1
|
Liao JX, Huang QM, Pan ZC, Wu J, Zhang WJ. The anti-inflammatory and immunomodulatory effects of olfactory ensheathing cells transplantation in spinal cord injury and concomitant pathological pain. Eur J Pharmacol 2024; 982:176950. [PMID: 39214270 DOI: 10.1016/j.ejphar.2024.176950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling injury that is often accompanied by neuropathic pain (NeP), which severely affects patients' motor and sensory functions and reduces their quality of life. Currently, there is no specific treatment for treating SCI and relieving the accompanying pain, and we can only rely on medication and physical rehabilitation, both of which are ineffective. Researchers have recently identified a novel class of glial cells, olfactory ensheathing cells (OECs), which originate from the olfactory system. Transplantation of OECs into damaged spinal cords has demonstrated their capacity to repair damaged nerves, improve the microenvironment at the point of injury, and They can also restore neural connectivity and alleviate the patient's NeP to a certain extent. Although the effectiveness of OECs transplantation has been confirmed in experiments, the specific mechanisms by which it repairs the spinal cord and relieves pain have not been articulated. Through a review of the literature, it has been established that the ability of OECs to repair and relieve pain is inextricably linked to its anti-inflammatory and immunomodulatory effects. In this regard, it is imperative to gain a deeper understanding of how OECs exert their anti-inflammatory and immunomodulatory effects. The objective of this paper is to provide a comprehensive overview of the mechanisms by which OECs exert anti-inflammatory and immunomodulatory effects. We aim to manipulate the immune microenvironment at the transplantation site through the intervention of cytokines and immune cells, with the goal of enhancing OECs' function or creating a conducive microenvironment for OECs' survival. This approach is expected to improve the therapeutic efficacy of OECs in clinical settings. However, numerous fundamental and clinical challenges remain to be addressed if OEC transplantation therapy is to become a standardized treatment in clinical practice.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zhi-Cheng Pan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jie Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
2
|
Huerta MÁ, Marcos-Frutos D, Nava JDL, García-Ramos A, Tejada MÁ, Roza C. P2X3 and P2X2/3 receptors inhibition produces a consistent analgesic efficacy: A systematic review and meta-analysis of preclinical studies. Eur J Pharmacol 2024; 984:177052. [PMID: 39393665 DOI: 10.1016/j.ejphar.2024.177052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND P2X3 and P2X2/3 receptors are promising therapeutic targets for pain treatment and selective inhibitors are under evaluation in ongoing clinical trials. Here we aim to consolidate and quantitatively evaluate the preclinical evidence on P2X3 and P2X2/3 receptors inhibitors for pain treatment. METHODS A literature search was conducted in PubMed, Scopus and Web-of-Science on August 5, 2023. Data was extracted and meta-analyzed using a random-effects model to estimate the analgesic efficacy of the intervention; then several subgroup analyses were performed. RESULTS 67 articles were included. The intervention induced a consistent pain reduction (66.5 [CI95% = 58.5, 74.5]; p < 0.0001), which was highest for visceral pain (114.3), followed by muscle (79.8) and neuropathic pain (71.1), but lower for cancer (64.1), joint (57.5) and inflammatory pain (49.0). Further analysis showed a greater effect for mechanical hypersensitivity (70.4) compared to heat hypersensitivity (64.5) and pain-related behavior (54.1). Sex (male or female) or interspecies (mice or rats) differences were not appreciated (p > 0.05). The most used molecule was A-317491, but other such as gefapixant or eliapixant were also effective (p < 0.0001 for all). The analgesic effect was higher for systemic or peripheral administration than for intrathecal administration. Conversely, intracerebroventricular administration was not analgesic, but potentiated pain. CONCLUSION P2X3 and P2X2/3 receptor inhibitors showed a good analgesic efficacy in preclinical studies, which was dependent on the pain etiology, pain outcome measured, the drug used and its route of administration. Further research is needed to assess the clinical utility of these preclinical findings. PROTOCOL REGISTRATION PROSPERO ID CRD42023450685.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Daniel Marcos-Frutos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Javier de la Nava
- Unit for Active Coping Strategies for Pain in Primary Care, East-Valladolid Primary Care Management, Castilla and Leon Public Health System (Sacyl), Valladolid, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain; Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Miguel Ángel Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, 28871, Madrid, Spain
| |
Collapse
|
3
|
Liu T, Ji X, Zang H, Li Z, Yao W, Wan L, Zhang C, Zhang Y. Endoplasmic reticulum stress: The underlying mechanism of chronic pain. Neurobiol Dis 2024; 202:106697. [PMID: 39389155 DOI: 10.1016/j.nbd.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic pain (CP) affects over 30 % of the global population, imposing significant financial burdens on individuals and society. However, existing treatments for CP offer limited efficacy and troublesome side effects, primarily owing to a lack of knowledge of its precise underlying mechanism. Pathological stimuli disrupt the intricate process of protein folding and endoplasmic reticulum (ER) homeostasis. This disruption leads to the accumulation of misfolded or unfolded proteins in the ER, generating a condition termed ER stress. Emerging data have indicated that ER stress, occurring in the peripheral and central nervous systems, contributes to the development and maintenance of CP. This review aimed to comprehensively explore the intersection of ER stress and CP within the lower and upper nervous systems and highlight the cell-specific contributions of the unfolded protein response in different CP types. We provide a comprehensive synthesis of evidence from animal models, examining neuronal and non-neuronal mechanisms and discuss the damaging ER stress-linked inflammation, autophagy, oxidative stress, and apoptosis, which collectively drive disease progression and contribute to a neurotoxic environment. However, the mechanisms through which ER stress influences the most advanced centre-of-pain projections in the brain remain unclear. Further investigation in this area is crucial to elucidate the relationship between ER stress and CP and facilitate the development of novel therapeutic drugs for this intractable dilemma.
Collapse
Affiliation(s)
- Tongtong Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuofan Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Wang H, Chen L, Xing J, Shi X, Xu C. Reduction of TRPV1 expression on neurons due to downregulation of P2X7R in neonatal rat dorsal root ganglion satellite glial cells under co-culture conditions. Biol Cell 2024; 116:e2400021. [PMID: 39159475 DOI: 10.1111/boc.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND INFORMATION The purinergic ligand-gated ion channel 7 receptor (P2X7R) is an ATP-gated ion channel that transmits extracellular signals and induces corresponding biological effects, transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that maintains normal physiological functions; numerous studies showed that P2X7R and TRPV1 are associated with inflammatory reactions. RESULTS The effect of P2X7R knockdown in satellite glial cells (SGCs) on neuronal TRPV1 expression under high glucose and high free fat (HGHF) environment was investigated. P2X7 short hairpin RNA (shRNA) was utilized to downregulate P2X7R in SGCs, and treated and untreated SGCs were co-cultured with neuronal cell lines. The expression levels of inflammatory factors and signaling pathways in SGCs and neurons were measured using Western blot analysis, RT-qPCR, immunofluorescence, and enzyme-linked immunosorbent assays. Results suggested that P2X7 shRNA reduced the expression levels of P2X7R protein and mRNA in SGCs surrounding DRG neurons and downregulated the release of tumor necrosis factor-alpha and interleukin-1 beta via the Ca2+/p38 MAPK/NF-κB pathway. Additionally, the downregulation of P2X7R might decrease TRPV1 expression in neurons via the Ca2+/PKC-ɛ/p38 MAPK pathway. CONCLUSIONS Reducing P2X7R expression in SCGs in an HGHF environment could decrease neuronal TRPV1 expression via the Ca2+/PKC-ɛ/p38 MAPK pathway.
Collapse
Affiliation(s)
- Hongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- College of Economics and Management, Shanghai Ocean University, Shanghai, P.R. China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Xiangchao Shi
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- The Clinical Medical School, Jiangxi Medical College, Shangrao, P.R. China
| |
Collapse
|
5
|
Lin YY, Lu Y, Li CY, Ma XF, Shao MQ, Gao YH, Zhang YQ, Jiang HN, Liu Y, Yang Y, Huang LD, Cao P, Wang HS, Wang J, Yu Y. Finely ordered intracellular domain harbors an allosteric site to modulate physiopathological function of P2X3 receptors. Nat Commun 2024; 15:7652. [PMID: 39227563 PMCID: PMC11372093 DOI: 10.1038/s41467-024-51815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
P2X receptors, a subfamily of ligand-gated ion channels activated by extracellular ATP, are implicated in various physiopathological processes, including inflammation, pain perception, and immune and respiratory regulations. Structural determinations using crystallography and cryo-EM have revealed that the extracellular three-dimensional architectures of different P2X subtypes across various species are remarkably identical, greatly advancing our understanding of P2X activation mechanisms. However, structural studies yield paradoxical architectures of the intracellular domain (ICD) of different subtypes (e.g., P2X3 and P2X7) at the apo state, and the role of the ICD in P2X functional regulation remains unclear. Here, we propose that the P2X3 receptor's ICD has an apo state conformation similar to the open state but with a less tense architecture, containing allosteric sites that influence P2X3's physiological and pathological roles. Using covalent occupancy, engineered disulfide bonds and voltage-clamp fluorometry, we suggested that the ICD can undergo coordinated motions with the transmembrane domain of P2X3, thereby facilitating channel activation. Additionally, we identified a novel P2X3 enhancer, PSFL77, and uncovered its potential allosteric site located in the 1α3β domain of the ICD. PSFL77 modulated pain perception in P2rx3+/+, but not in P2rx3-/-, mice, indicating that the 1α3β, a "tunable" region implicated in the regulation of P2X3 functions. Thus, when P2X3 is in its apo state, its ICD architecture is fairly ordered rather than an unstructured outward folding, enabling allosteric modulation of the signaling of P2X3 receptors.
Collapse
Grants
- This study was supported by funds from Hunan “Huxiang” High-level Talent Program (2021RC5013 to Y.Y.), Changsha “Jie Bang Gua Shuai” Major Science and Technology Programs (KQ2301004), National Natural Science Foundation of China (No. 32371289 to Y.Y. and No. 32000869 to J. W), Innovation and Entrepreneurship (Shuangchuang) Program of Jiangsu Province (2020 and 2023 to Y.Y.), Natural Science Foundation of Jiangsu Province (BK20202002 to Y.Y.), “Xing Yao” Leading Scholars of China Pharmaceutical University (2021, Y.Y.), the CAMS Innovation Fund for Medical Sciences (CIFMS) (2019-I2M-5-074, Y.Y.), the Medical Innovation and Development Project of Lanzhou University (lzuyxcx-2022-156, Y.Y.), and the Fundamental Research Funds for the Central Universities (2632024ZD10).
