1
|
Ma B, Kamle S, Sadanaga T, Lee CM, Lee JH, Yee DC, Zhu Z, Silverman EK, DeMeo DL, Choi AMK, Lee CG, Elias JA. Chitinase 3-like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα- and CD24-Siglec10-Mediated Phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1279-1291. [PMID: 39291933 DOI: 10.4049/jimmunol.2400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Innate immune responses such as phagocytosis are critically linked to the generation of adaptive immune responses against the neoantigens in cancer and the efferocytosis that is essential for homeostasis in diseases characterized by lung injury, inflammation, and remodeling as in chronic obstructive pulmonary disease (COPD). Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it inhibits adaptive immune responses by stimulating immune checkpoint molecules (ICPs) and portends a poor prognosis. CHI3L1 is also induced in COPD where it regulates epithelial cell death. In this study, we demonstrate that pulmonary melanoma metastasis inhibits macrophage phagocytosis by stimulating the CD47-SIRPα and CD24-Siglec10 phagocytosis checkpoint pathways while inhibiting macrophage "eat me" signals from calreticulin and HMGB1. We also demonstrate that these effects on macrophage phagocytosis are associated with CHI3L1 stimulation of the SHP-1 and SHP-2 phosphatases and inhibition of the accumulation and phosphorylation of cytoskeleton-regulating nonmuscle myosin IIa. This inhibition of innate immune responses such as phagocytosis provides a mechanistic explanation for the ability of CHI3L1 to stimulate ICPs and inhibit adaptive immune responses in cancer and diseases such as COPD. The ability of CHI3L1 to simultaneously inhibit innate immune responses, stimulate ICPs, inhibit T cell costimulation, and regulate a number of other oncogenic and inflammation pathways suggests that CHI3L1-targeted therapeutics are promising interventions in cancer, COPD, and other disorders.
Collapse
Affiliation(s)
- Bing Ma
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Takayuki Sadanaga
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Joyce H Lee
- Johns Hopkins School of Medicine, Baltimore, MD
| | - Daniel C Yee
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, NY
| | - Zhou Zhu
- Department of Pediatrics, Brown University, Providence, RI
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA
| | | | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI
- Department of Medicine, Brown University, Providence, RI
| |
Collapse
|
2
|
Foucher A, Nouveau S, Piffaut V, Marque S, Aguilar L, Cavusoglu N. Clinical vs. chronological skin age: exploring determinants and stratum corneum protein markers of differential skin ageing in 351 healthy women. Sci Rep 2024; 14:23643. [PMID: 39384829 PMCID: PMC11464744 DOI: 10.1038/s41598-024-65083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 10/11/2024] Open
Abstract
Apparent skin age can be determined by several clinical measurements and may differ from chronological age, hence defining age acceleration/deceleration (Age A/D). Using data from 360 women with dermatological scoring of 21 clinical signs, we defined 3 well-separated co-occurring classes capturing the dryness, the elasticity and the oily nature of the skin. We related the risk of each clinical signs to the stratum corneum levels of 5 pre-selected proteins, we identified specific chronological age-adjusted signatures of each clinical sign. Using variable selection approaches, we identified 6 (of the 21) clinical signs which were jointly predictive of chronological age and used to define the clinical skin age, and subsequently age A/D. Applying univariate and multivariate approaches we found that stratum corneum levels of insulin degrading enzyme (IDE) was protective against (β = - 1.74, p = 3.3 × 10-6; selection proportion > 90%) accelerated skin ageing. In conclusion, our results support the fact that molecular markers found in the stratum corneum could predict skin ageing acceleration/deceleration.
Collapse
Affiliation(s)
- A Foucher
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| | - S Nouveau
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - V Piffaut
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - S Marque
- Department of Data Analytics, O-SMOSE, Bordeaux, France
| | - L Aguilar
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - N Cavusoglu
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
3
|
Zhu X, Dai X, Chen W, Li Y, Liu Y, Shan C, Wang J, Meng J. Chi3l1 Knockout Mitigates Chronic Itch and Cutaneous Inflammation in Mice. J Invest Dermatol 2024:S0022-202X(24)02164-X. [PMID: 39366519 DOI: 10.1016/j.jid.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Xingyun Zhu
- School of Life Sciences, Henan University, Henan, China
| | - Xiaolong Dai
- School of Life Sciences, Henan University, Henan, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Yanqing Li
- School of Life Sciences, Henan University, Henan, China
| | - Yang Liu
- School of Life Sciences, Henan University, Henan, China
| | - Chunxu Shan
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jiafu Wang
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Jianghui Meng
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland.
| |
Collapse
|
4
|
Zhou L, Zhang G, Zhang K, Rao Z, Tang Z, Wang Y, Zhao J. The role of PAR2 in regulating MIF release in house dust mite-induced atopic dermatitis. Front Immunol 2024; 15:1478292. [PMID: 39416784 PMCID: PMC11479884 DOI: 10.3389/fimmu.2024.1478292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic disease characterized by relapsed eczema and intractable itch, and is often triggered by house dust mites (HDM). PAR2 is a G-protein coupled receptor on keratinocytes and may be activated by HDM to affect AD processes. We first established a HDM-derived AD mouse model in wild-type (WT) and Par2-/- mice. Single cell RNA sequencing of the diseased skins found a stronger cellular communication between the ligand macrophage migration inhibitory factor (MIF) from keratinocytes and its receptors on antigen-presenting cells, suggesting the critical role of MIF in AD. HDM-WT mice showed severer skin lesions and pathological changes with stronger immunofluorescence MIF signals in skin sections than HDM-Par2-/- mice. Primary keratinocytes from WT mice stimulated with HDM or SLIGRL (PAR2 agonist) secreted more MIF in cultured medium and induced stronger immunofluorescence MIF signals than those from Par2-/- mice. The skin section of HDM-WT mice showed higher immunofluorescence signals of P115 (relating to MIF secretion) and KIF13B (possibly relating to intracellular trafficking of MIF) than that of HDM-Par2-/- mice. Acetylation of α-tubulin increased after stimulation by SLIGRL in WT keratinocytes but not in Par2-/- keratinocytes. HDM-WT mice treated with the MIF antagonist ISO-1 displayed improvement of AD-like presentations and lower expressions of IL-4, IL-13, TSLP and Arg1 (a biomarker of M2 macrophage) mRNAs. We conclude that MIF is an important cytokine and is significantly increased in the AD model. PAR2 affects AD changes by regulating the expression, intracellular trafficking, and secretion of MIF in epidermis.
Collapse
Affiliation(s)
- Lingxuan Zhou
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, National Medical Products Administration (NMPA) Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Guohong Zhang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, National Medical Products Administration (NMPA) Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Kai Zhang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, National Medical Products Administration (NMPA) Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ziyan Rao
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yang Wang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, National Medical Products Administration (NMPA) Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Jiahui Zhao
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Disease, National Medical Products Administration (NMPA) Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
- Chinese Institute for Brain Research (CIBR), Beijing, China
| |
Collapse
|
5
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
6
|
Bangert C, Alkon N, Chennareddy S, Arnoldner T, Levine JP, Pilz M, Medjimorec MA, Ruggiero J, Cohenour ER, Jonak C, Damsky W, Griss J, Brunner PM. Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells. Nat Commun 2024; 15:2839. [PMID: 38565563 PMCID: PMC10987549 DOI: 10.1038/s41467-024-46540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dupilumab, an IL4R-blocking antibody, has shown clinical efficacy for atopic dermatitis (AD) treatment. In addition to conjunctivitis/blepharitis, the de novo appearance of head/neck dermatitis is now recognized as a distinct side effect, occurring in up to 10% of patients. Histopathological features distinct from AD suggest a drug effect, but exact underlying mechanisms remain unknown. We profiled punch biopsies from dupilumab-associated head and neck dermatitis (DAHND) by using single-cell RNA sequencing and compared data with untreated AD and healthy control skin. We show that dupilumab treatment was accompanied by normalization of IL-4/IL-13 downstream activity markers such as CCL13, CCL17, CCL18 and CCL26. By contrast, we found strong increases in type 22-associated markers (IL22, AHR) especially in oligoclonally expanded T cells, accompanied by enhanced keratinocyte activation and IL-22 receptor upregulation. Taken together, we demonstrate that dupilumab effectively dampens conventional type 2 inflammation in DAHND lesions, with concomitant hyperactivation of IL22-associated responses.
Collapse
Affiliation(s)
- Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Tamara Arnoldner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jasmine P Levine
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- New York Medical College, Valhalla, NY, USA
| | - Magdalena Pilz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Marco A Medjimorec
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John Ruggiero
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Emry R Cohenour
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
7
|
Yan J, Jiang S, Ma J, Zhou X, Zhao M, Huang J, Zhu H, Huang B, Li E, Chang H. Use of the improved tug-of-war acupuncture for promoting cartilage repair by inducing macrophage polarization in knee osteoarthritis. Heliyon 2024; 10:e25495. [PMID: 38384563 PMCID: PMC10878871 DOI: 10.1016/j.heliyon.2024.e25495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Knee osteoarthritis (KOA) is a type of joint disease causing degenerative changes that are challenging to treat. The improved tug-of-war acupuncture (BHZF) can improve joint pain in KOA. However, the associated mechanism has not been validated. Methods The KOA rabbit model was established. After the surgery, the improved BHZF was provided as an intervention, and the animals were euthanized after 2 weeks. Histopathological changes in the synovium and cartilage were observed on hematoxylin & eosin staining and Safranin O-Fast Green staining. Synovial fluid and serum samples were collected to assess the presence of cytokines using the enzyme-linked immunosorbent assay. The expression of M1 macrophage (CD86) and M2 macrophage (ARG1) markers in the cartilage and synovium was detected via immunohistochemistry and immunofluorescence assays. Results The improved BHZF could reduce KOA-related pain and inhibit joint swelling. Further, it significantly maintained the morphology of articular chondrocytes in KOA and reduced the decomposition of the cartilage matrix. Then, it significantly reduced the expression of CD86-positive cells (P < 0.05), and increased the expression of ARG1-positive cells in the cartilage and synovium (P < 0.05). Moreover, it significantly decreased the expression of inflammatory factors interleukin (IL)-1 beta and tumor necrosis factor-alpha in the serum and synovial fluid (P < 0.05), and significantly increased the expression levels of anti-inflammatory cytokines IL-4 and IL-10 (P < 0.05). Conclusions The improved BHZF can relieve pain and improve cartilage damage by regulating macrophage polarization in KOA.
