machinery and endothelial function in the pulmonary and systemic circulation and the mechanisms promoting the dysfunction, using pulmonary artery (PA) and aorta. A high-fat (HF, 3 weeks 60% lipid-rich diet) and a high-fat/high-sucrose (HFHSu, combined 60% lipid-rich diet and 35% sucrose during 25 weeks) groups were used as prediabetes and T2D rat models. We found that T2D progression differently affects endothelial function and vascular contractility in the aorta and PA, with the contractile machinery being altered in the PA and aorta in prediabetes and T2D animals; and endothelial function being affected in both models in the aorta but only affected in the PA of T2D animals, meaning that PA is more resistant than aorta to endothelial dysfunction. Additionally, PA and systemic endothelial dysfunction in diabetic rats were associated with alterations in the nitrergic system and inflammatory pathways. PA dysfunction in T2D involves endothelial wall mineralization. The understanding of the mechanisms behind PA dysfunction in T2D can lead to significant advances in both preventative and therapeutic treatments of pulmonary disease-associated diabetes.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Male
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats
- Rats, Wistar
- Vasoconstriction
Collapse
Affiliation(s)
- Bernardete F Melo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Jesus Prieto-Lloret
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Marlene D Cabral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Fatima O Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Inês B Martins
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Joana F Sacramento
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal
| | - Pedro Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, Rua Camara Pestana, nº6, 6A, edificio II, piso 3, 1150-082, Lisbon, Portugal.
| |
Collapse
|
5
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Liu Y, Zhang L, Dong L, Song Q, Guo P, Wang Y, Chen Z, Zhang M. Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage‑gated K+ channels. Exp Ther Med 2020; 20:486-494. [PMID: 32509018 PMCID: PMC7271715 DOI: 10.3892/etm.2020.8670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 03/03/2020] [Indexed: 12/04/2022] Open
Abstract
Hesperetin (HSP) is a naturally occurring flavonoid. The present study aimed to investigate the potential vasomotor effects and mechanisms of HSP action on rat coronary arteries (RCAs) injured by diabetes or high glucose concentrations. HSP (100 mg/kg/day) was intragastrically administered to the rats for 8 weeks, which were rendered diabetic with a single intraperitoneal injection of 60 mg/kg streptozotocin (STZ). The vascular tone of RCAs was recorded using a wire myograph. The voltage-dependent K+ (Kv) currents were examined using patch clamping. The expression of Kv channels (Kv1.2 and Kv1.5) was examined by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR). Diabetes induced contractile hypersensitivity and vasodilator hyposensitivity in RCAs, both of which were attenuated by the chronic administration of HSP. Patch clamp data revealed that chronic HSP treatment reduced diabetes-induced suppression of Kv currents in the myocytes. Western blot and RT-qPCR analyses revealed that chronic HSP administration increased the expression of Kv1.2, but not Kv1.5, in the RCAs of diabetic rats compared with those from non-diabetic rats. In vitro analysis showed that co-incubation with HSP ameliorated high-glucose-induced suppression of Kv currents and Kv 1.2 protein expression in the myocytes. Taken together, the present study demonstrated that HSP alleviated RCA vasomotor dysfunction as a result of diabetes in rats by upregulating the expression of myocyte Kv channels.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lina Dong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qiying Song
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengmei Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhaoyang Chen
- Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
7
|
Balzer MS, Helmke A, Ackermann M, Casper J, Dong L, Hiss M, Kiyan Y, Rong S, Timrott K, von Vietinghoff S, Wang L, Haller H, Shushakova N. Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha. Nephrol Dial Transplant 2020; 34:947-960. [PMID: 30247663 DOI: 10.1093/ndt/gfy282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)-induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. METHODS In this study we investigate the role of PKCβ in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. RESULTS We demonstrate that PKCβ is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCβ-/- MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCβ up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCβ-/- animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCβ-/- mice. Finally, we demonstrate PKCβ involvement in HG-induced polarization processes in HMΦ. CONCLUSIONS PKCβ as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.
