1
|
Zhang K, Yang Z, Yang Z, Du L, Zhou Y, Fu S, Wang X, Liu D, He X. Targeting microglial GLP1R in epilepsy: A novel approach to modulate neuroinflammation and neuronal apoptosis. Eur J Pharmacol 2024; 981:176903. [PMID: 39154823 DOI: 10.1016/j.ejphar.2024.176903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Epilepsy is a prevalent disorder of the central nervous system. Approximately, one-third of patients show resistance to pharmacological interventions. The pathogenesis of epilepsy is complex, and neuronal apoptosis plays a critical role. Aberrantly reactive astrocytes, induced by cytokine release from activated microglia, may lead to neuronal apoptosis. This study investigated the role of glucagon-like peptide 1 receptor (GLP1R) in microglial activation in epilepsy and its impact on astrocyte-mediated neurotoxicity. METHODS We used human hippocampal tissue from patients with temporal lobe epilepsy and a pilocarpine-induced epileptic mouse model to assess neurobiological changes in epilepsy. BV2 microglial cells and primary astrocytes were used to evaluate cytokine release and astrocyte activation in vitro. The involvement of GLP1R was explored using the GLP1R agonist, Exendin-4 (Ex-4). RESULTS Our findings indicated that reduced GLP1R expression in hippocampal microglia in both epileptic mouse models and human patients, correlated with increased cytokine release and astrocyte activation. Ex-4 treatment restored microglial homeostasis, decreased cytokine secretion, and reduced astrocyte activation, particularly of the A1 phenotype. These changes were associated with a reduction in neuronal apoptosis. In addition, Ex-4 treatment significantly decreased the frequency and duration of seizures in epileptic mice. CONCLUSIONS This study highlights the crucial role of microglial GLP1R in epilepsy pathophysiology. GLP1R downregulation contributes to microglial- and astrocyte-mediated neurotoxicity, exacerbating neuronal death and seizures. Activation of GLP1R with Ex-4 has emerged as a promising therapeutic strategy to reduce neuroinflammation, protect neuronal cells, and control seizures in epilepsy. This study provides a foundation for developing novel antiepileptic therapies targeting microglial GLP1R, with the potential to improve outcomes in patients with epilepsy.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liangchao Du
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shiyu Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xiaoyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
2
|
Qi Y, Dong Y, Chen J, Xie S, Ma X, Yu X, Yu Y, Wang Y. Lactiplantibacillus plantarum SG5 inhibits neuroinflammation in MPTP-induced PD mice through GLP-1/PGC-1α pathway. Exp Neurol 2024; 383:115001. [PMID: 39406307 DOI: 10.1016/j.expneurol.2024.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mounting evidence suggests that alterations in gut microbial composition play an active role in the pathogenesis of Parkinson's disease (PD). Probiotics are believed to modulate gut microbiota, potentially influencing PD development through the microbiota-gut-brain axis. However, the potential beneficial effects of Lactiplantibacillus plantarum SG5 (formerly known as Lactobacillus plantarum, abbreviated as L. plantarum) on PD and its underlying mechanisms remain unclear. In this study, we employed immunofluorescence, Western blotting, ELISA, and 16S rRNA gene sequencing to investigate the neuroprotective effects of L. plantarum SG5 against neuroinflammation in an MPTP-induced PD model and to explore the underlying mechanisms. Our results demonstrated that L. plantarum SG5 ameliorated MPTP-induced motor deficits, dopaminergic neuron loss, and elevated α-synuclein protein levels. Furthermore, SG5 inhibited MPTP-triggered overactivation of microglia and astrocytes in the substantia nigra (SN), attenuated disruption of both blood-brain and intestinal barriers, and suppressed the release of inflammatory factors in the colon and SN. Notably, SG5 modulated the composition and structure of the gut microbiota in mice. The MPTP-induced decrease in colonic GLP-1 secretion was reversed by SG5 treatment, accompanied by increased expression of GLP-1R and PGC-1α in the SN. Importantly, the GLP-1R antagonist Exendin 9-39 and PGC-1α inhibitor SR18292 attenuated the protective effects of SG5 in PD mice. In conclusion, we demonstrate a neuroprotective role of L. plantarum SG5 in the MPTP-induced PD mouse model, which likely involves modulation of the gut microbiota and, significantly, the GLP-1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Yueyan Qi
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuxuan Dong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Siyou Xie
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Ma
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Xueping Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yang Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
3
|
Hallaj S, Halfpenny W, Chuter BG, Weinreb RN, Baxter SL, Cui QN. Association Between Glucagon-Like Peptide-1 Receptor Agonists Exposure and Intraocular Pressure Change: GLP-1 Receptor Agonists and Intraocular Pressure Change. Am J Ophthalmol 2024; 269:255-265. [PMID: 39237049 DOI: 10.1016/j.ajo.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE This study evaluates the effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on intraocular pressure (IOP). DESIGN Retrospective clinical cohort study. METHODS The University of California Health Data Warehouse was queried for patients exposed to GLP-1R agonists or other oral antidiabetics. A total of 1247 glaucoma surgery and treatment naïve eyes of 626 patientson GLP-1R agonists and 1083 glaucoma surgery and treatment naïve eyes of 547 patients on other oral antidiabetics were included. Index date was defined as the date of first exposure to the medication. Eyes with at least one pre-exposure and one post-exposure tonometry records within 365 days of the index date were included. Clinical and laboratory data were extracted. Eyes were excluded upon exposure to glaucoma hypotensive medication or glaucoma surgery. The primary outcome measure was ∆IOP after exposure, which was analyzed using a paired t test and generalized estimating equations (GEE) RESULTS: The median age was 66.2 years [IQR = 18.3]; 607 (51.7%) were female, and 667 (56.9%) were Caucasian. Median pre-exposure IOP, hemoglobin A1c, and body mass index were 15.2 mm Hg [IQR = 3.8], 7.5 [IQR = 2.4], and 29.8 [IQR = 9.4], respectively. A total of 776 individuals (66.1%) had diabetes, with the median number of active oral antidiabetics being 1.0 [IQR = 1.0], and 441 (37.5%) being insulin users. Several pre-exposure characteristics differed between the groups. The mean ∆IOP was -0.4 ± 2.8 mm Hg (paired t test P < .001) and -0.2 ± 3.3 mm Hg (paired t test P = .297) in the GLP-1R agonist and other antidiabetics groups, respectively. Pre-exposure IOP was the only independent predictor of ΔIOP in multivariable GEE. Sensitivity analyses yielded similar results. CONCLUSIONS Although GLP-1R agonists were significantly associated with a decrease in IOP in the paired analysis, they were not associated with ΔIOP in multivariable GEE. Moreover, the difference in ΔIOP between the two groups was small.