Collapse
Affiliation(s)
- Jun Yan
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Suying Jiang
- Hospital Infection Control Section, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Junjie Ma
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Xuan Zhou
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Mei Zhao
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Jinliang Huang
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Huimeng Zhu
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Bingyao Huang
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Ermei Li
- Department of Rehabilitation, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, Guangdong, China
| | - Hong Chang
- Department of Orthopedics, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, Guangdong, China
| |
Collapse
|
8
|
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong YJ, Lim YS, Kim TH, Son DJ, Hong JT. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med 2024; 56:1-18. [PMID: 38177294 PMCID: PMC10834487 DOI: 10.1038/s12276-023-01131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., 25, Beobwon-ro 11-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Yoon Ji Yong
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
9
|
Zhu Y, Liu Y, Ma Y, Chen L, Huang H, Huang S, Zhang H, He Y, Tan C, He Y, Qiang L. Macrophage autophagy deficiency-induced CEBPB accumulation alleviates atopic dermatitis via impairing M2 polarization. Cell Rep 2023; 42:113430. [PMID: 37963021 DOI: 10.1016/j.celrep.2023.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/02/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Macroautophagy/autophagy plays a pivotal role in immune regulation. Its significance is evident in modulation of immune cell differentiation and maturation, physiologically and pathologically. Here, we investigate the role of macrophage autophagy on the development of atopic dermatitis (AD). By employing an MC903-induced AD mice model, we observe reduced cutaneous inflammation in macrophage Atg5 cKO mice compared with WT mice. Notably, there is a decreased infiltration of M2 macrophages in lesional skin from Atg5 cKO mice. Furthermore, impaired STAT6 phosphorylation and diminished expression of M2 markers are detected in autophagy-deficient macrophages. Our mechanistic exploration reveals that CEBPB drives the transcription of SOCS1/3 and SQSTM1/p62-mediated autophagy degrades CEBPB normally. Autophagy deficiency leads to CEBPB accumulation, and further promotes the expression of SOCS1/3. This process inhibits JAK1-STAT6 pathway activation and M2 marker expression. Together, our study indicates that autophagy is required for M2 activation and macrophage autophagy may be a promising target for AD intervention.
Collapse
Affiliation(s)
- Yongcheng Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Yuxiang Ma
- Department of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201213, China.
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiling Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
10
|
Zhao H, Huang M, Jiang L. Potential Roles and Future Perspectives of Chitinase 3-like 1 in Macrophage Polarization and the Development of Diseases. Int J Mol Sci 2023; 24:16149. [PMID: 38003338 PMCID: PMC10671302 DOI: 10.3390/ijms242216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.
Collapse
Affiliation(s)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
11
|
Xiao LY, Su YL, Huang SY, Chen YH, Hsueh PR. Chitinase 3-like-1 Expression in the Microenvironment Is Associated with Neutrophil Infiltration in Bladder Cancer. Int J Mol Sci 2023; 24:15990. [PMID: 37958973 PMCID: PMC10648396 DOI: 10.3390/ijms242115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder cancer is a common cancer with well-established therapeutic strategies. However, recurrence occurs in 50% of patients with non-muscle-invasive bladder cancer, and 20% of patients progress to muscle-invasive bladder cancer. The 5-year survival rate for muscle-invasive bladder cancer patients is disappointingly low, ranging from 36% to 48%. A molecular marker of interest is chitinase 3-like-1 (CHI3L1), which is elevated in various cancers, including bladder cancer. In addition to its role in cancer cells, CHI3L1 also has regulatory abilities in immune cells. Neutrophil infiltration has been shown to positively correlate with overall survival, progression-free survival, and relapse-free survival in bladder cancer patients. However, the relationship between CHI3L1 and neutrophils remain poorly understood. Therefore, this study investigated the relationship between CHI3L1 level and protumor neutrophil infiltration in bladder cancer. We analyzed the GSE128959 dataset and the data of a bladder cancer cohort undergoing chemotherapy. We observed higher expression of CHI3L1 in bladder cancer patients with invasive or chemotherapy-resistance. Our results revealed a positive correlation between CHI3L1 expression and protumor neutrophil infiltration. Elevated CHI3L1 expression was associated with genes which were related to the recruitment and infiltration of neutrophils. Consequently, CHI3L1 may serve as a novel evaluation factor for the degree of neutrophil infiltration in advanced bladder cancer in those scheduled for chemotherapy.
Collapse
Affiliation(s)
- Ling-Yi Xiao
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404327, Taiwan;
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
- Genomic & Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shih-Yu Huang
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Hua Chen
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404327, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan
- Ph.D. Program for Aging, School of Medicine, China Medical University, Taichung 404327, Taiwan
| |
Collapse
|
12
|
Ge L, Wang Y, Liu Z, Du H, Zhao D. Chitinase 3-like 1 plays a pivotal role in airway response of RSV infection via regulating DC functional transition. Int Immunopharmacol 2023; 124:110819. [PMID: 37607465 DOI: 10.1016/j.intimp.2023.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Dendritic cells (DCs) contribute to immune imbalance and airway hyperresponsiveness (AHR) induced by respiratory syncytial virus (RSV). The aim of present study was to explore the mechanism of RSV regulating naive T cell differentiation through DCs. METHODS We generated a Lentivirus shRNA expression vector to knock down CHI3L1 in mouse lungs and bone marrow-derived dendritic cells (BMDCs). Then we investigated the effect of CHI3L1 knockdown on MAPK/ERK pathway, PI3K/AKT pathway, mature DCs represented by molecular markers, naive T cell differentiation and related cytokine expression in vitro and in vivo models of RSV. RESULTS RSV elevated CHI3L1 expression in lung DCs and BMDCs. Knockdown of CHI3L1 impeded RSV-induced activation of MAPK/ERK and PI3K/AKT signaling pathways, attenuated CD86 and OX40L expression in mature DCs, reduced the proportion of Th2 and Th17 cells, and increased the proportion of Treg cells. In addition, by blocking CHI3L1, RSV-infected mice shown relief of airway resistance, the downregulation of Th2/Th17 like cytokines IL-4, IL-13 and IL-17 levels, and the upregulation of IL-10. CONCLUSION Our data show that CHI3L1 promotes RSV induced immune imbalance and airway hyperresponsiveness by regulating the functional transformation of DCs.
Collapse
Affiliation(s)
- Lingli Ge
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Yuxin Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhi Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Hui Du
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Children's digital health and data Center of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Jiang W, Zhu F, Xu H, Xu L, Li H, Yang X, Khan Afridi S, Lai S, Qiu X, Liu C, Li H, Long Y, Wang Y, Connolly K, Elias JA, Lee CG, Cui Y, Huang YWA, Qiu W, Tang C. CHI3L1 signaling impairs hippocampal neurogenesis and cognitive function in autoimmune-mediated neuroinflammation. SCIENCE ADVANCES 2023; 9:eadg8148. [PMID: 37756391 PMCID: PMC10530095 DOI: 10.1126/sciadv.adg8148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1) is primarily secreted by activated astrocytes in the brain and is known as a reliable biomarker for inflammatory central nervous system (CNS) conditions such as neurodegeneration and autoimmune disorders like neuromyelitis optica (NMO). NMO is an astrocyte disease caused by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4) and leads to vision loss, motor deficits, and cognitive decline. In this study examining CHI3L1's biological function in neuroinflammation, we found that CHI3L1 expression correlates with cognitive impairment in our NMO patient cohort. Activated astrocytes secrete CHI3L1 in response to AQP4 autoantibodies, and this inhibits the proliferation and neuronal differentiation of neural stem cells. Mouse models showed decreased hippocampal neurogenesis and impaired learning behaviors, which could be rescued by depleting CHI3L1 in astrocytes. The molecular mechanism involves CHI3L1 engaging the CRTH2 receptor and dampening β-catenin signaling for neurogenesis. Blocking this CHI3L1/CRTH2/β-catenin cascade restores neurogenesis and improves cognitive deficits, suggesting the potential for therapeutic development in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Haoyang Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Xin Yang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huilu Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Jack A. Elias
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Chun Geun Lee
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| |
Collapse
|
14
|
Tollenaere MA, Mølck C, Henderson I, Pollack S, Addis P, Petersen HH, Norsgaard H. Tralokinumab Effectively Disrupts the IL-13/IL-13Rα1/IL-4Rα Signaling Complex but Not the IL-13/IL-13Rα2 Complex. JID INNOVATIONS 2023; 3:100214. [PMID: 37554517 PMCID: PMC10405097 DOI: 10.1016/j.xjidi.2023.100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/10/2023] Open
Abstract
Tralokinumab, a fully human mAb specifically targeting the IL-13 cytokine, has demonstrated clinical efficacy and safety in patients with moderate-to-severe atopic dermatitis. Tralokinumab binds IL-13 with high affinity, which prevents the interaction of IL-13 with IL-13Rα1 and subsequent signaling. Similarly, tralokinumab-bound IL-13 cannot bind to IL-13Rα2, a proposed decoy receptor that is reported to bind IL-13 with extraordinarily high affinity. It has however not been fully elucidated to what extent tralokinumab interferes with the endogenous regulation of IL-13 through IL-13Rα2. In this mechanistic study, we used biophysical, biochemical, and cellular assays to investigate the effect of tralokinumab on the interaction between IL-13 and IL-13Rα1 and IL-13Rα2, respectively, as well as the effects on IL-13Rα2-mediated IL-13 internalization. We demonstrate that IL-13Rα2 binds IL-13 with exceptionally high affinity and that tralokinumab is unable to displace IL-13 from IL-13Rα2. In contrast to this, tralokinumab is able to disrupt the IL-13/IL-13Rα1 and IL-13Rα1/IL-13/IL-4Rα complex. Furthermore, we demonstrate that whereas the IL-13/tralokinumab complex is unable to bind IL-13Rα2, any IL-13 that is not bound by tralokinumab (i.e., free IL-13) can be bound by IL-13Rα2 and subsequently internalized, regardless of the presence of tralokinumab. In summary, our study indicates that tralokinumab does not interfere with endogenous IL-13Rα2-mediated regulation of free IL-13.
