1
|
Oh J, Kwon OB, Park SW, Kim JW, Lee H, Kim YK, Choi EJ, Jung H, Choi DK, Oh BJ, Min SH. Advancing Cardiovascular Drug Screening Using Human Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2024; 25:7971. [PMID: 39063213 PMCID: PMC11277421 DOI: 10.3390/ijms25147971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a promising tool for studying cardiac physiology and drug responses. However, their use is largely limited by an immature phenotype and lack of high-throughput analytical methodology. In this study, we developed a high-throughput testing platform utilizing hPSC-CMs to assess the cardiotoxicity and effectiveness of drugs. Following an optimized differentiation and maturation protocol, hPSC-CMs exhibited mature CM morphology, phenotype, and functionality, making them suitable for drug testing applications. We monitored intracellular calcium dynamics using calcium imaging techniques to measure spontaneous calcium oscillations in hPSC-CMs in the presence or absence of test compounds. For the cardiotoxicity test, hPSC-CMs were treated with various compounds, and calcium flux was measured to evaluate their effects on calcium dynamics. We found that cardiotoxic drugs withdrawn due to adverse drug reactions, including encainide, mibefradil, and cetirizine, exhibited toxicity in hPSC-CMs but not in HEK293-hERG cells. Additionally, in the effectiveness test, hPSC-CMs were exposed to ATX-II, a sodium current inducer for mimicking long QT syndrome type 3, followed by exposure to test compounds. The observed changes in calcium dynamics following drug exposure demonstrated the utility of hPSC-CMs as a versatile model system for assessing both cardiotoxicity and drug efficacy. Overall, our findings highlight the potential of hPSC-CMs in advancing drug discovery and development, which offer a physiologically relevant platform for the preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Wook Park
- Department of Oral Biochemistry, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jun-Woo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Heejin Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Young-Kyu Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Eun Ji Choi
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dong Kyu Choi
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Bae Jun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Kieda J, Shakeri A, Landau S, Wang EY, Zhao Y, Lai BF, Okhovatian S, Wang Y, Jiang R, Radisic M. Advances in cardiac tissue engineering and heart-on-a-chip. J Biomed Mater Res A 2024; 112:492-511. [PMID: 37909362 PMCID: PMC11213712 DOI: 10.1002/jbm.a.37633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Collapse
Affiliation(s)
- Jennifer Kieda
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Raniga K, Nasir A, Vo NTN, Vaidyanathan R, Dickerson S, Hilcove S, Mosqueira D, Mirams GR, Clements P, Hicks R, Pointon A, Stebbeds W, Francis J, Denning C. Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2024; 31:292-311. [PMID: 38366587 DOI: 10.1016/j.stem.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
Collapse
Affiliation(s)
- Kavita Raniga
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.
| | - Aishah Nasir
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | - Diogo Mosqueira
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Clements
- Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Jo Francis
- Mechanstic Biology and Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Chris Denning
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
4
|
Stebbeds W, Raniga K, Standing D, Wallace I, Bayliss J, Brown A, Kasprowicz R, Dalmas Wilk D, Deakyne J, Clements P, Chaudhary KW, Rossman EI, Bahinski A, Francis J. CardioMotion: identification of functional and structural cardiotoxic liabilities in small molecules through brightfield kinetic imaging. Toxicol Sci 2023; 195:61-70. [PMID: 37462734 DOI: 10.1093/toxsci/kfad065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular toxicity is an important cause of drug failures in the later stages of drug development, early clinical safety assessment, and even postmarket withdrawals. Early-stage in vitro assessment of potential cardiovascular liabilities in the pharmaceutical industry involves assessment of interactions with cardiac ion channels, as well as induced pluripotent stem cell-derived cardiomyocyte-based functional assays, such as calcium flux and multielectrode-array assays. These methods are appropriate for the identification of acute functional cardiotoxicity but structural cardiotoxicity, which manifests effects after chronic exposure, is often only captured in vivo. CardioMotion is a novel, label-free, high throughput, in vitro assay and analysis pipeline which records and assesses the spontaneous beating of cardiomyocytes and identifies compounds which impact beating. This is achieved through the acquisition of brightfield images at a high framerate, combined with an optical flow-based python analysis pipeline which transforms the images into waveform data which are then parameterized. Validation of this assay with a large dataset showed that cardioactive compounds with diverse known direct functional and structural mechanisms-of-action on cardiomyocytes are identified (sensitivity = 72.9%), importantly, known structural cardiotoxins also disrupt cardiomyocyte beating (sensitivity = 86%) in this method. Furthermore, the CardioMotion method presents a high specificity of 82.5%.
Collapse
Affiliation(s)
- William Stebbeds
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Kavita Raniga
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
- The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David Standing
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Iona Wallace
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - James Bayliss
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Andrew Brown
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Richard Kasprowicz
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | | | - Julianna Deakyne
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | | | | | - Eric I Rossman
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | - Anthony Bahinski
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | - Jo Francis
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| |
Collapse
|
5
|
Gao Y, Su L, Wei Y, Tan S, Hu Z, Tao Z, Kovalik JP, Soong TW, Zhang J, Pu J, Ye L. Ascorbic acid induces MLC2v protein expression and promotes ventricular-like cardiomyocyte subtype in human induced pluripotent stem cells derived cardiomyocytes. Theranostics 2023; 13:3872-3896. [PMID: 37441603 PMCID: PMC10334833 DOI: 10.7150/thno.80801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.
Collapse
Affiliation(s)
- Yu Gao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Yuhua Wei
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Zhenyu Hu
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Zhonghao Tao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| |
Collapse
|
6
|
Schwartz PJ, Sala L. The impact of genetics on the long QT syndrome: myth or reality? Curr Opin Cardiol 2023; 38:149-156. [PMID: 36789771 DOI: 10.1097/hco.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE OF REVIEW To summarize and critically assess the contribution of genetics to the Long QT Syndrome (LQTS), with specific reference to the unraveling of its underlying mechanisms and to its impact on clinical practice. RECENT FINDINGS The evolution towards our current approach to therapy for LQTS patients is examined in terms of risk stratification, gene-specific management, and assessment of the clinical impact that genetic modifiers may have in modulating the natural history of the patients. Glimpses are provided on the newest multidisciplinary approaches to study disease mechanisms, test new candidate drugs and identify precision treatments. SUMMARY It is undeniable that genetics has revolutionized our mechanistic understanding of cardiac channelopathies. Its impact has been enormous but, curiously, the way LQTS patients are being treated today is largely the same that was used in the pregenetic era, even though management has been refined and gene-specific differences allow a more individually tailored antiarrhythmic protection. The synergy of genetic findings with modern in vitro and in silico tools may expand precision treatments; however, they will need to prove more effective than the current therapeutic approaches and equally safe.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics.,Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
7
|
Abstract
Long QT syndrome (LQTS) is a detrimental arrhythmia syndrome mainly caused by dysregulated expression or aberrant function of ion channels. The major clinical symptoms of ventricular arrhythmia, palpitations and syncope vary among LQTS subtypes. Susceptibility to malignant arrhythmia is a result of delayed repolarisation of the cardiomyocyte action potential (AP). There are 17 distinct subtypes of LQTS linked to 15 autosomal dominant genes with monogenic mutations. However, due to the presence of modifier genes, the identical mutation may result in completely different clinical manifestations in different carriers. In this review, we describe the roles of various ion channels in orchestrating APs and discuss molecular aetiologies of various types of LQTS. We highlight the usage of patient-specific induced pluripotent stem cell (iPSC) models in characterising fundamental mechanisms associated with LQTS. To mitigate the outcomes of LQTS, treatment strategies are initially focused on small molecules targeting ion channel activities. Next-generation treatments will reap the benefits from development of LQTS patient-specific iPSC platform, which is bolstered by the state-of-the-art technologies including whole-genome sequencing, CRISPR genome editing and machine learning. Deep phenotyping and high-throughput drug testing using LQTS patient-specific cardiomyocytes herald the upcoming precision medicine in LQTS.
Collapse
|
8
|
Carvalho AB, Coutinho KCDS, Barbosa RAQ, de Campos DBP, Leitão IDC, Pinto RS, Dos Santos DS, Farjun B, De Araújo DDS, Mesquita FCP, Monnerat-Cahli G, Medei EH, Kasai-Brunswick TH, De Carvalho ACC. Action potential variability in human pluripotent stem cell-derived cardiomyocytes obtained from healthy donors. Front Physiol 2022; 13:1077069. [PMID: 36589430 PMCID: PMC9800870 DOI: 10.3389/fphys.2022.1077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (PSC) have been used for disease modelling, after differentiation into the desired cell type. Electrophysiologic properties of cardiomyocytes derived from pluripotent stem cells are extensively used to model cardiac arrhythmias, in cardiomyopathies and channelopathies. This requires strict control of the multiple variables that can influence the electrical properties of these cells. In this article, we report the action potential variability of 780 cardiomyocytes derived from pluripotent stem cells obtained from six healthy donors. We analyze the overall distribution of action potential (AP) data, the distribution of action potential data per cell line, per differentiation protocol and batch. This analysis indicates that even using the same cell line and differentiation protocol, the differentiation batch still affects the results. This variability has important implications in modeling arrhythmias and imputing pathogenicity to variants encountered in patients with arrhythmic diseases. We conclude that even when using isogenic cell lines to ascertain pathogenicity to variants associated to arrythmias one should use cardiomyocytes derived from pluripotent stem cells using the same differentiation protocol and batch and pace the cells or use only cells that have very similar spontaneous beat rates. Otherwise, one may find phenotypic variability that is not attributable to pathogenic variants.
