1
|
Samandra R, Rosa MGP, Mansouri FA. How Do Common Marmosets Maintain the Balance Between Response Execution and Action Inhibition? Am J Primatol 2025; 87:e23717. [PMID: 39783787 PMCID: PMC11714342 DOI: 10.1002/ajp.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Socio-dynamic situations require a balance between response execution and action inhibition. Nonadaptive imbalance between response inhibition and execution exists in neurodevelopmental and neuropsychological disorders. To investigate the underlying neural mechanisms of cognitive control and the related deficits, comparative studies in human and nonhuman primates are crucial. Previous stop-signal tasks in humans and macaque monkeys have examined response execution (response time (RT) and accuracy in Go trials) and action inhibition (stop-signal reaction time (SSRT)). Even though marmosets are generally considered suitable translational animal models for research on social and cognitive deficits, their ability to inhibit behavior remains poorly characterized. We developed a marmoset stop-signal task, in which RT could be measured at millisecond resolution. All four marmosets performed many repeated Go trials with high accuracy (≥ 70%). Additionally, all marmosets successfully performed Stop trials. Using a performance-dependent tracking procedure, the accuracy in Stop trials was maintained around 50%, which enabled reliable SSRT estimates in marmosets for the first time. The mean SSRT values across sessions ranged between 677 and 1464 ms across the four marmosets. We also validated the suitability and practicality of this novel task for examining executive functions by testing the effects of a natural hormone, oxytocin, on response execution and action inhibition in marmosets. This marmoset model, for reliable (millisecond resolution) assessment of the balance between response execution and inhibition, will further facilitate studying the developmental alterations in inhibition ability and examining the effects of various contextual and environmental factors on marmosets' executive functions.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Marcello G. P. Rosa
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Farshad A. Mansouri
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
Gully BJ, Brown ZE, Hornbacher R, Brown JC, Back SE, McCance-Katz EF, Swift RM, Haass-Koffler CL. Oxytocin Reduces Noradrenergic-Induced Opioid-Like Withdrawal Symptoms in Individuals on Opioid Agonist Therapy. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100395. [PMID: 39534517 PMCID: PMC11555595 DOI: 10.1016/j.bpsgos.2024.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Intranasal administration of the neuropeptide oxytocin has been explored as a potential therapeutic agent for substance use disorder including opioid use disorder (OUD). Methods This phase 1, crossover, randomized, double-blind, placebo-controlled trial tested the safety, tolerability, and efficacy of intranasal oxytocin (80 IU) twice a day for 7 days in participants (N = 20) with OUD who were taking an opioid agonist therapy. In the laboratory, participants underwent opioid cue exposure paired with noradrenergic activation produced by yohimbine (32.4 mg) or placebo. Assessments included, 1) subjective response: craving, withdrawal, anxiety, and stress; 2) biomedical markers: hypothalamic-pituitary-adrenal axis response (cortisol) and noradrenergic activation (α-amylase); and 3) safety measures: hemodynamics and adverse event evaluation. Generalized linear model with model-based estimator in the covariance matrix was used, with medication (oxytocin/placebo) and noradrenergic activation (yohimbine/placebo) as within-subject factors. Results Oxytocin significantly reduced opioid-like withdrawal, anxiety symptoms, and cortisol levels elicited by cue exposure under noradrenergic activation produced by yohimbine. This effect was specific because oxytocin did not reduce craving, hemodynamics, or α-amylase levels increased by yohimbine administration. A single dose of yohimbine elicited the noradrenergic stimulation, and 7-day oxytocin administration was safe and well tolerated among individuals diagnosed with OUD and taking opioid agonist therapy. Conclusions The findings of this study suggest that oxytocin alleviates opioid-like withdrawal symptoms and anxiety by modulating the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Brian J. Gully
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
| | - Zoe E. Brown
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
| | - Rivkah Hornbacher
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island
| | - Joshua C. Brown
- Transcranial Magnetic Stimulation (TMS) Center, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Sudie E. Back
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Healthcare System, Charleston, South Carolina
| | - Elinore F. McCance-Katz
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island
| | - Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island
- Carney Institute for Brain Science, Brown University, Providence Rhode Island
| |
Collapse
|
3
|
Pérez-Arqueros V, Soler J, Schmidt C, Vega D, Pascual JC. Could intranasal oxytocin enhance the effects of psychotherapy in individuals with mental disorders? A systematic review and meta-analysis. Psychoneuroendocrinology 2025; 171:107206. [PMID: 39366103 DOI: 10.1016/j.psyneuen.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Interest in the therapeutic potential of oxytocin for the treatment of mental health disorders, especially those involving social dysfunction, has increased considerably in recent years. To date, most studies have only evaluated oxytocin as monotherapy, with highly inconsistent results. A new line of research is exploring the effects of combining oxytocin with psychotherapy. The aim of the present review was to evaluate the therapeutic effects of intranasal oxytocin combined with psychotherapy in individuals with psychiatric disorders. Only randomized clinical trial design was eligible for inclusion. A search of relevant databases yielded 2480 articles published through April 30, 2024. Of these, 13 trials (518 participants) were included in this review and 4 of them in a meta-analysis. The trials evaluated a range of different psychotherapeutic interventions, oxytocin doses, and mental disorders. Overall, the trials suggested that combined treatment reduced negative mental representations, decreased stress, and increased therapeutic alliance. Meta-analysis showed that combined treatment significantly reduced depressive symptoms (d= -1.58, 95 % CI: -3.15 to -0.01). However, the treatment with oxytocin had no significant effects on psychiatric symptoms (d= 0.00, 95 % CI: -0.56-0.57) or social functioning (d = 0.21, 95 % CI: -0.07-0.49). Limitations included the heterogeneity and limited sample sizes of the trials. The findings suggest that the combination of intranasal oxytocin and psychotherapy may be an effective therapeutic approach to reduce depressive symptoms in individuals with mental disorders and may improve retention and therapeutic alliance.