Collapse
|
15
|
Curtiss ML, Rosenberg AF, Scharer CD, Mousseau B, Benavides NAB, Bradley JE, León B, Steele C, Randall TD, Lund FE. Chitinase-3-like 1 regulates T H2 cells, T FH cells and IgE responses to helminth infection. Front Immunol 2023; 14:1158493. [PMID: 37575256 PMCID: PMC10415220 DOI: 10.3389/fimmu.2023.1158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Data from patient cohorts and mouse models of atopic dermatitis, food allergy and asthma strongly support a role for chitinase-3-like-1 protein (CHI3L1) in allergic disease. Methods To address whether Chi3l1 also contributes to TH2 responses following nematode infection, we infected Chi3l1 -/- mice with Heligmosomoides polygyrus (Hp) and analyzed T cell responses. Results As anticipated, we observed impaired TH2 responses in Hp-infected Chi3l1 -/- mice. However, we also found that T cell intrinsic expression of Chi3l1 was required for ICOS upregulation following activation of naïve CD4 T cells and was necessary for the development of the IL-4+ TFH subset, which supports germinal center B cell reactions and IgE responses. We also observed roles for Chi3l1 in TFH, germinal center B cell, and IgE responses to alum-adjuvanted vaccination. While Chi3l1 was critical for IgE humoral responses it was not required for vaccine or infection-induced IgG1 responses. Discussion These results suggest that Chi3l1 modulates IgE responses, which are known to be highly dependent on IL-4-producing TFH cells.
Collapse
Affiliation(s)
- Miranda L. Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Medicine, Section of Allergy and Immunology, Birmingham VA Medical Center, Birmingham, AL, United States
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Betty Mousseau
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Natalia A. Ballesteros Benavides
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - John E. Bradley
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Beatriz León
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, United States
| | - Troy D. Randall
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Frances E. Lund
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
16
|
Napolitano M, di Vico F, Ruggiero A, Fabbrocini G, Patruno C. The hidden sentinel of the skin: An overview on the role of interleukin-13 in atopic dermatitis. Front Med (Lausanne) 2023; 10:1165098. [PMID: 37144036 PMCID: PMC10151557 DOI: 10.3389/fmed.2023.1165098] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Recent evidence suggests that interleukin (IL)-13 is a crucial cytokine involved in the pathogenesis of atopic dermatitis (AD). It is a central driver of type-2 T-helper inflammation and is overexpressed in lesional skin of AD patients. Upon release in peripheral skin, IL-13 activates its receptors, recruits inflammatory cells, and modifies the skin microbiome. IL-13 also reduces the expression of epidermal barrier proteins and activates sensory nerve mediating the itch transmission signal. Novel therapeutics that target IL-13 seem to be efficacious and safe for the treatment of patients with moderate-to-severe AD. The aim of our manuscript is to review the role that IL-13 plays in AD immunopathogenesis.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Francesca di Vico
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Angelo Ruggiero
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Campania, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
17
|
Lytvyn Y, Gooderham M. Targeting Interleukin 13 for the Treatment of Atopic Dermatitis. Pharmaceutics 2023; 15:568. [PMID: 36839890 PMCID: PMC9966769 DOI: 10.3390/pharmaceutics15020568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin condition that has a significant impact on a patient's quality of life and requires ongoing management. Conventional topical and systemic therapies do not target specific components of AD pathogenesis and, therefore, have limited efficacy and may be associated with long-term toxicity. Thus, AD management is challenging, with a significant proportion of patients not achieving clear skin or a reduction in pruritus. There remains a large unmet need for effective therapeutic strategies with favorable safety profiles that can be used long-term in patients with refractory AD. The emergence of targeted biological and small molecule therapies has effectively broadened available treatment options for moderate-to-severe AD. Most recently, interleukin 13 (IL-13) inhibitors were shown to be efficacious and well-tolerated, with tralokinumab already approved for use in this patient population. It is important for dermatologists to be aware of the evidence behind this emerging class of biologic agents to guide treatment choices and improve outcomes in patients with AD. The main objective of this paper is to review the current literature regarding the efficacy and safety of current and emerging anti-IL-13 monoclonal antibodies, including tralokinumab, lebrikizumab, cendakimab, and eblasakimab, for the treatment of moderate-to-severe AD.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Melinda Gooderham
- SKiN Centre for Dermatology, Peterborough, ON K9J 5K2, Canada
- Probity Medical Research, Waterloo, ON N2J 1C4, Canada
- Department of Family Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
18
|
Cornet M, Nguyen‐Khoa T, Kelly‐Aubert M, Jung V, Chedevergne F, Le Bourgeois M, Aoust L, Roger K, Guerrera CI, Sermet‐Gaudelus I. Proteomic profiling of sweat in patients with cystic fibrosis provides new insights into epidermal homoeostasis. SKIN HEALTH AND DISEASE 2023; 3:e161. [PMID: 36751320 PMCID: PMC9892418 DOI: 10.1002/ski2.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Background A high proportion of patients with Cystic Fibrosis (CF) also present the rare skin disease aquagenic palmoplantar keratoderma. A possible link between this condition and absence of a functional CF Transmembrane conductance Regulator protein in the sweat acinus and collecting duct remains unknown. Methods In-depth characterization of sweat proteome profiles was performed in 25 CF patients compared to 12 healthy controls. A 20 μL sweat sample was collected after pilocarpine iontophoresis and liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomic analysis was performed. Results Sweat proteome profile of CF patients was significantly different from that of healthy subjects with 57 differentially expressed proteins. Cystic Fibrosis sweat proteome was characterized by an increase in 25 proteins including proteases (Kallikrein 7 and 13, Phospholipase B domain containing 1, Cathepsin A L2 and B, Lysosomal Pro-X carboxypeptidase); proinflammatory proteins (Annexin A2, Chitinase-3-like protein 1); cytochrome c and transglutaminases. Thirty-two proteins were downregulated in CF sweat including proteases (Elastase 2), antioxidative protein FAM129 B; membrane-bound transporter SLC6A14 and regulator protein Sodium-hydrogen antiporter 3 regulator 1. Conclusion This study is the first to report in-depth characterization of endogenous peptides in CF sweat and could help understand the complex physiology of the sweat gland. The proteome profile highlights the unbalanced proteolytic and proinflammatory activity of sweat in CF. These results also suggest a defect in pathways involved in skin barrier integrity in CF patients. Sweat proteome profile could prove to be a useful tool in the context of personalized medicine in CF.
