1
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
3
|
Zhang L, Wang W, Chen T, Cui J, Li X, Liu A, Liu R, Fang L, Jiang J, Yang L, Wu D, Ying S. SAMHD1 dysfunction induces IL-34 expression via NF-κB p65 in neuronal SH-SY5Y cells. Mol Immunol 2024; 168:1-9. [PMID: 38367301 DOI: 10.1016/j.molimm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Dysfunctional mutations in SAMHD1 cause Aicardi-Goutières Syndrome, an autoinflammatory encephalopathy with elevated interferon-α levels in the cerebrospinal fluid. Whether loss of function mutations in SAMHD1 trigger the expression of other cytokines apart from type I interferons in Aicardi-Goutières Syndrome is largely unclear. This study aimed to explore whether SAMHD1 dysfunction regulated the expression of IL-34, a key cytokine controlling the development and maintenance of microglia, in SH-SY5Y neural cells. We found that downregulation of SAMHD1 in SH-SY5Y cells resulted in the upregulation of IL-34 expression. The protein and mRNA levels of NF-κB p65, the transactivating subunit of a transcription factor NF-κB, were also upregulated in SAMHD1-knockdown SH-SY5Y cells. It was further found SAMHD1 knockdown in SH-SY5Y cells induced an upregulation of IL-34 expression through the canonical NF-κB-dependent pathway in which NF-κB p65, IKKα/β and the NF-κB inhibitor IκBα were phosphorylated. Moreover, knockdown of SAMHD1 in SH-SY5Y cells led to the translocation of NF-κB p65 into the nucleus and promoted NF-κB transcriptional activity. In conclusion, we found SAMHD1 dysfunction induced IL-34 expression via NF-κB p65 in neuronal SH-SY5Y cells. This finding could lay the foundation for exploring the role of IL-34-targeting microglia in the pathogenesis of Aicardi-Goutières Syndrome.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Wenjing Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ting Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jiuhao Cui
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Xin Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Rumeng Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Liwei Fang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Junhong Jiang
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Li Yang
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - De Wu
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
4
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
5
|
Natoli V, Charras A, Hahn G, Hedrich CM. Neuropsychiatric involvement in juvenile-onset systemic lupus erythematosus (jSLE). Mol Cell Pediatr 2023; 10:5. [PMID: 37556020 PMCID: PMC10412509 DOI: 10.1186/s40348-023-00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a rare autoimmune/inflammatory disease with significant morbidity and mortality. Approximately 15-20% of SLE patients develop the disease during childhood or adolescence (juvenile-onset SLE/jSLE). Patients with jSLE exhibit more variable and severe disease when compared to patients with disease-onset during adulthood. Neuropsychiatric (NP) involvement is a clinically heterogenous and potentially severe complication. Published reports on the incidence and prevalence of NP-jSLE are scarce, and the exact pathophysiology is poorly understood.This manuscript provides a review of the existing literature, suggesting NP involvement in 13.5-51% of jSLE patients. Among patients with NP-jSLE affecting the CNS, we propose two main subgroups: (i) a chronic progressive, predominantly type 1 interferon-driven form that poorly responds to currently used treatments, and (ii) an acutely aggressive form that usually presents early during the disease that may be primarily mediated by auto-reactive effector lymphocytes. While this hypothesis requires to be tested in large collaborative international cohort studies, it may offer future patient stratification and individualised care.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Institute in the Park, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, Genoa, Italy
| | - Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Gabriele Hahn
- Department of Radiology, Universitätsklinikum Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Rheumatology, Institute in the Park, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
6
|
Garau J, Charras A, Varesio C, Orcesi S, Dragoni F, Galli J, Fazzi E, Gagliardi S, Pansarasa O, Cereda C, Hedrich CM. Altered DNA methylation and gene expression predict disease severity in patients with Aicardi-Goutières syndrome. Clin Immunol 2023; 249:109299. [PMID: 36963449 DOI: 10.1016/j.clim.2023.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.
Collapse
Affiliation(s)
- Jessica Garau
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Costanza Varesio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|
7
|
Parackova Z, Zentsova I, Vrabcova P, Sediva A, Bloomfield M. Aberrant tolerogenic functions and proinflammatory skew of dendritic cells in STAT1 gain-of-function patients may contribute to autoimmunity and fungal susceptibility. Clin Immunol 2023; 246:109174. [PMID: 36372319 DOI: 10.1016/j.clim.2022.109174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
STAT1 gain-of-function (GOF) mutations underlie an inborn error of immunity hallmarked by chronic mucocutaneous candidiasis (CMC). Beyond the fungal susceptibility, attributed to Th17 failure, over half of the reported patients suffer from autoimmune manifestations, mechanism of which has not been explained yet. We hypothesized that the STAT1 mutations would affect dendritic cells' (DCs) properties and alter their inflammatory and tolerogenic functions. To test the hypothesis, we generated monocyte-derived DCs (moDCs) and tolerogenic DCs (tDCs). Functional and signaling studies, co-culture experiments and RNA sequencing demonstrated that STAT1 GOF DCs were profoundly altered in their phenotype and functions, characterized by loss of tolerogenic functions, proinflammatory skew and decreased capacity to induce Th17. Cytokine signaling, autophagy and metabolic processes were identified as the most prominently altered cellular processes. The results suggest that DCs are directly involved in STAT1 GOF-associated immune pathology, possibly contributing to both autoimmune manifestations and the failure of antifungal defense.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic.