Collapse
Affiliation(s)
- Valeska Pérez-Arqueros
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica, Sant Pau (IIB-SANT PAU), Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Joaquim Soler
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica, Sant Pau (IIB-SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Spain.
| | - Carlos Schmidt
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica, Sant Pau (IIB-SANT PAU), Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Daniel Vega
- Department of Psychiatry, Hospital Universitari d'Igualada (Consorci Sanitari de l'Anoia), Fundació Sanitària d'Igualada, Barcelona, Spain
| | - Juan C Pascual
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica, Sant Pau (IIB-SANT PAU), Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
4
|
Liu P, Lin T, Fischer H, Feifel D, Ebner NC. Effects of four-week intranasal oxytocin administration on large-scale brain networks in older adults. Neuropharmacology 2024; 260:110130. [PMID: 39182569 PMCID: PMC11752694 DOI: 10.1016/j.neuropharm.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oxytocin (OT) is a crucial modulator of social cognition and behavior. Previous work primarily examined effects of acute intranasal oxytocin administration (IN-OT) in younger males on isolated brain regions. Not well understood are (i) chronic IN-OT effects, (ii) in older adults, (iii) on large-scale brain networks, representative of OT's wider-ranging brain mechanisms. To address these research gaps, 60 generally healthy older adults (mean age = 70.12 years, range = 55-83) were randomly assigned to self-administer either IN-OT or placebo twice daily via nasal spray over four weeks. Chronic IN-OT reduced resting-state functional connectivity (rs-FC) of both the right insula and the left middle cingulate cortex with the salience network but enhanced rs-FC of the left medial prefrontal cortex with the default mode network as well as the left thalamus with the basal ganglia-thalamus network. No significant chronic IN-OT effects were observed for between-network rs-FC. However, chronic IN-OT increased selective rs-FC of the basal ganglia-thalamus network with the salience network and the default mode network, indicative of more specialized, efficient communication between these networks. Directly comparing chronic vs. acute IN-OT, reduced rs-FC of the right insula with the salience network and between the default mode network and the basal ganglia-thalamus network, and greater selective rs-FC of the salience network with the default mode network and the basal ganglia-thalamus network, were more pronounced after chronic than acute IN-OT. Our results delineate the modulatory role of IN-OT on large-scale brain networks among older adults.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, SE-106 91, Sweden; Stockholm University Brain Imaging Centre (SUBIC), Stockholm University, Stockholm, SE-106 91, Sweden; Aging Research Centre, Karolinska Institute, Stockholm, SE-171 77, Stockholm, Sweden
| | - David Feifel
- Department of Psychiatry, University of California, San Diego, CA, 92093, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA; Institute on Aging, University of Florida, Gainesville, FL, 32611, USA; Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
5
|
Gora C, Dudas A, Vaugrente O, Drobecq L, Pecnard E, Lefort G, Pellissier LP. Deciphering autism heterogeneity: a molecular stratification approach in four mouse models. Transl Psychiatry 2024; 14:416. [PMID: 39366951 PMCID: PMC11452541 DOI: 10.1038/s41398-024-03113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.
Collapse
Affiliation(s)
- Caroline Gora
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ana Dudas
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Lucile Drobecq
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Gaëlle Lefort
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | |
Collapse
|
6
|
Ding S, Liu Y, Tao H, Zhao Y, Zeng H, Han Y, Wang S, Chen Z, Tang Y, Guo W. Chronic intranasal oxytocin alleviates cognitive impairment and reverses oxytocin signaling upregulation in MK801-induced mice. Psychoneuroendocrinology 2024; 168:107138. [PMID: 39068687 DOI: 10.1016/j.psyneuen.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Cognitive impairment, especially impaired social cognition, is largely responsible for the deterioration of the social life of patients with schizophrenia (SZ). Oxytocin (OT) is a neuropeptide that offers promising therapy for SZ. This study aimed to explore whether OT could affect dizocilpine (MK801)-induced cognitive impairment and to investigate the effect of exogenous OT on the endogenous OT system in the hippocampus. METHODS The SZ mouse model was established by repeated administration of dizocilpine [MK801, 0.6 mg/kg, intraperitoneal (i.p.)], and then OT (6-60 μg/kg, intranasal) or risperidone (0.3 mg/kg, i.p.) was administered to explore the effect of OT on cognitive impairment. RESULTS OT at a dose of 6 μg/kg alleviated MK801-induced hyperactivity, sociability impairment, and spatial memory impairment. OT at a dose of 20 or 60 μg/kg attenuated the hyperactivity and social novelty impairment. In MK801-injected mice, the compensatory upregulation of OT mRNA in the hippocampus was reversed by three OT doses, whereas 60 μg/kg OT reversed the compensatory upregulation of CD38 protein expression. CONCLUSION OT alleviated cognitive impairment in the SZ mouse model to varying degrees, reversing the compensatory upregulation of OT signaling in the hippocampus.