Collapse
Affiliation(s)
- Matthieu Cornet
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Center for Computational BiologyMines ParisTechPSL Research UniversityParisFrance
- Institut CurieParisFrance
- INSERM U900ParisFrance
| | - Thao Nguyen‐Khoa
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Laboratory of BiochemistryHôpital Universitaire Necker Enfants Malades AP‐HP CentreParisFrance
| | - Mairead Kelly‐Aubert
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Université Paris CitéParisFrance
| | - Vincent Jung
- Proteomics Platform NeckerUniversité Paris CitéStructure Fédérative de Recherche Necker (SFR Necker, INSERM US24/CNRS UAR3633)ParisFrance
| | - Frédérique Chedevergne
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| | - Muriel Le Bourgeois
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| | - Laura Aoust
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| | - Kévin Roger
- Proteomics Platform NeckerUniversité Paris CitéStructure Fédérative de Recherche Necker (SFR Necker, INSERM US24/CNRS UAR3633)ParisFrance
| | - Chiara Ida Guerrera
- Proteomics Platform NeckerUniversité Paris CitéStructure Fédérative de Recherche Necker (SFR Necker, INSERM US24/CNRS UAR3633)ParisFrance
| | - Isabelle Sermet‐Gaudelus
- Institut Necker Enfants MaladesINSERM U1151ParisFrance
- Université Paris CitéParisFrance
- Centre de Référence Maladies RaresMucoviscidose et Maladies ApparentéesHôpital Necker Enfants Malades AP‐HP Centre Paris CitéParisFrance
- European Respiratory NetworkERN LungFrankfurtGermany
| |
Collapse
|
19
|
Mäki-Opas I, Hämäläinen M, Moilanen E, Scotece M. TRPA1 as a potential factor and drug target in scleroderma: dermal fibrosis and alternative macrophage activation are attenuated in TRPA1-deficient mice in bleomycin-induced experimental model of scleroderma. Arthritis Res Ther 2023; 25:12. [PMID: 36698198 PMCID: PMC9875496 DOI: 10.1186/s13075-023-02994-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis is a rheumatoid disease best known for its fibrotic skin manifestations called scleroderma. Alternatively activated (M2-type) macrophages are normally involved in the resolution of inflammation and wound healing but also in fibrosing diseases such as scleroderma. TRPA1 is a non-selective cation channel, activation of which causes pain and neurogenic inflammation. In the present study, we investigated the role of TRPA1 in bleomycin-induced skin fibrosis mimicking scleroderma. METHODS Wild type and TRPA1-deficient mice were challenged with intradermal bleomycin injections to induce a scleroderma-mimicking disease. Macrophages were investigated in vitro to evaluate the underlying mechanisms. RESULTS Bleomycin induced dermal thickening and collagen accumulation in wild type mice and that was significantly attenuated in TRPA1-deficient animals. Accordingly, the expression of collagens 1A1, 1A2, and 3A1 as well as pro-fibrotic factors TGF-beta, CTGF, fibronectin-1 and YKL-40, and M2 macrophage markers Arg1 and MRC1 were lower in TRPA1-deficient than wild type mice. Furthermore, bleomycin was discovered to significantly enhance M2-marker expression particularly in the presence of IL-4 in wild type macrophages in vitro, but not in macrophages harvested from TRPA1-deficient mice. IL-4-induced PPARγ-expression in macrophages was increased by bleomycin, providing a possible mechanism behind the phenomenon. CONCLUSIONS In conclusion, the results indicate that interfering TRPA1 attenuates fibrotic and inflammatory responses in bleomycin-induced scleroderma. Therefore, TRPA1-blocking treatment could potentially alleviate M2 macrophage driven diseases like systemic sclerosis and scleroderma.
Collapse
Affiliation(s)
- Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014, Tampere, Finland.
| | - Mari Hämäläinen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Eeva Moilanen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Morena Scotece
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland ,grid.428472.f0000 0004 1794 2467Current affiliation: Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
20
|
Connolly K, Lehoux M, O’Rourke R, Assetta B, Erdemir GA, Elias JA, Lee CG, Huang YWA. Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimers Dement 2023; 19:9-24. [PMID: 35234337 PMCID: PMC9437141 DOI: 10.1002/alz.12612] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Mikael Lehoux
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Ryan O’Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Pathobiology, Brown University
| | - Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Guzide Ayse Erdemir
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Jack A Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Molecular Microbiology and Immunology, Brown University
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Neurology, Warren Alpert Medical School of Brown University,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University
| |
Collapse
|
21
|
Chen J, Lin W, Gu H, Ying K, Li T, Shao H. Study on the Relationship Between Bronchoalveolar Lavage Fluid Cell Count, Th1/Th2 Cytokines and Pulmonary Function in Patients with Cough Variant Asthma. J Asthma Allergy 2022; 15:1713-1720. [PMID: 36452937 PMCID: PMC9704013 DOI: 10.2147/jaa.s383128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This study aimed to compare lung function and airway inflammation among cough variant asthma (CVA), chronic cough and classical asthma (CA) and investigate the relationship between these indicators and their possible mechanisms of action in the progression of CVA to CA. METHODS 36 patients with chronic cough, 39 patients with CA, and 57 patients with CVA were included in this study. Pulmonary function tests, bronchial provocation tests and FeNO tests were performed. The patients' bronchoalveolar lavage fluid (BALF) was collected, the cells in BALF were counted, and the levels of Th1 and Th2 cytokines were detected. RESULTS The neutrophils, lymphocytes, and eosinophils in BALF in the CA and CVA groups were significantly higher than those in the chronic cough group. Also, they were negatively correlated with FEV1, FVC, and FEV1/FVC and positively correlated with IgE and FeNO. The expression of Th2-related cytokines was increased in CVA and CA patients, and it was positively correlated with FEV1, FVC and FEV1/FVC and negatively correlated with IgE and FeNO, while the results of Th1-related cytokines were the opposite of those for Th2-related cytokines. CONCLUSION CVA differs from asthma and chronic cough in terms of Th1/Th2 cytokines and lung function and provides a reference for understanding the disease mechanism of early clinical progression of CVA to CA.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Respiration, The First People’s Hospital of Wenling, Wenling, Zhejiang, 317500, People’s Republic of China
| | - Wei Lin
- Department of Respiration, The First People’s Hospital of Wenling, Wenling, Zhejiang, 317500, People’s Republic of China
| | - Haiting Gu
- Department of Respiration, The First People’s Hospital of Wenling, Wenling, Zhejiang, 317500, People’s Republic of China
| | - Kangtai Ying
- Department of Respiration, The First People’s Hospital of Wenling, Wenling, Zhejiang, 317500, People’s Republic of China
| | - Tingjian Li
- Department of Respiration, The First People’s Hospital of Wenling, Wenling, Zhejiang, 317500, People’s Republic of China
| | - Haiyan Shao
- Department of Respiration, The First People’s Hospital of Wenling, Wenling, Zhejiang, 317500, People’s Republic of China
| |
Collapse
|
22
|
hUC-MSCs Attenuate Acute Graft-Versus-Host Disease through Chi3l1 Repression of Th17 Differentiation. Stem Cells Int 2022; 2022:1052166. [PMID: 36277038 PMCID: PMC9582900 DOI: 10.1155/2022/1052166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already demonstrated definitive evidence of their clinical benefits in acute graft-versus-host disease (aGvHD) and other inflammatory diseases. However, the comprehensive mechanism of MSCs' immunomodulation properties has not been elucidated. To reveal their potential immunosuppressive molecules, we used RNA sequencing to analyze gene expression in different tissue-derived MSCs, including human bone marrow, umbilical cord, amniotic membrane, and placenta, and found that chitinase-3-like protein 1 (Chi3l1) was highly expressed in human umbilical cord mesenchymal stem cells (hUC-MSCs). We found that hUC-MSCs treated with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) exhibited increased expression of Chi3l1 and concurrently repressed T-helper 17 cell (Th17) differentiation through inhibition of signal transducer and activator of transcription 3 (STAT3) activation. Furthermore, Chi3l1 knockdown hUC-MSCs exhibited impaired therapeutic efficacy in aGvHD mice with an increased inflammatory response by promoting Th17 cell differentiation, including an increase in IL-17A in the spleen, intestine, and serum. Collectively, these results reveal a new immunosuppressive molecule, Chi3l1, in hUC-MSCs in the treatment of aGvHD that regulates Th17 differentiation and inhibits STAT3 activation. These novel insights into the mechanisms of hUC-MSC immunoregulation may lead to the consistent production of hUC-MSCs with strong immunosuppressive functions and thus improved clinical utility.
Collapse
|
23
|
Tong Z, Chen Z, Li Z, Xie Z, Zhang H. Mechanisms of promoting the differentiation and bone resorption function of osteoclasts by Staphylococcus aureus infection. Int J Med Microbiol 2022; 312:151568. [PMID: 36240531 DOI: 10.1016/j.ijmm.2022.151568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Bone infection is a common and serious complication in the field of orthopedics, which frequently leads to excessive bone destruction and fracture nonunion. Staphylococcus aureus (S. aureus) infection affects bone cell function which, in turn, causes bone destruction. Bone is mainly regulated by osteoblasts and osteoclasts. Osteoclasts are the only cell type with bone resorptive function. Their over-activation is closely associated with excessive bone loss. Understanding how S. aureus changes the functional state of osteoclasts is the key to effective treatment. By reviewing the literature, this paper summarizes several mechanisms of bone destruction caused by S. aureus influencing osteoclasts, thereby stimulating new ideas for the treatment of bone infection.
Collapse
Affiliation(s)
- Zelei Tong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
24
|
Kimura H, Shimizu K, Tanabe N, Makita H, Taniguchi N, Kimura H, Suzuki M, Abe Y, Matsumoto-Sasaki M, Oguma A, Takimoto-Sato M, Takei N, Matsumoto M, Goudarzi H, Sato S, Ono J, Izuhara K, Hirai T, Nishimura M, Konno S. Further evidence for association of YKL-40 with severe asthma airway remodeling. Ann Allergy Asthma Immunol 2022; 128:682-688.e5. [PMID: 35342020 DOI: 10.1016/j.anai.2022.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The chitinase-like protein YKL-40 is associated with airflow limitation on spirometry and airway remodeling in patients with asthma. It remains unclear whether YKL-40 is associated with morphologic changes in the airways and parenchyma or with future progression of airflow limitation in severe asthma. OBJECTIVE To evaluate the association of circulating YKL-40 levels with morphologic changes in the airways and parenchyma and with longitudinal progression of airflow limitation. METHODS The patients were participants in the Hokkaido Severe Asthma Cohort Study (n = 127), including smokers. This study consisted of 2 parts. In analysis 1, we analyzed associations between circulating YKL-40 levels and several asthma-related indices, including computed tomography-derived indices of proximal wall area percentage, the complexity of the airways (airway fractal dimension), and the parenchyma (exponent D) cross-sectionally (n = 97). In analysis 2, we evaluated the impact of circulating YKL-40 levels on forced expiratory volume in 1 second (FEV1) decline longitudinally for a 5-year follow-up (n = 103). RESULTS Circulating YKL-40 levels were significantly associated with proximal wall area percentage and airway fractal dimension (r = 0.25, P = .01; r = -0.22, P = .04, respectively), but not with exponent D. The mean annual change in FEV1 was -33.7 (± 23.3) mL/y, and the circulating YKL-40 level was a significant independent factor associated with annual FEV1 decline (β = -0.24, P = .02), even after controlling for exponent D (β = -0.26, P = .01). CONCLUSION These results provide further evidence for the association of YKL-40 with the pathogenesis of airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan.