Collapse
Affiliation(s)
- Yi-Yu Lin
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Lu
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chun-Yun Li
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xue-Fei Ma
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Miao-Qing Shao
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu-Hao Gao
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu-Qing Zhang
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hai-Ning Jiang
- Departments of Chemical Biology and Pharmacology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Departments of Chemical Biology and Pharmacology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Departments of Chemical Biology and Pharmacology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Dong Huang
- Departments of Chemical Biology and Pharmacology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, China.
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- School of Science, China Pharmaceutical University, Nanjing, China.
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Departments of Chemical Biology and Pharmacology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
6
|
Di Salvo C, D'Antongiovanni V, Benvenuti L, Fornai M, Valdiserra G, Natale G, Ryskalin L, Lucarini E, Mannelli LDC, Ghelardini C, Colucci R, Haskó G, Pellegrini C, Antonioli L. The pharmacological blockade of P2X4 receptor as a viable approach to manage visceral pain in a rat model of colitis. J Drug Target 2024; 32:953-963. [PMID: 38864378 DOI: 10.1080/1061186x.2024.2367563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Nowadays, the pharmacological management of visceral hypersensitivity associated with colitis is ineffective. In this context, targeting purinergic P2X4 receptor (P2X4R), which can modulate visceral pain transmission, could represent a promising therapeutic strategy. Herein, we tested the pain-relieving effect of two novel and selective P2X4R antagonists (NC-2600 and NP-1815-PX) in a murine model of DNBS-induced colitis and investigated the mechanisms underlying their effect. Tested drugs and dexamethasone (DEX) were administered orally, two days after colitis induction. Treatment with tested drugs and DEX improved tissue inflammatory parameters (body weight, spleen weight, macroscopic damage, TNF and IL-1β levels) in DNBS-rats. In addition, NC-2600 and NP-1815-PX attenuated visceral pain better than DEX and prevented the reduction of occludin expression. In in vitro studies, treatment of CaCo2 cells with supernatant from THP-1 cells, previously treated with LPS plus ATP, reduced the expression of tight junctions protein. By contrast, CaCo2 cells treated with supernatant from THP-1 cells, previously incubated with tested drugs, counteracted the reduction of tight junctions due to the inhibition of P2X4R/NLRP3/IL-1β axis. In conclusion, these results suggest that the direct and selective inhibition of P2X4R represents a viable approach for the management of visceral pain associated with colitis via NLRP3/IL-1β axis inhibition.
Collapse
Affiliation(s)
- Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Koyanagi M, Ogido R, Moriya A, Saigo M, Ihida S, Teranishi T, Kawada J, Katsuno T, Matsubara K, Terada T, Yamashita A, Imai S. Development of a 3-dimensional organotypic model with characteristics of peripheral sensory nerves. CELL REPORTS METHODS 2024; 4:100835. [PMID: 39116883 PMCID: PMC11384078 DOI: 10.1016/j.crmeth.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
We developed a rat dorsal root ganglion (DRG)-derived sensory nerve organotypic model by culturing DRG explants on an organoid culture device. With this method, a large number of organotypic cultures can be produced simultaneously with high reproducibility simply by seeding DRG explants derived from rat embryos. Unlike previous DRG explant models, this organotypic model consists of a ganglion and an axon bundle with myelinated A fibers, unmyelinated C fibers, and stereo-myelin-forming nodes of Ranvier. The model also exhibits Ca2+ signaling in cell bodies in response to application of chemical stimuli to nerve terminals. Further, axonal transection increases the activating transcription factor 3 mRNA level in ganglia. Axons and myelin are shown to regenerate 14 days following transection. Our sensory organotypic model enables analysis of neuronal excitability in response to pain stimuli and tracking of morphological changes in the axon bundle over weeks.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Ryosuke Ogido
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Akari Moriya
- Department of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Mamiko Saigo
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Satoshi Ihida
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Tomoko Teranishi
- New Business Promotion Division, Business Development Unit, Panel Semicon Laboratories, Sharp Corporation, Tenri, Nara 632-8567, Japan
| | - Jiro Kawada
- Jiksak Bioengineering, Inc., Kawasaki, Kanagawa 210-0821, Japan
| | - Tatsuya Katsuno
- Division of Electron Microscopic Study, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuo Matsubara
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Tomohiro Terada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Akira Yamashita
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Satoshi Imai
- Department of Medical Neuropharmacology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan; Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto 606-8507, Japan.
| |
Collapse
|
8
|
Parke S, Gude K, Roth K, Messina F. Efficacy and safety of eliapixant in endometriosis-associated pelvic pain: the randomized, placebo-controlled phase 2b SCHUMANN study. BMC Womens Health 2024; 24:353. [PMID: 38890641 PMCID: PMC11186168 DOI: 10.1186/s12905-024-03188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The SCHUMANN study evaluated the efficacy and safety of the selective P2 × 3 antagonist eliapixant in patients with endometriosis-associated pelvic pain (EAPP). METHODS SCHUMANN was a randomized, placebo- and active comparator-controlled, double-blind to placebo and open-label to comparator, parallel-group, multicenter, dose-finding phase 2b study. The participants were women with surgically diagnosed endometriosis who fulfilled defined EAPP criteria. Participants were randomized 1:1:1:1 to twice daily (BID) 25 mg, 75 mg, or 150 mg oral eliapixant or a placebo for 12 weeks. An exploratory once-daily elagolix 150 mg treatment group was also included. The primary endpoint was the absolute change in mean worst EAPP from baseline to the end of intervention (EOI). RESULTS Overall, 215 participants were randomized for treatment (44 to eliapixant 25 mg, 44 to eliapixant 75 mg, 43 to eliapixant 150 mg, 43 to a placebo, and 41 to elagolix 150 mg). For safety reasons, the study was terminated early; both treatment and enrollment stopped immediately, producing less than 50% of the planned number of completers. The study found no significant differences in EAPP reduction from baseline between groups and no significant dose-response model. The elagolix 150 mg group showed better pain reduction than any of the other groups. No new safety signals were observed, relative to the previously known safety profile of eliapixant, which was generally well tolerated. However, one case of moderate and probably drug-induced liver injury in a participant receiving eliapixant 150 mg BID supported the association between eliapixant and a potential increase in liver function values, defined before the start of the phase 2 program. CONCLUSIONS This study did not meet its primary objective as no statistically significant or clinically relevant differences in changes of mean worst EAPP from baseline were observed between treatment groups. The single observed case of moderate, probably drug-induced liver injury was the second case in the eliapixant phase 2 program conducted in the following indications: refractory or unexplained chronic cough, diabetic neuropathic pain, overactive bladder, and EAPP. Due to this, the benefit-risk ratio for the study was no longer considered to be positive. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier NCT04614246; registered November 3, 2020.
Collapse
Affiliation(s)
- Susanne Parke
- Research and Development, Bayer AG, Berlin, Germany.
| | | | - Katrin Roth
- Research and Development, Bayer AG, Berlin, Germany
| | | |
Collapse
|
9
|
Huang ACW, Shih HC, Shyu BC. The P2X7 Hypothesis of Central Post-Stroke Pain. Int J Mol Sci 2024; 25:6577. [PMID: 38928280 PMCID: PMC11204365 DOI: 10.3390/ijms25126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The present study examined how P2X7 receptor knockout (KO) modulates central post-stroke pain (CPSP) induced by lesions of the ventrobasal complex (VBC) of the thalamus in behaviors, molecular levels, and electrical recording tests. Following the experimental procedure, the wild-type and P2X7 receptor KO mice were injected with 10 mU/0.2 μL type IV collagenase in the VBC of the thalamus to induce an animal model of stroke-like thalamic hemorrhage. Behavioral data showed that the CPSP group induced thermal and mechanical pain. The P2X7 receptor KO group showed reduced thermal and mechanical pain responses compared to the CPSP group. Molecular assessments revealed that the CPSP group had lower expression of NeuN and KCC2 and higher expression of GFAP, IBA1, and BDNF. The P2X7 KO group showed lower expression of GFAP, IBA1, and BDNF but nonsignificant differences in KCC2 expression than the CPSP group. The expression of NKCC1, GABAa receptor, and TrkB did not differ significantly between the control, CPSP, and P2X7 receptor KO groups. Muscimol, a GABAa agonist, application increased multiunit numbers for monitoring many neurons and [Cl-] outflux in the cytosol in the CPSP group, while P2X7 receptor KO reduced multiunit activity and increased [Cl-] influx compared to the CPSP group. P2X4 receptor expression was significantly decreased in the 100 kDa but not the 50 kDa site in the P2X7 receptor KO group. Altogether, the P2X7 hypothesis of CPSP was proposed, wherein P2X7 receptor KO altered the CPSP pain responses, numbers of astrocytes and microglia, CSD amplitude of the anterior cingulate cortex and the medial dorsal thalamus, BDNF expression, [Cl-] influx, and P2X4 expression in 100 kDa with P2X7 receptors. The present findings have implications for the clinical treatment of CPSP symptoms.