Collapse
Affiliation(s)
- A. B. Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,*Correspondence: A. B. Carvalho,
| | | | | | | | - Isabela de Carvalho Leitão
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. S. Pinto
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D. Silva Dos Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Farjun
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayana da Silva De Araújo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - G. Monnerat-Cahli
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E. H. Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil
| | - A. C. Campos De Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro, Brazil,National Institute of Cardiology, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Willi L, Abramovich I, Fernandez-Garcia J, Agranovich B, Shulman M, Milman H, Baskin P, Eisen B, Michele DE, Arad M, Binah O, Gottlieb E. Bioenergetic and Metabolic Impairments in Induced Pluripotent Stem Cell-Derived Cardiomyocytes Generated from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2022; 23:ijms23179808. [PMID: 36077200 PMCID: PMC9456153 DOI: 10.3390/ijms23179808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene and dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality in DMD patients. We tested the hypothesis that DCM is caused by metabolic impairments by employing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from four DMD patients; an adult male, an adult female, a 7-year-old (7y) male and a 13-year-old (13y) male, all compared to two healthy volunteers. To test the hypothesis, we measured the bioenergetics, metabolomics, electrophysiology, mitochondrial morphology and mitochondrial activity of CMs, using respirometry, LC–MS, patch clamp, electron microscopy (EM) and confocal microscopy methods. We found that: (1) adult DMD CMs exhibited impaired energy metabolism and abnormal mitochondrial structure and function. (2) The 7y CMs demonstrated arrhythmia-free spontaneous firing along with “healthy-like” metabolic status, normal mitochondrial morphology and activity. In contrast, the 13y CMs were mildly arrhythmogenic and showed adult DMD-like bioenergetics deficiencies. (3) In DMD adult CMs, mitochondrial activities were attenuated by 45–48%, whereas the 7y CM activity was similar to that of healthy CMs. (4) In DMD CMs, but not in 7y CMs, there was a 75% decrease in the mitochondrial ATP production rate compared to healthy iPSC-CMs. In summary, DMD iPSC-CMs exhibit bioenergetic and metabolic impairments that are associated with rhythm disturbances corresponding to the patient’s phenotype, thereby constituting novel targets for alleviating cardiomyopathy in DMD patients.
Collapse
Affiliation(s)
- Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Jonatan Fernandez-Garcia
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Margarita Shulman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Daniel E. Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| |
Collapse
|
10
|
Pivato R, Klimovic S, Kabanov D, Sverák F, Pesl M, Pribyl J, Rotrekl V. hESC derived cardiomyocyte biosensor to detect the different types of arrhythmogenic properties of drugs. Anal Chim Acta 2022; 1216:339959. [PMID: 35691674 DOI: 10.1016/j.aca.2022.339959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
In the present work, we introduce a new cell-based biosensor for detecting arrhythmias based on a novel utilization of the combination of the Atomic Force Microscope (AFM) lateral force measurement as a nanosensor with a dual 3D cardiomyocyte syncytium. Two spontaneously coupled clusters of cardiomyocytes form this. The syncytium's functional contraction behavior was assessed using video sequences analyzed with Musclemotion ImageJ/Fiji software, and immunocytochemistry evaluated phenotype composition. The application of caffeine solution induced arrhythmia as a model drug, and its spontaneous resolution was monitored by AFM lateral force recording and interpretation and calcium fluorescence imaging as a reference method describing non-synchronized contractions of cardiomyocytes. The phenotypic analysis revealed the syncytium as a functional contractile and conduction cardiac behavior model. Calcium fluorescence imaging was used to validate that AFM fully enabled to discriminate cardiac arrhythmias in this in vitro cellular model. The described novel 3D hESCs-based cellular biosensor is suitable to detect arrhythmic events on the level of cardiac contractile and conduction tissue cellular model. The resulting biosensor allows for screening of arrhythmogenic properties of tailored drugs enabling its use in precision medicine.
Collapse
Affiliation(s)
- Roberto Pivato
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Simon Klimovic
- International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Daniil Kabanov
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Filip Sverák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic; First Department of Internal Medicine - Cardioangiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic
| | - Jan Pribyl
- Central European Institute for Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center at St. Anne's University Hospital, Pekarská 53, 65691, Brno, Czech Republic.
| |
Collapse
|
11
|
Li J, Feng X, Wei X. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:232. [PMID: 35659761 PMCID: PMC9166443 DOI: 10.1186/s13287-022-02905-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes (iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the application of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results suggest that this approach to modeling disease would provide important insights into our understanding of HCM pathogenesis and facilitate drug development and safety testing.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
12
|
Cócera-Ortega L, Wilders R, Kamps SC, Fabrizi B, Huber I, van der Made I, van den Bout A, de Vries DK, Gepstein L, Verkerk AO, Pinto YM, Tijsen AJ. shRNAs Targeting a Common KCNQ1 Variant Could Alleviate Long-QT1 Disease Severity by Inhibiting a Mutant Allele. Int J Mol Sci 2022; 23:ijms23074053. [PMID: 35409410 PMCID: PMC9000197 DOI: 10.3390/ijms23074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Long-QT syndrome type 1 (LQT1) is caused by mutations in KCNQ1. Patients heterozygous for such a mutation co-assemble both mutant and wild-type KCNQ1-encoded subunits into tetrameric Kv7.1 potassium channels. Here, we investigated whether allele-specific inhibition of mutant KCNQ1 by targeting a common variant can shift the balance towards increased incorporation of the wild-type allele to alleviate the disease in human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs). We identified the single nucleotide polymorphisms (SNP) rs1057128 (G/A) in KCNQ1, with a heterozygosity of 27% in the European population. Next, we determined allele-specificity of short-hairpin RNAs (shRNAs) targeting either allele of this SNP in hiPSC-CMs that carry an LQT1 mutation. Our shRNAs downregulated 60% of the A allele and 40% of the G allele without affecting the non-targeted allele. Suppression of the mutant KCNQ1 allele by 60% decreased the occurrence of arrhythmic events in hiPSC-CMs measured by a voltage-sensitive reporter, while suppression of the wild-type allele increased the occurrence of arrhythmic events. Furthermore, computer simulations based on another LQT1 mutation revealed that 60% suppression of the mutant KCNQ1 allele shortens the prolonged action potential in an adult cardiomyocyte model. We conclude that allele-specific inhibition of a mutant KCNQ1 allele by targeting a common variant may alleviate the disease. This novel approach avoids the need to design shRNAs to target every single mutation and opens up the exciting possibility of treating multiple LQT1-causing mutations with only two shRNAs.
Collapse
Affiliation(s)
- Lucía Cócera-Ortega
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Selina C. Kamps
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Benedetta Fabrizi
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Irit Huber
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel; (I.H.); (L.G.)
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Anouk van den Bout
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Dylan K. de Vries
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Lior Gepstein
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion—Israel Institute of Technology, Haifa 3109601, Israel; (I.H.); (L.G.)
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Yigal M. Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
| | - Anke J. Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (L.C.-O.); (S.C.K.); (B.F.); (I.v.d.M.); (A.v.d.B.); (D.K.d.V.); (A.O.V.); (Y.M.P.)