| | - Kaoruko Shimizu
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Tanabe
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Hironi Makita
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Natsuko Taniguchi
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Kimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Abe
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | | | - Akira Oguma
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Michiko Takimoto-Sato
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Takei
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Munehiro Matsumoto
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Houman Goudarzi
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Sato
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Junya Ono
- R&D Center, Shino-Test Corporation, Kanagawa, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Toyohiro Hirai
- Graduate School of Medicine, Department of Respiratory Medicine, Kyoto University, Kyoto, Japan
| | - Masaharu Nishimura
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan; Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Faculty of Medicine, Department of Respiratory Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Lee YS, Yu JE, Kim MJ, Ham HJ, Jeon SH, Yun J, Song S, Lee C, Han SB, Son DJ, Hong JT. New therapeutic strategy for atopic dermatitis by targeting CHI3L1/ITGA5 axis. Clin Transl Med 2022; 12:e739. [PMID: 35184414 PMCID: PMC8858621 DOI: 10.1002/ctm2.739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Ji Eun Yu
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Min Ji Kim
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Hyeon Joo Ham
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Seong Hee Jeon
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Suk‐Gil Song
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Chong‐Kil Lee
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center Chungbuk National University Cheongju Republic of Korea
| |
Collapse
|
26
|
Pathogenic TNF-α drives peripheral nerve inflammation in an Aire-deficient model of autoimmunity. Proc Natl Acad Sci U S A 2022; 119:2114406119. [PMID: 35058362 PMCID: PMC8795502 DOI: 10.1073/pnas.2114406119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/19/2023] Open
Abstract
Immune cells infiltrate the peripheral nervous system (PNS) after injury and with autoimmunity, but their net effect is divergent. After injury, immune cells are reparative, while in inflammatory neuropathies (e.g., Guillain Barré Syndrome and chronic inflammatory demyelinating polyneuropathy), immune cells are proinflammatory and promote autoimmune demyelination. An understanding of immune cell phenotypes that distinguish these conditions may, therefore, reveal new therapeutic targets for switching immune cells from an inflammatory role to a reparative state. In an autoimmune regulator (Aire)-deficient mouse model of inflammatory neuropathy, we used single-cell RNA sequencing of sciatic nerves to discover a transcriptionally heterogeneous cellular landscape, including multiple myeloid, innate lymphoid, and lymphoid cell types. Analysis of cell-cell ligand-receptor interactions uncovered a macrophage-mediated tumor necrosis factor-α (TNF-α) signaling axis that is induced by interferon-γ and required for initiation of autoimmune demyelination. Developmental trajectory visualization suggested that TNF-α signaling is associated with metabolic reprogramming of macrophages and polarization of macrophages from a reparative state in injury to a pathogenic, inflammatory state in autoimmunity. Autocrine TNF-α signaling induced macrophage expression of multiple genes (Clec4e, Marcksl1, Cxcl1, and Cxcl10) important in immune cell activation and recruitment. Genetic and antibody-based blockade of TNF-α/TNF-α signaling ameliorated clinical neuropathy, peripheral nerve infiltration, and demyelination, which provides preclinical evidence that the TNF-α axis may be effectively targeted to resolve inflammatory neuropathies.
Collapse
|
27
|
Lee JW, Kim MN, Kim EG, Leem JS, Baek SM, Kim MJ, Kim KW, Sohn MH. Chitinase 3-like 1 is involved in the induction of IL-8 expression by double-stranded RNA in airway epithelial cells. Biochem Biophys Res Commun 2022; 592:106-112. [PMID: 35033868 DOI: 10.1016/j.bbrc.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Viral respiratory infection causes inflammatory lung disease. Chitinase 3-like 1 (CHI3L1) contributes to airway inflammation, but its role in human airway epithelial cells following viral infection is unclear. Thus, we investigated whether CHI3L1 regulates inflammatory responses caused by viral infections in airway epithelial cells. Human bronchial epithelial cells, BEAS-2B, were stimulated with a synthetic analog of viral double-stranded RNA, polyinosinic:polycytidylic acid (poly(I:C)). To confirm the specific role of CHI3L1, CHI3L1 was knocked down in BEAS-2B cells using shRNA lentivirus. The expression of CHI3L1 and proinflammatory cytokines such as IL-8 and phosphorylation of mitogen-activated protein kinase (MAPK) pathways were analyzed. In addition to poly(I:C), BEAS-2B cells were infected with the human respiratory syncytial virus (RSV) A2 strain, and CHI3L1 and IL-8 expression was analyzed. Stimulating the cells with poly(I:C) increased CHI3L1 and IL-8 expression, whereas IL-8 expression was abrogated in CHI3L1 knockdown BEAS-2B cells. Poly(I:C) stimulation of BEAS-2B cells resulted in phosphorylation of MAPK pathways, and inhibition of MAPK pathways significantly abolished IL-8 secretion. Phosphorylation of MAPK pathways was diminished in CHI3L1 knockdown BEAS-2B cells. Infection with RSV increased CHI3L1 and IL-8 expression. IL-8 expression induced by RSV infection was abrogated in CHI3L1 knockdown cells. In conclusion, CHI3L1 may be involved in IL-8 secretion by regulating MAPK pathways during respiratory viral infections in airway epithelial cells.
Collapse
Affiliation(s)
- Jae Woo Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 Project, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 03722, South Korea.
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 Project, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 03722, South Korea.
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 Project, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 03722, South Korea.
| | - Ji Su Leem
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 Project, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 03722, South Korea.
| | - Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 Project, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 03722, South Korea.
| | - Min Jung Kim
- Department of Pediatrics, Yonsei University Yongin Severance Hospital, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea.
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 Project, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 03722, South Korea.
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 Project, Yonsei University College of Medicine, 134 Sinchon-Dong, Seoul, 03722, South Korea.
| |
Collapse
|
28
|
Yang PS, Yu MH, Hou YC, Chang CP, Lin SC, Kuo IY, Su PC, Cheng HC, Su WC, Shan YS, Wang YC. Targeting protumor factor chitinase-3-like-1 secreted by Rab37 vesicles for cancer immunotherapy. Am J Cancer Res 2022; 12:340-361. [PMID: 34987649 PMCID: PMC8690922 DOI: 10.7150/thno.65522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Chitinase 3-like-1 (CHI3L1) is a secretion glycoprotein associated with the immunosuppressive tumor microenvironment (TME). The secretory mode of CHI3L1 makes it a promising target for cancer treatment. We have previously reported that Rab37 small GTPase mediates secretion of IL-6 in macrophages to promote cancer progression, whereas the roles of Rab37 in the intracellular trafficking and exocytosis of CHI3L1 are unclear. Methods: We examined the concentration of CHI3L1 in the culture medium of splenocytes and bone marrow derived macrophages (BMDMs) from wild-type or Rab37 knockout mice, and macrophage or T cell lines expressing wild type, active GTP-bound or inactive GDP-bound Rab37. Vesicle isolation, total internal reflection fluorescence microscopy, and real-time confocal microscopy were conducted. We developed polyclonal neutralizing-CHI3L1 antibodies (nCHI3L1 Abs) to validate the therapeutic efficacy in orthotopic lung, pancreas and colon cancer allograft models. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37 and CHI3L1, and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from cancer patients. Results: We demonstrate a novel secretion mode of CHI3L1 mediated by the small GTPase Rab37 in T cells and macrophages. Rab37 mediated CHI3L1 intracellular vesicle trafficking and exocytosis in a GTP-dependent manner, which is abolished in the splenocytes and BMDMs from Rab37 knockout mice and attenuated in macrophage or T cell lines expressing the inactive Rab37. The secreted CHI3L1 activated AKT, ß-catenin and NF-κB signal pathways in cancer cells and macrophages to foster a protumor TME characterized by activating M2 macrophages and increasing the population of regulatory T cells. Our developed nCHI3L1 Abs showed the dual properties of reducing tumor growth/metastases and eliciting an immunostimulatory TME in syngeneic orthotopic lung, pancreas and colon tumor models. Clinically, high plasma level or intratumoral expression of CHI3L1 correlated with poor survival in 161 lung cancer, 155 pancreatic cancer and 180 colon cancer patients. Conclusions: These results provide the first evidence that Rab37 mediates CHI3L1 secretion in immune cells and highlight nCHI3L1 Abs that can simultaneously target both cancer cells and tumor microenvironment.