Collapse
Affiliation(s)
- Shahin Hallaj
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - William Halfpenny
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - Benton G Chuter
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - Robert N Weinreb
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA
| | - Sally L Baxter
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA.
| | - Qi N Cui
- F.M. Kirby Center for Molecular Ophthalmology (Q.N.C.), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Niazi S, Gnesin F, Thein AS, Andreasen JR, Horwitz A, Mouhammad ZA, Jawad BN, Niazi Z, Pourhadi N, Zareini B, Meaidi A, Torp-Pedersen C, Kolko M. Association between Glucagon-like Peptide-1 Receptor Agonists and the Risk of Glaucoma in Individuals with Type 2 Diabetes. Ophthalmology 2024; 131:1056-1063. [PMID: 38490274 DOI: 10.1016/j.ophtha.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
PURPOSE To examine the association between glucagon-like peptide-1 receptor agonist (GLP-1RA) use and the development of glaucoma in individuals with type 2 diabetes. DESIGN Nationwide, nested case-control study. PARTICIPANTS From a nationwide cohort of 264 708 individuals, we identified 1737 incident glaucoma cases and matched them to 8685 glaucoma-free controls, all aged more than 21 years and treated with metformin and a second-line antihyperglycemic drug formulation, with no history of glaucoma, eye trauma, or eye surgery. METHODS Cases were incidence-density-matched to 5 controls by birth year, sex, and date of second-line treatment initiation. MAIN OUTCOME MEASURES Conditional logistic regression was used to calculate adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for glaucoma, defined by first-time diagnosis, first-time use of glaucoma-specific medication, or first-time glaucoma-specific surgical intervention. RESULTS Compared with the reference group, who received treatments other than GLP-1RA, individuals who were exposed to GLP-1RA treatment exhibited a lower risk of incident glaucoma (HR, 0.81; CI, 0.70-0.94; P = 0.006). Prolonged treatment extending beyond 3 years lowered the risk even further (HR, 0.71; CI, 0.55-0.91; P = 0.007). Treatment with GLP-1RA for 0 to 1 year (HR, 0.89; CI, 0.70-1.14; P = 0.35) and 1 to 3 years (HR, 0.85; CI, 0.67-1.06; P = 0.15) was not significant. CONCLUSIONS Exposure to GLP-1RA was associated with a lower risk of developing glaucoma compared with receiving other second-line antihyperglycemic medication. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Siar Niazi
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, North Zealand Hospital, Hillerød Hospital, Hillerød, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Filip Gnesin
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, North Zealand Hospital, Hillerød Hospital, Hillerød, Denmark
| | - Anna-Sophie Thein
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jens R Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anna Horwitz
- Department of Cardiology, North Zealand Hospital, Hillerød Hospital, Hillerød, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab A Mouhammad
- Department of Cardiology, North Zealand Hospital, Hillerød Hospital, Hillerød, Denmark
| | - Baker N Jawad
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Zia Niazi
- Department of Ear, Nose and Throat Head and Neck Surgery, Zealand University Hospital, Køge, Denmark
| | - Nelsan Pourhadi
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Bochra Zareini
- Department of Cardiology, North Zealand Hospital, Hillerød Hospital, Hillerød, Denmark
| | - Amani Meaidi
- Department of Cardiology, North Zealand Hospital, Hillerød Hospital, Hillerød, Denmark; Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Institute, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, North Zealand Hospital, Hillerød Hospital, Hillerød, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
5
|
Muayad J, Loya A, Hussain ZS, Chauhan MZ, Alsoudi AF, De Francesco T, Ike K Ahmed I. Comparative Effects of GLP-1 Receptor Agonists and Metformin on Glaucoma Risk in Type 2 Diabetes Patients. Ophthalmology 2024:S0161-6420(24)00515-3. [PMID: 39182626 DOI: 10.1016/j.ophtha.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE To compare effects of glucagon-like peptide-1 (GLP-1) receptor agonists and metformin on the risk of primary open-angle glaucoma (POAG), ocular hypertension, and the need for first-line glaucoma treatments in patients with type 2 diabetes. DESIGN A retrospective cohort study was conducted using electronic medical records (EMR) data from the from an international electronic health record network, covering a period from May 2006 to May 2024. PARTICIPANTS Patients diagnosed with type 2 diabetes mellitus (T2DM) who were treated with either GLP-1 receptor agonists or metformin. METHODS Data from 120 healthcare organizations across 17 countries were analyzed. Patient outcomes were assessed at 1, 2, and 3 years. Propensity score matching (PSM) was used to balance covariates such as demographics, comorbidities, and medication usage. Risk ratios (RR) with 95% confidence intervals (CI) were calculated. MAIN OUTCOME MEASURES Incidence of POAG, ocular hypertension, and the need for first-line treatments including beta-blockers, prostaglandin analogues, brimonidine, brinzolamide, dorzolamide, netarsudil, and laser trabeculoplasty. RESULTS After PSM, both groups included 61,998 patients at the 1-year follow-up, 27,414 at the 2-year follow-up, and 14,100 at the 3-year follow-up. Patients treated with GLP-1 receptor agonists had a significantly decreased risk of developing POAG compared to those on metformin at 1 year (RR 0.59, 95% CI 0.39-0.88), 2 years (RR 0.50, 95% CI 0.32-0.78), and 3 years (RR 0.59, 95% CI 0.37-0.94). Similar protective effects were observed for ocular hypertension with risk reductions of 56% at 1 year (RR 0.44, 95% CI 0.31-0.62), 57% at 2 years (RR 0.43, 95% CI 0.30-0.62), and 49% at 3 years (RR 0.51, 95% CI 0.34-0.75). The risk of first-line therapy initiation was also lower in the GLP-1 receptor agonists group at 1 year (RR 0.63, 95% CI 0.53-0.74), 2 years (RR 0.71, 95% CI 0.59-0.85), and 3 years (RR 0.75, 95% CI 0.62-0.91). CONCLUSIONS GLP-1 receptor agonists are associated with a significantly lower incidence of POAG, ocular hypertension, and the need for first-line glaucoma treatments compared to metformin in patients with type 2 diabetes. These findings highlight the potential ocular benefits of GLP-1 receptor agonists and their expanding role in the clinical management of diabetic patients.