Collapse
Affiliation(s)
- Michael S Balzer
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Alexandra Helmke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Martina Ackermann
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Phenos, Hannover, Germany
| | - Janis Casper
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Lei Dong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Marcus Hiss
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Timrott
- Department for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | | | - Le Wang
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology, Tongji Medical College, Wuhan, China
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Phenos, Hannover, Germany
| |
Collapse
|
8
|
Abstract
OBJECTIVE This study was conducted to identify whether higher fasting blood glucose levels is predictive of hypertension by a large-scale longitudinal design. METHODS We conducted a retrospective 5-year cohort study using the data from 13 201 Japanese individuals who underwent annual medical examinations in 2004 and were reevaluated 5 years later. This study included individuals without diabetes or hypertension between ages 30 and 85 years in 2004. The cumulative incidences of hypertension over 5 years in each 10 mg/dl of fasting blood glucose levels were calculated. Moreover, we examined risk factors and calculated odds ratios (ORs) for developing hypertension after adjustments for age, sex, BMI, smoking and drinking habits, dyslipidemia, chronic kidney disease, serum uric acid, and fasting blood glucose levels by logistic regression analyses. RESULTS We analyzed 10 157 participants (age: 48.9 ± 10.7 years; 43.4% men) without diabetes or hypertension in 2004. After multiple adjustments, higher baseline blood glucose level is an independent risk for hypertension (OR: 1.176; 95% CI 1.086-1.275), as well as aging, women, higher BMI, drinking habits, and higher serum uric acid. After stratifying by sex, higher baseline blood glucose level is an independent risk for hypertension both in women (OR: 1.295; 95% CI 1.135-1.478) and men (OR: 1.108; 95% CI 1.001-1.227). When we conducted the same analysis using glycated hemoglobin instead of blood glucose, glycated hemoglobin was not a risk for hypertension. CONCLUSION Higher fasting blood glucose is an independent risk for developing hypertension. Further studies are needed to determine if treatment for elevated blood glucose can prevent developing hypertension.
Collapse
|
9
|
Martin-Aragon Baudel M, Espinosa-Tanguma R, Nieves-Cintron M, Navedo MF. Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2020; 11:329. [PMID: 32528416 PMCID: PMC7256624 DOI: 10.3389/fendo.2020.00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of purinergic receptors by nucleotides and/or nucleosides plays an important role in the control of vascular function, including modulation of vascular smooth muscle excitability, and vascular reactivity. Accordingly, purinergic receptor actions, acting as either ion channels (P2X) or G protein-coupled receptors (GCPRs) (P1, P2Y), target diverse downstream effectors, and substrates to regulate vascular smooth muscle function and vascular reactivity. Both vasorelaxant and vasoconstrictive effects have been shown to be mediated by different purinergic receptors in a vascular bed- and species-specific manner. Purinergic signaling has been shown to play a key role in altering vascular smooth muscle excitability and vascular reactivity following acute and short-term elevations in extracellular glucose (e.g., hyperglycemia). Moreover, there is evidence that vascular smooth muscle excitability and vascular reactivity is severely impaired during diabetes and that this is mediated, at least in part, by activation of purinergic receptors. Thus, purinergic receptors present themselves as important candidates mediating vascular reactivity in hyperglycemia, with potentially important clinical and therapeutic potential. In this review, we provide a narrative summarizing our current understanding of the expression, function, and signaling of purinergic receptors specifically in vascular smooth muscle cells and discuss their role in vascular complications following hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Miguel Martin-Aragon Baudel
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- *Correspondence: Miguel Martin-Aragon Baudel
| | - Ricardo Espinosa-Tanguma
- Departamento de Fisiologia y Biofisca, Universidad Autónoma San Luis Potosí, San Luis Potosí, Mexico
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Manuel F. Navedo
| |
Collapse
|
10
|