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| |
Collapse
|
8
|
Bloomfield M, Zentsova I, Milota T, Sediva A, Parackova Z. Immunoprofiling of monocytes in STAT1 gain-of-function chronic mucocutaneous candidiasis. Front Immunol 2022; 13:983977. [PMID: 36172362 PMCID: PMC9510987 DOI: 10.3389/fimmu.2022.983977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Patients with STAT1 gain-of-function (GOF) mutations suffer from an inborn error of immunity hallmarked by chronic mucocutaneous candidiasis (CMC). The pathogenesis behind this complex and heterogeneous disease is still incompletely understood. Beyond the well-recognized Th17 failure, linked to the STAT1/STAT3 dysbalance-driven abrogation of antifungal defense, only little is known about the consequences of augmented STAT1 signaling in other cells, including, interestingly, the innate immune cells. STAT1-mediated signaling was previously shown to be increased in STAT1 GOF CD14+ monocytes. Therefore, we hypothesized that monocytes might represent important co-orchestrators of antifungal defense failure, as well as various immunodysregulatory phenomena seen in patients with STAT1 GOF CMC, including autoimmunity. In this article, we demonstrate that human STAT1 GOF monocytes are characterized by proinflammatory phenotypes and a strong inflammatory skew of their secretory cytokine profile. Moreover, they exhibit diminished CD16 expression, and reduction of classical (CD14++C16-) and expansion of intermediate (CD14++16+) subpopulations. Amongst the functional aberrations, a selectively enhanced responsiveness to TLR7/8 stimulation, but not to other TLR ligands, was noted, which might represent a contributing mechanism in the pathogenesis of STAT1 GOF-associated autoimmunity. Importantly, some of these features extend to STAT1 GOF monocyte-derived dendritic cells and to STAT1 GOF peripheral myeloid dendritic cells, suggesting that the alterations observed in monocytes are, in fact, intrinsic due to STAT1 mutation, and not mere bystanders of chronic inflammatory environment. Lastly, we observe that the proinflammatory bias of STAT1 GOF monocytes may be ameliorated with JAK inhibition. Taken together, we show that monocytes likely play an active role in both the microbial susceptibility and autoimmunity in STAT1 GOF CMC.
Collapse
Affiliation(s)
- Marketa Bloomfield
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
- Department of Paediatrics, Thomayer University Hospital, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Irena Zentsova
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Tomas Milota
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Zuzana Parackova
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
- *Correspondence: Zuzana Parackova,
| |
Collapse
|
9
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Akar-Ghibril N. Defects of the Innate Immune System and Related Immune Deficiencies. Clin Rev Allergy Immunol 2022; 63:36-54. [PMID: 34417936 DOI: 10.1007/s12016-021-08885-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 01/12/2023]
Abstract
The innate immune system is the host's first line of defense against pathogens. Toll-like receptors (TLRs) are pattern recognition receptors that mediate recognition of pathogen-associated molecular patterns. TLRs also activate signaling transduction pathways involved in host defense, inflammation, development, and the production of inflammatory cytokines. Innate immunodeficiencies associated with defective TLR signaling include mutations in NEMO, IKBA, MyD88, and IRAK4. Other innate immune defects have been associated with susceptibility to herpes simplex encephalitis, viral infections, and mycobacterial disease, as well as chronic mucocutaneous candidiasis and epidermodysplasia verruciformis. Phagocytes and natural killer cells are essential members of the innate immune system and defects in number and/or function of these cells can lead to recurrent infections. Complement is another important part of the innate immune system. Complement deficiencies can lead to increased susceptibility to infections, autoimmunity, or impaired immune complex clearance. The innate immune system must work to quickly recognize and eliminate pathogens as well as coordinate an immune response and engage the adaptive immune system. Defects of the innate immune system can lead to failure to quickly identify pathogens and activate the immune response, resulting in susceptibility to severe or recurrent infections.