Collapse
|
29
|
Wang ZG, Shen GQ, Huang YH. Regulatory effects of miR-138 and RUNX3 on Th1/Th2 balance in peripheral blood of children with cough variant asthma. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1044-1049. [PMID: 34719421 DOI: 10.7499/j.issn.1008-8830.2107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the expression levels of microRNA-138 (miR-138) and Runt-related transcription factor 3 (RUNX3) in peripheral blood of children with cough variant asthma (CVA) and their regulatory effects on Th1/Th2 balance. METHODS Sixty-five children with CVA (CVA group) and 30 healthy children (control group) were enrolled. Peripheral venous blood samples were collected for both groups, and CD4+ T cells were isolated and cultured. Enzyme-linked immunosorbent assay was used to measure the levels of interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-5, and IL-13 that were secreted by CD4+ T cells. Flow cytometry was used to determine the percentages of Th1 and Th2 cells. Quantitative real-time PCR was used to measure the level of RUNX3 mRNA in CD4+ T cells and the level of miR-138 in peripheral blood. Western blot was used to determine the protein expression of RUNX3 in CD4+ T cells. The dual-luciferase reporter assay was used to determine the targeting effects of miR-138 and RUNX3. The RUNX3-mimic plasmid was transfected into CD4+ T cells, and the effects on the levels of IFN-γ, IL-2, IL-4, IL-5, and IL-13 and the percentages of Th1 and Th2 cells were measured. RESULTS Compared with the control group, the CVA group showed significantly decreased levels of IFN-γ and IL-2 from CD4+ T cells, significantly increased levels of IL-4, IL-5, and IL-13 from CD4+ T cells, significantly decreased Th1 cell percentage and Th1/Th2 ratio, and a significantly increased Th2 cell percentage (P<0.05). The CVA group showed significantly lower relative expression levels of RUNX3 mRNA and protein in CD4+ T cells in peripheral blood than the control group (P<0.001). The relative expression level of miR-138 was significantly higher in the CVA group than in the control group (P<0.001). MiR-138 could target the expression of RUNX3. Upregulating the expression of RUNX3 in CD4+ T cells induced significantly increased levels of IFN-γ and IL-2, significantly decreased levels of IL-4, IL-5, and IL-13, significantly increased Th1 cell percentage and Th1/Th2 ratio, and a significantly decreased Th2 cell percentage (P<0.05). CONCLUSIONS MiR-138 regulates Th1/Th2 balance by targeting RUNX3 in children with CVA, providing a new direction for the treatment of CVA.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Neonatal Intensive Care Unit, First People's Hospital of Nanyang City, Nanyang, Henan 473200, China
| | - Gai-Qing Shen
- Neonatal Intensive Care Unit, First People's Hospital of Nanyang City, Nanyang, Henan 473200, China
| | - Yu-Huan Huang
- Neonatal Intensive Care Unit, First People's Hospital of Nanyang City, Nanyang, Henan 473200, China
| |
Collapse
|
30
|
Bouvet GF, Bulka O, Coriati A, Sognigbé L, St-Pierre G, Massé C, Sato S, Berthiaume Y. Peripheral blood mononuclear cell response to YKL-40 and Galectin-3 in cystic fibrosis. Cytokine 2021; 146:155635. [PMID: 34274729 DOI: 10.1016/j.cyto.2021.155635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Elevated circulating levels of YKL-40 correlate with disease severity in Cystic Fibrosis (CF), but the role of YKL-40 in the inflammatory response in CF is still under investigation. Our main goal was to evaluate if YKL-40 can modulate the expression of major cytokines (IL-6, IL-10, IL-13) implicated in the inflammatory response in CF. A secondary goal was to explore the interactions between YKL-40 and other circulating proteins to determine the impacts on cytokine modulation. METHOD Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of 83 adult CF patients in stable clinical condition. PBMCs were treated with human YKL-40 followed by the measure of IL-6, IL-10 and IL-13 gene expression. Protein arrays were used to explore the interactions between YKL-40 and circulating proteins. Interaction with Galectin-3 (GAL3) was identified, and confirmed by binding assay. Cytokine gene expressions were again monitored by RT-qPCR after PBMC treatment with GAL3, with or without YKL-40 co-stimulation. RESULTS Following YKL-40 stimulation, PBMC gene expression of IL-6, IL-10 and IL-13 varies across patients. IL-6 and IL-13 are coexpressed, but this response was different in male and female patients. GAL3 protein was detected in the blood of CF patients, and a molecular interaction with YKL-40 was identified. GAL3 did not interfere with the YKL-40 stimulation of IL-6, IL-10 and IL-13 but may modulate the coexpression. CONCLUSION We observed that YKL-40 stimulation had a variable impact on IL-6, IL-10, and IL-13 gene expression in CF PBMCs and uncovered an interaction between GAL3 and YKL-40 in the serum of CF patients. Our findings suggest that YKL-40 is not only a biomarker of disease severity in CF, but it might play an active role in the inflammatory pathophysiology of the disease.
Collapse
Affiliation(s)
- G F Bouvet
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada.
| | - O Bulka
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - A Coriati
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - L Sognigbé
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - G St-Pierre
- The Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Centre de recherche CHU de Québec, 2705 boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - C Massé
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - S Sato
- The Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Centre de recherche CHU de Québec, 2705 boulevard Laurier, Québec, Québec G1V 4G2, Canada; Faculty of Medicine, Université Laval, Canada
| | - Y Berthiaume
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Université de Montréal, Department of Medicine, 2900, Boul. Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
31
|
Jeon SH, Lee YS, Yeo IJ, Lee HP, Yoon J, Son DJ, Han SB, Hong JT. Inhibition of Chitinase-3-like-1 by K284-6111 Reduces Atopic Skin Inflammation via Repressing Lactoferrin. Immune Netw 2021; 21:e22. [PMID: 34277112 PMCID: PMC8263211 DOI: 10.4110/in.2021.21.e22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chitinase-3-like-1 (CHI3L1) is known to induce inflammation in the progression of allergic diseases. Previous our studies revealed that 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284-6111; K284), the CHI3L1 inhibiting compound, has the anti-inflammatory effect on neuroinflammation. In this study, we investigated that K284 treatment could inhibit the development of atopic dermatitis (AD). To identify the effect of K284, we used phthalic anhydride (5% PA)-induced AD animal model and in vitro reconstructed human skin model. We analyzed the expression of AD-related cytokine mediators and NF-κB signaling by Western blotting, ELISA and quantitative real-time PCR. Histological analysis showed that K284 treatment suppressed PA-induced epidermal thickening and infiltration of mast cells. K284 treatment also reduced PA-induced release of inflammatory cytokines. In addition, K284 treatment inhibited the expression of NF-κB activity in PA-treated skin tissues and TNF-α and IFN-γ-treated HaCaT cells. Protein-association network analysis indicated that CHI3L1 is associated with lactoferrin (LTF). LTF was elevated in PA-treated skin tissues and TNF-α and IFN-γ-induced HaCaT cells. However, this expression was reduced by K284 treatment. Knockdown of LTF decreased the expression of inflammatory cytokines in TNF-α and IFN-γ-induced HaCaT cells. Moreover, anti-LTF antibody treatment alleviated AD development in PA-induced AD model. Our data demonstrate that CHI3L1 targeting K284 reduces AD-like skin inflammation and K284 could be a promising therapeutic agent for AD by inhibition of LTF expression.
Collapse
Affiliation(s)
- Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Jaesuk Yoon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
32
|
Brain CHID1 Expression Correlates with NRGN and CALB1 in Healthy Subjects and AD Patients. Cells 2021; 10:cells10040882. [PMID: 33924468 PMCID: PMC8069241 DOI: 10.3390/cells10040882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease is a progressive, devastating, and irreversible brain disorder that, day by day, destroys memory skills and social behavior. Despite this, the number of known genes suitable for discriminating between AD patients is insufficient. Among the genes potentially involved in the development of AD, there are the chitinase-like proteins (CLPs) CHI3L1, CHI3L2, and CHID1. The genes of the first two have been extensively investigated while, on the contrary, little information is available on CHID1. In this manuscript, we conducted transcriptome meta-analysis on an extensive sample of brains of healthy control subjects (n = 1849) (NDHC) and brains of AD patients (n = 1170) in order to demonstrate CHID1 involvement. Our analysis revealed an inverse correlation between the brain CHID1 expression levels and the age of NDHC subjects. Significant differences were highlighted comparing CHID1 expression of NDHC subjects and AD patients. Exclusive in AD patients, the CHID1 expression levels were correlated positively to calcium-binding adapter molecule 1 (IBA1) levels. Furthermore, both in NDHC and in AD patient’s brains, the CHID1 expression levels were directly correlated with calbindin 1 (CALB1) and neurogranin (NRGN). According to brain regions, correlation differences were shown between the expression levels of CHID1 in prefrontal, frontal, occipital, cerebellum, temporal, and limbic system. Sex-related differences were only highlighted in NDHC. CHID1 represents a new chitinase potentially involved in the principal processes underlying Alzheimer’s disease.
Collapse
|
33
|
Gonçalves F, Freitas E, Torres T. Selective IL-13 inhibitors for the treatment of atopic dermatitis. Drugs Context 2021; 10:dic-2021-1-7. [PMID: 33889195 PMCID: PMC8015935 DOI: 10.7573/dic.2021-1-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases worldwide. AD pathogenesis is multifactorial, involving environmental and genetic factors. IL-13 stands out as one of the main cytokines in the pathophysiology of AD. Currently, dupilumab, which targets both IL-4 and IL-13 signalling, is the only biologic agent approved for the treatment of moderate-to-severe AD. New targeted biologic therapies are being developed, such as lebrikizumab and tralokinumab, two selective IL-13 inhibitors. This article reviews the role of IL-13 in AD and the most recent data on lebrikizumab and tralokinumab. Methods A narrative review of the literature was written after retrieving relevant articles in the PubMed database (up until December 2020) using the following keywords present in the title, abstract or body: atopic dermatitis; interleukin 13; IL-13; tralokinumab; lebrikizumab, biologic therapy. Discussion A phase IIb trial showed that all three dosing regimens evaluated (lebrikizumab 125 mg every 4 weeks (Q4W), 250 mg Q4W or 250 mg every 2 weeks) achieved rapid and dose-dependent efficacy concerning the signs and symptoms of AD, with a statistically significant improvement, at week 16. Tralokinumab was studied in three phase III clinical trials and reached its primary endpoints at week 16 (ECZTRA 1 and 2 in monotherapy and ECZTRA 3 with concomitant topical corticosteroids), with response maintained over time. Both lebrikizumab and tralokinumab exhibited good safety profiles in AD trials, with adverse effects usually being comparable between the control and treatment groups. Conclusion The evidence supports the hypothesis that selective antagonism of IL-13 is sufficient to control AD, providing an improvement in the patient’s quality of life. Therefore, the development of lebrikizumab and tralokinumab represents a new and exciting phase in the management of AD.