Brennan S, Chen S, Makwana S, Martin CA, Sims MW, Alonazi ASA, Willets JM, Squire IB, Rainbow RD. A novel form of glycolytic metabolism-dependent cardioprotection revealed by PKCα and β inhibition. J Physiol 2019; 597:4481-4501. [PMID: 31241168 DOI: 10.1113/jp278332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Acute hyperglycaemia at the time of a heart attack worsens the outcome for the patient. Acute hyperglycaemia is not limited to diabetic patients and can be due to a stress response in non-diabetics. This study suggests that the damaging cardiac effects of hyperglycaemia can be reversed by selective PKC inhibition. If PKCα/β isoforms are inhibited, then high glucose itself becomes protective against ischaemic damage. Selective PKC inhibition may therefore be a useful therapeutic tool to limit the damage that can occur during a heart attack by stress-induced hyperglycaemia. ABSTRACT Hyperglycaemia has a powerful association with adverse prognosis for patients with acute coronary syndromes (ACS). Previous work shows that high glucose prevents ischaemic preconditioning and causes electrical and mechanical disruption via protein kinase C α/β (PKCα/β) activation. The present study aimed to: (i) determine whether the adverse clinical association of hyperglycaemia in ACS can be replicated in preclinical cellular models of ACS and (ii) determine the importance of PKCα/β activation to the deleterious effect of glucose. Freshly isolated rat, guinea pig or rabbit cardiomyocytes were exposed to simulated ischaemia after incubation in the presence of normal (5 mm) or high (20 mm) glucose in the absence or presence of small molecule or tat-peptide-linked PKCαβ inhibitors. In each of the four conditions, the following hallmarks of cardioprotection were recorded using electrophysiology or fluorescence imaging: cardiomyocyte contraction and survival, action potential stability and time to failure, intracellular calcium and ATP, mitochondrial depolarization, ischaemia-sensitive leak current, and time to Kir 6.2 opening. High glucose alone resulted in decreased cardiomyocyte contraction and survival; however, it also imparted cardioprotection in the presence of PKCα/β inhibitors. This cardioprotective phenotype displayed improvements in all of the measured parameters and decreased myocardium damage during whole heart coronary ligation experiments. High glucose is deleterious to cellular and whole-heart models of simulated ischaemia, in keeping with the clinical association of hyperglycaemia with an adverse outcome in ACS. PKCαβ inhibition revealed high glucose to show a cardioprotective phenotype in this setting. The results of the present study suggest the potential for the therapeutic application of PKCαβ inhibition in ACS associated with hyperglycaemia.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Shen Chen
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Christopher A Martin
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Asma S A Alonazi
- Department of Molecular and Cellular Biology, University of Leicester, Leicester, UK
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Jonathan M Willets
- Department of Molecular and Cellular Biology, University of Leicester, Leicester, UK
| | - Iain B Squire
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
- Leicester NIHR Biomedical Research Centre, Glenfield General Hospital, Leicester, UK
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Wang X, Sandset EC, Moullaali TJ, Chen G, Song L, Carcel C, Delcourt C, Woodward M, Robinson T, Chalmers J, Arima H, Anderson CS. Determinants of the high admission blood pressure in mild-to-moderate acute intracerebral hemorrhage. J Hypertens 2019; 37:1463-1466. [DOI: 10.1097/hjh.0000000000002056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Syed AU, Reddy GR, Ghosh D, Prada MP, Nystoriak MA, Morotti S, Grandi E, Sirish P, Chiamvimonvat N, Hell JW, Santana LF, Xiang YK, Nieves-Cintrón M, Navedo MF. Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. J Clin Invest 2019; 129:3140-3152. [PMID: 31162142 PMCID: PMC6668679 DOI: 10.1172/jci124705] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A (PKA)-mediated stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit CaV1.2. In vitro, in silico, ex vivo and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in two animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/enzymology
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Gopireddy R. Reddy
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Matthew A. Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Luis F. Santana
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| |
Collapse
|
13
|
Prada MP, Syed AU, Buonarati OR, Reddy GR, Nystoriak MA, Ghosh D, Simó S, Sato D, Sasse KC, Ward SM, Santana LF, Xiang YK, Hell JW, Nieves-Cintrón M, Navedo MF. A G s-coupled purinergic receptor boosts Ca 2+ influx and vascular contractility during diabetic hyperglycemia. eLife 2019; 8:42214. [PMID: 30821687 PMCID: PMC6397001 DOI: 10.7554/elife.42214] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/16/2019] [Indexed: 12/21/2022] Open
Abstract
Elevated glucose increases vascular reactivity by promoting L-type CaV1.2 channel (LTCC) activity by protein kinase A (PKA). Yet, how glucose activates PKA is unknown. We hypothesized that a Gs-coupled P2Y receptor is an upstream activator of PKA mediating LTCC potentiation during diabetic hyperglycemia. Experiments in apyrase-treated cells suggested involvement of a P2Y receptor underlying the glucose effects on LTTCs. Using human tissue, expression for P2Y11, the only Gs-coupled P2Y receptor, was detected in nanometer proximity to CaV1.2 and PKA. FRET-based experiments revealed that the selective P2Y11 agonist NF546 and elevated glucose stimulate cAMP production resulting in enhanced PKA-dependent LTCC activity. These changes were blocked by the selective P2Y11 inhibitor NF340. Comparable results were observed in mouse tissue, suggesting that a P2Y11-like receptor is mediating the glucose response in these cells. These findings established a key role for P2Y11 in regulating PKA-dependent LTCC function and vascular reactivity during diabetic hyperglycemia.