Collapse
Affiliation(s)
- Shan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongtao Zeng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shichen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Audunsdottir K, Sartorius AM, Kang H, Glaser BD, Boen R, Nærland T, Alaerts K, Kildal ESM, Westlye LT, Andreassen OA, Quintana DS. The effects of oxytocin administration on social and routinized behaviors in autism: A preregistered systematic review and meta-analysis. Psychoneuroendocrinology 2024; 167:107067. [PMID: 38815399 DOI: 10.1016/j.psyneuen.2024.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Oxytocin administration has demonstrated considerable promise for providing individualized support for autistic people. However, studies evaluating the effects of oxytocin administration on autistic characteristics have yielded inconsistent results. This systematic review and meta-analysis investigates the effect of oxytocin administration on social and routinized behaviors in autism using recently developed methods to accurately assess the potential impact of effect size dependency and publication bias. Our frequentist meta-analysis yielded a significant summary effect size estimate for the impact of oxytocin administration on social outcomes in autism (d = 0.22, p < 0.001). The summary effect size estimate for routinized behavior outcomes was not statistically significant (d = 0.14, p = 0.22), with a follow up test indicating that the effect size estimate was not either statistically equivalent (Z = -1.06, p = 0.2), assuming a smallest effect size of interest of 0.25. Frequentist and Bayesian assessments for publication bias, as well as results from Robust Bayesian meta-analysis of oxytocin effects on social outcomes in autism, indicated that summary effect sizes might be inflated due to publication bias. Future studies should aim to reduce bias by preregistering analysis plans and to increase precision with larger sample sizes.
Collapse
Affiliation(s)
- Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alina M Sartorius
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway
| | - Heemin Kang
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway
| | - Bernt D Glaser
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Rune Boen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Terje Nærland
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Emilie S M Kildal
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Parmaksiz D, Kim Y. Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories. Neuroscientist 2024:10738584241268754. [PMID: 39113465 DOI: 10.1177/10738584241268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Complex mechanisms govern the transport and action of oxytocin (Oxt), a neuropeptide and hormone that mediates diverse physiologic processes. While Oxt exerts site-specific and rapid effects in the brain via axonal and somatodendritic release, volume transmission via CSF and the neurovascular interface can act as an additional mechanism to distribute Oxt signals across distant brain regions on a slower timescale. This review focuses on modes of Oxt transport and action in the CNS, with particular emphasis on the roles of perivascular spaces, the blood-brain barrier (BBB), and circumventricular organs in coordinating the triadic interaction among circulating blood, CSF, and parenchyma. Perivascular spaces, critical conduits for CSF flow, play a pivotal role in Oxt diffusion and distribution within the CNS and reciprocally undergo Oxt-mediated structural and functional reconstruction. While the BBB modulates the movement of Oxt between systemic and cerebral circulation in a majority of brain regions, circumventricular organs without a functional BBB can allow for diffusion, monitoring, and feedback regulation of bloodborne peripheral signals such as Oxt. Recognition of these additional transport mechanisms provides enhanced insight into the systemic propagation and regulation of Oxt activity.
Collapse
Affiliation(s)
- Deniz Parmaksiz
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Klugah-Brown B, Bore MC, Liu X, Gan X, Biswal BB, Kendrick KM, Chang DHF, Zhou B, Becker B. The neurostructural consequences of glaucoma and their overlap with disorders exhibiting emotional dysregulations: A voxel-based meta-analysis and tripartite system model. J Affect Disord 2024; 358:487-499. [PMID: 38705527 DOI: 10.1016/j.jad.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Glaucoma, a progressive neurodegenerative disorder leading to irreversible blindness, is associated with heightened rates of generalized anxiety and depression. This study aims to comprehensively investigate brain morphological changes in glaucoma patients, extending beyond visual processing areas, and explores overlaps with morphological alterations observed in anxiety and depression. METHODS A comparative meta-analysis was conducted, using case-control studies of brain structural integrity in glaucoma patients. We aimed to identify regions with gray matter volume (GMV) changes, examine their role within distinct large-scale networks, and assess overlap with alterations in generalized anxiety disorder (GAD) and major depressive disorder (MDD). RESULTS Glaucoma patients exhibited significant GMV reductions in visual processing regions (lingual gyrus, thalamus). Notably, volumetric reductions extended beyond visual systems, encompassing the left putamen and insula. Behavioral and functional network decoding revealed distinct large-scale networks, implicating visual, motivational, and affective domains. The insular region, linked to pain and affective processes, displayed reductions overlapping with alterations observed in GAD. LIMITATIONS While the study identified significant morphological alterations, the number of studies from both the glaucoma and GAD cohorts remains limited due to the lack of independent studies meeting our inclusion criteria. CONCLUSION The study proposes a tripartite brain model for glaucoma, with visual processing changes related to the lingual gyrus and additional alterations in the putamen and insular regions tied to emotional or motivational functions. These neuroanatomical changes extend beyond the visual system, implying broader implications for brain structure and potential pathological developments, providing insights into the overall neurological consequences of glaucoma.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy C Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, USA
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Noguchi J, Watanabe S, Oga T, Isoda R, Nakagaki K, Sakai K, Sumida K, Hoshino K, Saito K, Miyawaki I, Sugano E, Tomita H, Mizukami H, Watakabe A, Yamamori T, Ichinohe N. Altered projection-specific synaptic remodeling and its modification by oxytocin in an idiopathic autism marmoset model. Commun Biol 2024; 7:642. [PMID: 38802535 PMCID: PMC11130163 DOI: 10.1038/s42003-024-06345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.