Collapse
Affiliation(s)
- Francisca Gonçalves
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Egídio Freitas
- Department of Dermatology, Centro Hospitalar do Porto, Porto, Portugal
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,Department of Dermatology, Centro Hospitalar do Porto, Porto, Portugal.,Dermatology Research Unit, Centro Hospitalar do Porto, Porto, Portugal
| |
Collapse
|
34
|
Ubiquitous Overexpression of Chromatin Remodeling Factor SRG3 Exacerbates Atopic Dermatitis in NC/Nga Mice by Enhancing Th2 Immune Responses. Int J Mol Sci 2021; 22:ijms22041553. [PMID: 33557054 PMCID: PMC7913833 DOI: 10.3390/ijms22041553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
The SWItch (SWI)3-related gene (SRG3) product, a SWI/Sucrose Non-Fermenting (SNF) chromatin remodeling subunit, plays a critical role in regulating immune responses. We have previously shown that ubiquitous SRG3 overexpression attenuates the progression of Th1/Th17-mediated experimental autoimmune encephalomyelitis. However, it is unclear whether SRG3 overexpression can affect the pathogenesis of inflammatory skin diseases such as atopic dermatitis (AD), a Th2-type immune disorder. Thus, to elucidate the effects of SRG3 overexpression in AD development, we bred NC/Nga (NC) mice with transgenic mice where SRG3 expression is driven by the β-actin promoter (SRG3β-actin mice). We found that SRG3β-actin NC mice exhibit increased AD development (e.g., a higher clinical score, immunoglobulin E (IgE) hyperproduction, and an increased number of infiltrated mast cells and basophils in skin lesions) compared with wild-type NC mice. Moreover, the severity of AD pathogenesis in SRG3β-actin NC mice correlated with expansion of interleukin 4 (IL4)-producing basophils and mast cells, and M2 macrophages. Furthermore, this accelerated AD development is strongly associated with Treg cell suppression. Collectively, our results have identified that modulation of SRG3 function can be applied as one of the options to control AD pathogenesis.
Collapse
|
35
|
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disease. IL-13 contributes significantly to the pathogenesis of AD in several ways, and beneficial results have been demonstrated with anti-IL-13 therapies. Currently, the only monoclonal antibody (mAb) approved for AD treatment is dupilumab, an antagonist of the IL-4 receptor alpha (IL-4Rα) subunit common to IL-4 and IL-13 receptors, but clinical trials evaluating anti-IL-13 mAbs are providing promising results. The topics of this review will be mAbs targeting IL-13 for the treatment of AD such as dupilumab, tralokinumab and lebrikizumab, small molecules targeting the IL-13 pathway, and a brief explanation of therapies targeting IL-13 for the treatment of other skin diseases.
Collapse
Affiliation(s)
- Carla Tubau
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona Mas Casanovas 90, Barcelona 08041, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona Mas Casanovas 90, Barcelona 08041, Spain
| |
Collapse
|
36
|
Tubau C, Puig L. Therapeutic targeting of the IL-13 pathway in skin inflammation. Expert Rev Clin Immunol 2020; 17:15-25. [PMID: 33275064 DOI: 10.1080/1744666x.2020.1858802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Atopic dermatitis (AD) is a heterogeneous, chronic, inflammatory skin disease with a non-negligible prevalence at present. Its pathogenesis is complex, but mainly characterized by constitutive T helper type 2 (Th2)-cell activation. Systemic therapies for moderate-to-severe AD can be associated with adverse events that encumber their satisfactory long-term use. Several drugs targeting relevant molecules in the immunopathogenesis of AD have been approved or are under clinical development for the treatment of moderate to severe AD. To elaborate this review, literature searches were performed in PubMed on 29 August 2020.Areas covered: This narrative literature review is focused on the pivotal role of IL-13 in the immunopathogenesis of AD and other skin diseases.Expert opinion: Dupilumab has demonstrated the central role of IL-13 and IL-4 in the pathogenesis of AD, asthma, and other diseases in the atopic spectrum. In addition, phase III randomized clinical trials (RCTs) evaluating specific blockade of IL-13 with tralokinumab for treatment of AD also demonstrated favorable results, and phase III RCT evaluating lebrikizumab are ongoing. The role of IL-13 in other skin diseases should be further investigated.
Collapse
Affiliation(s)
- Carla Tubau
- Dermatology Department, Hospital De La Santa Creu I Sant Pau, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Lluís Puig
- Dermatology Department, Hospital De La Santa Creu I Sant Pau, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Williams MM, Spoelstra NS, Arnesen S, O'Neill KI, Christenson JL, Reese J, Torkko KC, Goodspeed A, Rosas E, Hanamura T, Sams SB, Li Z, Oesterreich S, Riggins RB, Jacobsen BM, Elias A, Gertz J, Richer JK. Steroid Hormone Receptor and Infiltrating Immune Cell Status Reveals Therapeutic Vulnerabilities of ESR1-Mutant Breast Cancer. Cancer Res 2020; 81:732-746. [PMID: 33184106 DOI: 10.1158/0008-5472.can-20-1200] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Mutations in ESR1 that confer constitutive estrogen receptor alpha (ER) activity in the absence of ligand are acquired by ≥40% of metastatic breast cancers (MBC) resistant to adjuvant aromatase inhibitor (AI) therapy. To identify targetable vulnerabilities in MBC, we examined steroid hormone receptors and tumor-infiltrating immune cells in metastatic lesions with or without ER mutations. ER and progesterone receptor (PR) were significantly lower in metastases with wild-type (WT) ER compared with those with mutant ER, suggesting that metastases that evade AI therapy by mechanism(s) other than acquiring ER mutations lose dependency on ER and PR. Metastases with mutant ER had significantly higher T regulatory and Th cells, total macrophages, and programmed death ligand-1 (PD-L1)-positive immune-suppressive macrophages than those with WT ER. Breast cancer cells with CRISPR-Cas9-edited ER (D538G, Y537S, or WT) and patient-derived xenografts harboring mutant or WT ER revealed genes and proteins elevated in mutant ER cells, including androgen receptor (AR), chitinase-3-like protein 1 (CHI3L1), and IFN-stimulated genes (ISG). Targeting these proteins blunted the selective advantage of ER-mutant tumor cells to survive estrogen deprivation, anchorage independence, and invasion. Thus, patients with mutant ER MBC might respond to standard-of-care fulvestrant or other selective ER degraders when combined with AR or CHI3L1 inhibition, perhaps with the addition of immunotherapy. SIGNIFICANCE: Targetable alterations in MBC, including AR, CHI3L1, and ISG, arise following estrogen-deprivation, and ER-mutant metastases may respond to immunotherapies due to elevated PD-L1+ macrophages.See related article by Arnesen et al., p. 539.
Collapse
Affiliation(s)
- Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kathleen I O'Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jordan Reese
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen C Torkko
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Goodspeed
- Department of Pharmacology and University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emmanuel Rosas
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Toru Hanamura
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zheqi Li
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca B Riggins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
38
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
39
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Nunnari G, Di Rosa M. Postsynaptic damage and microglial activation in AD patients could be linked CXCR4/CXCL12 expression levels. Brain Res 2020; 1749:147127. [PMID: 32949560 DOI: 10.1016/j.brainres.2020.147127] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia with still unknown pathogenesis. Several cytokines and chemokines are involved in the pathogenesis of AD. Among the chemokines, the CXCR4/CXCL12 complex has been shown to play an important role in the pathogenetic development of AD. We investigated the expression levels of CXCR4 / CXCL12 in fifteen brain regions of healthy non-demented subjects (NDHC) (2139 sample) and AD patients (1170 sample) stratified according to sex and age. Furthermore, we correlated their expressions with the Neurogranin (NRGN) and CHI3L1 levels, two inflamm-aging markers. We highlighted that CXCR4 gene expression levels were age-correlated in the brain of NDHC subjects and that AD nullified this correlation. A similar trend, but diametrically opposite was observed for CXCL12. Its expression was decreased during the aging in both sexes, and in the brains of AD patients, it underwent an inversion of the trend, only and exclusively in females. Brains of AD patients expressed high CXCR4 and CHI3L1, and low CXCL12 and Neurogranin levels compared to NDHC subjects. Both CXCR4 and CXCL12 correlated significantly with CHI3L1 and Neurogranin expression levels, regardless of disease. Furthermore, we showed a selective modulation of CXCL12 and CXCR4 only in specific brain regions. Taken together our results demonstrate that CXCL12 and CXCR4 are linked to Neurogranin and CHI3L1 expression levels and the relationship between postsynaptic damage and microglial activation in AD could be shown using all these genes. Further confirmations are needed to demonstrate the close link between these genes.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy.
| |
Collapse
|
40
|
CHI3L2 Expression Levels Are Correlated with AIF1, PECAM1, and CALB1 in the Brains of Alzheimer's Disease Patients. J Mol Neurosci 2020; 70:1598-1610. [PMID: 32705525 DOI: 10.1007/s12031-020-01667-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) represents one of the main forms of dementia that afflicts our society. The expression of several genes has been associated with disease development. Despite this, the number of genes known to be capable of discriminating between AD patients according to sex remains deficient. In our study, we performed a transcriptomes meta-analysis on a large court of brains of healthy control subjects (n = 2139) (NDHC) and brains of AD patients (n = 1170). Our aim was to verify the brain expression levels of CHI3L2 and its correlation with genes associated with microglia-mediated neuroinflammation (IBA1), alteration of the blood-brain barrier (PECAM1), and neuronal damage (CALB1). We showed that the CHI3L2, IBA1, PECAM1, and CALB1 expression levels were modulated in the brains of patients with AD compared to NDHC subjects. Furthermore, both in NDHC and in AD patient's brains, the CHI3L2 expression levels were directly correlated with IBA1 and PECAM1 and inversely with CALB1. Additionally, the expression levels of CHI3L2, PECAM1, and CALB1 but not of IBA1 were sex-depended. By stratifying the samples according to age and sex, correlation differences emerged between the expression levels of CHI3L2, IBA1, PECAM1, and CALB1 and the age of NDHC subjects and AD patients. CHI3L2 represents a promising gene potentially involved in the key processes underlying Alzheimer's disease. Its expression in the brains of sex-conditioned AD patients opens up new possible sex therapeutic strategies aimed at controlling imbalance in disease progression.