Collapse
Affiliation(s)
- Nicole Akar-Ghibril
- Division of Pediatric Immunology, Allergy, and Rheumatology, Joe DiMaggio Children's Hospital, 1311 N 35th Ave, Suite 220, 33021, Hollywood, FL, USA. .,Department of Pediatrics, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, USA.
| |
Collapse
|
11
|
Histologic Patterns and Clues to Autoinflammatory Diseases in Children: What a Cutaneous Biopsy Can Tell Us. Dermatopathology (Basel) 2021; 8:202-220. [PMID: 34201078 PMCID: PMC8293050 DOI: 10.3390/dermatopathology8020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Autoinflammation is defined by aberrant, antigen-independent activation of the innate immune signaling pathways. This leads to increased, pro-inflammatory cytokine expression and subsequent inflammation. In contrast, autoimmune and allergic diseases are antigen-directed immune responses from activation of the adaptive immune system. The innate and adaptive immune signaling pathways are closely interconnected. The group of 'complex multigenic diseases' are a result of mutual dysregulation of both the autoinflammatory and autoimmune physiologic components. In contrast, monogenic autoinflammatory syndromes (MAIS) result from single mutations and are exclusively autoinflammatory in their pathogenesis. Studying the clinical and histopathological findings for the various MAIS explains the phenotypical correlates of their specific mutations. This review aims to group the histopathologic clues for autoinflammation into three recognizable patterns. The presence of these histologic patterns in a pediatric patient with recurrent fevers and systemic inflammation should raise suspicion of an autoinflammatory component in MAIS, or, more frequently, in a complex multigenic disease. The three major histopathological patterns seen in autoinflammation are as follows: (i) the 'neutrophilic' pattern, seen in urticarial neutrophilic dermatosis, pustular psoriasis, aseptic neutrophilic folliculitis, and Sweet's syndrome; (ii) the 'vasculitic' pattern seen in small vessel-vasculitis (including hypersensitivity/leukocytoclastic vasculitis, thrombosing microangiopathy and lymphocytic vasculitis), and intermediate-sized vessel vasculitis, mimicking polyarteritis nodosa; and (iii) the 'granulomatous' pattern. Beyond these three patterns, there are additional histopathologic clues, which are detailed below. It is important for a dermatopathologist to recognize the patterns of autoinflammation, so that a diagnosis of MAIS or complex multigenic diseases may be obtained. Finally, careful histopathologic analyses could contribute to a better understanding of the various clinical manifestations of autoinflammation.
Collapse
|
12
|
Movement disorders in systemic autoimmune diseases: Clinical spectrum, ancillary investigations, pathophysiological considerations. Parkinsonism Relat Disord 2021; 88:116-128. [PMID: 34092506 DOI: 10.1016/j.parkreldis.2021.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023]
Abstract
With the advances in neuroimmunology especially due to the discovery of new neuronal antibodies, the recognition of treatable antibody-related movement disorders has recently received much attention. In contrast, the identification and characterisation of movement disorders associated with systemic autoimmune diseases remains a substantially unexplored area. Beyond the classic few associations such as chorea and antiphospholipid syndrome, or ataxia and coeliac disease, movement disorders have been reported in association with several systemic autoimmune diseases, however a clear image of clinical phenotypes, investigations, and treatment outcomes in these conditions has never been drawn. In this review, we analyse data from approximately 300 cases and summarise the epidemiological, clinical and diagnostic features of movement disorders associated with systemic autoimmune diseases, and the available knowledge about treatment and outcomes. We highlight that movement disorders in systemic autoimmune conditions are frequently the only or among a few presenting manifestations and are mostly treatable disorders responding to immunotherapy or dietary modifications. We point out the pertinent combination of clinical features and investigations which can suggest the underlying autoimmune nature of these movement disorders, and thus address the most appropriate treatment.
Collapse
|
13
|
Abstract
The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
14
|
Rahman N, Petrushkin H, Solebo AL. Paediatric autoimmune and autoinflammatory conditions associated with uveitis. Ther Adv Ophthalmol 2020; 12:2515841420966451. [PMID: 33225212 PMCID: PMC7649876 DOI: 10.1177/2515841420966451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023] Open
Abstract
Childhood uveitis comprises a collection of heterogenous ocular phenotypes which are associated with a diverse range of childhood autoimmune and autoinflammatory disorders. Of these genetic and/or acquired disorders, juvenile idiopathic arthritis is the most common, affecting 30-80% of children with uveitis. Up to a third of children with uveitis have 'isolated' idiopathic disease and do not have an associated systemic disease which manifests in childhood. However, uveitis may be the presenting manifestation of disease; thus, the apparently well child who presents with uveitis may have isolated idiopathic disease, but they may have an evolving systemic disorder. The diagnosis of most of the associated disorders is reliant on clinical features rather than serological or genetic investigations, necessitating detailed medical history taking and systemic examination. Adequate control of inflammation is key to good visual outcomes, and multidisciplinary care is key to good broader health outcomes.