Collapse
Affiliation(s)
| | - Hsi-Chien Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Bai Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
10
|
Li X, Haranaka M, Li H, Liu P, Chen H, Klein S, Reif S, Francke K, Friedrich C, Okumura K. P2X3 Receptor Antagonist Eliapixant in Phase I Clinical Trials: Safety and Inter-ethnic Comparison of Pharmacokinetics in Healthy Chinese and Japanese Participants. Clin Pharmacokinet 2024; 63:901-915. [PMID: 38907175 DOI: 10.1007/s40262-024-01387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Afferent neuronal hypersensitization via P2X3 receptor signaling has been implicated as a driver of several disorders, including refractory chronic cough, endometriosis, diabetic neuropathic pain, and overactive bladder. Eliapixant, a selective P2X3 receptor antagonist, has been in clinical development for all four disorders. OBJECTIVE This paper describes pharmacokinetic (PK) and safety data from two phase I studies of eliapixant in healthy Japanese and Chinese participants and compares those data within the two populations and with previous multiple dose data from Caucasian participants. METHODS Two separate phase I, single-center, randomized, placebo-controlled studies were conducted with healthy male participants. The Japanese study was single-blind and the Chinese study was double-blind. Eliapixant was administered as an oral amorphous solid dispersion immediate-release tablet in strengths of 25 mg, 75 mg, and 150 mg. PK characteristics after a single dose (SD) and at steady state (multiple dose [MD], twice daily), adverse events (AEs), and tolerability were evaluated. A post hoc comparison of PK characteristics after SD of eliapixant in Japanese and Chinese participants, and after MD of eliapixant in Japanese, Chinese, and Caucasian participants, was performed. RESULTS Overall, 36/39 participants enrolled in the Japanese/Chinese studies, respectively (mean [standard deviation] age 25.4 [6.5] and 26.7 [5.0] years, respectively). After SD administration, maximum plasma concentration (Cmax) was higher among Japanese than Chinese participants in the 25 mg and 75 mg dose groups, but comparable in the 150 mg dose group. The area under the concentration-time curve (AUC) was comparable between Japanese and Chinese participants in the 25 mg and 75 mg dose groups, but lower among Japanese participants in the 150 mg group. Half-lives after SD and MD administration were also comparable in Japanese and Chinese participants. The post hoc analysis included 26 Japanese, 30 Chinese, and 50 Caucasian participants. Comparable exposure (Cmax,md and AUC[0-12]md) was observed after MD administration of eliapixant in Chinese and/or Japanese compared with Caucasian participants (geometric mean inter-ethnic ratios close to 1). The trough plasma concentration after eliapixant 150 mg MD, which was assumed to be relevant to eliapixant efficacy, was comparable across all ethnicity groups. Most AEs reported in the Japanese (eliapixant 75 mg SD, n = 2; eliapixant 150 mg MD, n = 2) and Chinese participants (eliapixant 25 mg SD, n = 7; eliapixant 75 mg SD, n = 6; eliapixant 150 mg SD, n = 7; eliapixant 150 mg MD, n = 9; placebo SD, n = 5; placebo MD, n = 1) were of mild intensity. Higher incidences of AEs in the Chinese population were likely due to differing standards of AE reporting between investigators. CONCLUSION Eliapixant was well tolerated by Japanese and Chinese participants. The inter-ethnic evaluation demonstrated similar PK characteristics across Japanese, Chinese, and Caucasian participants. REGISTRATION ClinicalTrials.gov identifier numbers: NCT04265781 and NCT04802343.
Collapse
Affiliation(s)
- Xuening Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miwa Haranaka
- Hakata Clinic, Souseikai Global Clinical Research Center, Fukuoka, Japan
| | - Hui Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pei Liu
- Bayer Healthcare Co. Ltd., Clinical Pharmacology Asia, Beijing, China.
| | - Huijun Chen
- Bayer Healthcare Co. Ltd., Clinical Pharmacology Asia, Beijing, China
| | - Stefan Klein
- Bayer AG, Clinical Pharmacology, Berlin, Germany
| | | | | | | | | |
Collapse
|
11
|
Xu YS, Xiang J, Lin SJ. Functional role of P2X7 purinergic receptor in cancer and cancer-related pain. Purinergic Signal 2024:10.1007/s11302-024-10019-w. [PMID: 38771429 DOI: 10.1007/s11302-024-10019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.
Collapse
Affiliation(s)
- Yong-Sheng Xu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Jun Xiang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China.
| |
Collapse
|
12
|
Yadalam PK, Natarajan PM, Mosaddad SA, Heboyan A. Graph neural networks-based prediction of drug gene association of P2X receptors in periodontal pain. J Oral Biol Craniofac Res 2024; 14:335-338. [PMID: 38680473 PMCID: PMC11053325 DOI: 10.1016/j.jobcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The P2X7 receptor, a member of the P2X receptor family, plays a crucial role in various physiological processes, particularly pain perception. Its expression across immune, neuronal, and glial cells facilitates the release of pro-inflammatory molecules, thereby influencing pain development and maintenance, as evidenced by its association with pulpitis in rats. Notably, P2X receptors such as P2X3 and P2X7 are pivotal in dental pain pathways, making them promising targets for novel analgesic interventions. Leveraging graph neural networks (GNNs) presents an innovative approach to model graph data, aiding in the identification of drug targets and prediction of their efficacy, complementing advancements in genomics and proteomics for therapeutic development. In this study, 921 drug-gene interactions involving P2X receptors were accessed through https://www.probes-drugs.org/. These interactions underwent meticulous annotation, preprocessing, and subsequent utilization to train and assess GNNs. Furthermore, leveraging Cytoscape, the CytoHubba plugin, and other bioinformatics tools, gene expression networks were constructed to pinpoint hub genes within these interactions. Through analysis, SLC6A3, SLC6A2, FGF1, GRK2, and PLA2G2A were identified as central hub genes within the context of P2X receptor-mediated drug-gene interactions. Despite achieving a 65 percent accuracy rate, the GNN model demonstrated suboptimal predictive power for gene-drug interactions associated with oral pain. Hence, further refinements and enhancements are imperative to unlock its full potential in elucidating and targeting pathways underlying oral pain mechanisms.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
See LP, Sripinun P, Lu W, Li J, Alboloushi N, Alvarez-Periel E, Lee SM, Karabucak B, Wang S, Jordan Sciutto KL, Theken KN, Mitchell CH. Increased Purinergic Signaling in Human Dental Pulps With Inflammatory Pain is Sex-Dependent. THE JOURNAL OF PAIN 2024; 25:1039-1058. [PMID: 37956743 PMCID: PMC11129867 DOI: 10.1016/j.jpain.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
An enhanced understanding of neurotransmitter systems contributing to pain transmission aids in drug development, while the identification of biological variables like age and sex helps in the development of personalized pain management and effective clinical trial design. This study identified enhanced expression of purinergic signaling components specifically in painful inflammation, with levels increased more in women as compared to men. Inflammatory dental pain is common and potentially debilitating; as inflammation of the dental pulp can occur with or without pain, it provides a powerful model to examine distinct pain pathways in humans. In control tissues, P2X3 and P2X2 receptors colocalized with PGP9.5-positive nerves. Expression of the ecto-nucleotidase NTPDase1 (CD39) increased with exposure to extracellular adenosine triphosphate (ATP), implying CD39 acted as a marker for sustained elevation of extracellular ATP. Both immunohistochemistry and immunoblots showed P2X2, P2X3, and CD39 increased in symptomatic pulpitis, suggesting receptors and the ATP agonist were elevated in patients with increased pain. The increased expression of P2X3 and CD39 was more frequently observed in women than men. In summary, this study identifies CD39 as a marker for chronic elevation of extracellular ATP in fixed human tissue. It supports a role for increased purinergic signaling in humans with inflammatory dental pain and suggests the contribution of purines shows sexual dimorphism. This highlights the potential for P2X antagonists to treat pain in humans and stresses the need to consider sex in clinical trials that target pain and purinergic pathways. PERSPECTIVE: This article demonstrates an elevation of ATP-marker CD39 and of ATP receptors P2X2 and P2X3 with inflammatory pain and suggests the rise is greater in women. This highlights the potential for P2X antagonists to treat pain and stresses the consideration of sexual dimorphism in studies of purines and pain.
Collapse
Affiliation(s)
- Lily P. See
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Puttipong Sripinun
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Wennan Lu
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Jiaqi Li
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Naela Alboloushi
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Oral Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Su-Min Lee
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Bekir Karabucak
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Steven Wang
- Department of Oral Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Katherine N. Theken
- Department of Oral Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Claire H. Mitchell
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
14
|
Wang Q, Ye Y, Yang L, Xiao L, Liu J, Zhang W, Du G. Painful diabetic neuropathy: The role of ion channels. Biomed Pharmacother 2024; 173:116417. [PMID: 38490158 DOI: 10.1016/j.biopha.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Painful diabetic neuropathy (PDN) is a common chronic complication of diabetes that causes neuropathic pain and negatively affects the quality of life. The management of PDN is far from satisfactory. At present, interventions are primarily focused on symptomatic treatment. Ion channel disorders are a major cause of PDN, and a complete understanding of their roles and mechanisms may provide better options for the clinical treatment of PDN. Therefore, this review summarizes the important role of ion channels in PDN and the current drug development targeting these ion channels.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Ye
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lifan Xiao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Guizhi Du
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Bouhassira D, Tesfaye S, Sarkar A, Soisalon-Soininen S, Stemper B, Baron R. Efficacy and safety of eliapixant in diabetic neuropathic pain and prediction of placebo responders with an exploratory novel algorithm: results from the randomized controlled phase 2a PUCCINI study. Pain 2024; 165:785-795. [PMID: 37851336 DOI: 10.1097/j.pain.0000000000003085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Phase 2a of the PUCCINI study was a placebo-controlled, double-blind, parallel-group, multicenter, proof-of-concept study evaluating the efficacy and safety of the selective P2X3 antagonist eliapixant in patients with diabetic neuropathic pain (DNP) ( ClinicalTrials.gov NCT04641273). Adults with type 1 or type 2 diabetes mellitus with painful distal symmetric sensorimotor neuropathy of >6 months' duration and neuropathic pain were enrolled and randomized 1:1 to 150 mg oral eliapixant twice daily or placebo for 8 weeks. The primary endpoint was change from baseline in weekly mean 24-hour average pain intensity score at week 8. In total, 135 participants completed treatment, 67 in the eliapixant group and 68 in the placebo group. At week 8, the change from baseline in posterior mean 24-hour average pain intensity score (90% credible interval) in the eliapixant group was -1.56 (-1.95, -1.18) compared with -2.17 (-2.54, -1.80) for the placebo group. The mean treatment difference was 0.60 (0.06, 1.14) in favor of placebo. The use of a model-based framework suggests that various factors may contribute to the placebo-responder profile. Adverse events were mostly mild or moderate in severity and occurred in 51% of the eliapixant group and 48% of the placebo group. As the primary endpoint was not met, the PUCCINI study was terminated after completion of phase 2a and did not proceed to phase 2b. In conclusion, selective P2X3 antagonism in patients with DNP did not translate to any relevant improvement in different pain intensity outcomes compared with placebo. Funding: Bayer AG.
Collapse
Affiliation(s)
- Didier Bouhassira
- INSERM U987, APHP, CHU Ambroise Paré, UVSQ, Paris-Saclay, Boulogne-Billancourt, France
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Arnab Sarkar
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | | - Brigitte Stemper
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
- Department of Neurology, University Erlangen Nürnberg, Erlangen, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Huo M, Zhang Q, Si Y, Zhang Y, Chang H, Zhou M, Zhang D, Fang Y. The role of purinergic signaling in acupuncture-mediated relief of neuropathic and inflammatory pain. Purinergic Signal 2024:10.1007/s11302-024-09985-y. [PMID: 38305986 DOI: 10.1007/s11302-024-09985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.
Collapse
Affiliation(s)
- Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Haihe Laboratory of Modern Chinese, Tianjin, 301617, People's Republic of China.