Collapse
Affiliation(s)
- Jawad Muayad
- School of Medicine, Texas A&M University, Houston, TX, USA
| | - Asad Loya
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zain S Hussain
- University of Medicine and Health Sciences, New York, NY, USA
| | - Muhammad Z Chauhan
- Bernice and Harvey Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amer F Alsoudi
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ticiana De Francesco
- John A. Moran Eye Center, University of Utah, Salt Lake City, USA; Clinica de Olhos De Francesco, Fortaleza, Brazil; Hospital de Olhos Leiria de Andrade, Fortaleza, Brazil
| | - Iqbal Ike K Ahmed
- John A. Moran Eye Center, University of Utah, Salt Lake City, USA; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Prism Eye Institute, Mississauga, Canada.
| |
Collapse
|
6
|
Dave BP, Chorawala MR, Shah IV, Shah NN, Bhagat SU, Prajapati BG, Thakkar PC. From diabetes to diverse domains: the multifaceted roles of GLP-1 receptor agonists. Mol Biol Rep 2024; 51:835. [PMID: 39042283 DOI: 10.1007/s11033-024-09793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mellitus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed, and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective, anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ishika V Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Shivam U Bhagat
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Pratik C Thakkar
- Department of Physiology, Faculty of Medical & Health Sciences, Manaaki Mānawa - The Centre for Heart Research, University of Auckland, 85 Park Road, Auckland, 1142, New Zealand.
| |
Collapse
|
7
|
Fessel J. All GLP-1 Agonists Should, Theoretically, Cure Alzheimer's Dementia but Dulaglutide Might Be More Effective Than the Others. J Clin Med 2024; 13:3729. [PMID: 38999294 PMCID: PMC11242057 DOI: 10.3390/jcm13133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Addressing the dysfunctions of all brain cell types in Alzheimer's disease (AD) should cure the dementia, an objective that might be achieved by GLP-1 agonist drugs, because receptors for GLP-1 are present in all of the main brain cell types, i.e., neurons, oligodendroglia, astroglia, microglia, endothelial cells and pericytes. This article describes the benefits provided to all of those brain cell types by GLP-1 agonist drugs. The article uses studies in humans, not rodents, to describe the effect of GLP-1 agonists upon cognition, because rodents' brains differ from those of humans in so many ways that results from rodent studies may not be totally transferable to humans. Commercially available GLP-1 agonists have mostly shown either positive effects upon cognition or no effects. One important reason for no effects is a reduced rate of entering brain parenchyma. Dulaglutide has the greatest entry to brain, at 61.8%, among the available GLP-1 agonists, and seems to offer the best likelihood for cure of AD. Although there is only one study of cognition that used dulaglutide, it was randomized, placebo controlled, and very large; it involved 8828 participants and showed significant benefit to cognition. A clinical trial to test the hypothesis that dulaglutide may cure AD should have, as its primary outcome, a 30% greater cure rate of AD by dulaglutide than that achieved by an equipoise arm of, e.g., lithium plus memantine.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
8
|
Fessel J. Special Issue "Pathophysiology and Treatment of Alzheimer's Disease". Int J Mol Sci 2024; 25:6015. [PMID: 38892203 PMCID: PMC11173226 DOI: 10.3390/ijms25116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The majority of clinical trials, whose primary aims were to moderate Alzheimer's dementia (AD), have been based upon the prevailing paradigm, i [...].
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, San Francisco, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
9
|
Hallaj S, Halfpenny W, Chuter BG, Weinreb RN, Baxter SL, Cui QN. Association between Glucagon-Like Peptide 1 (GLP-1) Receptor Agonists Exposure and Intraocular Pressure Change. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306943. [PMID: 38765972 PMCID: PMC11100841 DOI: 10.1101/2024.05.06.24306943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Objective This study aims to provide data on the effects of glucagon-like peptide 1 receptor (GLP-1R) agonists on intraocular pressure (IOP). Design Retrospective cohort study. Subjects Participants and/or Controls 1247 glaucoma surgery and treatment naïve eyes of 626 patients who were initiated on GLP-1R agonists compared to 1083 glaucoma surgery and treatment naïve eyes of 547 patients who were initiated on other oral antidiabetics. Methods Intervention or Testing The University of California Health Data Warehouse was queried for patients exposed to GLP-1R agonists or other oral antidiabetics. Index date was defined as the date of first exposure to the medication. Eyes with at least one pre-exposure and one post-exposure tonometry record within 365 days of the index date were included in the analysis. Clinical and laboratory data elements were extracted from the database. Eyes were censored from the analysis upon exposure to glaucoma hypotensive medication or glaucoma surgery. ΔIOP was analyzed using a paired t-test. Regression analysis was conducted using generalized estimating equations (GEE) accounting for inter-eye correlation. Sensitivity analyses were performed to assess the robustness of the findings. Main Outcome Measures Primary outcome measure was ΔIOP after exposure to the medication. Results The median age of all included subjects was 66.2 years [IQR=18.3]; 607 (51.7%) were female, and 667 (56.9%) were Caucasian. Median pre-exposure IOP, HbA1c, and BMI were 15.2 mmHg [IQR=3.8], 7.5 [IQR=2.4], and 29.8 [IQR=9.4], respectively. 776 individuals (66.1%) had diabetes, with the median number of active oral antidiabetics being 1.0 [IQR=1.0], and 441 (37.5%) being insulin users. Several pre-exposure characteristics significantly differed between the GLP-1R agonist and the control group. The mean ΔIOP was -0.4±2.8 mmHg (paired t-test p<0.001) and -0.2±3.3 mmHg (paired t-test p = 0.297) in the GLP-1R agonist and other antidiabetics groups, respectively. Pre-exposure IOP was the only independent predictor of ΔIOP in multivariable GEE. Sensitivity analyses yielded similar results. Conclusions Although GLP-1R agonists were significantly associated with a decrease in IOP in the paired analysis, they were not associated with ΔIOP in multivariable GEE. Moreover, the difference between the ΔIOP in the two groups was small. Future prospective studies following a standardized dose and delivery method may provide further insights.