Collapse
Affiliation(s)
- Najiha Rahman
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Ameenat Lola Solebo
- Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
15
|
Talotta R, Atzeni F, Laska MJ. Retroviruses in the pathogenesis of systemic lupus erythematosus: Are they potential therapeutic targets? Autoimmunity 2020; 53:177-191. [PMID: 32321325 DOI: 10.1080/08916934.2020.1755962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is characterised by the hyper-activation of immunologic pathways related to the antiviral response. Exogenous and endogenous retroviruses, by integrating their DNA templates in the host cell genome, may epigenetically control the transcription of genes involved in the immune response. Furthermore, their nucleic acids or neo-synthesized proteins could stimulate the sensor molecules placed upstream the inflammatory cascade. Exogenous retroviruses, like human immunodeficiency virus, have been associated to SLE-like manifestations or to a fair SLE diagnosis. In addition, there is some evidence confirming a pathogenic role of human endogenous retroviruses in SLE. In line with these data, the use of antiretroviral agents could represent an attractive opportunity in the future therapeutic algorithms of this disease, but studies are still missing.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "Gaetano Martino", Messina, Italy
| | | |
Collapse
|
16
|
Ekinci F, Yildizdas RD, Horoz OO, Herguner O, Bisgin A. A homozygote frameshift mutation in OCLN gene result in Pseudo-TORCH syndrome type I: A case report extending the phenotype with central diabetes insipidus and renal dysfunction. Eur J Med Genet 2020; 63:103923. [PMID: 32240828 DOI: 10.1016/j.ejmg.2020.103923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/15/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Intrauterine infections with the pathogens, including toxoplasmosis, other (syphilis, varicella, mumps, parvovirus, and HIV), rubella, cytomegalovirus, and herpes simplex (TORCH) in susceptible individuals during pregnancy, result in microcephaly, white matter disease, cerebral atrophy, and calcifications in the fetus. Pseudo-TORCH syndrome is an umbrella term, consisting of several syndromes, resultant from different genetic alterations and pathogenetic mechanisms. Band-like calcification with simplified gyration and polymicrogyria (BLC-PMG) is one of these conditions, resultant from biallelic mutations in the OCLN gene, located in the chromosome 5q13.2. OCLN gene encodes occludin, a tight junction protein, which is expressed in the endothelia. The absence of occludin in the developing brain subsequently results in abnormal blood-brain barrier, thus immune-cell mediated tissue damage and cortical malformation. Herein, we present a pediatric patient who had progressive microcephaly, spasticity, multi-drug resistant epilepsy, PMG and intracranial band-type calcifications, accompanied by central diabetes insipidus and renal dysfunction. Whole exome sequencing revealed a homozygote W58Ffs*10 (c.173_194del) frameshift mutation in the OCLN gene. Of 34 BLC-PMG cases with demonstrable OCLN mutations, only three had renal manifestations, which is responsible for the majority of the demises. This is the first case diagnosed as having central diabetes insipidus and responded to desmopressin treatment to the best of our knowledge, however, this clinical improvement could not prevent the patient from renal dysfunction. The patient deceased at four years of age from sepsis, therefore early diagnosis, optimal follow-up for renal involvement and infection prevention measures are necessary for the patients with BLC-PMG.
Collapse
Affiliation(s)
- Faruk Ekinci
- Department of Pediatric Intensive Care, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Riza Dincer Yildizdas
- Department of Pediatric Intensive Care, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Ozden Ozgur Horoz
- Department of Pediatric Intensive Care, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Ozlem Herguner
- Department of Pediatric Neurology, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana, Turkey.
| |
Collapse
|
17
|
Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 2020; 21:123-136. [PMID: 32020081 DOI: 10.1038/s41580-019-0209-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mammalian genome is transcribed, generating long non-coding RNAs (lncRNAs) that can undergo post-transcriptional surveillance whereby only a subset of the non-coding transcripts is allowed to attain sufficient stability to persist in the cellular milieu and control various cellular functions. Paralleling protein turnover by the proteasome complex, lncRNAs are also likely to exist in a dynamic equilibrium that is maintained through constant monitoring by the RNA surveillance machinery. In this Review, we describe the RNA surveillance factors and discuss the vital role of lncRNA surveillance in orchestrating various biological processes, including the protection of genome integrity, maintenance of pluripotency of embryonic stem cells, antibody-gene diversification, coordination of immune cell activation and regulation of heterochromatin formation. We also discuss examples of human diseases and developmental defects associated with the failure of RNA surveillance mechanisms, further highlighting the importance of lncRNA surveillance in maintaining cell and organism functions and health.