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
17
|
Saleh DO, Sedik AA. Novel drugs affecting diabetic peripheral neuropathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:657-670. [PMID: 38645500 PMCID: PMC11024403 DOI: 10.22038/ijbms.2024.75367.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Diabetic peripheral neuropathy (DPN) poses a significant threat, affecting half of the global diabetic population and leading to severe complications, including pain, impaired mobility, and potential amputation. The delayed manifestation of diabetic neuropathy (DN) makes early diagnosis challenging, contributing to its debilitating impact on individuals with diabetes mellitus (DM). This review examines the multifaceted nature of DPN, focusing on the intricate interplay between oxidative stress, metabolic pathways, and the resulting neuronal damage. It delves into the challenges of diagnosing DN, emphasizing the critical role played by hyperglycemia in triggering these cascading effects. Furthermore, the study explores the limitations of current neuropathic pain drugs, prompting an investigation into a myriad of pharmaceutical agents tested in both human and animal trials over the past decade. The methodology scrutinizes these agents for their potential to provide symptomatic relief for DPN. The investigation reveals promising results from various pharmaceutical agents tested for DPN relief, showcasing their efficacy in ameliorating symptoms. However, a notable gap persists in addressing the underlying problem of DPN. The results underscore the complexity of DPN and the challenges in developing therapies that go beyond symptomatic relief. Despite advancements in treating DPN symptoms, there remains a scarcity of options addressing the underlying problem. This review consolidates the state-of-the-art drugs designed to combat DPN, highlighting their efficacy in alleviating symptoms. Additionally, it emphasizes the need for a deeper understanding of the diverse processes and pathways involved in DPN pathogenesis.
Collapse
Affiliation(s)
- Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Ahmed A. Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| |
Collapse
|
18
|
Reif S, Schultze-Mosgau MH, Engelen A, Piel I, Denner K, Roffel A, Tiessen R, Klein S, Francke K, Rottmann A. Mass Balance and Metabolic Pathways of Eliapixant, a P2X3 Receptor Antagonist, in Healthy Male Volunteers. Eur J Drug Metab Pharmacokinet 2024; 49:71-85. [PMID: 38044419 DOI: 10.1007/s13318-023-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Overactive adenosine triphosphate signaling via P2X3 homotrimeric receptors is implicated in multiple conditions. To fully understand the metabolism and elimination pathways of eliapixant, a study was conducted to assess the pharmacokinetics, mass balance, and routes of excretion of a single oral dose of the selective P2X3 receptor antagonist eliapixant, in addition to an in vitro characterization. METHODS In this single-center open-label non-randomized non-placebo-controlled phase I study, healthy male subjects (n = 6) received a single dose of 50 mg eliapixant blended with 3.7 MBq [14C]eliapixant as a PEG 400-based oral solution. Total radioactivity and metabolites excreted in urine and feces, and pharmacokinetics of total radioactivity, eliapixant, and metabolites in plasma were assessed via liquid scintillation counting and high-performance liquid chromatography-based methods coupled to radiometric and mass spectrometric detection. Metabolite profiles of eliapixant in human in vitro systems and metabolizing enzymes were also investigated. RESULTS After administration as an oral solution, eliapixant was rapidly absorbed, reaching maximum plasma concentrations within 2 h. Eliapixant was eliminated from plasma with a mean terminal half-life of 48.3 h. Unchanged eliapixant was the predominant component in plasma (72.6% of total radioactivity area under the curve). The remaining percentage of drug-related components in plasma probably represented the sum of many metabolites, detected in trace amounts. Mean recovery of total radioactivity was 97.9% of the administered dose (94.3-99.4%) within 14 days, with 86.3% (84.8-88.1%) excreted via feces and 11.6% (9.5-13.1%) via urine. Excretion of parent drug was minimal in feces (0.7% of dose) and urine (≈ 0.5%). In feces, metabolites formed by oxidation represented > 90% of excreted total radioactivity. The metabolites detected in the in vitro experiments were similar to those identified in vivo. CONCLUSION Complete recovery of administered eliapixant-related radioactivity was observed in healthy male subjects with predominant excretion via feces. Eliapixant was almost exclusively cleared by oxidative biotransformation (> 90% of dose), with major involvement of cytochrome P450 3A4. Excretion of parent drug was of minor importance (~ 1% of dose). CLINICAL TRIAL REGISTRATION ClinicalTrials.gov: NCT04487431 (registered 27 July 2020)/EudraCT number: 2020-000519-54 (registered 3 February 2020), NCT02817100 (registered 26 June 2016), NCT03310645 (registered 16 October 2017).
Collapse
Affiliation(s)
- Stefanie Reif
- Clinical Pharmacology, Bayer AG Research and Development, Pharmaceuticals, Müllerstraße 178, 13353, Berlin, Germany.
| | | | - Anna Engelen
- Bayer AG Research and Development, Pharmaceuticals, Wuppertal, Germany
| | - Isabel Piel
- Bayer AG Research and Development, Pharmaceuticals, Wuppertal, Germany
| | - Karsten Denner
- Clinical Pharmacology, Bayer AG Research and Development, Pharmaceuticals, Müllerstraße 178, 13353, Berlin, Germany
| | - Ad Roffel
- ICON Plc (Formerly PRA Health Sciences), Van Swietenlaan 6, 9728 NZ, Groningen, The Netherlands
| | - Renger Tiessen
- ICON Plc (Formerly PRA Health Sciences), Van Swietenlaan 6, 9728 NZ, Groningen, The Netherlands
| | - Stefan Klein
- Clinical Pharmacology, Bayer AG Research and Development, Pharmaceuticals, Müllerstraße 178, 13353, Berlin, Germany
| | - Klaus Francke
- Clinical Pharmacology, Bayer AG Research and Development, Pharmaceuticals, Müllerstraße 178, 13353, Berlin, Germany
| | - Antje Rottmann
- Clinical Pharmacology, Bayer AG Research and Development, Pharmaceuticals, Müllerstraße 178, 13353, Berlin, Germany
| |
Collapse
|
19
|
Hosseindoost S, Askari Rad M, Inanloo SH, Rahimi M, Dehghan S, Orandi A, Dehpour AR, Majedi H. The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. Mol Pain 2024; 20:17448069241275099. [PMID: 39093638 PMCID: PMC11339750 DOI: 10.1177/17448069241275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Askari Rad
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Orandi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Zhang J, Gao L, Zhang Y, Wang H, Sun S, Wu L. Involvement of microglial P2X7 receptor in pain modulation. CNS Neurosci Ther 2024; 30:e14496. [PMID: 37950524 PMCID: PMC10805404 DOI: 10.1111/cns.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Pain is a rapid response mechanism that compels organisms to retreat from the harmful stimuli and triggers a repair response. Nonetheless, when pain persists for extended periods, it can lead to adverse changes into in the individual's brain, negatively impacting their emotional state and overall quality of life. Microglia, the resident immune cells in the central nervous system (CNS), play a pivotal role in regulating a variety of pain-related disorders. Specifically, recent studies have shed light on the central role that microglial purinergic ligand-gated ion channel 7 receptor (P2X7R) plays in regulating pain. In this respect, the P2X7R on microglial membranes represents a potential therapeutic target. AIMS To expound on the intricate link between microglial P2X7R and pain, offering insights into potential avenues for future research. METHODS We reviewed 140 literature and summarized the important role of microglial P2X7R in regulating pain, including the structure and function of P2X7R, the relationship between P2X7R and microglial polarization, P2X7R-related signaling pathways, and the effects of P2X7R antagonists on pain regulation. RESULTS P2X7R activation is related to M1 polarization of microglia, while suppressing P2X7R can transfer microglia from M1 into M2 phenotype. And targeting the P2X7R-mediated signaling pathways helps to explore new therapy for pain alleviation. P2X7R antagonists also hold potential for translational and clinical applications in pain management. CONCLUSIONS Microglial P2X7R holds promise as a potential novel pharmacological target for clinical treatments due to its distinctive structure, function, and the development of antagonists.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lei Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yaoyuan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haozhen Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Li‐an Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
21
|
Wan MM, Jin T, Fu ZY, Lai SH, Gao WP. Electroacupuncture Alleviates Dry Eye Ocular Pain Through TNF-ɑ Mediated ERK1/2/P2X 3R Signaling Pathway in SD Rats. J Pain Res 2023; 16:4241-4252. [PMID: 38107367 PMCID: PMC10725190 DOI: 10.2147/jpr.s436258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose This study aimed to examine electroacupuncture's influence on ocular pain and its potential modulation of the TNF-ɑ mediated ERK1/2/P2X3R signaling pathway in dry eye-induced rat models. Methods Male Sprague-Dawley rats with induced dry eye, achieved through extraorbital lacrimal gland removal, were treated with electroacupuncture. Comprehensive metrics such as the corneal mechanical perception threshold, palpebral fissure height, eyeblink frequency, eye wiping duration, behavioral changes in the open field test, and the forced swimming test were employed. Additionally, morphological changes in microglia and neurons were observed. Expression patterns of key markers, TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R, in the trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (SpVc) regions, were studied with etanercept serving as a control to decipher the biochemistry of electroacupuncture's therapeutic effects. Results Electroacupuncture treatment demonstrated a notable decrease in the corneal mechanical perception threshold, improvement in palpebral fissure height, and significant reductions in both eyeblink frequency and eye wiping duration. Moreover, it exhibited a promising role in anxiety alleviation. Notably, the technique effectively diminished ocular pain by curbing microglial and neuronal activation in the TG and SpVc regions. Furthermore, it potently downregulated TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R expression within these regions. Conclusion Electroacupuncture attenuated damage to sensory nerve pathways, reduced pain, and eased anxiety in dry eye-afflicted rats. The findings suggest a crucial role of TNF-ɑ mediated ERK1/2/P2X3R signaling pathway inhibition by electroacupuncture in these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, People’s Republic of China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Si-Hua Lai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
22
|
Shah S, Kondapalli K, Rasheed N, Chu XP. Commentary: P2X7 receptor modulation is a viable therapeutic target for neurogenic pain with concurrent sleep disorders. Front Neurosci 2023; 17:1293174. [PMID: 38099200 PMCID: PMC10720246 DOI: 10.3389/fnins.2023.1293174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, University of Missouri–Kansas City School of Medicine, Kansas, MO, United States
| |
Collapse
|
23
|
Kc E, Islam J, Kim HK, Park YS. GFAP-NpHR mediated optogenetic inhibition of trigeminal nucleus caudalis attenuates hypersensitive behaviors and thalamic discharge attributed to infraorbital nerve constriction injury. J Headache Pain 2023; 24:137. [PMID: 37821818 PMCID: PMC10566148 DOI: 10.1186/s10194-023-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