Collapse
Affiliation(s)
- Maria Paz Prada
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Arsalan U Syed
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Olivia R Buonarati
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Gopireddy R Reddy
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Matthew A Nystoriak
- Diabetes & Obesity Center, Department of Medicine, University of Louisville, Kentucky, United States
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Sergi Simó
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, United States
| | - Daisuke Sato
- Department of Pharmacology, University of California, Davis, Davis, United States
| | | | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno, United States
| | - Luis F Santana
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, United States.,VA Northern California Healthcare System, Mather, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, United States
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, United States
| |
Collapse
|
14
|
Rainbow RD, Brennan S, Jackson R, Beech AJ, Bengreed A, Waldschmidt HV, Tesmer JJG, Challiss RAJ, Willets JM. Small-Molecule G Protein-Coupled Receptor Kinase Inhibitors Attenuate G Protein-Coupled Receptor Kinase 2-Mediated Desensitization of Vasoconstrictor-Induced Arterial Contractions. Mol Pharmacol 2018; 94:1079-1091. [PMID: 29980659 DOI: 10.1124/mol.118.112524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Vasoconstrictor-driven G protein-coupled receptor (GPCR)/phospholipase C (PLC) signaling increases intracellular Ca2+ concentration to mediate arterial contraction. To counteract vasoconstrictor-induced contraction, GPCR/PLC signaling can be desensitized by G protein-coupled receptor kinases (GRKs), with GRK2 playing a predominant role in isolated arterial smooth muscle cells. In this study, we use an array of GRK2 inhibitors to assess their effects on the desensitization of UTP and angiotensin II (AngII)-mediated arterial contractions. The effects of GRK2 inhibitors on the desensitization of UTP- or AngII-stimulated mesenteric third-order arterial contractions, and PLC activity in isolated mesenteric smooth muscle cells (MSMC), were determined using wire myography and Ca2+ imaging, respectively. Applying a stimulation protocol to cause receptor desensitization resulted in reductions in UTP- and AngII-stimulated arterial contractions. Preincubation with the GRK2 inhibitor paroxetine almost completely prevented desensitization of UTP- and attenuated desensitization of AngII-stimulated arterial contractions. In contrast, fluoxetine was ineffective. Preincubation with alternative GRK2 inhibitors (Takeda compound 101 or CCG224063) also attenuated the desensitization of UTP-mediated arterial contractile responses. In isolated MSMC, paroxetine, Takeda compound 101, and CCG224063 also attenuated the desensitization of UTP- and AngII-stimulated increases in Ca2+, whereas fluoxetine did not. In human uterine smooth muscle cells, paroxetine reversed GRK2-mediated histamine H1 receptor desensitization, but not GRK6-mediated oxytocin receptor desensitization. Utilizing various small-molecule GRK2 inhibitors, we confirm that GRK2 plays a central role in regulating vasoconstrictor-mediated arterial tone, highlighting a potentially novel strategy for blood pressure regulation through targeting GRK2 function.
Collapse
Affiliation(s)
- Richard D Rainbow
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sean Brennan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Robert Jackson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Alison J Beech
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Amal Bengreed
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Helen V Waldschmidt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - R A John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom (A.B., R.A.J.C., J.M.W.); Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom (R.D.R., S.B., R.J., A.J.B.); Life Sciences Institute and Departments of Pharmacology, Biological Sciences, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (H.V.W., J.J.G.T.); and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
15
|
Nieves-Cintrón M, Syed AU, Nystoriak MA, Navedo MF. Regulation of voltage-gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation 2018; 25:10.1111/micc.12423. [PMID: 29044853 PMCID: PMC5760350 DOI: 10.1111/micc.12423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Voltage-gated potassium (KV ) channels are key regulators of vascular smooth muscle contractility and vascular tone, and thus have major influence on the microcirculation. KV channels are important determinants of vascular smooth muscle membrane potential (Em ). A number of KV subunits are expressed in the plasma membrane of smooth muscle cells. Each subunit confers distinct kinetics and regulatory properties that allow for fine control of Em to orchestrate vascular tone. Modifications in KV subunit expression and/or channel activity can contribute to changes in vascular smooth muscle contractility in response to different stimuli and in diverse pathological conditions. Consistent with this, a number of studies suggest alterations in KV subunit expression and/or function as underlying contributing mechanisms for small resistance artery dysfunction in pathologies such as hypertension and metabolic disorders, including diabetes. Here, we review our current knowledge on the effects of these pathologies on KV channel expression and function in vascular smooth muscle cells, and the repercussions on (micro)vascular function.