- Correspondence: ; Tel.: +31-205668544
| |
Collapse
|
13
|
Sala L, Leonov V, Mura M, Giannetti F, Khudiakov A, Moretti A, Crotti L, Gnecchi M, Schwartz PJ. Use of hiPSC-Derived Cardiomyocytes to Rule Out Proarrhythmic Effects of Drugs: The Case of Hydroxychloroquine in COVID-19. Front Physiol 2022; 12:730127. [PMID: 35153806 PMCID: PMC8829511 DOI: 10.3389/fphys.2021.730127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
In the early phases of the COVID-19 pandemic, drug repurposing was widely used to identify compounds that could improve the prognosis of symptomatic patients infected by SARS-CoV-2. Hydroxychloroquine (HCQ) was one of the first drugs used to treat COVID-19 due to its supposed capacity of inhibiting SARS-CoV-2 infection and replication in vitro. While its efficacy is debated, HCQ has been associated with QT interval prolongation and potentially Torsades de Pointes, especially in patients predisposed to developing drug-induced Long QT Syndrome (LQTS) as silent carriers of variants associated with congenital LQTS. If confirmed, these effects represent a limitation to the at-home use of HCQ for COVID-19 infection as adequate ECG monitoring is challenging. We investigated the proarrhythmic profile of HCQ with Multi-Electrode Arrays after exposure of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from two healthy donors, one asymptomatic and two symptomatic LQTS patients. We demonstrated that: I) HCQ induced a concentration-dependent Field Potential Duration (FPD) prolongation and halted the beating at high concentration due to the combined effect of HCQ on multiple ion currents. II) hiPSC-CMs from healthy or asymptomatic carriers tolerated higher concentrations of HCQ and showed lower susceptibility to HCQ-induced electrical abnormalities regardless of baseline FPD. These findings agree with the clinical safety records of HCQ and demonstrated that hiPSC-CMs potentially discriminates symptomatic vs. asymptomatic mutation carriers through pharmacological interventions. Disease-specific cohorts of hiPSC-CMs may be a valid preliminary addition to assess drug safety in vulnerable populations, offering rapid preclinical results with valuable translational relevance for precision medicine.
Collapse
Affiliation(s)
- Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- *Correspondence: Luca Sala,
| | - Vladislav Leonov
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, Verona, Italy
| | - Manuela Mura
- Coronary Care Unit and Laboratory of Experimental Cardiology, Department of Cardiothoracic and Vascular Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Giannetti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Aleksandr Khudiakov
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research)—Partner Site Munich Heart Alliance, Munich, Germany
| | - Lia Crotti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Massimiliano Gnecchi
- Coronary Care Unit and Laboratory of Experimental Cardiology, Department of Cardiothoracic and Vascular Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Unit of Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Peter J. Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Peter J. Schwartz,
| |
Collapse
|
14
|
Gintant G. Assessing the Fidelity of Translation of Nonclinical Assays: A Pharma Perspective. Br J Pharmacol 2022; 179:2564-2576. [PMID: 35032025 DOI: 10.1111/bph.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Advances in nonclinical in vitro models, higher throughput approaches and the promise of human-derived preparations require methods to reliably assess the fidelity of translation of assays compared to in vivo models and clinical studies. This review discusses general principles and parameters useful to evaluate the value of nonclinical assays typically used to guide compound progression. I first consider the biological characteristics (including sensitivity and ability to recapitulate relevant responses) of models that form the foundation of an assay based on the questions posed. I then discuss the quantitative assessment of diagnostic performance and assay utility, including sensitivity and specificity, receiver-operator characteristic curves, positive and negative predictive values, likelihood ratios, along with advantages of combining two independent assays. Understanding the strengths and limitations of the biological model employed along with assay performance and context of use is essential to selecting the best assays supporting the best drug candidates.
Collapse
Affiliation(s)
- Gary Gintant
- Dept Integrative Pharmacology (ZR-13, Dept. AP-9A), AbbVie, North Chicago, IL, USA
| |
Collapse
|
15
|
Juhola M, Joutsijoki H, Penttinen K, Shah D, Pölönen RP, Aalto-Setälä K. Data analytics for cardiac diseases. Comput Biol Med 2022; 142:105218. [PMID: 34999413 DOI: 10.1016/j.compbiomed.2022.105218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
In the present research we tackled the classification of seven genetic cardiac diseases and control subjects by using an extensive set of machine learning algorithms with their variations from simple K-nearest neighbor searching method to support vector machines. The research was based on calcium transient signals measured from induced pluripotent stem cell-derived cardiomyocytes. All in all, 55 different machine learning alternatives were used to model eight classes by applying the principle of 10-fold crossvalidation with the peak data of 1626 signals. The best classification accuracy of approximately 69% was given by random forests, which can be seen high enough here to show machine learning to be potential for the differentiation of the eight disease classes.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014, Tampere, Finland.
| | - Henry Joutsijoki
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014, Tampere, Finland
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Disheet Shah
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Risto-Pekka Pölönen
- Department of Pharmacology, University of California Davis, 95616, Davis, CA, USA
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland; Heart Center, Tampere University Hospital, 33520, Tampere, Finland
| |
Collapse
|
16
|
Graham C, Sethu P. Myocardial Fibrosis: Cell Signaling and In Vitro Modeling. CARDIOVASCULAR SIGNALING IN HEALTH AND DISEASE 2022:287-321. [DOI: 10.1007/978-3-031-08309-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Juhola M, Joutsijoki H, Penttinen K, Shah D, Aalto-Setälä K. On computational classification of genetic cardiac diseases applying iPSC cardiomyocytes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106367. [PMID: 34474196 DOI: 10.1016/j.cmpb.2021.106367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) can be used to study genetic cardiac diseases. In patients these diseases are manifested e.g. with impaired contractility and fatal cardiac arrhythmias, and both of these can be due to abnormal calcium transients in cardiomyocytes. Here we classify different genetic cardiac diseases using Ca2+ transient data and different machine learning algorithms. METHODS By studying calcium cycling of disease-specific iPSC-CMs and by using calcium transients measured from these cells it is possible to classify diseases from each other and also from healthy controls by applying machine learning computation on the basis of peak attributes detected from calcium transient signals. RESULTS In the current research we extend our previous study having Ca-transient data from four different genetic diseases by adding data from two additional diseases (dilated cardiomyopathy and long QT Syndrome 2). We also study, in the light of the current data, possible differences and relations when machine learning modelling and classification accuracies were computed by using either leave-one-out test or 10-fold cross-validation. CONCLUSIONS Despite more complex classification tasks compared to our earlier research and having more different genetic cardiac diseases in the analysis, it is still possible to attain good disease classification results. As excepted, leave-one-out test and 10-fold cross-validation achieved virtually equal results.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014 Finland.
| | - Henry Joutsijoki
- Faculty of Information Technology and Communication Sciences, Tampere University, 33014 Finland
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Disheet Shah
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, Finland; Heart Center, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
18
|
Smit T, Schickel E, Azimzadeh O, von Toerne C, Rauh O, Ritter S, Durante M, Schroeder IS. A Human 3D Cardiomyocyte Risk Model to Study the Cardiotoxic Influence of X-rays and Other Noxae in Adults. Cells 2021; 10:cells10102608. [PMID: 34685588 PMCID: PMC8533903 DOI: 10.3390/cells10102608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
The heart tissue is a potential target of various noxae contributing to the onset of cardiovascular diseases. However, underlying pathophysiological mechanisms are largely unknown. Human stem cell-derived models are promising, but a major concern is cell immaturity when estimating risks for adults. In this study, 3D aggregates of human embryonic stem cell-derived cardiomyocytes were cultivated for 300 days and characterized regarding degree of maturity, structure, and cell composition. Furthermore, effects of ionizing radiation (X-rays, 0.1–2 Gy) on matured aggregates were investigated, representing one of the noxae that are challenging to assess. Video-based functional analyses were correlated to changes in the proteome after irradiation. Cardiomyocytes reached maximum maturity after 100 days in cultivation, judged by α-actinin lengths, and displayed typical multinucleation and branching. At this time, aggregates contained all major cardiac cell types, proven by the patch-clamp technique. Matured and X-ray-irradiated aggregates revealed a subtle increase in beat rates and a more arrhythmic sequence of cellular depolarisation and repolarisation compared to non-irradiated sham controls. The proteome analysis provides first insights into signaling mechanisms contributing to cardiotoxicity. Here, we propose an in vitro model suitable to screen various noxae to target adult cardiotoxicity by preserving all the benefits of a 3D tissue culture.
Collapse
Affiliation(s)
- Timo Smit
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
- Biology Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany;
| | - Esther Schickel
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
| | - Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), 85764 Neuherberg, Germany;
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Radiation Biology, 85764 Neuherberg, Germany
| | - Christine von Toerne
- Helmholtz Zentrum München-German Research Center for Environmental Health, Research Unit Protein Science, 80939 Munich, Germany;
| | - Oliver Rauh
- Biology Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany;
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Insa S. Schroeder
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (T.S.); (E.S.); (S.R.); (M.D.)
- Correspondence:
| |
Collapse
|
19
|
Luo Y, Zhang M, Chen Y, Chen Y, Zhu D. Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Front Cell Dev Biol 2021; 9:720099. [PMID: 34552930 PMCID: PMC8450444 DOI: 10.3389/fcell.2021.720099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid international spread has caused the coronavirus disease 2019 (COVID-19) pandemics, which is a global public health crisis. Thus, there is an urgent need to establish biological models to study the pathology of SARS-CoV-2 infection, which not only involves respiratory failure, but also includes dysregulation of other organs and systems, including the brain, heart, liver, intestines, pancreas, kidneys, eyes, and so on. Cellular and organoid models derived from human induced pluripotent stem cells (iPSCs) are ideal tools for in vitro simulation of viral life cycles and drug screening to prevent the reemergence of coronavirus. These iPSC-derived models could recapitulate the functions and physiology of various human cell types and assemble the complex microenvironments similar with those in the human organs; therefore, they can improve the study efficiency of viral infection mechanisms, mimic the natural host-virus interaction, and be suited for long-term experiments. In this review, we focus on the application of in vitro iPSC-derived cellular and organoid models in COVID-19 studies.