The significance of hyperactive astrocytes in neuropathic pain is crucial. However, the association between medullary astrocytes and trigeminal neuralgia (TN)-related pain processing is unclear. Here, we examined how optogenetic inhibition of medullary astrocytes in the trigeminal nucleus caudalis (TNC) regulates pain hypersensitivity in an infraorbital nerve (ION) constricted TN model. We used adult Sprague Dawley rats subjected to infraorbital nerve (ION) constriction to mimic TN symptoms, with naive and sham rats serving as controls. For in vivo optogenetic manipulations, rats stereotaxically received AAV8-GFAP-eNpHR3.0-mCherry or AAV8-GFAP-mCherry at the trigeminal nucleus caudalis (TNC). Open field, von Frey, air puff, and acetone tests measured pain behavioral flexibility. In vivo thalamic recordings were obtained simultaneously with optogenetic manipulation in the TNC. Orofacial hyperalgesia and thalamic hyperexcitability were both accompanied by medullary astrocyte hyperactivity, marked by upregulated GFAP. The yellow laser-driven inhibition of TNC astrocytes markedly improved behavioral responses and regulated thalamic neuronal responses. Halorhodopsin-mediated inhibition in medullary astrocytes may modify the nociceptive input transmitted through the trigeminothalamic tract and pain perception. Taken together, these findings imply that this subpopulation in the TNC and its thalamic connections play a significant role in regulating the trigeminal pain circuitry, which might aid in the identification of new therapeutic measures in TN management.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
24
|
Wen W, Wei Y, Gao S. Functional nucleic acids for the treatment of diabetic complications. NANOSCALE ADVANCES 2023; 5:5426-5434. [PMID: 37822913 PMCID: PMC10563837 DOI: 10.1039/d3na00327b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
In recent decades, diabetes mellitus (DM) has become a major global health problem owing to its high prevalence and increased incidence of diabetes-associated complications, including diabetic wounds (DWs), diabetic nephropathy, metabolic syndrome, diabetic retinopathy, and diabetic neuropathy. In both type 1 and type 2 diabetes, tissue damage is organ-specific, but closely related to the overproduction of reactive oxygen species (ROS) and hyperglycaemia-induced macrovascular system damage. However, existing therapies have limited effects on complete healing of diabetic complications. Fortunately, recent advances in functional nucleic acid materials have provided new opportunities for the treatment and diagnosis of diabetic complications. Functional nucleic acids possess independent structural functions that can replace traditional proteases and antibodies and perform specific biological non-genetic functions. This review summarises the current functional nucleic acid materials reported for the treatment of diabetic complications, including tetrahedral framework nucleic acids (tFNAs), short interfering RNA (siRNA), micorRNA (miRNA), locked nucleic acids, antisense oligonucleotides (ASOs), and DNA origami, which may assist in the development of novel nucleic acids with new functions and capabilities for better healing of diabetic complications.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yuzi Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
25
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
26
|
Paul S, Jain S, Gangwar A, Mohanty S, Khan N, Ahmad Y. Quantifying systemic molecular networks affected during high altitude de-acclimatization. Sci Rep 2023; 13:14768. [PMID: 37679378 PMCID: PMC10484924 DOI: 10.1038/s41598-023-40576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/13/2023] [Indexed: 09/09/2023] Open
Abstract
High altitude acclimatization and disease have been the centerpiece of investigations concerning human health at high altitude. Almost all investigations have focused on either understanding and ameliorating high altitude disease or finding better methods of acclimatization/training at high altitude. The aspect of altitude de-induction/de-acclimatization has remained clouded despite the fact that it was documented since the first decade of twentieth century. A few recent studies, particularly in China, have stated unanimously that high altitude de-acclimatization involved multiple observable clinical symptoms ranging from headache to abdominal distention. These symptoms have been collectively referred to as "high altitude de-acclimatization syndrome" (HADAS). However, computational omics and network biology centric investigations concerning HADAS are nascent. In this study, we focus on the quantitative proteo-informatics, especially network biology, of human plasma proteome in individuals who successfully descended from high altitude areas after a stay of 120 days. In brief, the protein list was uploaded into STRING and IPA to compute z-score based cut-offs which were used to analyze the directionality and significance of various identified protein networks as well as the proteins within them. Relevant upstream regulators extracted using computational strategies were also validated. Time-points till the 180th day of de-induction have been investigated to comparatively assess the changes in the plasma proteome and protein pathways of such individuals since the 7th day of arrival at altitude. Our investigation revealed extensive effects of de-induction on lipid metabolism, inflammation and innate immune system as well as coagulation system. This novel study provides a conceptual framework for formulating therapeutic strategies to ease the symptoms of HADAS during de-acclimatization. Such strategies should focus on normalization of lipid metabolism, inflammatory signaling and coagulation systems.
Collapse
Affiliation(s)
- Subhojit Paul
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Shikha Jain
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Anamika Gangwar
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Swaraj Mohanty
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Nilofar Khan
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India.
| |
Collapse
|
27
|
Song W, Yong Y, Zhou Y, Lu L, Yu G, Tang W, Wang J, Guo J, Li L, Zhang L, Song J. Activation of P2X4 receptors in midbrain cerebrospinal fluid-contacting nucleus leads to mechanical hyperalgesia in chronic constriction injury rats. Purinergic Signal 2023; 19:481-487. [PMID: 36529845 PMCID: PMC10539240 DOI: 10.1007/s11302-022-09911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
Neuropathic pain is a refractory pain state, and its mechanism is still not clear. Previous studies have shown that the purine receptor P2X4R expressed on hyperactive microglia in the spinal cord is essential for the occurrence and development of neuropathic pain. The cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) in the midbrain has been found to play an important role in the descending inhibition system of modulation. However, there have been no studies on P2X4R in the CSF-contacting nucleus involved in neuropathic pain. To investigate whether P2X4R is expressed in the CSF-contacting nucleus and whether its expression in the CSF-contacting nucleus is involved in the regulation of neuropathic pain, we used a model of chronic sciatic nerve ligation injury (CCI) to simulate neuropathic pain conditions. Immunohistochemistry experiments were conducted to identify the expression of P2X4R in the CSF-contacting nuclei in CCI rats, and western blot analysis showed a significant increase in P2X4R levels 7 days after modeling. Then, we packaged a P2rx4 gene-targeting shRNA in scAAV9 to knock down the P2X4R level in the CSF-contacting nucleus, and we found that CCI-induced mechanical hyperalgesia was reversed. In conclusion, P2X4R expressed in the CSF-contacting nucleus is involved in the process of neuropathic pain, and downregulating P2X4R protein in the CSF-contacting nucleus can reverse the occurrence and development of hyperalgesia, which could represent a potent therapeutic strategy for neuropathic pain.
Collapse
Affiliation(s)
- Wei Song
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yalan Zhou
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Liyue Lu
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Guijie Yu
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Wei Tang
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jian Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Guo
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Lili Li
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Licai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, People's Republic of China.
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
28
|
Hayashi K, Lesnak JB, Plumb AN, Rasmussen LA, Sluka KA. P2X7-NLRP3-Caspase-1 signaling mediates activity-induced muscle pain in male but not female mice. Pain 2023; 164:1860-1873. [PMID: 36930885 PMCID: PMC10363217 DOI: 10.1097/j.pain.0000000000002887] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/23/2022] [Indexed: 03/19/2023]
Abstract
ABSTRACT We developed an animal model of activity-induced muscle pain that is dependent on local macrophage activation and release of interleukin-1β (IL-1β). Activation of purinergic type 2X (P2X) 7 receptors recruits the NOD-like receptor protein (NLRP) 3 and activates Caspase-1 to release IL-1β. We hypothesized that pharmacological blockade of P2X7, NLRP3, and Caspase-1 would prevent development of activity-induced muscle pain in vivo and release of IL-1β from macrophages in vitro. The decrease in muscle withdrawal thresholds in male, but not female, mice was prevented by the administration of P2X7, NLRP3, and Caspase-1 inhibitors before induction of the model, whereas blockade of IL-1β before induction prevented muscle hyperalgesia in both male and female mice. Blockade of P2X7, NLRP3, Capsase-1, or IL-1β 24 hours, but not 1 week, after induction of the model alleviated muscle hyperalgesia in male, but not female, mice. mRNA expression of P2X7, NLRP3, Caspase-1, and IL-1β from muscle was increased 24 hours after induction of the model in both male and female mice. Using multiplex, increases in IL-1β induced by combining adenosine triphosphate with pH 6.5 in lipopolysaccharide-primed male and female macrophages were significantly lower with the presence of inhibitors of P2X7 (A740003), NLRP3 (MCC950), and Caspase-1 (Z-WEHD-FMK) when compared with the vehicle. The current data suggest the P2X7/NLRP3/Caspase-1 pathway contributed to activity-induced muscle pain initiation and early maintenance phases in male but not female, and not in late maintenance phases in male mice.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Lynn A. Rasmussen
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
29
|
Preston FG, Riley DR, Azmi S, Alam U. Painful Diabetic Peripheral Neuropathy: Practical Guidance and Challenges for Clinical Management. Diabetes Metab Syndr Obes 2023; 16:1595-1612. [PMID: 37288250 PMCID: PMC10243347 DOI: 10.2147/dmso.s370050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Painful diabetic peripheral neuropathy (PDPN) is present in nearly a quarter of people with diabetes. It is estimated to affect over 100 million people worldwide. PDPN is associated with impaired daily functioning, depression, sleep disturbance, financial instability, and a decreased quality of life. Despite its high prevalence and significant health burden, it remains an underdiagnosed and undertreated condition. PDPN is a complex pain phenomenon with the experience of pain associated with and exacerbated by poor sleep and low mood. A holistic approach to patient-centred care alongside the pharmacological therapy is required to maximise benefit. A key treatment challenge is managing patient expectation, as a good outcome from treatment is defined as a reduction in pain of 30-50%, with a complete pain-free outcome being rare. The future for the treatment of PDPN holds promise, despite a 20-year void in the licensing of new analgesic agents for neuropathic pain. There are over 50 new molecular entities reaching clinical development and several demonstrating benefit in early-stage clinical trials. We review the current approaches to its diagnosis, the tools, and questionnaires available to clinicians, international guidance on PDPN management, and existing pharmacological and non-pharmacological treatment options. We synthesise evidence and the guidance from the American Association of Clinical Endocrinology, American Academy of Neurology, American Diabetes Association, Diabetes Canada, German Diabetes Association, and the International Diabetes Federation into a practical guide to the treatment of PDPN and highlight the need for future research into mechanistic-based treatments in order to prioritise the development of personalised medicine.