Collapse
|
18
|
Briggs E, Crouch K, Lemgruber L, Hamilton G, Lapsley C, McCulloch R. Trypanosoma brucei ribonuclease H2A is an essential R-loop processing enzyme whose loss causes DNA damage during transcription initiation and antigenic variation. Nucleic Acids Res 2019; 47:9180-9197. [PMID: 31350892 PMCID: PMC6753483 DOI: 10.1093/nar/gkz644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Ribonucleotides represent a threat to DNA genome stability and transmission. Two types of Ribonuclease H (RNase H) excise ribonucleotides when they form part of the DNA strand, or hydrolyse RNA when it base-pairs with DNA in structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast survives the absence of both enzymes. RNase H1 loss is tolerated by the parasite Trypanosoma brucei but no work has examined the function of RNase H2. Here we show that loss of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, revealing a novel and critical role for RNase H2. Differential gene expression analysis reveals limited overall changes in RNA levels for RNA Pol II genes after TbRH2A loss, but increased perturbation of nucleotide metabolic genes. Finally, we show that TbRH2A loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, also leading to altered gene expression. Thus, we demonstrate separation of function between two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but overlap in function during RNA Pol I-mediated gene expression during host immune evasion.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden G61 1QH, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
19
|
Samanta D, Ramakrishnaiah R, Crary SE, Sukumaran S, Burrow TA. Multiple Autoimmune Disorders in Aicardi-Goutières Syndrome. Pediatr Neurol 2019; 96:37-39. [PMID: 30898416 DOI: 10.1016/j.pediatrneurol.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Aicardi-Goutières syndrome is an early-onset encephalopathy with presumed immune pathogenesis caused by inherited defects in nucleic acid metabolism. It is a model disease to study systemic autoimmunity, and there are many clinical, genetic, and basic science considerations that underline a possible overlap between Aicardi-Goutières syndrome and systemic lupus erythematosus. RESULTS We describe a 15-year-old girl with Aicardi-Goutières syndrome due to compound heterozygous pathogenic variants in SAMHD1 (sterile alpha motif domain and HD domain-containing protein 1). Over time, she developed multiple autoimmune diseases (vitiligo, alopecia areata, immune thrombocytopenia, positive antithyroglobulin antibodies) without positive antinuclear antibody or features of systemic lupus erythematosus. Her thrombocytopenia was refractory to treatment with corticosteroids and intravenous immunoglobulin but responded to a standard course of rituximab. CONCLUSION This is the first report of a multiple autoimmune syndrome in a patient with molecularly proven Aicardi-Goutières syndrome. This study illustrates an emerging pattern of the natural history of Aicardi-Goutières syndrome characterized by early encephalopathic presentation followed by symptoms of systemic autoimmunity.
Collapse
Affiliation(s)
- Debopam Samanta
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| | - Raghu Ramakrishnaiah
- Division of Neuroradiology and Pediatric Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shelley E Crary
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sukesh Sukumaran
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas A Burrow
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
20
|
Yasuda S. Emerging targets for the treatment of lupus erythematosus: There is no royal road to treating lupus. Mod Rheumatol 2019; 29:60-69. [PMID: 29947283 DOI: 10.1080/14397595.2018.1493909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that preferentially affects women of child-bearing age. Most current treatments for SLE with the exception of belimumab are not target-specific. Nontargeted therapy such as corticosteroids, cyclophosphamide, and other immunosuppressive drugs results in unwanted adverse effects. Although progress in treatment, including supportive therapy, has dramatically improved the prognosis of patients with SLE, better treatment drugs and protocols with fewer adverse effects and higher efficacy for the most severe form of SLE are needed. Advancements in genomics, immunology, and pathophysiology in the field of systemic autoimmunity have provided physicians with increasing knowledge, but the most appropriate treatment for each patient with SLE remains to be established. Therefore, the search for novel treatment targets in patients with SLE is ongoing. This review focuses on recent findings in the genetics of lupus and the abnormalities in cellular interactions, cytokine profiles, and intracellular signaling in patients with SLE. Novel molecular targets for lupus, mostly introduced through clinical trials, are then discussed based on these findings.