Collapse
|
10
|
Weisser B, Erb C. Neuroprotective Effects of Anti-diabetic Drugs in the Treatment of Patients with Diabetes and Glaucoma or at High Risk for Glaucoma. Klin Monbl Augenheilkd 2024; 241:302-307. [PMID: 37336238 DOI: 10.1055/a-2066-3389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
There is an association between glaucoma and several risk factors and metabolic diseases, such as type 2 diabetes mellitus. Diabetes mellitus leads to neurodegenerative changes, both peripherally and in the brain. This might be a shared pathophysiology and etiology for both glaucoma and diabetes. It is interesting that drugs for the treatment of diabetes seem to have neuroprotective properties independent of their blood sugar reduction. Although prospective, randomized, clinical studies are still missing, particularly metformin and glucagon-like peptide receptor agonists (GLP 1 RA) seem to have neuroprotective effects. Sulphonylureas (e.g., glibenclamide, glimepiride) are still used. They frequently potently reduce blood pressure but may be less neuroprotective. In the present review, the evidence for neuroprotective effects of the different antidiabetic drugs is presented and a possible differential therapy for patients with diabetes and glaucoma, or at high risk of glaucoma, will be discussed.
Collapse
Affiliation(s)
| | - Carl Erb
- Augenklinik am Wittenbergplatz, Berlin, Deutschland
| |
Collapse
|
11
|
McDermott CE, Salowe RJ, Di Rosa I, O’Brien JM. Stress, Allostatic Load, and Neuroinflammation: Implications for Racial and Socioeconomic Health Disparities in Glaucoma. Int J Mol Sci 2024; 25:1653. [PMID: 38338933 PMCID: PMC10855412 DOI: 10.3390/ijms25031653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Glaucoma is the leading cause of irreversible blindness, and its pathophysiology includes neuroinflammatory changes. The present therapies for glaucoma target pressure-lowering mechanisms with limited success, making neuroinflammation a target for future interventions. This review summarizes the neuroinflammatory pathways seen in glaucoma and their interplay with stress. Glucocorticoids have been shown to activate proinflammatory glial cells, contributing to the neuroinflammation in glaucoma. Glucocorticoids have also been shown to increase the IOP directly. Stress-associated autonomic dysfunction can affect the vascular homeostasis in the retina and create oxidative stress. Diabetes, hyperglycemic-mediated endothelial damage, and vascular inflammation also play important roles in the neuroinflammation in glaucoma and diabetic retinopathy. Psychosocial stress has been implicated in an increased IOP and glaucoma outcomes. People who experience maladaptive chronic stress suffer from a condition known as allostatic load, which describes pathologic neuroendocrine dysregulation. The effects of allostatic load and chronic stress have been studied in patients affected by a lower socioeconomic status (SES) and marginalized racial identities. A lower SES is associated with higher rates of glaucoma and also affects the access to care and screening. Additionally, people of African ancestry are disproportionately affected by glaucoma for reasons that are multifactorial. In conclusion, this review explores neuroinflammation in glaucoma, highlighting opportunities for future investigation.
Collapse
Affiliation(s)
- Colleen E. McDermott
- Department of Surgery, University of Utah, Salt Lake City, UT 84101, USA
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| | - Rebecca J. Salowe
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| | - Isabel Di Rosa
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| | - Joan M. O’Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.J.S.); (I.D.R.)
| |
Collapse
|
12
|
Medina-Julio D, Ramírez-Mejía MM, Cordova-Gallardo J, Peniche-Luna E, Cantú-Brito C, Mendez-Sanchez N. From Liver to Brain: How MAFLD/MASLD Impacts Cognitive Function. Med Sci Monit 2024; 30:e943417. [PMID: 38282346 PMCID: PMC10836032 DOI: 10.12659/msm.943417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease or metabolic dysfunction-associated steatotic liver disease (MAFLD/MASLD), is a common chronic liver condition affecting a substantial global population. Beyond its primary impact on liver function, MAFLD/MASLD is associated with a myriad of extrahepatic manifestations, including cognitive impairment. The scope of cognitive impairment within the realm of MAFLD/MASLD is a matter of escalating concern. Positioned as an intermediate stage between the normal aging process and the onset of dementia, cognitive impairment manifests as a substantial challenge associated with this liver condition. Insights from studies underscore the presence of compromised executive function and a global decline in cognitive capabilities among individuals identified as being at risk of progressing to liver fibrosis. Importantly, this cognitive impairment transcends mere association with metabolic factors, delving deep into the intricate pathophysiology characterizing MAFLD/MASLD. The multifaceted nature of cognitive impairment in the context of MAFLD/MASLD is underlined by a spectrum of factors, prominently featuring insulin resistance, lipotoxicity, and systemic inflammation as pivotal contributors. These factors interplay within the intricate landscape of MAFLD/MASLD, fostering a nuanced understanding of the links between hepatic health and cognitive function. By synthesizing the available evidence, exploring potential mechanisms, and assessing clinical implications, the overarching aim of this review is to contribute to a more complete understanding of the impact of MAFLD/MASLD on cognitive function.