Collapse
Affiliation(s)
- Frank G Preston
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool, Liverpool, UK
| | - David R Riley
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool, Liverpool, UK
| | - Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester and Manchester Diabetes Centre, Manchester Foundation Trust, Manchester, UK
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences and the Pain Research Institute, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
30
|
Zhang WJ, Li MY, Wang CY, Feng X, Hu DX, Wu LD, Hu JL. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother 2023; 164:114975. [PMID: 37267639 DOI: 10.1016/j.biopha.2023.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Mei-Yong Li
- Department of Laboratory medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Li-Dong Wu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Jia-Ling Hu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
31
|
Mei C, Pan C, Xu L, Miao M, Lu Q, Yu Y, Lin P, Wu W, Ni F, Gao Y, Xu Y, Xu J, Chen X. Trimethoxyflavanone relieves Paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 2023; 236:109584. [PMID: 37225085 DOI: 10.1016/j.neuropharm.2023.109584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Paclitaxel (PTX) is an anticancer drug used to treat solid tumors, but one of its common adverse effects is chemotherapy-induced peripheral neuropathy (CIPN). Currently, there is limited understanding of neuropathic pain associated with CIPN and effective treatment strategies are inadequate. Previous studies report the analgesic actions of Naringenin, a dihydroflavonoid compound, in pain. Here we observed that the anti-nociceptive action of a Naringenin derivative, Trimethoxyflavanone (Y3), was superior to Naringenin in PTX-induced pain (PIP). An intrathecal injection of Y3 (1 μg) reversed the mechanical and thermal thresholds of PIP and suppressed the PTX-induced hyper-excitability of dorsal root ganglion (DRG) neurons. PTX enhanced the expression of ionotropic purinergic receptor P2X7 (P2X7) in satellite glial cells (SGCs) and neurons in DRGs. The molecular docking simulation predicts possible interactions between Y3 and P2X7. Y3 reduced the PTX-enhanced P2X7 expression in DRGs. Electrophysiological recordings revealed that Y3 directly inhibited P2X7-mediated currents in DRG neurons of PTX-treated mice, suggesting that Y3 suppressed both expression and function of P2X7 in DRGs post-PTX administration. Y3 also reduced the production of calcitonin gene-related peptide (CGRP) in DRGs and at the spinal dorsal horn. Additionally, Y3 suppressed the PTX-enhanced infiltration of Iba1-positive macrophage-like cells in DRGs and overactivation of spinal astrocytes and microglia. Therefore, our results indicate that Y3 attenuates PIP via inhibiting P2X7 function, CGRP production, DRG neuron sensitization, and abnormal spinal glial activation. Our study implies that Y3 could be a promising drug candidate against CIPN-associated pain and neurotoxicity.
Collapse
Affiliation(s)
- Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qichen Lu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Yu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Pengyu Lin
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wenwei Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; LeadArt Technologies Ltd., Ningbo, 315201, China
| | - Yinping Gao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
32
|
Xie T, Qin Y, Zhao J, Dong J, Qi P, Zhang P, Zhangsun D, Zhu X, Yu J, Luo S. Molecular Determinants of Species Specificity of α-Conotoxin TxIB towards Rat and Human α6/α3β4 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2023; 24:ijms24108618. [PMID: 37239959 DOI: 10.3390/ijms24108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3β2β3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3β2β3 nAChR but also human α6/α3β4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and β4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3β4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]β4L107V, V115I was 22.5 μM, a 42-fold decrease in potency compared to the native hα6/α3β4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human β4 subunit, together, were found to determine the species differences in the α6/α3β4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.
Collapse
Affiliation(s)
- Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yuan Qin
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinyuan Zhao
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Qi
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
33
|
Amani H, Soltani Khaboushan A, Terwindt GM, Tafakhori A. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 2023; 60:3911-3934. [PMID: 36995514 DOI: 10.1007/s12035-023-03300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.
Collapse
Affiliation(s)
- Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Imam Khomeini Hospital, Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
34
|
Zhou M, Zhang Q, Huo M, Song H, Chang H, Cao J, Fang Y, Zhang D. The mechanistic basis for the effects of electroacupuncture on neuropathic pain within the central nervous system. Biomed Pharmacother 2023; 161:114516. [PMID: 36921535 DOI: 10.1016/j.biopha.2023.114516] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Nociceptive signaling responses to painful stimuli are transmitted to the central nervous system (CNS) from the afferent nerves of the periphery through a series of neurotransmitters and associated signaling mechanisms. Electroacupuncture (EA) is a pain management strategy that is widely used, with clinical evidence suggesting that a frequency of 2-10 Hz is better able to suppress neuropathic pain in comparison to higher frequencies such as 100 Hz. While EA is widely recognized as a viable approach to alleviating neuralgia, the mechanistic basis underlying such analgesic activity remains poorly understood. The present review offers an overview of current research pertaining to the mechanisms whereby EA can alleviate neuropathic pain in the CNS, with a particular focus on the serotonin/norepinephrine, endogenous opioid, endogenous cannabinoid, amino acid neurotransmitter, and purinergic pathways. Moreover, the corresponding neurotransmitters, neuromodulatory compounds, neuropeptides, and associated receptors that shape these responses are discussed. Together, this review seeks to provide a robust foundation for further studies of the EA-mediated alleviation of neuropathic pain.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
35
|
Jin T, Liu X, Li Y, Li PC, Wan MM, Li LJ, Shi L, Fu ZY, Gao WP. Electroacupuncture Reduces Ocular Surface Neuralgia in Dry-Eyed Guinea Pigs by Inhibiting the Trigeminal Ganglion and Spinal Trigeminal Nucleus Caudalis P2X 3R-PKC Signaling Pathway. Curr Eye Res 2023; 48:546-556. [PMID: 36803321 DOI: 10.1080/02713683.2023.2176886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
PURPOSE To observe the effects of electroacupuncture on ocular surface neuralgia and the P2X3R-PKC signaling pathway in guinea pigs with dry eye. METHODS A dry eye guinea pig model was established by subcutaneous injection of scopolamine hydrobromide. Guinea pigs were monitored for body weight, palpebral fissure height, number of blinks, corneal fluorescein staining score, phenol red thread test, and corneal mechanical perception threshold. Histopathological changes and mRNA expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis were observed. We performed a second part of the experiment, which involved the P2X3R-specific antagonist A317491 and the P2X3R agonist ATP in dry-eyed guinea pigs to further validate the involvement of the P2X3R-protein kinase C signaling pathway in the regulation of ocular surface neuralgia in dry eye. The number of blinks and corneal mechanical perception threshold were monitored before and 5 min after subconjunctival injection and the protein expression of P2X3R and protein kinase C was detected in the trigeminal ganglion and spinal trigeminal nucleus caudalis of guinea pigs. RESULTS Dry-eyed guinea pigs showed pain-related manifestations and the expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis was upregulated. Electroacupuncture reduced pain-related manifestations and inhibited the expression of P2X3R and protein kinase C in the trigeminal ganglion and spinal trigeminal nucleus caudalis. Subconjunctival injection of A317491 attenuated corneal mechanoreceptive nociceptive sensitization in dry-eyed guinea pigs, while ATP blocked the analgesic effect of electroacupuncture. CONCLUSIONS Electroacupuncture reduced ocular surface sensory neuralgia in dry-eyed guinea pigs, and the mechanism of action may be associated with the inhibition of the P2X3R-protein kinase C signaling pathway in the trigeminal ganglion and spinal trigeminal nucleus caudalis by electroacupuncture.
Collapse
Affiliation(s)
- Tuo Jin
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Liu
- Department of Ophthalmology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ying Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei-Chen Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu-Jiao Li
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q. Purinergic signaling: A gatekeeper of blood-brain barrier permeation. Front Pharmacol 2023; 14:1112758. [PMID: 36825149 PMCID: PMC9941648 DOI: 10.3389/fphar.2023.1112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1β), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.
Collapse
Affiliation(s)
| | | | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Longcong Dong
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | |
Collapse
|
37
|
Zhang T, Zhang M, Cui S, Liang W, Jia Z, Guo F, Ou W, Wu Y, Zhang S. The core of maintaining neuropathic pain: Crosstalk between glial cells and neurons (neural cell crosstalk at spinal cord). Brain Behav 2023; 13:e2868. [PMID: 36602945 PMCID: PMC9927860 DOI: 10.1002/brb3.2868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Neuropathic pain (NP) caused by the injury or dysfunction of the nervous system is a chronic pain state accompanied by hyperalgesia, and the available clinical treatment is relatively scarce. Hyperalgesia mediated by pro-inflammatory factors and chemokines plays an important role in the occurrence and maintenance of NP. DATA TREATMENT Therefore, we conducted a systematic literature review of experimental NP (PubMed Medline), in order to find the mechanism of inducing central sensitization and explore the intervention methods of hyperalgesia caused by real or simulated injury. RESULT In this review, we sorted out the activation pathways of microglia, astrocytes and neurons, and the process of crosstalk among them. It was found that in NP, the microglia P2X4 receptor is the key target, which can activate the mitogen-activated protein kinase pathway inward and then activate astrocytes and outwardly activate neuronal tropomyosin receptor kinase B receptor to activate neurons. At the same time, activated neurons continue to maintain the activation of astrocytes and microglia through chemokines on CXCL13/CXCR5 and CX3CL1/CX3CR1. This crosstalk process is the key to maintaining NP. CONCLUSION We summarize the further research on crosstalk among neurons, microglia, and astrocytes in the central nervous system, elaborate the ways and connections of relevant crosstalk, and find potential crosstalk targets, which provides a reference for drug development and preclinical research.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqian Zhang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Cui
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wulin Liang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhanhong Jia
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fanfan Guo
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Ou
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Wu
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- Department of Pharmacology of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Chen Y, Li D, Li N, Loh P, Guo Y, Hu X, Zhang J, Dou B, Wang L, Yang C, Guo T, Chen S, Liu Z, Chen B, Chen Z. Role of nerve signal transduction and neuroimmune crosstalk in mediating the analgesic effects of acupuncture for neuropathic pain. Front Neurol 2023; 14:1093849. [PMID: 36756246 PMCID: PMC9899820 DOI: 10.3389/fneur.2023.1093849] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Neurogenic pain rises because of nervous system damage or dysfunction and is the most difficult to treat among other pathological pains. Acupuncture has been reported as a great treatment option for neurogenic pain owing to its unlimited advantages. However, previous studies on the analgesic effects of acupuncture for NP were scattered and did not form a whole. In this study, we first comprehensively review the relevant basic articles on acupuncture for NP published in the last 5 years and summarize the analgesic mechanisms of acupuncture in terms of nerve signaling, neuro-immune crosstalk, and metabolic and oxidative stress regulation. Acupuncture inhibits the upstream excitatory system and suppresses neuronal transmission efficiency by downregulating glutamate, NMDA receptors, P2XR, SP, CGRP, and other neurotransmitters and receptors in the spinal cord, as well as plasma channels such as TRPV1, HCN. It can also activate the downstream pain inhibitory pathway by upregulating opioid peptide (β-endorphin), MOR receptors, GABA and GABA receptors, bi-directional regulating 5-hydroxytryptamine (5-HT) and its receptors (upregulate 5-HT 1A and downregulate 5-HT7R) and stimulating hypothalamic appetite-modifying neurons. Moreover, neuroinflammation in pain can be inhibited by acupuncture through inhibiting JAK2/STAT3, PI3K/mTOR pathways, down regulating chemokine receptor CX3CR1 on microglia and up regulating adenosine receptor A1Rs on astrocytes, inhibiting the activation of glia and reducing TNF-α and other inflammatory substances. Acupuncture also inhibits neuronal glucose metabolism by downregulating mPFC's GLUT-3 and promotes metabolic alterations of the brain, thus exerting an analgesic effect. In conclusion, the regulation of nerve signal transduction and neuroimmune crosstalk at the peripheral and central levels mediates the analgesic effects of acupuncture for neuropathic pain in an integrated manner. These findings provide a reliable basis for better clinical application of acupuncture in the management of neuropathic pain.