Collapse
Affiliation(s)
- Shinsuke Yasuda
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
21
|
Meesilpavikkai K, Dik WA, Schrijver B, van Helden-Meeuwsen CG, Versnel MA, van Hagen PM, Bijlsma EK, Ruivenkamp CAL, Oele MJ, Dalm VASH. Efficacy of Baricitinib in the Treatment of Chilblains Associated With Aicardi-Goutières Syndrome, a Type I Interferonopathy. Arthritis Rheumatol 2019; 71:829-831. [PMID: 30666809 PMCID: PMC6593964 DOI: 10.1002/art.40805] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kornvalee Meesilpavikkai
- Erasmus University Medical Center, Rotterdam, The Netherlands.,Chulalongkorn University, Bangkok, Thailand
| | - Willem A Dik
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 115:297-324. [PMID: 30798935 DOI: 10.1016/bs.apcsb.2018.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previously, DNA damage sensing, repairing and signaling machineries were thought to mainly suppress genomic instability in response to genotoxic stress. Emerging evidence indicates a crosstalk between DNA repair machinery and the immune system. In this chapter, we attempt to decipher the molecular choreography of how factors, including ATM, BRCA1, DNA-PK, FANCA/D2, MRE11, MUS81, NBS1, RAD51 and TREX1, of multiple DNA metabolic processes are directly or indirectly involved in suppressing cytosolic DNA sensing pathway-mediated immune signaling. We provide systematic details showing how different DDR factors' roles in modulating immune signaling are not direct, but are rather a consequence of their inherent ability to sense, repair and signal in response to DNA damage. Unexpectedly, most DDR factors negatively impact the immune system; that is, the immune system shows defective signaling if there are defects in DNA repair pathways. Thus, in addition to their known DNA repair and replication functions, DDR factors help prevent erroneous activation of immune signaling. A more precise understanding of the mechanisms by which different DDR factors function in immune signaling can be exploited to redirect the immune system for both preventing and treating autoimmunity, cellular senescence and cancer in humans.
Collapse
|
23
|
Kothari PH, Kolar GR, Jen JC, Hajj‐Ali R, Bertram P, Schmidt RE, Atkinson JP. TREX1 is expressed by microglia in normal human brain and increases in regions affected by ischemia. Brain Pathol 2018; 28:806-821. [PMID: 30062819 PMCID: PMC6404532 DOI: 10.1111/bpa.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mutations in the three-prime repair exonuclease 1 (TREX1) gene have been associated with neurological diseases, including Retinal Vasculopathy with Cerebral Leukoencephalopathy (RVCL). However, the endogenous expression of TREX1 in human brain has not been studied. METHODS We produced a rabbit polyclonal antibody (pAb) to TREX1 to characterize TREX1 by Western blotting (WB) of cell lysates from normal controls and subjects carrying an RVCL frame-shift mutation. Dual staining was performed to determine cell types expressing TREX1 in human brain tissue. TREX1 distribution in human brain was further evaluated by immunohistochemical analyses of formalin-fixed, paraffin-embedded samples from normal controls and patients with RVCL and ischemic stroke. RESULTS After validating the specificity of our anti-TREX1 rabbit pAb, WB analysis was utilized to detect the endogenous wild-type and frame-shift mutant of TREX1 in cell lysates. Dual staining in human brain tissues from patients with RVCL and normal controls localized TREX1 to a subset of microglia and macrophages. Quantification of immunohistochemical staining of the cerebral cortex revealed that TREX1+ microglia were primarily in the gray matter of normal controls (22.7 ± 5.1% and 5.5 ± 1.9% of Iba1+ microglia in gray and white matter, respectively) and commonly in association with the microvasculature. In contrast, in subjects with RVCL, the TREX1+ microglia were predominantly located in the white matter of normal appearing cerebral cortex (11.8 ± 3.1% and 38.9 ± 5.8% of Iba1+ microglia in gray and white matter, respectively). The number of TREX1+ microglia was increased in ischemic brain lesions in central nervous system of RVCL and stroke patients. CONCLUSIONS TREX1 is expressed by a subset of microglia in normal human brain, often in close proximity to the microvasculature, and increases in the setting of ischemic lesions. These findings suggest a role for TREX1+ microglia in vessel homeostasis and response to ischemic injury.