Collapse
Affiliation(s)
- David Medina-Julio
- Department of Internal Medicine, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mariana M Ramírez-Mejía
- Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Cordova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
| | - Emilio Peniche-Luna
- High Academic Performance Program (PAEA), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Carlos Cantú-Brito
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Departament of Neurology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Nahum Mendez-Sanchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Unit, Medica Sur Clinic and Foundation, Mexico City, Mexico
| |
Collapse
|
13
|
Wang X, Fang J, Yang L. Research progress on ocular complications caused by type 2 diabetes mellitus and the function of tears and blepharons. Open Life Sci 2024; 19:20220773. [PMID: 38299009 PMCID: PMC10828665 DOI: 10.1515/biol-2022-0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this study was to explore the related research progress of ocular complications (OCs) caused by type 2 diabetes mellitus (T2DM), tear and tarsal function, and the application of deep learning (DL) in the diagnosis of diabetes and OCs caused by it, to provide reference for the prevention and control of OCs in T2DM patients. This study reviewed the pathogenesis and treatment of diabetes retinopathy, keratopathy, dry eye disease, glaucoma, and cataract, analyzed the relationship between OCs and tear function and tarsal function, and discussed the application value of DL in the diagnosis of diabetes and OCs. Diabetes retinopathy is related to hyperglycemia, angiogenic factors, oxidative stress, hypertension, hyperlipidemia, and other factors. The increase in water content in the corneal stroma leads to corneal relaxation, loss of transparency, and elasticity, and can lead to the occurrence of corneal lesions. Dry eye syndrome is related to abnormal stability of the tear film and imbalance in neural and immune regulation. Elevated intraocular pressure, inflammatory reactions, atrophy of the optic nerve head, and damage to optic nerve fibers are the causes of glaucoma. Cataract is a common eye disease in the elderly, which is a visual disorder caused by lens opacity. Oxidative stress is an important factor in the occurrence of cataracts. In clinical practice, blood sugar control, laser therapy, and drug therapy are used to control the above eye complications. The function of tear and tarsal plate will be affected by eye diseases. Retinopathy and dry eye disease caused by diabetes will cause dysfunction of tear and tarsal plate, which will affect the eye function of patients. Furthermore, DL can automatically diagnose and classify eye diseases, automatically analyze fundus images, and accurately diagnose diabetes retinopathy, macular degeneration, and other diseases by analyzing and processing eye images and data. The treatment of T2DM is difficult and prone to OCs, which seriously threatens the normal life of patients. The occurrence of OCs is closely related to abnormal tear and tarsal function. Based on DL, clinical diagnosis and treatment of diabetes and its OCs can be carried out, which has positive application value.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Operating Room, Xinchang County Peoples Hospital, Xinchang, 312500, Shaoxing City, Zhejiang, China
| | - Jian Fang
- Department of Ophthalmolgy, Xinchang County Peoples Hospital, Xinchang, 312500, Shaoxing City, Zhejiang, China
| | - Lina Yang
- Department of Ophthalmolgy, Xinchang County Peoples Hospital, Xinchang, 312500, Shaoxing City, Zhejiang, China
| |
Collapse
|
14
|
Neha, Wali Z, Pinky, Hattiwale SH, Jamal A, Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer's disease pathology and treatment. Ageing Res Rev 2024; 93:102134. [PMID: 38008402 DOI: 10.1016/j.arr.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
According to the facts and figures 2023stated that 6.7 million Americans over the age of 65 have Alzheimer's disease (AD). The scenario of AD has reached up to the maximum, of 4.1 million individuals, 2/3rd are female patients, and approximately 1 in 9 adults over the age of 65 have dementia with AD dementia. The fact that there are now no viable treatments for AD indicates that the underlying disease mechanisms are not fully understood. The progressive neurodegenerative disease, AD is characterized by amyloid plaques and neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by the buildup of amyloid beta (Aβ). Numerous attempts have been made to produce compounds that interfere with these characteristics because of significant research efforts into the primary pathogenic hallmark of this disorder. Here, we summarize several research that highlights interesting therapy strategies and the neuroprotective effects of GLP-1, Sigma, and, AGE-RAGE receptors in pre-clinical and clinical AD models.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Zitin Wali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pinky
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Ameroso D, Rios M. Synaptic plasticity and the role of astrocytes in central metabolic circuits. WIREs Mech Dis 2024; 16:e1632. [PMID: 37833830 PMCID: PMC10842964 DOI: 10.1002/wsbm.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
16
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
17
|
Keuthan CJ, Schaub JA, Wei M, Fang W, Quillen S, Kimball E, Johnson TV, Ji H, Zack DJ, Quigley HA. Regional Gene Expression in the Retina, Optic Nerve Head, and Optic Nerve of Mice with Optic Nerve Crush and Experimental Glaucoma. Int J Mol Sci 2023; 24:13719. [PMID: 37762022 PMCID: PMC10531004 DOI: 10.3390/ijms241813719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor β pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes present three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.
Collapse
Affiliation(s)
- Casey J. Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Julie A. Schaub
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Meihan Wei
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Sarah Quillen
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Elizabeth Kimball
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Thomas V. Johnson
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
- Departments of Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harry A. Quigley
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (C.J.K.)
| |
Collapse
|
18
|
Sheth S, Patel A, Foreman M, Mumtaz M, Reddy A, Sharaf R, Sheth S, Lucke-Wold B. The protective role of GLP-1 in neuro-ophthalmology. EXPLORATION OF DRUG SCIENCE 2023; 1:221-238. [PMID: 37711214 PMCID: PMC10501042 DOI: 10.37349/eds.2023.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 09/16/2023]
Abstract
Despite recent advancements in the field of neuro-ophthalmology, the rising rates of neurological and ophthalmological conditions, mismatches between supply and demand of clinicians, and an aging population underscore the urgent need to explore new therapeutic approaches within the field. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), traditionally used in the treatment of type 2 diabetes, are becoming increasingly appreciated for their diverse applications. Recently, GLP-1RAs have been approved for the treatment of obesity and recognized for their cardioprotective effects. Emerging evidence indicates some GLP-1RAs can cross the blood-brain barrier and may have neuroprotective effects. Therefore, this article aims to review the literature on the neurologic and neuro-ophthalmic role of glucagon-like peptide 1 (GLP-1). This article describes GLP-1 peptide characteristics and the mechanisms mediating its known role in increasing insulin, decreasing glucagon, delaying gastric emptying, and promoting satiety. This article identifies the sources and targets of GLP-1 in the brain and review the mechanisms which mediate its neuroprotective effects, as well as implications for Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, the preclinical works which unravel the effects of GLP-1 in ocular dynamics and the preclinical literature regarding GLP-1RA use in the management of several neuro-ophthalmic conditions, including diabetic retinopathy (DR), glaucoma, and idiopathic intracranial hypertension (IIH) are discussed.