Collapse
Affiliation(s)
- Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifen Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaobo Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,*Correspondence: Zelin Chen ✉
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,Bo Chen ✉
| |
Collapse
|
39
|
Zhang Z, Guo H, Hu Z, Zhou C, Hu Q, Peng H, Tang G, Xiao Z, Pi L, Li G. Schisandrin B Alleviates Diabetic Cardiac Autonomic neuropathy Induced by P2X7 Receptor in Superior Cervical Ganglion via NLRP3. DISEASE MARKERS 2023; 2023:9956950. [PMID: 36660202 PMCID: PMC9845055 DOI: 10.1155/2023/9956950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of diabetes mellitus which brings about high mortality, high morbidity, and large economic burden to the society. Compensatory tachycardia after myocardial ischemia caused by DCAN can increase myocardial injury and result in more damage to the cardiac function. The inflammation induced by hyperglycemia can increase P2X7 receptor expression in the superior cervical ganglion (SCG), resulting in nerve damage. It is proved that inhibiting the expression of P2X7 receptor at the superior cervical ganglion can ameliorate the nociceptive signaling dysregulation induced by DCAN. However, the effective drug used for decreasing P2X7 receptor expression has not been found. Schisandrin B is a traditional Chinese medicine, which has anti-inflammatory and antioxidant effects. Whether Schisandrin B can decrease the expression of P2X7 receptor in diabetic rats to protect the cardiovascular system was investigated in this study. After diabetic model rats were made, Schisandrin B and shRNA of P2X7 receptor were given to different groups to verify the impact of Schisandrin B on the expression of P2X7 receptor. Pathological blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were ameliorated after administration of Schisandrin B. Moreover, the upregulated protein level of P2X7 receptor, NLRP3 inflammasomes, and interleukin-1β in diabetic rats were decreased after treatment, which indicates that Schisandrin B can alleviate the chronic inflammation caused by diabetes and decrease the expression levels of P2X7 via NLRP3. These findings suggest that Schisandrin B can be a potential therapeutical agent for DCAN.
Collapse
Affiliation(s)
- Zhihua Zhang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Zehao Xiao
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Lingzhi Pi
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, China
| |
Collapse
|
40
|
Hu JL, Zhang WJ. The role and pharmacological properties of P2Y12 receptor in cancer and cancer pain. Biomed Pharmacother 2023; 157:113927. [PMID: 36462316 DOI: 10.1016/j.biopha.2022.113927] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The G protein-coupled P2Y12 receptor (P2Y12R) was cloned in platelets and found to play a key role in maintaining platelet function in hemostasis and thrombosis, and these effects could be mediated by the P2Y12R. However, it has recently been found that P2Y12R-mediated the progression of tumor through interactions between platelets and tumor and stromal cells, as well as through products secreted by platelets. During tumor progression, tumor cells or other cells in the tumor microenvironment (such as immune cells) can secrete large amounts of ATP into the extracellular matrix, and extracellular ATP can be hydrolyzed into ADP. ADP is a P2Y12R activator and plays an important regulatory role in the proliferation and metastasis of tumor cells. P2Y12R is involved in platelet-cancer cell crosstalk and become a potential target for anticancer therapy. Moreover, tumor progression can induce pain, which seriously affects the quality of life of patients. P2Y12R is expressed in microglia and mediates the activities of microglial and participates in the occurrence of cancer pain. Conversely, inhibiting P2Y12R activation and down-regulating its expression has the effect of inhibiting tumor progression and pain. Therefore, P2Y12R can be a common therapeutic target for both. In this article, we explored the potential link between P2Y12R and cancer, discussed the intrinsic link of P2Y12R in cancer pain and the pharmacological properties of P2Y12R antagonists in the treatment of both.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
41
|
Francke K, Chattopadhyay N, Klein S, Rottmann A, Krickau D, van de Wetering J, Friedrich C. Preclinical and Clinical Pharmacokinetics and Bioavailability in Healthy Volunteers of a Novel Formulation of the Selective P2X3 Receptor Antagonist Eliapixant. Eur J Drug Metab Pharmacokinet 2023; 48:75-87. [PMID: 36469250 DOI: 10.1007/s13318-022-00805-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES The potent, selective P2X3 receptor antagonist eliapixant (BAY 1817080) is under development for conditions characterized by neuronal hypersensitization. As prominent food effects and limited bioavailability in the fasted state were observed with immediate-release eliapixant tablets, a novel formulation was needed. Accordingly, several novel eliapixant formulations were assessed by in vitro and animal studies in a structured way. The most promising of the formulations was then investigated in a phase I study designed to assess its pharmacokinetics, food effect, and bioavailability in healthy volunteers. METHODS In vitro non-sink dissolution tests were performed with two amorphous solid dispersion (ASD) granule prototypes compared with pure crystalline eliapixant as a surrogate for the immediate-release formulation. Subsequently, the drug exposure of novel eliapixant formulations under fed and fasted conditions in rats and dogs was assessed to confirm improvements in bioavailability versus the suspension-based formulation. A novel Kollidon VA64®-based eliapixant formulation was identified from the preclinical studies and compared with the original tablet formulation in an open-label, partially randomized, threefold, crossover phase I study, in which healthy males received single oral doses (25-400 mg, fasted/fed). Pharmacokinetic parameters, absolute bioavailability (using an intravenous [13C715N]-eliapixant microdose), relative bioavailability (novel versus original formulation), effect of food, and adverse events (AEs) were evaluated. RESULTS The non-sink dissolution test demonstrated that the two ASD formulations had an improved dissolution rate compared with pure crystalline eliapixant, with a Kollidon VA64-based prototype having the highest dissolution rate. Further testing of this prototype in animal studies confirmed an approximately twofold higher bioavailability compared with the suspension-based formulation. In the phase I study, 30 subjects were randomized. With the novel Kollidon VA64® formulation (400 mg; fasted), area under the concentration-time curve (AUC) and maximum plasma concentration (Cmax) were up to 3.1-fold and 1.7-fold higher, respectively, than with the original formulation (fed). AUC increased dose proportionally between 25 and 100 mg, and less than dose proportionally from 100 to 400 mg. Food had no clinically relevant effect on the novel formulation, with AUC increasing 1.3-fold and Cmax 2.1-2.4-fold (time to maximum concentration was delayed by 1.5-2.25 h). Absolute bioavailability with the novel formulation (100 mg) was 50%. AEs occurred in 57% of patients; most were mild in severity. CONCLUSIONS The novel eliapixant formulation substantially improved bioavailability compared with immediate-release eliapixant and may be administered with/without food. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov: NCT03773068 (initial registration: 12 December 2018).
Collapse
Affiliation(s)
- Klaus Francke
- Bayer AG Research and Development, Pharmaceuticals, Clinical Pharmacology 1, Building M004, Muellerstrasse 178, 13353, Berlin, Germany
| | - Niladri Chattopadhyay
- Bayer AG Research and Development, Pharmaceuticals, Clinical Pharmacology 1, Building M004, Muellerstrasse 178, 13353, Berlin, Germany
| | - Stefan Klein
- Bayer AG Research and Development, Pharmaceuticals, Clinical Pharmacology 1, Building M004, Muellerstrasse 178, 13353, Berlin, Germany
| | - Antje Rottmann
- Bayer AG Research and Development, Pharmaceuticals, Clinical Pharmacology 1, Building M004, Muellerstrasse 178, 13353, Berlin, Germany
| | - Dennis Krickau
- Bayer AG Research and Development, Pharmaceuticals, Clinical Pharmacology 1, Building M004, Muellerstrasse 178, 13353, Berlin, Germany
| | | | - Christian Friedrich
- Bayer AG Research and Development, Pharmaceuticals, Clinical Pharmacology 1, Building M004, Muellerstrasse 178, 13353, Berlin, Germany.
| |
Collapse
|
42
|
Hu Z, Yu X, Chen P, Jin K, Zhou J, Wang G, Yu J, Wu T, Wang Y, Lin F, Zhang T, Wang Y, Zhao X. BDNF-TrkB signaling pathway-mediated microglial activation induces neuronal KCC2 downregulation contributing to dynamic allodynia following spared nerve injury. Mol Pain 2023; 19:17448069231185439. [PMID: 37321969 PMCID: PMC10402286 DOI: 10.1177/17448069231185439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Mechanical allodynia can be evoked by punctate pressure contact with the skin (punctate mechanical allodynia) and dynamic contact stimulation induced by gentle touching of the skin (dynamic mechanical allodynia). Dynamic allodynia is insensitive to morphine treatment and is transmitted through the spinal dorsal horn by a specific neuronal pathway, which is different from that for punctate allodynia, leading to difficulties in clinical treatment. K+-Cl- cotransporter-2 (KCC2) is one of the major determinants of inhibitory efficiency, and the inhibitory system in the spinal cord is important in the regulation of neuropathic pain. The aim of the current study was to determine whether neuronal KCC2 is involved in the induction of dynamic allodynia and to identify underlying spinal mechanisms involved in this process. Dynamic and punctate allodynia were assessed using either von Frey filaments or a paint brush in a spared nerve injury (SNI) mouse model. Our study discovered that the downregulated neuronal membrane KCC2 (mKCC2) in the spinal dorsal horn of SNI mice is closely associated with SNI-induced dynamic allodynia, as the prevention of KCC2 downregulation significantly suppressed the induction of dynamic allodynia. The over activation of microglia in the spinal dorsal horn after SNI was at least one of the triggers in SNI-induced mKCC2 reduction and dynamic allodynia, as these effects were blocked by the inhibition of microglial activation. Finally, the BDNF-TrkB pathway mediated by activated microglial affected SNI-induced dynamic allodynia through neuronal KCC2 downregulation. Overall, our findings revealed that activation of microglia through the BDNF-TrkB pathway affected neuronal KCC2 downregulation, contributing to dynamic allodynia induction in an SNI mouse model.