Collapse
Affiliation(s)
- Parul H. Kothari
- Department of Biology and Biomedical Sciences Human & Statistical Genetics ProgramWashington University School of MedicineSt. LouisMO
- Division of Rheumatology, Immunology and Allergy, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMA
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMA
| | - Grant R. Kolar
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMO
- Department of Pathology and Department of OphthalmologySaint Louis University School of MedicineSt. LouisMO
| | - Joanna C. Jen
- Departments of Neurology and NeurobiologyUCLA School of MedicineLos AngelesCA
- Departments of Neurology, Otolaryngology, NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Rula Hajj‐Ali
- Center for Vasculitis Care and ResearchCleveland Clinic Lerner College of Medicine, Orthopaedic and Rheumatologic InstituteClevelandOH
| | - Paula Bertram
- Department of Medicine, Division of RheumatologyWashington University School of MedicineSt. LouisMO
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Division of NeuropathologyWashington University School of MedicineSt. LouisMO
| | - John P. Atkinson
- Department of Medicine, Division of RheumatologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
24
|
Stam AH, Kothari PH, Shaikh A, Gschwendter A, Jen JC, Hodgkinson S, Hardy TA, Hayes M, Kempster PA, Kotschet KE, Bajema IM, van Duinen SG, Maat-Schieman MLC, de Jong PTVM, de Smet MD, de Wolff-Rouendaal D, Dijkman G, Pelzer N, Kolar GR, Schmidt RE, Lacey J, Joseph D, Fintak DR, Grand MG, Brunt EM, Liapis H, Hajj-Ali RA, Kruit MC, van Buchem MA, Dichgans M, Frants RR, van den Maagdenberg AMJM, Haan J, Baloh RW, Atkinson JP, Terwindt GM, Ferrari MD. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 2018; 139:2909-2922. [PMID: 27604306 DOI: 10.1093/brain/aww217] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 07/11/2016] [Indexed: 02/02/2023] Open
Affiliation(s)
- Anine H Stam
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Parul H Kothari
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aisha Shaikh
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Andreas Gschwendter
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians Universität, D-81377 München, Germany
| | - Joanna C Jen
- Department of Neurology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Suzanne Hodgkinson
- Department of Neurology, Liverpool Hospital, Liverpool, New South Wales 2170, Australia
| | - Todd A Hardy
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.,Brain and Mind Centre, University of Sydney, Australia
| | - Michael Hayes
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Peter A Kempster
- Neurosciences Department, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Katya E Kotschet
- Neurosciences Department, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Ingeborg M Bajema
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Paulus T V M de Jong
- Department of Ophthalmology, Academic Medical Centre, 1100 DD Amsterdam, The Netherlands.,Department of Retinal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1000 GC Amsterdam, The Netherlands.,Department of Ophthalmology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marc D de Smet
- Department of Ophthalmology, Academic Medical Centre, 1100 DD Amsterdam, The Netherlands
| | | | - Greet Dijkman
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nadine Pelzer
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Grant R Kolar
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - JoAnne Lacey
- West County Radiology Group, Mercy Hospital in St Louis, MO 63141, USA
| | - Daniel Joseph
- The Retina Institute, Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - David R Fintak
- The Retina Institute, Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - M Gilbert Grand
- The Retina Institute, Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Elizabeth M Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Helen Liapis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110 USA
| | - Rula A Hajj-Ali
- Department of Rheumatic and Immunologic Disease, Cleveland Clinic, Cleveland, Ohio, 44195 USA
| | - Mark C Kruit
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians Universität, D-81377 München, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rune R Frants
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Alrijne Hospital, Leiderdorp, The Netherlands
| | - Robert W Baloh
- Department of Neurology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
25
|
Abstract
Stress conditions such as UV irradiation, exposure to genotoxic agents, stalled DNA replication, and even tumors trigger the release of cytosolic genomic DNA (cgDNA). Classically, cgDNA induces interferon response via its binding to proteins such as STING. In this study, we found previously reported cgDNA (cg721) exists in the cytosol of the mouse cell lines, cultured under no stress conditions. The overexpression of cg721 suppressed the complementary RNA expression using strand selection and knockdown of DNA/RNA hybrid R-loop removing enzyme RNase H and three prime repair exonuclease 1 TREX1 increased the expression levels of cg721 and thus, inhibited the target Naa40 transcript, as well as protein expression, with a phenotypic effect. In addition, cgDNA was incorporated into extracellular vesicles (EVs), and the EV-derived cg721 inhibited gene expression of the acceptor cells. Thus, our findings suggest that cg721 functions as a natural antisense DNA and play a role in cell-to-cell gene regulation once it secreted outside the cell as EVs.
Collapse
|
26
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
27
|
Roth SH, Danan-Gotthold M, Ben-Izhak M, Rechavi G, Cohen CJ, Louzoun Y, Levanon EY. Increased RNA Editing May Provide a Source for Autoantigens in Systemic Lupus Erythematosus. Cell Rep 2018; 23:50-57. [PMID: 29617672 PMCID: PMC5905401 DOI: 10.1016/j.celrep.2018.03.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/21/2017] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
RNA-editing mechanisms, which induce nucleotide substitution in the RNA, increase transcript and protein diversities. Editing dysregulation has been shown to lead to grave outcomes, and transcriptome-wide aberrant RNA editing has been found in tumors. However, little is known about the involvement of editing in other diseases. Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease characterized by a loss of tolerance for autoantigens from various tissues and the production of multiple autoantibodies. Here, we show that blood samples from individuals with SLE have abnormally high levels of RNA editing, some of which affect proteins and potentially generate novel autoantigens. We suggest that elevated RNA editing, either by ADARs or APOBECs, may be involved in the pathophysiology of SLE, as well as in other autoimmune diseases, by generating or increasing the autoantigen load, a key requisite for the progression of autoimmunity.