Collapse
|
41
|
Furue K, Ulzii D, Tanaka Y, Ito T, Tsuji G, Kido‐Nakahara M, Nakahara T, Furue M. Pathogenic implication of epidermal scratch injury in psoriasis and atopic dermatitis. J Dermatol 2020; 47:979-988. [DOI: 10.1111/1346-8138.15507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuhisa Furue
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Dugarmaa Ulzii
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yuka Tanaka
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takamichi Ito
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Gaku Tsuji
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| | - Makiko Kido‐Nakahara
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takeshi Nakahara
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Division of Skin Surface Sensing Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Masutaka Furue
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
- Division of Skin Surface Sensing Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
42
|
Witkowski JM, Bryl E, Fulop T. Should we Try to Alleviate Immunosenescence and Inflammaging - Why, How and to What Extent? Curr Pharm Des 2020; 25:4154-4162. [PMID: 31713479 DOI: 10.2174/1381612825666191111153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
43
|
Furue M, Ulzii D, Nakahara T, Tsuji G, Furue K, Hashimoto-Hachiya A, Kido-Nakahara M. Implications of IL-13Rα2 in atopic skin inflammation. Allergol Int 2020; 69:412-416. [PMID: 32037147 DOI: 10.1016/j.alit.2020.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is a common eczematous skin disorder characterized by skin inflammation, barrier disruption, chronic pruritus and marked scratching. Th2 cytokines, especially IL-13, play a pathogenic role in AD. IL-13 signals via a heterodimeric receptor composed of IL-4Rα and IL-13 Rα1. A second receptor, IL-13 Rα2, binds to IL-13 with high affinity, but it works as a decoy receptor. IL-13 Rα2 is overexpressed in the lesional skin of AD. Notably, mechanical scratching, as well as IL-13 itself, also upregulates IL-13 Rα2 expression. The scratch-induced IL-13 Rα2 upregulation may attenuate the IL-13-mediated epidermal barrier dysfunction and dermal fibrosis. Recent studies stress an importance of another IL-13 Rα2 ligand, chitinase 3-like 1 or YKL-40 in Th2 differentiation. However, the implications of increased IL-13 Rα2 levels remain elusive in AD. In this review, we summarize the recent topics on IL-13 Rα2 in atopic skin inflammation.
Collapse
|
44
|
The expression levels of CHI3L1 and IL15Rα correlate with TGM2 in duodenum biopsies of patients with celiac disease. Inflamm Res 2020; 69:925-935. [PMID: 32500186 DOI: 10.1007/s00011-020-01371-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN Celiac disease (CD) is an intestinal inflammatory disorder of the small intestine. Gliadins are a component of gluten and there are three main types (α, γ, and ω). Recent studies indicate that gliadin peptides are able to activate an innate immune response. IL15 is a major mediator of the innate immune response and is involved in the early alteration of CD mucosa. The chitinase molecules are highly expressed by the innate immune cells during the inflammatory processes. MATERIAL OR SUBJECTS We analyzed several microarray datasets of PBMCs and duodenum biopsies of CD patients and healthy control subjects (HCs). We verified the modulation CHI3L1 in CD patients and correlated the expression levels to the IL15, IL15Rα, TGM2, IFNγ, and IFNGR1/2. Duodenal biopsy samples belonged to nine active and nine treated children patients (long-term effects of gliadin), and 17 adult CD patients and 10 adults HCs. We also selected 169 samples of PBMCs from 127 CD patients on adherence to a gluten-free diet (GFD) for at least 2 years and 44 HCs. RESULTS Our analysis showed that CHI3L1 and IL15Rα were significantly upregulated in adult and children's celiac duodenum biopsies. In addition, the two genes were correlated significantly both in children than in adults CD duodenum biopsies. No significant modulation was observed in PBMCs of adult CD patients compared to the HCs. The correlation analysis of the expression levels of CHI3L1 and IL15Rα compared to TGM showed significant values both in adults and in children duodenal biopsies. Furthermore, the IFNγ expression levels were positively correlated with CHI3L1 and IL15Rα. Receiver operating characteristic (ROC) analysis confirmed the diagnostic ability of CHI3L1 and IL15Rα to discriminate CD from HCs. CONCLUSION Our data suggest a role for CHI3L1 underlying the pathophysiology of CD and represent a starting point aiming to inspire new investigation that proves the possible use of CHI3L1 as a diagnostic factor and therapeutic target.
Collapse
|
45
|
Bertino L, Guarneri F, Cannavò SP, Casciaro M, Pioggia G, Gangemi S. Oxidative Stress and Atopic Dermatitis. Antioxidants (Basel) 2020; 9:E196. [PMID: 32111015 PMCID: PMC7139929 DOI: 10.3390/antiox9030196] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis is a common chronic/chronically relapsing inflammatory skin disease, with increasing worldwide prevalence. Etiopathogenesis is complex and multifactorial, with a mix of genetic, immunological and environmental aspects. Like in other chronic inflammatory diseases, oxidative stress plays an important pathogenetic role. We reviewed in vivo research studies on humans about oxidative stress and atopic dermatitis. Although sometimes contrasting, overall, they suggest that oxidative stress may have a significant role in atopic dermatitis, but our understanding is still incomplete, at least concerning in vivo data, because of limitations of available literature. Research consists of 33 papers published in 28 years, was not always performed on large study populations, represents a limited number of countries and ethnicities-not always in proportion to their size-and is scattered over multiple papers that, in the majority of cases, cannot be pooled and/or compared because many biomarkers were studied, in different tissues and with different methods. Further, larger studies appear warranted and necessary to shed more light on this aspect of atopic dermatitis, which is important not only to improve our understanding of this disease, but also for potential clinical and therapeutic implications.
Collapse
Affiliation(s)
- Lucrezia Bertino
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.B.); (S.P.C.)
| | - Fabrizio Guarneri
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.B.); (S.P.C.)
| | - Serafinella Patrizia Cannavò
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (L.B.); (S.P.C.)
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
46
|
Kim EG, Kim MN, Hong JY, Lee JW, Kim SY, Kim KW, Lee CG, Elias JA, Song TW, Sohn MH. Chitinase 3-Like 1 Contributes to Food Allergy via M2 Macrophage Polarization. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:1012-1028. [PMID: 32935492 PMCID: PMC7492506 DOI: 10.4168/aair.2020.12.6.1012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Purpose Food allergy is a hypersensitive immune response to specific food proteins. Chitinase 3-like 1 (CHI3L1, also known as YKL-40 in humans or BRP-39 in mice) is associated with various chronic diseases, such as cancer, rheumatoid arthritis, and allergic disease. CHI3L1 is involved in allergen sensitization and type 2 helper T (Th2) inflammation, but the role of CHI3L1 in food allergy remains unclear. In this study, we sought to investigate the role of CHI3L1 in the development of food allergy. Methods We measured serum levels of CHI3L1 in food allergic patients. Food allergy was induced in wild-type (WT) and CHI3L1 null mutant (CHI3L1−/−) BALB/c mice with ovalbumin (OVA). We investigated Th2 immune responses, M2 macrophage polarization, and mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K) signaling pathways, and also performed transcriptome analysis. Results Serum levels of CHI3L1 were significantly higher in children with food allergy compared with those in healthy controls. Furthermore, CHI3L1 expression levels were elevated in WT mice after OVA treatment. Food allergy symptoms, immunoglobulin E levels, Th2 cytokine production, and histological injury were attenuated in food allergy-induced CHI3L1−/− mice compared with those in food allergy-induced WT mice. CHI3L1 expression was increased in OVA-treated WT intestinal macrophages and caused M2 macrophage polarization. Furthermore, CHI3L1 was involved in the extracellular signal-regulated kinases (ERK) and AKT signaling pathways and was associated with immune response and lipid metabolism as determined through transcriptome analysis. Conclusions CHI3L1 plays a pivotal role in Th2 inflammation and M2 macrophage polarization through MAPK/ERK and PI3K/AKT phosphorylation in food allergy.
Collapse
Affiliation(s)
- Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Woo Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.,Department of Internal Medicine, Hanyang University, Seoul, Korea
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Tae Won Song
- Department of Pediatrics, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea.
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|