Collapse
Affiliation(s)
- Jun Noguchi
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Satoshi Watanabe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomofumi Oga
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Risa Isoda
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Keiko Nakagaki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Kohei Hoshino
- Preclinical Research Laboratories, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Koichi Saito
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Izuru Miyawaki
- Preclinical Research Laboratories, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University, Morioka, Japan
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University, Morioka, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Shimotsuke, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Wako, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Wako, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, Center for Brain Science, RIKEN, Wako, Japan
- Department of Marmoset Biology and Medicine, CIEM, Kawasaki, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.
| |
Collapse
|
11
|
Xiao S, Ebner NC, Manzouri A, Li TQ, Cortes DS, Månsson KNT, Fischer H. Age-dependent effects of oxytocin in brain regions enriched with oxytocin receptors. Psychoneuroendocrinology 2024; 160:106666. [PMID: 37951085 PMCID: PMC10841644 DOI: 10.1016/j.psyneuen.2023.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/03/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Although intranasal oxytocin administration to tap into central functions is the most commonly used non-invasive means for exploring oxytocin's role in human cognition and behavior, the way by which intranasal oxytocin acts on the brain is not yet fully understood. Recent research suggests that brain regions densely populated with oxytocin receptors may play a central role in intranasal oxytocin's action mechanisms in the brain. In particular, intranasal oxytocin may act directly on (subcortical) regions rich in oxytocin receptors via binding to these receptors while only indirectly affecting other (cortical) regions via their neural connections to oxytocin receptor-enriched regions. Aligned with this notion, the current study adopted a novel approach to test 1) whether the connections between oxytocin receptor-enriched regions (i.e., the thalamus, pallidum, caudate nucleus, putamen, and olfactory bulbs) and other regions in the brain were responsive to intranasal oxytocin administration, and 2) whether oxytocin-induced effects varied as a function of age. Forty-six young (24.96 ± 3.06 years) and 44 older (69.89 ± 2.99 years) participants were randomized, in a double-blind procedure, to self-administer either intranasal oxytocin or placebo before resting-state fMRI. Results supported age-dependency in the effects of intranasal oxytocin administration on connectivity between oxytocin receptor-enriched regions and other regions in the brain. Specifically, compared to placebo, oxytocin decreased both connectivity density and connectivity strength of the thalamus for young participants while it increased connectivity density and connectivity strength of the caudate for older participants. These findings inform the mechanisms underlying the effects of exogenous oxytocin on brain function and highlight the importance of age in these processes.
Collapse
Affiliation(s)
- Shanshan Xiao
- Department of Psychology, Stockholm University, Campus Albano hus 4, Albanovägen, SE-114 19 Stockholm, Sweden.
| | - Natalie C Ebner
- Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL 32611-2250, USA; Cognitive Aging and Memory Program, Clinical Translational Research Program (CAM-CTRP), University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA.
| | - Amirhossein Manzouri
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Norra stationsgatan 69, SE-113 64 Stockholm, Sweden.
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Alfred Nobels Allé 8, SE-141 52 Huddinge, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | - Diana S Cortes
- Department of Psychology, Stockholm University, Campus Albano hus 4, Albanovägen, SE-114 19 Stockholm, Sweden.
| | - Kristoffer N T Månsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Norra stationsgatan 69, SE-113 64 Stockholm, Sweden.