Collapse
Affiliation(s)
- Yumei Luo
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mimi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Detu Zhu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
A Novel High-Content Screening-Based Method for Anti- Trypanosoma cruzi Drug Discovery Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Int 2021; 2021:2642807. [PMID: 34434238 PMCID: PMC8380504 DOI: 10.1155/2021/2642807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi infection and remains a relevant cause of chronic heart failure in Latin America. The pharmacological arsenal for Chagas disease is limited, and the available anti-T. cruzi drugs are not effective when administered during the chronic phase. Cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) have the potential to accelerate the process of drug discovery for Chagas disease, through predictive preclinical assays in target human cells. Here, we aimed to establish a novel high-content screening- (HCS-) based method using hiPSC-CMs to simultaneously evaluate anti-T. cruzi activity and cardiotoxicity of chemical compounds. To provide proof-of-concept data, the reference drug benznidazole and three compounds with known anti-T. cruzi activity (a betulinic acid derivative named BA5 and two thiazolidinone compounds named GT5A and GT5B) were evaluated in the assay. hiPSC-CMs were infected with T. cruzi and incubated for 48 h with serial dilutions of the compounds for determination of EC50 and CC50 values. Automated multiparametric analyses were performed using an automated high-content imaging system. Sublethal toxicity measurements were evaluated through morphological measurements related to the integrity of the cytoskeleton by phalloidin staining, nuclear score by Hoechst 33342 staining, mitochondria score following MitoTracker staining, and quantification of NT-pro-BNP, a peptide released upon mechanical myocardial stress. The compounds showed EC50 values for anti-T. cruzi activity similar to those previously described for other cell types, and GT5B showed a pronounced trypanocidal activity in hiPSC-CMs. Sublethal changes in cytoskeletal and nucleus scores correlated with NT-pro-BNP levels in the culture supernatant. Mitochondrial score changes were associated with increased cytotoxicity. The assay was feasible and allowed rapid assessment of anti-T. cruzi action of the compounds, in addition to cardiotoxicity parameters. The utilization of hiPSC-CMs in the drug development workflow for Chagas disease may help in the identification of novel compounds.
Collapse
|
21
|
Aghasafari P, Yang PC, Kernik DC, Sakamoto K, Kanda Y, Kurokawa J, Vorobyov I, Clancy CE. A deep learning algorithm to translate and classify cardiac electrophysiology. eLife 2021; 10:68335. [PMID: 34212860 PMCID: PMC8282335 DOI: 10.7554/elife.68335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology, and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability, and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.
Collapse
Affiliation(s)
- Parya Aghasafari
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Divya C Kernik
- Washington University in St. Louis, St. Louis, United States
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States.,Department of Pharmacology, University of California, Davis, Davis, United States
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| |
Collapse
|
22
|
Comparison of 10 Control hPSC Lines for Drug Screening in an Engineered Heart Tissue Format. Stem Cell Reports 2021; 15:983-998. [PMID: 33053362 PMCID: PMC7561618 DOI: 10.1016/j.stemcr.2020.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are commercially available, and cardiac differentiation established routine. Systematic evaluation of several control hiPSC-CM is lacking. We investigated 10 different control hiPSC-CM lines and analyzed function and suitability for drug screening. Five commercial and 5 academic hPSC-CM lines were casted in engineered heart tissue (EHT) format. Spontaneous and stimulated EHT contractions were analyzed, and 7 inotropic indicator compounds investigated on 8 cell lines. Baseline contractile force, kinetics, and rate varied widely among the different lines (e.g., relaxation time range: 118-471 ms). In contrast, the qualitative correctness of responses to BayK-8644, nifedipine, EMD-57033, isoprenaline, and digoxin in terms of force and kinetics varied only between 80% and 93%. Large baseline differences between control cell lines support the request for isogenic controls in disease modeling. Variability appears less relevant for drug screening but needs to be considered, arguing for studies with more than one line.
Collapse
|
23
|
Gnecchi M, Sala L, Schwartz PJ. Precision Medicine and cardiac channelopathies: when dreams meet reality. Eur Heart J 2021; 42:1661-1675. [PMID: 33686390 PMCID: PMC8088342 DOI: 10.1093/eurheartj/ehab007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Precision Medicine (PM) is an innovative approach that, by relying on large populations’ datasets, patients’ genetics and characteristics, and advanced technologies, aims at improving risk stratification and at identifying patient-specific management through targeted diagnostic and therapeutic strategies. Cardiac channelopathies are being progressively involved in the evolution brought by PM and some of them are benefiting from these novel approaches, especially the long QT syndrome. Here, we have explored the main layers that should be considered when developing a PM approach for cardiac channelopathies, with a focus on modern in vitro strategies based on patient-specific human-induced pluripotent stem cells and on in silico models. PM is where scientists and clinicians must meet and integrate their expertise to improve medical care in an innovative way but without losing common sense. We have indeed tried to provide the cardiologist’s point of view by comparing state-of-the-art techniques and approaches, including revolutionary discoveries, to current practice. This point matters because the new approaches may, or may not, exceed the efficacy and safety of established therapies. Thus, our own eagerness to implement the most recent translational strategies for cardiac channelopathies must be tempered by an objective assessment to verify whether the PM approaches are indeed making a difference for the patients. We believe that PM may shape the diagnosis and treatment of cardiac channelopathies for years to come. Nonetheless, its potential superiority over standard therapies should be constantly monitored and assessed before translating intellectually rewarding new discoveries into clinical practice.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy.,Department of Medicine, University of Cape Town, J-Floor, Old Main Building, Groote Schuur Hospital, Observatory, 7925 Cape Town, South Africa
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22 - 20135 Milan, Italy
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22 - 20135 Milan, Italy
| |
Collapse
|
24
|
DeMarco KR, Yang PC, Singh V, Furutani K, Dawson JRD, Jeng MT, Fettinger JC, Bekker S, Ngo VA, Noskov SY, Yarov-Yarovoy V, Sack JT, Wulff H, Clancy CE, Vorobyov I. Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline. J Mol Cell Cardiol 2021; 158:163-177. [PMID: 34062207 PMCID: PMC8906354 DOI: 10.1016/j.yjmcc.2021.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel – drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking.
Collapse
Affiliation(s)
- Kevin R DeMarco
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - Vikrant Singh
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Kazuharu Furutani
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Tokushima 770-8514, Japan
| | - John R D Dawson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Mao-Tsuen Jeng
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
| | - James C Fettinger
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Slava Bekker
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Science and Engineering, American River College, Sacramento, CA 95841, USA
| | - Van A Ngo
- Centre for Molecular Simulation and Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Sergei Y Noskov
- Centre for Molecular Simulation and Biochemistry Research Cluster, Department of Biological Sciences, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA 95616, USA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA 95616, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; Department of Pharmacology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
25
|
iPSC-Cardiomyocyte Models of Brugada Syndrome-Achievements, Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22062825. [PMID: 33802229 PMCID: PMC8001521 DOI: 10.3390/ijms22062825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia that predisposes to ventricular fibrillation and sudden cardiac death. It originates from oligogenic alterations that affect cardiac ion channels or their accessory proteins. The main hurdle for the study of the functional effects of those variants is the need for a specific model that mimics the complex environment of human cardiomyocytes. Traditionally, animal models or transient heterologous expression systems are applied for electrophysiological investigations, each of these models having their limitations. The ability to create induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), providing a source of human patient-specific cells, offers new opportunities in the field of cardiac disease modelling. Contemporary iPSC-CMs constitute the best possible in vitro model to study complex cardiac arrhythmia syndromes such as BrS. To date, thirteen reports on iPSC-CM models for BrS have been published and with this review we provide an overview of the current findings, with a focus on the electrophysiological parameters. We also discuss the methods that are used for cell derivation and data acquisition. In the end, we critically evaluate the knowledge gained by the use of these iPSC-CM models and discuss challenges and future perspectives for iPSC-CMs in the study of BrS and other arrhythmias.