Collapse
Affiliation(s)
- Sohum Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Marco Foreman
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Mohammed Mumtaz
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Ramy Sharaf
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Siddharth Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
19
|
Lawrence ECN, Guo M, Schwartz TD, Wu J, Lu J, Nikonov S, Sterling JK, Cui QN. Topical and systemic GLP-1R agonist administration both rescue retinal ganglion cells in hypertensive glaucoma. Front Cell Neurosci 2023; 17:1156829. [PMID: 37362000 PMCID: PMC10288152 DOI: 10.3389/fncel.2023.1156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
Glaucomatous neurodegeneration, a blinding disease affecting millions worldwide, has a need for the exploration of new and effective therapies. Previously, the glucagon-like peptide-1 receptor (GLP-1R) agonist NLY01 was shown to reduce microglia/macrophage activation, rescuing retinal ganglion cells after IOP elevation in an animal model of glaucoma. GLP-1R agonist use is also associated with a reduced risk for glaucoma in patients with diabetes. In this study, we demonstrate that several commercially available GLP-1R agonists, administered either systemically or topically, hold protective potential in a mouse model of hypertensive glaucoma. Further, the resulting neuroprotection likely occurs through the same pathways previously shown for NLY01. This work contributes to a growing body of evidence suggesting that GLP-1R agonists represent a viable therapeutic option for glaucoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qi N. Cui
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
An JR, Liu JT, Gao XM, Wang QF, Sun GY, Su JN, Zhang C, Yu JX, Yang YF, Shi Y. Effects of liraglutide on astrocyte polarization and neuroinflammation in db/db mice: focus on iron overload and oxidative stress. Front Cell Neurosci 2023; 17:1136070. [PMID: 37323581 PMCID: PMC10267480 DOI: 10.3389/fncel.2023.1136070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Neuroinflammation plays a crucial role in the occurrence and development of cognitive impairment in type 2 diabetes mellitus (T2DM), but the specific injury mechanism is not fully understood. Astrocyte polarization has attracted new attention and has been shown to be directly and indirectly involved in neuroinflammation. Liraglutide has been shown to have beneficial effects on neurons and astrocytes. However, the specific protection mechanism still needs to be clarified. In this study, we assessed the levels of neuroinflammation and A1/A2-responsive astrocytes in the hippocampus of db/db mice and examined their relationships with iron overload and oxidative stress. First, in db/db mice, liraglutide alleviated the disturbance of glucose and lipid metabolism, increased the postsynaptic density, regulated the expression of NeuN and BDNF, and partially restored impaired cognitive function. Second, liraglutide upregulated the expression of S100A10 and downregulated the expression of GFAP and C3, and decreased the secretion of IL-1β, IL-18, and TNF-α, which may confirm that it regulates the proliferation of reactive astrocytes and A1/A2 phenotypes polarize and attenuate neuroinflammation. In addition, liraglutide reduced iron deposition in the hippocampus by reducing the expression of TfR1 and DMT1 and increasing the expression of FPN1; at the same time, liraglutide by up-regulating the levels of SOD, GSH, and SOD2 expression, as well as downregulation of MDA levels and NOX2 and NOX4 expression to reduce oxidative stress and lipid peroxidation. The above may attenuate A1 astrocyte activation. This study preliminarily explored the effect of liraglutide on the activation of different astrocyte phenotypes and neuroinflammation in the hippocampus of a T2DM model and further revealed its intervention effect on cognitive impairment in diabetes. Focusing on the pathological consequences of astrocytes may have important implications for the treatment of diabetic cognitive impairment.
Collapse
Affiliation(s)
- Ji-Ren An
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jun-Tong Liu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiao-Meng Gao
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qing-Feng Wang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Gui-Yan Sun
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jia-Nan Su
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chi Zhang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jia-Xiang Yu
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yu-Feng Yang
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
21
|
Keuthan CJ, Schaub J, Wei M, Fang W, Quillen S, Kimball E, Johnson TV, Ji H, Zack DJ, Quigley HA. Regional Gene Expression in the Retina, Optic Nerve Head, and Optic Nerve of Mice with Experimental Glaucoma and Optic Nerve Crush. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529410. [PMID: 36993314 PMCID: PMC10054954 DOI: 10.1101/2023.02.21.529410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and in human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and on separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor β pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.
Collapse
Affiliation(s)
- Casey J. Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Julie Schaub
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Meihan Wei
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Weixiang Fang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Sarah Quillen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Elizabeth Kimball
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Thomas V. Johnson
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Departments of Ophthalmology, Wilmer Eye Institute, Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Harry A. Quigley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
22
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Sadek MA, Kandil EA, El Sayed NS, Sayed HM, Rabie MA. Semaglutide, a novel glucagon-like peptide-1 agonist, amends experimental autoimmune encephalomyelitis-induced multiple sclerosis in mice: Involvement of the PI3K/Akt/GSK-3β pathway. Int Immunopharmacol 2023; 115:109647. [PMID: 36584570 DOI: 10.1016/j.intimp.2022.109647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a disabling neurodegenerative disease that causes demyelination and axonal degeneration of the central nervous system. Current treatments are partially effective in managing MS relapses and have a negligible impact on treating MS cognitive deficits and cannot enhance neuronal remyelination, imposing a need for a new MS remedy. Semaglutide, a novel glucagon-like peptide-1 agonist, has recently displayed a neuroprotective effect on several neurodegenerative diseases, suggesting that it may have a protective effect in MS. Therefore, this study was conducted to investigate the influence of semaglutide on experimental autoimmune encephalomyelitis (EAE)-induced MS in mice. Here, EAE was induced in mice using spinal cord homogenate, which eventually altered the mice's cognitive and motor functions, similar to what is observed in MS. Interestingly, intraperitoneally administered semaglutide (25 nmol/kg/day) amended EAE-induced cognitive and motor deficits observed in novel object recognition, open field, rotarod, and grip strength tests. Moreover, histological examination revealed that semaglutide treatment attenuated hippocampal damage and corpus callosum demyelination caused by EAE. Additionally, biochemical testing revealed that semaglutide activates the PI3K/Akt axis, which eventually hampers GSK-3β activity. GSK-3β activity inhibition attenuates demyelination and triggers remyelination through CREB/BDNF; furthermore, it boosts Nrf2 and SOD levels, protecting the mice from EAE-induced oxidative stress. Additionally, GSK-3β inhibition minimizes neuroinflammation, as reflected by decreased NF-kβ and TNF-α levels. In conclusion, semaglutide has a neuroprotective effect in EAE-induced MS in mice, which is mediated by activating the ramified PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