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Campus Albano hus 4, Albanovägen, SE-114 19 Stockholm, Sweden; Stockholm University Brain Imaging Center (SUBIC), SE-106 91 Stockholm, Sweden; Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18 A, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
12
|
Maeyama T, Okada H, Sakai S. The effects of rehabilitative interventions on reading disorders caused by homonymous visual field defects: a meta-analysis focusing on improvement in reading speed. Acta Neurol Belg 2024; 124:123-140. [PMID: 37572263 DOI: 10.1007/s13760-023-02327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/27/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION Reading disorders caused by homonymous visual field defects (HVFDs) have a significant impact on a patient's quality of life. However, no review has been conducted to evaluate the available evidence on the effects of rehabilitative interventions on reading disorders caused by HVFDs. Thus, the aim of this study was to systematically evaluate the effects of rehabilitative interventions on reading disorders caused by HVFDs. METHODS We searched the MEDLINE/PubMed, Cochrane Library, ClinicalTrials.gov, CINAHL, and ScienceDirect databases for relevant articles. Relevant search terms were used to identify reports of randomized controlled trials or randomized crossover trials published between January 1990 and December 2021. Only studies that included reading-speed-related outcomes were analyzed. Risk of bias was assessed using the PEDro scale. Meta-analysis was conducted using a random-effects model, and standardized mean differences (SMD) and 95% confidence intervals (CIs) were calculated. Heterogeneity was assessed using the Ι2 statistic. RESULTS Nine studies were included in the meta-analysis. The results showed that rehabilitative interventions significantly improved reading disorders caused by HVFDs (SMD = 0.30; 95% CI 0.08-0.51; P < 0.01; Ι2 = 0.0%). Subgroup analysis showed that reading training significantly improved reading disorders (SMD = 0.35; 95% CI 0.05-0.66; P = 0.02; Ι2 = 0.0%). CONCLUSION Reading disorders caused by HVFDs can be improved through rehabilitation. In addition, reading training for the improvement of eye movement and fixation to compensate for foveal and parafoveal visual field defects may improve reading speed.
Collapse
Affiliation(s)
- Takaya Maeyama
- Graduate School of Health Sciences, Hokkaido University, Kita 12-Jo Nishi 5-Chome, Kitaku, Sapporo, Hokkaido, Japan
| | - Hiroki Okada
- Department of Rehabilitation Sciences, Hokkaido University, Kita 12-Jo Nishi 5-Chome, Kita-Ku, Sapporo, Hokkaido, Japan.
| | - Shinya Sakai
- Department of Rehabilitation Sciences, Hokkaido University, Kita 12-Jo Nishi 5-Chome, Kita-Ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
13
|
Saporta-Wiesel L, Feldman R, Levi L, Davidson M, Burshtein S, Gur R, Zagoory-Sharon O, Amiaz R, Park J, Davis JM, Weiser M. Intranasal Oxytocin Combined With Social Skills Training for Schizophrenia: An Add-on Randomized Controlled Trial. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae022. [PMID: 39502135 PMCID: PMC11535855 DOI: 10.1093/schizbullopen/sgae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Some but not other studies on oxytocin for schizophrenia, particularly those using a higher dose, indicate that oxytocin improves negative symptoms of schizophrenia. We performed an add-on randomized controlled trial to examine the effect of high-dose oxytocin, social skills training, and their combination in the treatment of negative symptoms and social dysfunction in schizophrenia. Fifty-one subjects with schizophrenia were randomized, employing a two-by-two design: intranasal oxytocin (24 IU X3/day) or placebo, and social skills training or supportive psychotherapy, for 3 weeks. The primary outcome was the difference in the total score from baseline to end-of-study of a semi-structured interview which assessed patients' social interactions in 3 scenarios: sharing a positive experience, sharing a conflict, and giving support when the experimenter shared a conflict. The interactions were scored using the Coding Interactive Behavior Manual (CIB), clinical symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). No significant difference was found between groups in the total CIB or PANSS scores. The majority of comparisons in the different social interactions between oxytocin and placebo, and between social skills training vs supportive psychotherapy, were also nonsignificant. Social skills training reduced blunted affect and gaze. In post-hoc analyses of the support interaction, oxytocin improved synchrony and decreased tension, while in the positive interaction it improved positive affect and avoidance. None of these findings remained significant when controlling for multiple comparisons. In conclusion, oxytocin did not influence participants' social behavior, and was not effective in improving the symptoms of schizophrenia. Clinicaltrials.gov Identifier: NCT01598623.