Collapse
|
26
|
Iachetta G, Colistra N, Melle G, Deleye L, Tantussi F, De Angelis F, Dipalo M. Improving reliability and reducing costs of cardiotoxicity assessments using laser-induced cell poration on microelectrode arrays. Toxicol Appl Pharmacol 2021; 418:115480. [PMID: 33689843 DOI: 10.1016/j.taap.2021.115480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/07/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
Drug-induced cardiotoxicity is a major barrier to drug development and a main cause of withdrawal of marketed drugs. Drugs can strongly alter the spontaneous functioning of the heart by interacting with the cardiac membrane ion channels. If these effects only surface during in vivo preclinical tests, clinical trials or worse after commercialization, the societal and economic burden will be significant and seriously hinder the efficient drug development process. Hence, cardiac safety pharmacology requires in vitro electrophysiological screening assays of all drug candidates to predict cardiotoxic effects before clinical trials. In the past 10 years, microelectrode array (MEA) technology began to be considered a valuable approach in pharmaceutical applications. However, an effective tool for high-throughput intracellular measurements, compatible with pharmaceutical standards, is not yet available. Here, we propose laser-induced optoacoustic poration combined with CMOS-MEA technology as a reliable and effective platform to detect cardiotoxicity. This approach enables the acquisition of high-quality action potential recordings from large numbers of cardiomyocytes within the same culture well, providing reliable data using single-well MEA devices and single cardiac syncytia per each drug. Thus, this technology could be applied in drug safety screening platforms reducing times and costs of cardiotoxicity assessments, while simultaneously improving the data reliability.
Collapse
Affiliation(s)
| | - Nicolò Colistra
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Melle
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Lieselot Deleye
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | | | - Michele Dipalo
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
27
|
Iqbal Z, Ismaili D, Dolce B, Petersen J, Reichenspurner H, Hansen A, Kirchhof P, Eschenhagen T, Nikolaev VO, Molina CE, Christ T. Regulation of basal and norepinephrine-induced cAMP and I Ca in hiPSC-cardiomyocytes: Effects of culture conditions and comparison to adult human atrial cardiomyocytes. Cell Signal 2021; 82:109970. [PMID: 33677066 DOI: 10.1016/j.cellsig.2021.109970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND There is ongoing interest in generating cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) to study human cardiac physiology and pathophysiology. Recently we found that norepinephrine-stimulated calcium currents (ICa) in hiPSC-cardiomyocytes were smaller in conventional monolayers (ML) than in engineered heart tissue (EHT). In order to elucidate culture specific regulation of β1-adrenoceptor (β1-AR) responses we investigated whether action of phosphodiesterases (PDEs) may limit norepinephrine effects on ICa and on cytosolic cAMP in hiPSC-cardiomyocytes. Results were compared to adult human atrial cardiomyocytes. METHODS Adult human atrial cardiomyocytes were isolated from tissue samples obtained during open heart surgery. All patients were in sinus rhythm. HiPSC-cardiomyocytes were dissociated from ML and EHT. Förster-resonance energy transfer (FRET) was used to monitor cytosolic cAMP (Epac1-camps sensor, transfected by adenovirus). ICa was recorded by whole-cell patch clamp technique. Cilostamide (300 nM) and rolipram (10 μM) were used to inhibit PDE3 and PDE4, respectively. β1-AR were stimulated with the physiological agonist norepinephrine (100 μM). RESULTS In adult human atrial cardiomyocytes, norepinephrine increased cytosolic cAMP FRET ratio by +13.7 ± 1.5% (n = 10/9, mean ± SEM, number of cells/number patients) and ICa by +10.4 ± 1.5 pA/pF (n = 15/10). This effect was not further increased in the concomitant presence of rolipram, cilostamide and norepinephrine, indicating saturation by norepinephrine alone. In ML hiPSC-cardiomyocytes, norepinephrine exerted smaller increases in cytosolic cAMP and ICa (FRET +9.6 ± 0.5% n = 52/21, number of cells/number of ML or EHT, and ICa + 1.4 ± 0.2 pA/pF n = 34/7, p < 0.05 each) and both were augmented in the presence of the PDE4 inhibitor rolipram (FRET +16.7 ± 0.8% n = 94/26 and ICa + 5.6 ± 1.4 pA/pF n = 11/5, p < 0.05 each). Cilostamide increased the response to norepinephrine on FRET (+12.7 ± 0.5% n = 91/19, p < 0.05), but not on ICa. In EHT hiPSC-cardiomyocytes, norepinephrine responses on both, FRET and ICa, were larger than in ML (FRET +12.1 ± 0.3% n = 87/32 and ICa + 3.3 ± 0.2 pA/pF n = 13/5, p < 0.05 each). Rolipram augmented the norepinephrine effect on ICa (+6.2 ± 1.6 pA/pF; p < 0.05 vs. norepinephrine alone, n = 10/4), but not on FRET. CONCLUSION Our results show culture-dependent differences in hiPSC-cardiomyocytes. In conventional ML but not in EHT, maximum norepinephrine effects on cytosolic cAMP depend on PDE3 and PDE4, suggesting immaturity when compared to the situation in adult human atrial cardiomyocytes. The smaller ICa responses to norepinephrine in ML and EHT vs. adult human atrial cardiomyocytes depend at least partially on a non-physiological large impact of PDE4 in hiPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Zafar Iqbal
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Djemail Ismaili
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Bernardo Dolce
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
28
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
29
|
Beffagna G, Sommariva E, Bellin M. Mechanotransduction and Adrenergic Stimulation in Arrhythmogenic Cardiomyopathy: An Overview of in vitro and in vivo Models. Front Physiol 2020; 11:568535. [PMID: 33281612 PMCID: PMC7689294 DOI: 10.3389/fphys.2020.568535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Arrhythmogenic Cardiomyopathy (AC) is a rare inherited heart disease, manifesting with progressive myocardium degeneration and dysfunction, and life-threatening arrhythmic events that lead to sudden cardiac death. Despite genetic determinants, most of AC patients admitted to hospital are athletes or very physically active people, implying the existence of other disease-causing factors. It is recognized that AC phenotypes are enhanced and triggered by strenuous physical activity, while excessive mechanical stretch and load, and repetitive adrenergic stimulation are mechanisms influencing disease penetrance. Different approaches have been undertaken to recapitulate and study both mechanotransduction and adrenergic signaling in AC, including the use of in vitro cellular and tissue models, and the development of in vivo models (particularly rodents but more recently also zebrafish). However, it remains challenging to reproduce mechanical load stimuli and physical activity in laboratory experimental settings. Thus, more work to drive the innovation of advanced AC models is needed to recapitulate these subtle physiological influences. Here, we review the state-of-the-art in this field both in clinical and laboratory-based modeling scenarios. Specific attention will be focused on highlighting gaps in the knowledge and how they may be resolved by utilizing novel research methodology.
Collapse
Affiliation(s)
- Giorgia Beffagna
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Milena Bellin
- Department of Biology, University of Padua, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
30
|
Choi SW, Shin JS, Park SJ, Jung E, Park YG, Lee J, Kim SJ, Park HJ, Lee JH, Park SM, Moon SH, Ban K, Go YY. Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Res 2020; 184:104955. [PMID: 33091434 DOI: 10.1093/cvr/cvab311/6381566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/20/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is considered as the most significant global public health crisis of the century. Several drug candidates have been suggested as potential therapeutic options for COVID-19, including remdesivir, currently the only authorized drug for use under an Emergency Use Authorization. However, there is only limited information regarding the safety profiles of the proposed drugs, in particular drug-induced cardiotoxicity. Here, we evaluated the antiviral activity and cardiotoxicity of remdesivir using cardiomyocytes-derived from human pluripotent stem cells (hPSC-CMs) as an alternative source of human primary cardiomyocytes (CMs). In this study, remdesivir exhibited up to 60-fold higher antiviral activity in hPSC-CMs compared to Vero E6 cells; however, it also induced moderate cardiotoxicity in these cells. To gain further insight into the drug-induced arrhythmogenic risk, we assessed QT interval prolongation and automaticity of remdesivir-treated hPSC-CMs using a multielectrode array (MEA). As a result, the data indicated a potential risk of QT prolongation when remdesivir is used at concentrations higher than the estimated peak plasma concentration. Therefore, we conclude that close monitoring of the electrocardiographic/QT interval should be advised in SARS-CoV-2-infected patients under remdesivir medication, in particular individuals with pre-existing heart conditions.