Collapse
Affiliation(s)
- Zihan Hu
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Xinren Yu
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Keyu Jin
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Rehabilitation Center, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Wu
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Yulong Wang
- Rehabilitation Center, First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Fuqing Lin
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Tingting Zhang
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, School of Medicine, Tongji University, Shanghai tenth People’s Hospital, Shanghai, China
| |
Collapse
|
43
|
Goyal S, Goyal S, Goins AE, Alles SR. Plant-derived natural products targeting ion channels for pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100128. [PMID: 37151956 PMCID: PMC10160805 DOI: 10.1016/j.ynpai.2023.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Chronic pain affects approximately one-fifth of people worldwide and reduces quality of life and in some cases, working ability. Ion channels expressed along nociceptive pathways affect neuronal excitability and as a result modulate pain experience. Several ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including chronic pain. Voltage-gated channels Na+ and Ca2+ channels, K+ channels, transient receptor potential channels (TRP), purinergic (P2X) channels and acid-sensing ion channels (ASICs) are some examples of ion channels exhibiting altered function or expression in different chronic pain states. Pharmacological approaches are being developed to mitigate dysregulation of these channels as potential treatment options. Since natural compounds of plant origin exert promising biological and pharmacological properties and are believed to possess less adverse effects compared to synthetic drugs, they have been widely studied as treatments for chronic pain for their ability to alter the functional activity of ion channels. A literature review was conducted using Medline, Google Scholar and PubMed, resulted in listing 79 natural compounds/extracts that are reported to interact with ion channels as part of their analgesic mechanism of action. Most in vitro studies utilized electrophysiological techniques to study the effect of natural compounds on ion channels using primary cultures of dorsal root ganglia (DRG) neurons. In vivo studies concentrated on different pain models and were conducted mainly in mice and rats. Proceeding into clinical trials will require further study to develop new, potent and specific ion channel modulators of plant origin.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Shivali Goyal
- School of Pharmacy, Abhilashi University, Chail Chowk, Mandi, HP 175045, India
| | - Aleyah E. Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Corresponding author.
| |
Collapse
|
44
|
The developmental journey of therapies targeting purine receptors: from basic science to clinical trials. Purinergic Signal 2022; 18:435-450. [PMID: 36173587 PMCID: PMC9832190 DOI: 10.1007/s11302-022-09896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Since the discovery of ATP as an extracellular signalling molecule in 1972, purinergic signalling, mediated by extracellular purines and pyrimidines has been identified in virtually all mammalian tissues and is implicated in regulating fundamental cellular processes. In recent years, there has been an increasing focus on the pathophysiology and potential therapeutic interventions based on purinergic signalling. A vast range of compounds targeting purine receptors are in clinical development, and many more are in preclinical studies, which highlights the fast growth in this research field. As a tribute to Professor Geoffrey Burnstock's legacy in purinergic signalling, we present here a brief review of compounds targeting purine receptors that are in different stages of clinical trials. The review highlights the 50-year journey from basic research on purinergic receptors to clinical applications of therapies targeting purine receptors.
Collapse
|
45
|
Sukhanova KY, Koirala A, Elmslie KS. Na V1.9 current in muscle afferent neurons is enhanced by substances released during muscle activity. J Neurophysiol 2022; 128:739-750. [PMID: 36043704 PMCID: PMC9512110 DOI: 10.1152/jn.00116.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle contraction triggers the exercise pressor reflex (EPR) to regulate the cardiovascular system response to exercise. During muscle contraction, substances are released that generate action potential activity in group III and IV afferents that mediate the EPR. Some of these substances increase afferent activity via G-protein-coupled receptor (GPCR) activation, but the mechanisms are incompletely understood. We were interested in determining if tetrodotoxin-resistant (TTX-R) voltage-dependent sodium channels (NaV) were involved and investigated the effect of a mixture of such compounds (bradykinin, prostaglandin, norepinephrine, and ATP, called muscle metabolites). Using whole cell patch-clamp electrophysiology, we show that the muscle metabolites significantly increased TTX-R NaV currents. The rise time of this enhancement averaged ∼2 min, which suggests the involvement of a diffusible second messenger pathway. The effect of muscle metabolites on the current-voltage relationship, channel activation and inactivation kinetics support NaV1.9 channels as the target for this enhancement. When applied individually at the concentration used in the mixture, only prostaglandin and bradykinin significantly enhanced NaV current, but the sum of these enhancements was <1/3 that observed when the muscle metabolites were applied together. This suggests synergism between the activated GPCRs to enhance NaV1.9 current. When applied at a higher concentration, all four substances could enhance the current, which demonstrates that the GPCRs activated by each metabolite can enhance channel activity. The enhancement of NaV1.9 channel activity is a likely mechanism by which GPCR activation increases action potential activity in afferents generating the EPR.NEW & NOTEWORTHY G-protein-coupled receptor (GPCR) activation increases action potential activity in muscle afferents to produce the exercise pressor reflex (EPR), but the mechanisms are incompletely understood. We provide evidence that NaV1.9 current is synergistically enhanced by application of a mixture of metabolites potentially released during muscle contraction. The enhancement of NaV1.9 current is likely one mechanism by which GPCR activation generates the EPR and the inappropriate activation of the EPR in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Khrystyna Yu Sukhanova
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Ankeeta Koirala
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
46
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients. Runx1 directly upregulates the transcriptional activity of P2X3R gene promoter Upregulation of Runx1-mediated P2X3R gene transcription underlies bone cancer pain Involvement of GDNF-Ret-ERK signaling in Runx1-mediated P2X3R gene transcription
Collapse
|
47
|
AI-based prediction of new binding site and virtual screening for the discovery of novel P2X3 receptor antagonists. Eur J Med Chem 2022; 240:114556. [DOI: 10.1016/j.ejmech.2022.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
|
48
|
Siddiqui A, He C, Lee G, Figueroa A, Slaughter A, Robinson-Papp J. Neuropathogenesis of HIV and emerging therapeutic targets. Expert Opin Ther Targets 2022; 26:603-615. [PMID: 35815686 PMCID: PMC9887458 DOI: 10.1080/14728222.2022.2100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION HIV infection causes a wide range of neurological complications, many of which are among the most common complications of chronic HIV infection in the era of combined antiretroviral therapy. These neurological conditions arise due to complex interactions between HIV viral proteins and neuronal and glial cells that lead to the activation of various inflammatory and neurotoxic pathways across the nervous system. AREAS COVERED This review summarizes the current literature on the pathogenesis and clinical manifestations of neurological injuries associated with HIV in the brain, spinal cord, and peripheral nervous system. Molecular pathways relevant for possible therapeutic targets or advancements are emphasized. Gaps in knowledge and current challenges in therapeutic design are also discussed. EXPERT OPINION Several challenges exist in the development of therapeutic targets for HIV-associated cognitive impairments. However, recent developments in drug delivery systems and treatment strategies are encouraging. Treatments for HIV-associated pain and peripheral sensory neuropathies currently consist of symptomatic management, but a greater understanding of their pathogenesis can lead to the development of targeted molecular therapies and disease-modifying therapies. HIV-associated autonomic dysfunction may affect the course of systemic disease via disrupted neuro-immune interactions; however, more research is needed to facilitate our understanding of how these processes present clinically.
Collapse
Affiliation(s)
- Alina Siddiqui
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Celestine He
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Alex Figueroa
- University of Texas at Southwestern Medical School, Dallas, TX, 75390 USA
| | - Alexander Slaughter
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| |
Collapse
|
49
|
Rawish E, Langer HF. Platelets and the Role of P2X Receptors in Nociception, Pain, Neuronal Toxicity and Thromboinflammation. Int J Mol Sci 2022; 23:6585. [PMID: 35743029 PMCID: PMC9224425 DOI: 10.3390/ijms23126585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
P2X receptors belong to a family of cation channel proteins, which respond to extracellular adenosine 5'-triphosphate (ATP). These receptors have gained increasing attention in basic and translational research, as they are central to a variety of important pathophysiological processes such as the modulation of cardiovascular physiology, mediation of nociception, platelet and macrophage activation, or neuronal-glial integration. While P2X1 receptor activation is long known to drive platelet aggregation, P2X7 receptor antagonists have recently been reported to inhibit platelet activation. Considering the role of both P2X receptors and platelet-mediated inflammation in neuronal diseases such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and stroke, targeting purinergic receptors may provide a valuable novel therapeutic approach in these diseases. Therefore, the present review illuminates the role of platelets and purinergic signaling in these neurological conditions to evaluate potential translational implications.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
50
|
Dong CR, Zhang WJ, Luo HL. Association between P2X3 receptors and neuropathic pain: As a potential therapeutic target for therapy. Biomed Pharmacother 2022; 150:113029. [PMID: 35489283 DOI: 10.1016/j.biopha.2022.113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Neuropathic pain is a common clinical symptom of various diseases, and it seriously affects the physical and mental health of patients. Owing to the complex pathological mechanism of neuropathic pain, clinical treatment of pain is challenging. Therefore, there is growing interest among researchers to explore potential therapeutic strategies for neuropathic pain. A large number of studies have shown that development of neuropathic pain is related to nerve conduction and related signaling molecules. P2X3 receptors (P2X3R) are ATP-dependent ion channels that participate in the transmission of neural information and related signaling pathways, sensitize the central nervous system, and play a key role in the development of neuropathic pain. In this paper, we summarized the structure and biological characteristics of the P2X3R gene and discussed the role of P2X3R in the nervous system. Moreover, we outlined the related pathological mechanisms of pain and described the relationship between P2X3R and chronic pain to provide valuable information for development of novel treatment strategies for pain.
Collapse
Affiliation(s)
- Cai-Rong Dong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| | - Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 343000, China
| |
Collapse
|