Collapse
Affiliation(s)
| | - Ruth Feldman
- Department of Psychology, Ivcher School of Psychology, Reichman University, Hertzelia, Israel
| | - Linda Levi
- Zachai Department of Psychiatry, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Davidson
- Department of Psychiatry, Nicosia University School of Medicine, Cyprus
| | - Shimon Burshtein
- Department of Psychiatry, Beer Yaakov-Ness Ziona Mental Health Center, Israel
| | - Ruben Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Orna Zagoory-Sharon
- Department of Psychology, Ivcher School of Psychology, Reichman University, Hertzelia, Israel
| | - Revital Amiaz
- Zachai Department of Psychiatry, Sheba Medical Center, Ramat Gan, Israel
- Department of Psychiatry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jinyoung Park
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - John M Davis
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Weiser
- Zachai Department of Psychiatry, Sheba Medical Center, Ramat Gan, Israel
- Department of Psychiatry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Malewska-Kasprzak M, Jowik K, Tyszkiewicz-Nwafor M. The use of intranasal oxytocin in the treatment of eating disorders. Neuropeptides 2023; 102:102387. [PMID: 37837804 DOI: 10.1016/j.npep.2023.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Oxytocin (OXT) is a hypothalamic peptide that plays a number of roles in the body, being involved in labor and lactation, as well as cognitive-emotional processes and social behavior. In recent years, knowledge of the physiology of OXT has been repeatedly used to explore its potential role in the treatment of numerous diseases, identifying a significant role for OXT in appetite regulation, eating behavior, weight regulation, and food-related beliefs. In this review we provide an overview of publications on this topic, but due to the wealth of research, we have limited our focus to studies based on the use of intranasal OXT in psychiatric diseases, with a particular focus on the role of oxytocin in eating disorders and obesity. Accumulating evidence that OXT intranasal supplementation may provide some therapeutic benefit seems promising. In individuals with autistic spectrum disorders (ASD) and schizophrenia, OXT may affect core deficits, improving social cognition and reducing symptom severity in schizophrenia. Dysregulation of serum and CSF OXT levels, as well as polymorphisms of its genes, may affect emotion perception in patients with eating disorders and correlate with co-occurring depressive and anxiety disorders. Nevertheless, there are still many critical questions regarding the pharmacokinetics and pharmacodynamics of intranasal OXT that can only be answered in larger randomized controlled trials.
Collapse
Affiliation(s)
| | - Katarzyna Jowik
- Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.
| | | |
Collapse
|
15
|
Bargiota SI, Papakonstantinou AV, Christodoulou NG. Oxytocin as a treatment for high-risk psychosis or early stages of psychosis: a mini review. Front Psychiatry 2023; 14:1232776. [PMID: 37663608 PMCID: PMC10470639 DOI: 10.3389/fpsyt.2023.1232776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Individuals at clinical high risk for psychosis (CHR-P) present as help-seeking individuals with social deficits as well as cognitive and functional impairment and have a 23-36% risk of transition to first-episode psychosis. The therapeutic role of intranasal oxytocin (ΟΤ) in psychiatric disorders has been widely studied during the last decades, concerning its effects on social behavior in humans. A literature search was conducted via Pubmed and Scopus, using the search terms "oxytocin" and "psychosis." Six studies were included in the current review. There were differences in terms of demographics, intervention type, and outcome measures. ΟΤ may affect the social cognition skills of people at prodromal and early stages of psychosis, but its effect on clinical symptoms is ambiguous. Because of the high level of heterogeneity of existing studies, more original studies are needed to examine and clarify whether OT improves high-risk and early psychosis populations.
Collapse
Affiliation(s)
- Stavroula I. Bargiota
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Anna V. Papakonstantinou
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
16
|
Zayan U, Caccialupi Da Prato L, Muscatelli F, Matarazzo V. Modulation of the thermosensory system by oxytocin. Front Mol Neurosci 2023; 15:1075305. [PMID: 36698777 PMCID: PMC9868264 DOI: 10.3389/fnmol.2022.1075305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Oxytocin (OT) is a neurohormone involved early in neurodevelopment and is implicated in multiple functions, including sensory modulation. Evidence of such modulation has been observed for different sensory modalities in both healthy and pathological conditions. This review summarizes the pleiotropic modulation that OT can exercise on an often overlooked sensory system: thermosensation. This system allows us to sense temperature variations and compensate for the variation to maintain a stable core body temperature. Oxytocin modulates autonomic and behavioral mechanisms underlying thermoregulation at both central and peripheral levels. Hyposensitivity or hypersensitivity for different sensory modalities, including thermosensitivity, is a common feature in autism spectrum disorder (ASD), recapitulated in several ASD mouse models. These sensory dysregulations occur early in post-natal development and are correlated with dysregulation of the oxytocinergic system. In this study, we discussed the potential link between thermosensory atypia and the dysregulation of the oxytocinergic system in ASD.
Collapse
|
17
|
Rashidi M, Maier E, Dekel S, Sütterlin M, Wolf RC, Ditzen B, Grinevich V, Herpertz SC. Peripartum effects of synthetic oxytocin: The good, the bad, and the unknown. Neurosci Biobehav Rev 2022; 141:104859. [PMID: 36087759 DOI: 10.1016/j.neubiorev.2022.104859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The first clinical applications of oxytocin (OT) were in obstetrics as a hormone to start and speed up labor and to control postpartum hemorrhage. Discoveries in the 1960s and 1970s revealed that the effects of OT are not limited to its peripheral actions around birth and milk ejection. Indeed, OT also acts as a neuromodulator in the brain affecting fear memory, social attachment, and other forms of social behaviors. The peripheral and central effects of OT have been separately subject to extensive scrutiny. However, the effects of peripheral OT-particularly in the form of administration of synthetic OT (synOT) around birth-on the central nervous system are surprisingly understudied. Here, we provide a narrative review of the current evidence, suggest putative mechanisms of synOT action, and provide new directions and hypotheses for future studies to bridge the gaps between neuroscience, obstetrics, and psychiatry.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.