Collapse
Affiliation(s)
- Seong Woo Choi
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Soo Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Infectious Disease Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea
| | - Eunhye Jung
- Infectious Disease Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yun-Gwi Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea
| | - Jiho Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, Republic of Korea
| | - Jung-Hoon Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Sung-Min Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sung-Hwan Moon
- Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea; Department of Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
31
|
Gintant G, Kaushik EP, Feaster T, Stoelzle-Feix S, Kanda Y, Osada T, Smith G, Czysz K, Kettenhofen R, Lu HR, Cai B, Shi H, Herron TJ, Dang Q, Burton F, Pang L, Traebert M, Abassi Y, Pierson JB, Blinova K. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regul Toxicol Pharmacol 2020; 117:104756. [PMID: 32822771 DOI: 10.1016/j.yrtph.2020.104756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
32
|
Kondrashov A, Mohd Yusof NAN, Hasan A, Goulding J, Kodagoda T, Hoang DM, Vo NTN, Melarangi T, Dolatshad N, Gorelik J, Hill SJ, Harding SE, Denning C. CRISPR/Cas9-mediated generation and analysis of N terminus polymorphic models of β 2AR in isogenic hPSC-derived cardiomyocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:39-53. [PMID: 33335946 PMCID: PMC7733025 DOI: 10.1016/j.omtm.2020.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
During normal- and patho-physiological situations, the behavior of the beta2-adrenoreceptor (β2AR) is influenced by polymorphic variants. The functional impact of such polymorphisms has been suggested from data derived from genetic association studies, in vitro experiments with primary cells, and transgenic overexpression models. However, heterogeneous genetic background and non-physiological transgene expression levels confound interpretation, leading to conflicting mechanistic conclusions. To overcome these limitations, we used CRISPR/Cas9 gene editing technology in human pluripotent stem cells (hPSCs) to create a unique suite of four isogenic homozygous variants at amino acid positions 16(G/R) and 27(G/Q), which reside in the N terminus of the β2AR. By producing cardiomyocytes from these hPSC lines, we determined that at a functional level β2AR signaling dominated over β1AR . Examining changes in beat rates and responses to isoprenaline, Gi coupling, cyclic AMP (cAMP) production, downregulation, and desensitization indicated that responses were often heightened for the GE variant, implying differential dominance of both polymorphic location and amino acid substitution. This finding was corroborated, since GE showed hypersensitivity to doxorubicin-induced cardiotoxicity relative to GQ and RQ variants. Thus, understanding the effect of β2AR polymorphisms on cardiac response to anticancer therapy may provide a route for personalized medicine and facilitate immediate clinical impact.
Collapse
Affiliation(s)
- Alexander Kondrashov
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Nurul A N Mohd Yusof
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Alveera Hasan
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Duc M Hoang
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Tony Melarangi
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Nazanin Dolatshad
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Stephen J Hill
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Chris Denning
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
33
|
Choi SW, Shin JS, Park SJ, Jung E, Park YG, Lee J, Kim SJ, Park HJ, Lee JH, Park SM, Moon SH, Ban K, Go YY. Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Res 2020; 184:104955. [PMID: 33091434 PMCID: PMC7571425 DOI: 10.1016/j.antiviral.2020.104955] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is considered as the most significant global public health crisis of the century. Several drug candidates have been suggested as potential therapeutic options for COVID-19, including remdesivir, currently the only authorized drug for use under an Emergency Use Authorization. However, there is only limited information regarding the safety profiles of the proposed drugs, in particular drug-induced cardiotoxicity. Here, we evaluated the antiviral activity and cardiotoxicity of remdesivir using cardiomyocytes-derived from human pluripotent stem cells (hPSC-CMs) as an alternative source of human primary cardiomyocytes (CMs). In this study, remdesivir exhibited up to 60-fold higher antiviral activity in hPSC-CMs compared to Vero E6 cells; however, it also induced moderate cardiotoxicity in these cells. To gain further insight into the drug-induced arrhythmogenic risk, we assessed QT interval prolongation and automaticity of remdesivir-treated hPSC-CMs using a multielectrode array (MEA). As a result, the data indicated a potential risk of QT prolongation when remdesivir is used at concentrations higher than the estimated peak plasma concentration. Therefore, we conclude that close monitoring of the electrocardiographic/QT interval should be advised in SARS-CoV-2-infected patients under remdesivir medication, in particular individuals with pre-existing heart conditions. Remdesivir potently inhibits SARS-CoV-2 infection in hPSC-CMs with EC50 at high nanomolar concentrations. Remdesivir-induced arrhythmogenic risk in hPSC-CMs was evaluated by multi-electrode array-based assay. Remdesivir exhibits potential cardiotoxicity in hPSC-CMs with CC50 values close to the estimated peak plasma concentration. Close monitoring of the electrocardiographic/QT interval should be advised in COVID-19 patients under remdesivir medication.
Collapse
Affiliation(s)
- Seong Woo Choi
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Soo Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Infectious Disease Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea
| | - Eunhye Jung
- Infectious Disease Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yun-Gwi Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea
| | - Jiho Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, Republic of Korea
| | - Jung-Hoon Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Sung-Min Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sung-Hwan Moon
- Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea; Department of Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
34
|
Assessment of Cardiotoxicity With Stem Cell-based Strategies. Clin Ther 2020; 42:1892-1910. [PMID: 32938533 DOI: 10.1016/j.clinthera.2020.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Adverse cardiovascular drug effects pose a substantial medical risk and represent a common cause of drug withdrawal from the market. Thus, current in vitro assays and in vivo animal models still have shortcomings in assessing cardiotoxicity. A human model for more accurate preclinical cardiotoxicity assessment is highly desirable. Current differentiation protocols allow for the generation of human pluripotent stem cell-derived cardiomyocytes in basically unlimited numbers and offer the opportunity to study drug effects on human cardiomyocytes. The purpose of this review is to provide a brief overview of the current approaches to translate studies with pluripotent stem cell-derived cardiomyocytes from basic science to preclinical risk assessment. METHODS A review of the literature was performed to gather data on the pathophysiology of cardiotoxicity, the current cardiotoxicity screening assays, stem cell-derived cardiomyocytes, and their application in cardiotoxicity screening. FINDINGS There is increasing evidence that stem cell-derived cardiomyocytes predict arrhythmogenicity with high accuracy. Cardiomyocyte immaturity represents the major limitation so far. However, strategies are being developed to overcome this hurdle, such as tissue engineering. In addition, stem cell-based strategies offer the possibility to assess structural drug toxicity (eg, by anticancer drugs) on complex models that more closely mirror the structure of the heart and contain endothelial cells and fibroblasts. IMPLICATIONS Pluripotent stem cell-derived cardiomyocytes have the potential to substantially change how preclinical cardiotoxicity screening is performed. To which extent they will replace or complement current approaches is being evaluated.
Collapse
|
35
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
36
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
37
|
Kargaran PK, Evans JM, Bodbin SE, Smith JGW, Nelson TJ, Denning C, Mosqueira D. Mitochondrial DNA: Hotspot for Potential Gene Modifiers Regulating Hypertrophic Cardiomyopathy. J Clin Med 2020; 9:E2349. [PMID: 32718021 PMCID: PMC7463557 DOI: 10.3390/jcm9082349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and untreatable cardiovascular disease with a highly complex clinical and genetic causation. HCM patients bearing similar sarcomeric mutations display variable clinical outcomes, implying the involvement of gene modifiers that regulate disease progression. As individuals exhibiting mutations in mitochondrial DNA (mtDNA) present cardiac phenotypes, the mitochondrial genome is a promising candidate to harbor gene modifiers of HCM. Herein, we sequenced the mtDNA of isogenic pluripotent stem cell-cardiomyocyte models of HCM focusing on two sarcomeric mutations. This approach was extended to unrelated patient families totaling 52 cell lines. By correlating cellular and clinical phenotypes with mtDNA sequencing, potentially HCM-protective or -aggravator mtDNA variants were identified. These novel mutations were mostly located in the non-coding control region of the mtDNA and did not overlap with those of other mitochondrial diseases. Analysis of unrelated patients highlighted family-specific mtDNA variants, while others were common in particular population haplogroups. Further validation of mtDNA variants as gene modifiers is warranted but limited by the technically challenging methods of editing the mitochondrial genome. Future molecular characterization of these mtDNA variants in the context of HCM may identify novel treatments and facilitate genetic screening in cardiomyopathy patients towards more efficient treatment options.
Collapse
Affiliation(s)
- Parisa K. Kargaran
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jared M. Evans
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara E. Bodbin
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - James G. W. Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Timothy J. Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA;
| | - Chris Denning
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Diogo Mosqueira
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
38
|
Bhagwan JR, Mosqueira D, Chairez-Cantu K, Mannhardt I, Bodbin SE, Bakar M, Smith JGW, Denning C. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J Mol Cell Cardiol 2020; 145:43-53. [PMID: 32531470 PMCID: PMC7487780 DOI: 10.1016/j.yjmcc.2020.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. METHODS We directly compared the p.β-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. RESULTS Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.β-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. CONCLUSIONS Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a 'one-size fits all' treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy.