24
|
Glucagon-like Peptide 1 Receptor Activation Inhibits Microglial Pyroptosis via Promoting Mitophagy to Alleviate Depression-like Behaviors in Diabetic Mice. Nutrients 2022; 15:nu15010038. [PMID: 36615696 PMCID: PMC9824834 DOI: 10.3390/nu15010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Depression is a frequent and serious comorbidity associated with diabetes which adversely affects prognosis and quality of life. Glucagon-like peptide-1 receptor (GLP-1R) agonists, widely used in the treatment of diabetes, are reported to exert neuroprotective effects in the central nervous system. Thus, we aim to evaluate whether GLP-1R agonist exendin-4 (EX-4) could alleviate depression-like behaviors in diabetic mice and to explore its underlying mechanism. The antidepressant effects of EX-4 were evaluated using behavioral tests in db/db mice. The effects of EX-4 on microglial pyroptosis and neuroinflammation were assessed in N9 microglial cells. EX-4 administration alleviated depression-like behaviors in diabetic db/db mice. GLP-1R activation by EX-4 significantly suppressed microglial pyroptosis and neuroinflammation by downregulation of gasdermin D (GSDMD) and interleukin (IL)-1β in diabetic mice and lipopolysaccharide (LPS)-primed N9 microglia. Mechanistically, GLP-1R activation improved mitochondrial function and promoted mitophagy by decreasing the accumulation of mitochondrial reactive oxygen species (mtROS) and intracellular ROS production. EX-4 exhibits antidepressant effects in depression associated with diabetes in diabetic mice, which may be mediated by inhibiting microglial pyroptisis via promoting mitophagy. It is supposed that GLP-1R agonists may be a promising therapy in depression associated with diabetes.
Collapse
|
25
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
26
|
Gerasimova EL, Gazizullina EG, Igdisanova DI, Sidorova LP, Tseitler TA, Emelianov VV, Chupakhin ON, Ivanova AV. Antioxidant properties of 2,5-substituted 6H-1,3,4-thiadiazines promising for experimental therapy of diabetes mellitus. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
27
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
28
|
Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23179583. [PMID: 36076972 PMCID: PMC9455625 DOI: 10.3390/ijms23179583] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a pleiotropic hormone well known for its incretin effect in the glucose-dependent stimulation of insulin secretion. However, GLP-1 is also produced in the brain and displays a critical role in neuroprotection and inflammation by activating the GLP-1 receptor signaling pathways. Several studies in vivo and in vitro using preclinical models of neurodegenerative diseases show that GLP-1R activation has anti-inflammatory properties. This review explores the molecular mechanistic action of GLP-1 RAS in relation to inflammation in the brain. These findings update our knowledge of the potential benefits of GLP-1RAS actions in reducing the inflammatory response. These molecules emerge as a potential therapeutic tool in treating neurodegenerative diseases and neuroinflammatory pathologies.
Collapse
|
29
|
d-Allulose Inhibits Ghrelin-Responsive, Glucose-Sensitive and Neuropeptide Y Neurons in the Arcuate Nucleus and Central Injection Suppresses Appetite-Associated Food Intake in Mice. Nutrients 2022; 14:nu14153117. [PMID: 35956293 PMCID: PMC9370451 DOI: 10.3390/nu14153117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
d-allulose, a rare sugar, has sweetness with few calories. d-allulose regulates feeding and glycemia, and ameliorates hyperphagia, obesity and diabetes. All these functions involve the central nervous system. However, central mechanisms underlying these effects of d-allulose remain unknown. We recently reported that d-allulose activates the anorexigenic neurons in the hypothalamic arcuate nucleus (ARC), the neurons that respond to glucagon-like peptide-1 and that express proopiomelanocortin. However, its action on the orexigenic neurons remains unknown. This study investigated the effects of d-allulose on the ARC neurons implicated in hunger, by measuring cytosolic Ca2+ concentration ([Ca2+]i) in single neurons. d-allulose depressed the increases in [Ca2+]i induced by ghrelin and by low glucose in ARC neurons and inhibited spontaneous oscillatory [Ca2+]i increases in neuropeptide Y (NPY) neurons. d-allulose inhibited 10 of 35 (28%) ghrelin-responsive, 18 of 60 (30%) glucose-sensitive and 3 of 8 (37.5%) NPY neurons in ARC. Intracerebroventricular injection of d-allulose inhibited food intake at 20:00 and 22:00, the early dark phase when hunger is promoted. These results indicate that d-allulose suppresses hunger-associated feeding and inhibits hunger-promoting neurons in ARC. These central actions of d-allulose represent the potential of d-allulose to inhibit the hyperphagia with excessive appetite, thereby counteracting obesity and diabetes.
Collapse
|
30
|
D-Allulose cooperates with glucagon-like peptide-1 and activates proopiomelanocortin neurons in the arcuate nucleus and central injection inhibits feeding in mice. Biochem Biophys Res Commun 2022; 613:159-165. [PMID: 35561584 DOI: 10.1016/j.bbrc.2022.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
A rare sugar D-Allulose has sweetness without calorie. Previous studies have shown that D-Allulose improves glucose and energy metabolism and ameliorates obesity. However, underlying mechanisms remain elusive. This study explored the effect of central injection of D-Allulose on feeding behavior in mice. We also examined direct effects of D-Allulose on the neurons in the hypothalamic arcuate nucleus (ARC) that regulate feeding, including the anorexigenic glucagon-like peptide-1 (GLP-1)-responsive neurons and proopiomelanocortin (POMC) neurons. Single neurons were isolated from ARC and cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry. Administration of D-Allulose at 5.6, 16.7 and 56 mM concentration-dependently increased [Ca2+]i in ARC neurons. The [Ca2+]i increases took place similarly when the osmolarity of superfusion solution was kept constant. The majority (40%) of the D-Allulose-responsive neurons also responded to GLP-1 with [Ca2+]i increases. D-Allulose increased [Ca2+]i in 33% of POMC neurons in ARC. D-Allulose potentiated the GLP-1 action to increase [Ca2+]i in ARC neurons including POMC neurons. Intracerebroventricular injection of D-Allulose significantly decreased food intake at 1 and 2 h after injection. These results demonstrate that D-Allulose cooperates with glucagon-like peptide-1 and activates the ARC neurons including POMC neurons. Furthermore, central injection of D-Allulose inhibits feeding. These central actions of D-Allulose may underlie the ability of D-Allulose to counteract obesity and diabetes.