Collapse
Affiliation(s)
| | - Arsalan U. Syed
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Matthew A. Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, CA 95616
| |
Collapse
|
16
|
Wang Y, Zhou Q, Wu B, Zhou H, Zhang X, Jiang W, Wang L, Wang A. Propofol induces excessive vasodilation of aortic rings by inhibiting protein kinase Cβ2 and θ in spontaneously hypertensive rats. Br J Pharmacol 2017; 174:1984-2000. [PMID: 28369981 DOI: 10.1111/bph.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Exaggerated hypotension following administration of propofol is strongly predicted in patients with hypertension. Increased PKCs play a crucial role in regulating vascular tone. We studied whether propofol induces vasodilation by inhibiting increased PKC activity in spontaneously hypertensive rats (SHRs) and, if so, whether contractile Ca2+ sensitization pathways and filamentous-globular (F/G) actin dynamics were involved. EXPERIMENTAL APPROACH Rings of thoracic aorta, denuded of endothelium, from normotensive Wistar-Kyoto (WKY) rats and SHR were prepared for functional studies. Expression and activity of PKCs in vascular smooth muscle (VSM) cells were determined by Western blot analysis and elisa respectively. Phosphorylation of the key proteins in PKC Ca2+ sensitization pathways was also examined. Actin polymerization was evaluated by differential centrifugation to probe G- and F-actin content. KEY RESULTS Basal expression and activity of PKCβ2 and PKCθ were increased in aortic VSMs of SHR, compared with those from WKY rats. Vasorelaxation of SHR aortas by propofol was markedly attenuated by LY333531 (a specific PKCβ inhibitor) or the PKCθ pseudo-substrate inhibitor. Furthermore, noradrenaline-enhanced phosphorylation, and the translocation of PKCβ2 and PKCθ, was inhibited by propofol, with decreased actin polymerization and PKCβ2-mediated Ca2+ sensitization pathway in SHR aortas. CONCLUSION AND IMPLICATIONS Propofol suppressed increased PKCβ2 and PKCθ activity, which was partly responsible for exaggerated vasodilation in SHR. This suppression results in inhibition of actin polymerization, as well as that of the PKCβ2- but not PKCθ-mediated, Ca2+ sensitization pathway. These data provide a novel explanation for the unwanted side effects of propofol.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Quanhong Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bin Wu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huixuan Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Li Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
17
|
Jackson R, Brennan S, Fielding P, Sims MW, Challiss RAJ, Adlam D, Squire IB, Rainbow RD. Distinct and complementary roles for α and β isoenzymes of PKC in mediating vasoconstrictor responses to acutely elevated glucose. Br J Pharmacol 2016; 173:870-87. [PMID: 26660275 DOI: 10.1111/bph.13399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the hypothesis that elevated glucose increases contractile responses in vascular smooth muscle and that this enhanced constriction occurs due to the glucose-induced PKC-dependent inhibition of voltage-gated potassium channels. EXPERIMENTAL APPROACH Patch-clamp electrophysiology in rat isolated mesenteric arterial myocytes was performed to investigate the glucose-induced inhibition of voltage-gated potassium (Kv ) current. To determine the effects of glucose in whole vessel, wire myography was performed in rat mesenteric, porcine coronary and human internal mammary arteries. KEY RESULTS Glucose-induced inhibition of Kv was PKC-dependent and could be pharmacologically dissected using PKC isoenzyme-specific inhibitors to reveal a PKCβ-dependent component of Kv inhibition dominating between 0 and 10 mM glucose with an additional PKCα-dependent component becoming evident at concentrations greater than 10 mM. These findings were supported using wire myography in all artery types used, where contractile responses to vessel depolarization and vasoconstrictors were enhanced by increasing bathing glucose concentration, again with evidence for distinct and complementary PKCα/PKCβ-mediated components. CONCLUSIONS AND IMPLICATIONS Our results provide compelling evidence that glucose-induced PKCα/PKCβ-mediated inhibition of Kv current in vascular smooth muscle causes an enhanced constrictor response. Inhibition of Kv current causes a significant depolarization of vascular myocytes leading to marked vasoconstriction. The PKC dependence of this enhanced constrictor response may present a potential therapeutic target for improving microvascular perfusion following percutaneous coronary intervention after myocardial infarction in hyperglycaemic patients.
Collapse
Affiliation(s)
- Robert Jackson
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Sean Brennan
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Peter Fielding
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - R A John Challiss
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - David Adlam
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Iain B Squire
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - Richard D Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| |
Collapse
|