Collapse
Affiliation(s)
- Jamie R Bhagwan
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Karolina Chairez-Cantu
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sara E Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - James G W Smith
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia,NR4 7UQ, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
39
|
Sigalas C, Cremer M, Winbo A, Bose SJ, Ashton JL, Bub G, Montgomery JM, Burton RAB. Combining tissue engineering and optical imaging approaches to explore interactions along the neuro-cardiac axis. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200265. [PMID: 32742694 PMCID: PMC7353978 DOI: 10.1098/rsos.200265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 05/05/2023]
Abstract
Interactions along the neuro-cardiac axis are being explored with regard to their involvement in cardiac diseases, including catecholaminergic polymorphic ventricular tachycardia, hypertension, atrial fibrillation, long QT syndrome and sudden death in epilepsy. Interrogation of the pathophysiology and pathogenesis of neuro-cardiac diseases in animal models present challenges resulting from species differences, phenotypic variation, developmental effects and limited availability of data relevant at both the tissue and cellular level. By contrast, tissue-engineered models containing cardiomyocytes and peripheral sympathetic and parasympathetic neurons afford characterization of cellular- and tissue-level behaviours while maintaining precise control over developmental conditions, cellular genotype and phenotype. Such approaches are uniquely suited to long-term, high-throughput characterization using optical recording techniques with the potential for increased translational benefit compared to more established techniques. Furthermore, tissue-engineered constructs provide an intermediary between whole animal/tissue experiments and in silico models. This paper reviews the advantages of tissue engineering methods of multiple cell types and optical imaging techniques for the characterization of neuro-cardiac diseases.
Collapse
Affiliation(s)
| | - Maegan Cremer
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Annika Winbo
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Department of Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland, New Zealand
| | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jesse L. Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Rebecca A. B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- Author for correspondence: Rebecca A. B. Burton e-mail:
| |
Collapse
|
40
|
Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, Krotenberg Garcia A, Mircea M, Kostidis S, Davis RP, van Meer BJ, Jost CR, Koster AJ, Mei H, Míguez DG, Mulder AA, Ledesma-Terrón M, Pompilio G, Sala L, Salvatori DCF, Slieker RC, Sommariva E, de Vries AAF, Giera M, Semrau S, Tertoolen LGJ, Orlova VV, Bellin M, Mummery CL. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell 2020; 26:862-879.e11. [PMID: 32459996 PMCID: PMC7284308 DOI: 10.1016/j.stem.2020.05.004] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening. Cardiac fibroblasts and endothelial cells induce hiPSC-cardiomyocyte maturation CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes cAMP-pathway activation contributes to hiPSC-cardiomyocyte maturation Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Collapse
Affiliation(s)
- Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ruben W J van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Ana Krotenberg Garcia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Maria Mircea
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - David G Míguez
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Mario Ledesma-Terrón
- Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, 1007 Amsterdam, the Netherlands
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands
| | - Leon G J Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Biology, University of Padua, 35121 Padua, Italy; Veneto Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, 7500 Enschede, the Netherlands.
| |
Collapse
|
41
|
Multiparametric Mechanistic Profiling of Inotropic Drugs in Adult Human Primary Cardiomyocytes. Sci Rep 2020; 10:7692. [PMID: 32376974 PMCID: PMC7203129 DOI: 10.1038/s41598-020-64657-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/10/2020] [Indexed: 01/10/2023] Open
Abstract
Effects of non-cardiac drugs on cardiac contractility can lead to serious adverse events. Furthermore, programs aimed at treating heart failure have had limited success and this therapeutic area remains a major unmet medical need. The challenges in assessing drug effect on cardiac contractility point to the fundamental translational value of the current preclinical models. Therefore, we sought to develop an adult human primary cardiomyocyte contractility model that has the potential to provide a predictive preclinical approach for simultaneously predicting drug-induced inotropic effect (sarcomere shortening) and generating multi-parameter data to profile different mechanisms of action based on cluster analysis of a set of 12 contractility parameters. We report that 17 positive and 9 negative inotropes covering diverse mechanisms of action exerted concentration-dependent increases and decreases in sarcomere shortening, respectively. Interestingly, the multiparametric readout allowed for the differentiation of inotropes operating via distinct mechanisms. Hierarchical clustering of contractility transient parameters, coupled with principal component analysis, enabled the classification of subsets of both positive as well as negative inotropes, in a mechanism-related mode. Thus, human cardiomyocyte contractility model could accurately facilitate informed mechanistic-based decision making, risk management and discovery of molecules with the most desirable pharmacological profile for the correction of heart failure.
Collapse
|
42
|
Dominant rule of community effect in synchronized beating behavior of cardiomyocyte networks. Biophys Rev 2020; 12:481-501. [PMID: 32367300 DOI: 10.1007/s12551-020-00688-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022] Open
Abstract
Exploiting the combination of latest microfabrication technologies and single cell measurement technologies, we can measure the interactions of single cells, and cell networks from "algebraic" and "geometric" perspectives under the full control of their environments and interactions. However, the experimental constructive single cell-based approach still remains the limitations regarding the quality and condition control of those cells. To overcome these limitations, mathematical modeling is one of the most powerful complementary approaches. In this review, we first explain our on-chip experimental methods for constructive approach, and we introduce the results of the "community effect" of beating cardiomyocyte networks as an example of this approach. On-chip analysis revealed that (1) synchronized interbeat intervals (IBIs) of cell networks were followed to the more stable beating cells even their IBIs were slower than the other cells, which is against the conventional faster firing regulation or "overdrive suppression," and (2) fluctuation of IBIs of cardiomyocyte networks decreased according to the increase of the number of connected cells regardless of their geometry. The mathematical simulation of this synchronous behavior of cardiomyocyte networks also fitted well with the experimental results after incorporating the fluctuation-dissipation theorem into the oscillating stochastic phase model, in which the concept of spatially arranged cardiomyocyte networks was involved. The constructive experiments and mathematical modeling indicated the dominant rule of synchronization behavior of beating cardiomyocyte networks is a kind of stability-oriented synchronization phenomenon as the "community effect" or a fluctuation-dissipation phenomenon. Finally, as a practical application of this approach, the predictive cardiotoxicity is introduced.
Collapse
|
43
|
Müller-Ruch U, Skorska A, Lemcke H, Steinhoff G, David R. GLP: A requirement in cell therapies - perspectives for the cardiovascular field. Adv Drug Deliv Rev 2020; 165-166:96-104. [PMID: 32305352 DOI: 10.1016/j.addr.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
In biomedical research, enormous progress is being made and new candidates for putative medicinal products emerge. However, most published preclinical data are not conducted according to the standard Good Laboratory Practice (GLP). GLP is mandatory for preclinical analysis of Advanced Therapy Medicinal Products (ATMP) and thereby a prerequisite for planning and conduction of clinical trials. Not inconsiderable numbers of clinical trials are terminated earlier or fail - do inadequate testing strategies or missing specialized assays during the preclinical development contribute to this severe complex of problems? Unfortunately, there is also a lack of access to GLP testing results and OECD (Organisation for Economic Co-operation and Development) GLP guidelines are not yet adjusted to ATMP specialties. Ultimately, GLP offers possibilities to generate reliable and reproducible data. Therefore, this review elucidates different GLP aspects in drug development, speculates on reasons of putative low GLP acceptance in the scientific community and mentions solution proposals.
Collapse
|
44
|
Gintant G, Traebert M. The roles of human induced pluripotent stem cell-derived cardiomyocytes in drug discovery: managing in vitro safety study expectations. Expert Opin Drug Discov 2020; 15:719-729. [PMID: 32129680 DOI: 10.1080/17460441.2020.1736549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) preparations are increasingly employed in in vitro cardiac safety studies to support candidate drug selection and regulatory submissions. The value of hiPSC-CM-based approaches depends on their ability to recapitulate the cellular mechanisms responsible for cardiotoxicity as well as overall assay characteristics (thus defining model performance). Different expectations at different drug development stages define the utility of these human-derived models. AREAS COVERED Herein, the authors review the importance of understanding the functional characteristics of the evolving spectrum of simpler (2D) and more complex (co-cultures, 3D constructs, and engineered tissues) human-derived cardiac preparations, and how their performance may be evaluated based on analytical sensitivity, variability, and reproducibility in order to correctly match preparations with expectations of different safety assays. The need for consensus clinical examples of electrophysiologic, contractile, and structural cardiotoxicities essential for benchmarking human-derived models is also discussed. EXPERT OPINION It is helpful (but not essential) that hiPSC-CMs preparations fully recapitulate pharmacological responses of native adult human ventricular myocytes when evaluating cardiotoxicity in vitro. Further calibration and model standardization (aligning concordance with clinical findings) are necessary to understand the role of hiPSC-CMs in guiding cardiotoxicity assessments in early drug discovery efforts.
Collapse
Affiliation(s)
- Gary Gintant
- Department of Integrative Pharmacology (ZR13), AP-9A-LL, AbbVie Inc. , North Chicago, IL, USA
| | - Martin Traebert
- Novartis Institutes for Biomedical Research , Safety Pharmacology, Basel, Switzerland
| |
Collapse
|
45
|
Golforoush P, Schneider MD. Intensive care for human hearts in pluripotent stem cell models. NPJ Regen Med 2020; 5:4. [PMID: 32194989 PMCID: PMC7060343 DOI: 10.1038/s41536-020-0090-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Successful drug discovery is ultimately contingent on the availability of workable, relevant, predictive model systems. Conversely, for cardiac muscle, the lack of human preclinical models to inform target validation and compound development has likely contributed to the perennial problem of clinical trial failures, despite encouraging non-human results. By contrast, human cardiomyocytes produced from pluripotent stem cell models have recently been applied to safety pharmacology, phenotypic screening, target validation and high-throughput assays, facilitating cardiac drug discovery. Here, we review the impact of human pluripotent stem cell models in cardiac drug discovery, discussing the range of applications, readouts, and disease models employed, along with the challenges and prospects to advance this fruitful mode of research further.