Collapse
|
31
|
Smith C, Patterson-Cross R, Woodward O, Lewis J, Chiarugi D, Merkle F, Gribble F, Reimann F, Adriaenssens A. A comparative transcriptomic analysis of glucagon-like peptide-1 receptor- and glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus. Appetite 2022; 174:106022. [PMID: 35430298 PMCID: PMC7614381 DOI: 10.1016/j.appet.2022.106022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The hypothalamus is a key region of the brain implicated in homeostatic regulation, and is an integral centre for the control of feeding behaviour. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones with potent glucoregulatory function through engagement of their respective cognate receptors, GLP-1R and GIPR. Recent evidence indicates that there is a synergistic effect of combining GIP- and GLP-1-based pharmacology on appetite and body weight. The mechanisms underlying the enhanced weight loss exhibited by GIPR/GLP-1R co-agonism are unknown. Gipr and Glp1r are expressed in the hypothalamus in both rodents and humans. To better understand incretin receptor-expressing cell populations, we compared the cell types and expression profiles of Gipr- and Glp1r-expressing hypothalamic cells using single-cell RNA sequencing. METHODS Using Glp1r-Cre or Gipr-Cre transgenic mouse lines, fluorescent reporters were introduced into either Glp1r- or Gipr-expressing cells, respectively, upon crossing with a ROSA26-EYFP reporter strain. From the hypothalami of these mice, fluorescent Glp1rEYFP+ or GiprEYFP+ cells were FACS-purified and sequenced using single-cell RNA sequencing. Transcriptomic analysis provided a survey of both non-neuronal and neuronal cells, and comparisons between Glp1rEYFP+ and GiprEYFP + populations were made. RESULTS A total of 14,091 Glp1rEYFP+ and GiprEYFP+ cells were isolated, sequenced and taken forward for bioinformatic analysis. Both Glp1rEYFP+ and GiprEYFP+ hypothalamic populations were transcriptomically highly heterogeneous, representing vascular cell types, oligodendrocytes, astrocytes, microglia, and neurons. The majority of GiprEYFP+ cells were non-neuronal, whereas the Glp1rEYFP+ population was evenly split between neuronal and non-neuronal cell types. Both Glp1rEYFP+ and GiprEYFP+ oligodendrocytes express markers for mature, myelin-forming oligodendrocytes. While mural cells are represented in both Glp1rEYFP+ and GiprEYFP+ populations, Glp1rEYFP+ mural cells are largely smooth muscle cells, while the majority of GiprEYFP+ mural cells are pericytes. The co-expression of regional markers indicate that clusters of Glp1rEYFP+ and GiprEYFP+ neurons have been isolated from the arcuate, ventromedial, lateral, tuberal, suprachiasmatic, and premammillary nuclei of the hypothalamus. CONCLUSIONS We have provided a detailed comparison of Glp1r and Gipr cells of the hypothalamus with single-cell resolution. This resource will provide mechanistic insight into how engaging Gipr- and Glp1r-expressing cells of the hypothalamus may result in changes in feeding behaviour and energy balance.
Collapse
Affiliation(s)
- Christopher Smith
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Ryan Patterson-Cross
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Orla Woodward
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Jo Lewis
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Davide Chiarugi
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Florian Merkle
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Alice Adriaenssens
- Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
32
|
Trapp S, Stanford SC. New developments in the prospects for GLP-1 therapy. Br J Pharmacol 2022; 179:489-491. [PMID: 35107170 DOI: 10.1111/bph.15788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Stefan Trapp
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
33
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
34
|
Reiner BC, Crist RC, Borner T, Doyle RP, Hayes MR, De Jonghe BC. Single nuclei RNA sequencing of the rat AP and NTS following GDF15 treatment. Mol Metab 2021; 56:101422. [PMID: 34942400 PMCID: PMC8749158 DOI: 10.1016/j.molmet.2021.101422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objective Growth differentiation factor 15 (GDF15) is known to play a role in feeding, nausea, and body weight, with action through the GFRAL-RET receptor complex in the area postrema (AP) and nucleus tractus solitarius (NTS). To further elucidate the underlying cell type-specific molecular mechanisms downstream of GDF15 signaling, we used a single nuclei RNA sequencing (snRNAseq) approach to profile AP and NTS cellular subtype-specific transcriptomes after systemic GDF15 treatment. Methods AP and NTS micropunches were used for snRNAseq from Sprague Dawley rats 6 h following GDF15 or saline injection, and Seurat was used to identify cellular subtypes and cell type-specific alterations in gene expression that were due to the direct and secondary effects of systemic GDF15 treatment. Results Using the transcriptome profile of ∼35,000 individual AP/NTS nuclei, we identified 19 transcriptomically distinct cellular subtypes, including a single population Gfral and Ret positive excitatory neurons, representing the primary site of action for GDF15. A total of ∼600 cell type-specific differential expression events were identified in neurons and glia, including the identification of transcriptome alterations specific to the direct effects of GDF15 in the Gfral-Ret positive excitatory neurons and shared transcriptome alterations across neuronal and glial cell types. Downstream analyses identified shared and cell type-specific alterations in signaling pathways and upstream regulatory mechanisms of the observed transcriptome alterations. Conclusions These data provide a considerable advance in our understanding of AP and NTS cell type-specific molecular mechanisms associated with GDF15 signaling. The identified cellular subtype-specific regulatory mechanism and signaling pathways likely represent important targets for future pharmacotherapies. GDF15 directly alters transcription in Gfral- and Ret-positive excitatory neurons. GDF15 indirectly alters transcription in other neuronal and glial populations. Cell type-specific expression changes identify regulatory and signaling mechanisms.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tito Borner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Robert P Doyle
- Syracuse University, Department of Chemistry, 111 College Place, Syracuse, New York 13244
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bart C De Jonghe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|