| | - Eduard Maier
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sharon Dekel
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Leng G, Leng RI, Ludwig M. Oxytocin-a social peptide? Deconstructing the evidence. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210055. [PMID: 35858110 PMCID: PMC9272144 DOI: 10.1098/rstb.2021.0055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/10/2022] [Indexed: 12/13/2022] Open
Abstract
In this paper, we analyse the claim that oxytocin is a 'social neuropeptide'. This claim originated from evidence that oxytocin was instrumental in the initiation of maternal behaviour and it was extended to become the claim that oxytocin has a key role in promoting social interactions between individuals. We begin by considering the structure of the scientific literature on this topic, identifying closely interconnected clusters of papers on particular themes. We then analyse this claim by considering evidence of four types as generated by these clusters: (i) mechanistic studies in animal models, designed to understand the pathways involved in the behavioural effects of centrally administered oxytocin; (ii) evidence from observational studies indicating an association between oxytocin signalling pathways and social behaviour; (iii) evidence from intervention studies, mainly involving intranasal oxytocin administration; and (iv) evidence from translational studies of patients with disorders of social behaviour. We then critically analyse the most highly cited papers in each segment of the evidence; we conclude that, if these represent the best evidence, then the evidence for the claim is weak. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK
| | - Rhodri I. Leng
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK
- Faculty of Health Sciences, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Shi W, Fan L, Wang H, Liu B, Li W, Li J, Cheng L, Chu C, Song M, Sui J, Luo N, Cui Y, Dong Z, Lu Y, Ma Y, Ma L, Li K, Chen J, Chen Y, Guo H, Li P, Lu L, Lv L, Wan P, Wang H, Wang H, Yan H, Yan J, Yang Y, Zhang H, Zhang D, Jiang T. Two subtypes of schizophrenia identified by an individual-level atypical pattern of tensor-based morphometric measurement. Cereb Cortex 2022; 33:3683-3700. [PMID: 36005854 DOI: 10.1093/cercor/bhac301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
Difficulties in parsing the multiaspect heterogeneity of schizophrenia (SCZ) based on current nosology highlight the need to subtype SCZ using objective biomarkers. Here, utilizing a large-scale multisite SCZ dataset, we identified and validated 2 neuroanatomical subtypes with individual-level abnormal patterns of the tensor-based morphometric measurement. Remarkably, compared with subtype 1, which showed moderate deficits of some subcortical nuclei and an enlarged striatum and cerebellum, subtype 2, which showed cerebellar atrophy and more severe subcortical nuclei atrophy, had a higher subscale score of negative symptoms, which is considered to be a core aspect of SCZ and is associated with functional outcome. Moreover, with the neuroimaging-clinic association analysis, we explored the detailed relationship between the heterogeneity of clinical symptoms and the heterogeneous abnormal neuroanatomical patterns with respect to the 2 subtypes. And the neuroimaging-transcription association analysis highlighted several potential heterogeneous biological factors that may underlie the subtypes. Our work provided an effective framework for investigating the heterogeneity of SCZ from multilevel aspects and may provide new insights for precision psychiatry.
Collapse
Affiliation(s)
- Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Dong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiling Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Jun Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China.,Department of Psychology, Xinxiang Medical University, Xinxiang 453002, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China.,Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing 100191, China.,Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100191, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China.,Innovation Academy for Artificial Intelligence, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Integrative analysis prioritised oxytocin-related biomarkers associated with the aetiology of autism spectrum disorder. EBioMedicine 2022; 81:104091. [PMID: 35665681 PMCID: PMC9301877 DOI: 10.1016/j.ebiom.2022.104091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high phenotypic and genetic heterogeneity. The common variants of specific oxytocin-related genes (OTRGs), particularly OXTR, are associated with the aetiology of ASD. The contribution of rare genetic variations in OTRGs to ASD aetiology remains unclear. Methods We catalogued publicly available de novo mutations (DNMs) [from 6,511 patients with ASD and 3,391 controls], rare inherited variants (RIVs) [from 1,786 patients with ASD and 1,786 controls], and both de novo copy number variations (dnCNVs) and inherited CNVs (ihCNVs) [from 15,581 patients with ASD and 6,017 controls] in 963 curated OTRGs to explore their contribution to ASD pathology, respectively. Finally, a combined model was designed to prioritise the contribution of each gene to ASD aetiology by integrating DNMs and CNVs. Findings The rare genetic variations of OTRGs were significantly associated with ASD aetiology, in the order of dnCNVs > ihCNVs > DNMs. Furthermore, 172 OTRGs and their connected 286 ASD core genes were prioritised to positively contribute to ASD aetiology, including top-ranked MAPK3. Probands carrying rare disruptive variations in these genes were estimated to account for 10∼11% of all ASD probands. Interpretation Our findings suggest that rare disruptive variations in 172 OTRGs and their connected 286 ASD core genes are associated with ASD aetiology and may be potential biomarkers predicting the effects of oxytocin treatment. Funding Guangdong Key Project, National Natural Science Foundation of China, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province.