Collapse
Affiliation(s)
- Pelin Golforoush
- National Heart and Lung Institute, Imperial College London, London, W12 0NN UK
| | | |
Collapse
|
46
|
Jæger KH, Charwat V, Charrez B, Finsberg H, Maleckar MM, Wall S, Healy KE, Tveito A. Improved Computational Identification of Drug Response Using Optical Measurements of Human Stem Cell Derived Cardiomyocytes in Microphysiological Systems. Front Pharmacol 2020; 10:1648. [PMID: 32116671 PMCID: PMC7029356 DOI: 10.3389/fphar.2019.01648] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) hold great potential for drug screening applications. However, their usefulness is limited by the relative immaturity of the cells' electrophysiological properties as compared to native cardiomyocytes in the adult human heart. In this work, we extend and improve on methodology to address this limitation, building on previously introduced computational procedures which predict drug effects for adult cells based on changes in optical measurements of action potentials and Ca2+ transients made in stem cell derived cardiac microtissues. This methodology quantifies ion channel changes through the inversion of data into a mathematical model, and maps this response to an adult phenotype through the assumption of functional invariance of fundamental intracellular and membrane channels during maturation. Here, we utilize an updated action potential model to represent both hiPSC-CMs and adult cardiomyocytes, apply an IC50-based model of dose-dependent drug effects, and introduce a continuation-based optimization algorithm for analysis of dose escalation measurements using five drugs with known effects. The improved methodology can identify drug induced changes more efficiently, and quantitate important metrics such as IC50 in line with published values. Consequently, the updated methodology is a step towards employing computational procedures to elucidate drug effects in adult cardiomyocytes for new drugs using stem cell-derived experimental tissues.
Collapse
Affiliation(s)
| | - Verena Charwat
- Department of Bioengineering, College of Engineering, University of California, Berkeley, CA, United States
| | - Bérénice Charrez
- Department of Bioengineering, College of Engineering, University of California, Berkeley, CA, United States
| | - Henrik Finsberg
- Department of Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Mary M. Maleckar
- Department of Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Samuel Wall
- Department of Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Kevin E. Healy
- Department of Bioengineering, College of Engineering, University of California, Berkeley, CA, United States
- Department of Materials Science and Engineering, College of Engineering, University of California, Berkeley, CA, United States
| | - Aslak Tveito
- Department of Scientific Computing, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
47
|
van den Brink L, Grandela C, Mummery CL, Davis RP. Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells 2020; 38:174-186. [PMID: 31664757 PMCID: PMC7027796 DOI: 10.1002/stem.3110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Research on mechanisms underlying monogenic cardiac diseases such as primary arrhythmias and cardiomyopathies has until recently been hampered by inherent limitations of heterologous cell systems, where mutant genes are expressed in noncardiac cells, and physiological differences between humans and experimental animals. Human-induced pluripotent stem cells (hiPSCs) have proven to be a game changer by providing new opportunities for studying the disease in the specific cell type affected, namely the cardiomyocyte. hiPSCs are particularly valuable because not only can they be differentiated into unlimited numbers of these cells, but they also genetically match the individual from whom they were derived. The decade following their discovery showed the potential of hiPSCs for advancing our understanding of cardiovascular diseases, with key pathophysiological features of the patient being reflected in their corresponding hiPSC-derived cardiomyocytes (the past). Now, recent advances in genome editing for repairing or introducing genetic mutations efficiently have enabled the disease etiology and pathogenesis of a particular genotype to be investigated (the present). Finally, we are beginning to witness the promise of hiPSC in personalized therapies for individual patients, as well as their application in identifying genetic variants responsible for or modifying the disease phenotype (the future). In this review, we discuss how hiPSCs could contribute to improving the diagnosis, prognosis, and treatment of an individual with a suspected genetic cardiac disease, thereby developing better risk stratification and clinical management strategies for these potentially lethal but treatable disorders.
Collapse
Affiliation(s)
- Lettine van den Brink
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Catarina Grandela
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Christine L. Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Richard P. Davis
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| |
Collapse
|
48
|
Zhao Y, Rafatian N, Wang EY, Feric NT, Lai BFL, Knee-Walden EJ, Backx PH, Radisic M. Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform. Matrix Biol 2020; 85-86:189-204. [PMID: 30981898 PMCID: PMC6788963 DOI: 10.1016/j.matbio.2019.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
Organ-on-a-chip systems have the potential to revolutionize drug screening and disease modeling through the use of human stem cell-derived cardiomyocytes. The predictive power of these tissue models critically depends on the functional assembly and maturation of human cells that are used as building blocks for organ-on-a-chip systems. To resemble a more adult-like phenotype on these heart-on-a-chip systems, the surrounding micro-environment of individual cardiomyocyte needs to be controlled. Herein, we investigated the impact of four microenvironmental cues: cell seeding density, types and percentages of non-myocyte populations, the types of hydrogels used for tissue inoculation and the electrical conditioning regimes on the structural and functional assembly of human pluripotent stem cell-derived cardiac tissues. Utilizing a novel, plastic and open-access heart-on-a-chip system that is capable of continuous non-invasive monitoring of tissue contractions, we were able to study how different micro-environmental cues affect the assembly of the cardiomyocytes into a functional cardiac tissue. We have defined conditions that resulted in tissues exhibiting hallmarks of the mature human myocardium, such as positive force-frequency relationship and post-rest potentiation.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5; Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Y Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Nicole T Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; TARA Biosystems, Inc., New York, NY 10016, USA
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Ericka J Knee-Walden
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Peter H Backx
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4; Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5; Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4; Canada.
| |
Collapse
|
49
|
Abi-Gerges N, Miller PE, Ghetti A. Human Heart Cardiomyocytes in Drug Discovery and Research: New Opportunities in Translational Sciences. Curr Pharm Biotechnol 2019; 21:787-806. [PMID: 31820682 DOI: 10.2174/1389201021666191210142023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
Abstract
In preclinical drug development, accurate prediction of drug effects on the human heart is critically important, whether in the context of cardiovascular safety or for the purpose of modulating cardiac function to treat heart disease. Current strategies have significant limitations, whereby, cardiotoxic drugs can escape detection or potential life-saving therapies are abandoned due to false positive toxicity signals. Thus, new and more reliable translational approaches are urgently needed to help accelerate the rate of new therapy development. Renewed efforts in the recovery of human donor hearts for research and in cardiomyocyte isolation methods, are providing new opportunities for preclinical studies in adult primary cardiomyocytes. These cells exhibit the native physiological and pharmacological properties, overcoming the limitations presented by artificial cellular models, animal models and have great potential for providing an excellent tool for preclinical drug testing. Adult human primary cardiomyocytes have already shown utility in assessing drug-induced cardiotoxicity risk and helping in the identification of new treatments for cardiac diseases, such as heart failure and atrial fibrillation. Finally, strategies with actionable decision-making trees that rely on data derived from adult human primary cardiomyocytes will provide the holistic insights necessary to accurately predict human heart effects of drugs.
Collapse
Affiliation(s)
- Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA 92109, United States
| |
Collapse
|
50
|
Hu SY, Zhuang QQ, Qiu Y, Zhu XF, Yan QF. Cell models and drug discovery for mitochondrial diseases. J Zhejiang Univ Sci B 2019; 20:449-456. [PMID: 31090270 DOI: 10.1631/jzus.b1900196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mitochondrion is a semi-autonomous organelle, important for cell energy metabolism, apoptosis, the production of reactive oxygen species (ROS), and Ca2+ homeostasis. Mitochondrial DNA (mtDNA) mutation is one of the primary factors in mitochondrial disorders. Though much progress has been made, there remain many difficulties in constructing cell models for mitochondrial diseases. This seriously restricts studies related to targeted drug discovery and the mechanism and therapy for such diseases. Here we summarize the characteristics of patient-specific immortalized lymphoblastoid cells, fibroblastoid cells, cytoplasmic hybrid (cybrid) cell lines, and induced pluripotent stem cells (iPSCs)-derived differentiation cells in the study of mitochondrial disorders, as well as offering discussion of roles and advances of these cell models, particularly in the screening of drugs.
Collapse
Affiliation(s)
- Shuang-Yi Hu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Zhuang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Qiu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xu-Fen Zhu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-Feng Yan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Pediatrics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|