Collapse
|
21
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
22
|
Bailey A, Berwick DC, Camarini R, Scavone C. Building Bridges In Neuropharmacology: New therapeutic approaches for psychiatric and neurodegenerative disorders. Br J Pharmacol 2022; 179:1475-1477. [PMID: 35292961 DOI: 10.1111/bph.15711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Alexis Bailey
- Institute of Medical and Biomedical Education, St George's, University of London, London, UK
| | - Daniel C Berwick
- Institute of Medical and Biomedical Education, St George's, University of London, London, UK
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Meyerowitz JG, Robertson MJ, Barros-Álvarez X, Panova O, Nwokonko RM, Gao Y, Skiniotis G. The oxytocin signaling complex reveals a molecular switch for cation dependence. Nat Struct Mol Biol 2022; 29:274-281. [PMID: 35241813 DOI: 10.1038/s41594-022-00728-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Oxytocin (OT) and vasopressin (AVP) are conserved peptide signaling hormones that are critical for diverse processes including osmotic homeostasis, reproduction, lactation and social interaction. OT acts through the oxytocin receptor (OTR), a magnesium-dependent G protein-coupled receptor that is a therapeutic target for treatment of postpartum hemorrhage, dysfunctional labor and autism. However, the molecular mechanisms that underlie OTR activation by OT and the dependence on magnesium remain unknown. Here we present the wild-type active-state structure of human OTR bound to OT and miniGq/i determined by cryo-EM. The structure reveals a unique activation mechanism adopted by OTR involving both the formation of a Mg2+ coordination complex between OT and the receptor, and disruption of transmembrane helix 7 (TM7) by OT. Our functional assays demonstrate the role of TM7 disruption and provide the mechanism of full agonism by OT and partial agonism by OT analogs. Furthermore, we find that the identity of a single cation-coordinating residue across vasopressin family receptors determines whether the receptor is cation-dependent. Collectively, these results demonstrate how the Mg2+-dependent OTR is activated by OT, provide essential information for structure-based drug discovery efforts and shed light on the molecular determinants of cation dependence of vasopressin family receptors throughout the animal kingdom.
Collapse
Affiliation(s)
- Justin G Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ximena Barros-Álvarez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert M Nwokonko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Gao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Martins D, Brodmann K, Veronese M, Dipasquale O, Mazibuko N, Schuschnig U, Zelaya F, Fotopoulou A, Paloyelis Y. "Less is more": a dose-response account of intranasal oxytocin pharmacodynamics in the human brain. Prog Neurobiol 2022; 211:102239. [PMID: 35122880 DOI: 10.1016/j.pneurobio.2022.102239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
Intranasal oxytocin is attracting attention as a potential treatment for several brain disorders due to promising preclinical results. However, translating findings to humans has been hampered by remaining uncertainties about its pharmacodynamics and the methods used to probe its effects in the human brain. Using a dose-response design (9, 18 and 36 IU), we demonstrate that intranasal oxytocin-induced changes in local regional cerebral blood flow (rCBF) in the amygdala at rest, and in the covariance between rCBF in the amygdala and other key hubs of the brain oxytocin system, follow a dose-response curve with maximal effects for lower doses. Yet, the effects on local rCBF might vary by amygdala subdivision, highlighting the need to qualify dose-response curves within subregion. We further link physiological changes with the density of the oxytocin receptor gene mRNA across brain regions, strengthening our confidence in intranasal oxytocin as a valid approach to engage central targets. Finally, we demonstrate that intranasal oxytocin does not disrupt cerebrovascular reactivity, which corroborates the validity of haemodynamic neuroimaging to probe the effects of intranasal oxytocin in the human brain. DATA AVAILABILITY: Participants did not consent for open sharing of the data. Therefore, data can only be accessed from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Katja Brodmann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Aikaterini Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
25
|
Ghazy AA, Soliman OA, Elbahnasi AI, Alawy AY, Mansour AM, Gowayed MA. Role of Oxytocin in Different Neuropsychiatric, Neurodegenerative, and Neurodevelopmental Disorders. Rev Physiol Biochem Pharmacol 2022; 186:95-134. [PMID: 36416982 DOI: 10.1007/112_2022_72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxytocin has recently gained significant attention because of its role in the pathophysiology and management of dominant neuropsychiatric disorders. Oxytocin, a peptide hormone synthesized in the hypothalamus, is released into different brain regions, acting as a neurotransmitter. Receptors for oxytocin are present in many areas of the brain, including the hypothalamus, amygdala, and nucleus accumbens, which have been involved in the pathophysiology of depression, anxiety, schizophrenia, autism, Alzheimer's disease, Parkinson's disease, and attention deficit hyperactivity disorder. Animal studies have spotlighted the role of oxytocin in social, behavioral, pair bonding, and mother-infant bonding. Furthermore, oxytocin protects fetal neurons against injury during childbirth and affects various behaviors, assuming its possible neuroprotective characteristics. In this review, we discuss some of the concepts and mechanisms related to the role of oxytocin in the pathophysiology and management of some neuropsychiatric, neurodegenerative, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aya A Ghazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Omar A Soliman
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya I Elbahnasi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya Y Alawy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira Ma Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|