Collapse
Affiliation(s)
- Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Miri Danan-Gotthold
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Meirav Ben-Izhak
- Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel; The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gideon Rechavi
- Cancer Research Center and the Wohl Institute for Translational Medicine, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel; The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
28
|
Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol 2017; 14:7-18. [PMID: 29255211 DOI: 10.1038/nrrheum.2017.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Reinhold E Schmidt
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Bodo Grimbacher
- Centre for Chronic Immunodeficiency, University Medical Centre, University of Freiburg, Faculty of Medicine, Breisacher Straße 115, D-79106 Freiburg, Germany
| | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| |
Collapse
|
29
|
Nanthapisal S, Omoyinmi E, Murphy C, Standing A, Eisenhut M, Eleftheriou D, Brogan PA. Early-Onset Juvenile SLE Associated With a Novel Mutation in Protein Kinase C δ. Pediatrics 2017; 139:peds.2016-0781. [PMID: 28003329 DOI: 10.1542/peds.2016-0781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 11/24/2022] Open
Abstract
Juvenile systemic lupus erythematosus (jSLE) is rare before 5 years of age. Monogenic causes are suspected in cases of very early onset jSLE particularly in the context of a family history and/or consanguinity. We performed whole-exome sequencing and homozygosity mapping in the siblings presented with early-onset jSLE. A novel homozygous missense mutation in protein kinase C delta (c.1294G>T; p.Gly432Trp) was identified in both patients. One patient showed a marked clinical response and resolution inflammation with rituximab therapy. This report demonstrates the clinical importance of identifying monogenic causes of rare disease to provide a definitive diagnosis, help rationalize treatment, and facilitate genetic counseling.
Collapse
Affiliation(s)
- Sira Nanthapisal
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom;
| | - Ebun Omoyinmi
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Claire Murphy
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Ariane Standing
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Despina Eleftheriou
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Paul A Brogan
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| |
Collapse
|
30
|
Abstract
Some autoimmune disorders are monogenetic diseases; however, clinical manifestations among individuals vary, despite the presence of identical mutations in the disease-causing gene. In this issue of the JCI, Massaad and colleagues characterized a seemingly monogenic autoimmune disorder in a family that was linked to homozygous loss-of-function mutations in the gene encoding the endonuclease Nei endonuclease VIII-like 3 (NEIL3), which has not been previously associated with autoimmunity. The identification of an unrelated healthy individual with the same homozygous mutation spurred more in-depth analysis of the data and revealed the presence of a second mutation in a known autoimmune-associated gene. Animals lacking Neil3 had no overt phenotype, but were predisposed to autoantibody production and nephritis following exposure to the TLR3 ligand poly(I:C). Together, these results support further evaluation of the drivers of autoimmunity in supposedly monogenic disorders.
Collapse
|
31
|
Lucchese G, Kanduc D. Zika virus and autoimmunity: From microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev 2016; 15:801-8. [DOI: 10.1016/j.autrev.2016.03.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
|
32
|
Christensen T. Human endogenous retroviruses in neurologic disease. APMIS 2016; 124:116-26. [DOI: 10.1111/apm.12486] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
|
33
|
|
34
|
|
35
|
The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 2016; 137:3-17. [DOI: 10.1016/j.jaci.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023]
|
36
|
Waisman A, Liblau RS, Becher B. Innate and adaptive immune responses in the CNS. Lancet Neurol 2015; 14:945-55. [PMID: 26293566 DOI: 10.1016/s1474-4422(15)00141-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/22/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
Almost every disorder of the CNS is said to have an inflammatory component, but the precise nature of inflammation in the CNS is often imprecisely defined, and the role of CNS-resident cells is uncertain compared with that of cells that invade the tissue from the systemic immune compartment. To understand inflammation in the CNS, the term must be better defined, and the response of tissue to disturbances in homoeostasis (eg, neurodegenerative processes) should be distinguished from disorders in which aberrant immune responses lead to CNS dysfunction and tissue destruction (eg, autoimmunity). Whether the inflammatory tissue response to injury is reparative or degenerative seems to be dependent on context and timing, as are the windows of opportunity for therapeutic intervention in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Roland S Liblau
- Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Li W, Xin B, Yan J, Wu Y, Hu B, Liu L, Wang Y, Ahn J, Skowronski J, Zhang Z, Wang Y, Wang H. SAMHD1 Gene Mutations Are Associated with Cerebral Large-Artery Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:739586. [PMID: 26504826 PMCID: PMC4609382 DOI: 10.1155/2015/739586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND To investigate whether one or more SAMHD1 gene mutations are associated with cerebrovascular disease in the general population using a Chinese stroke cohort. METHODS Patients with a Chinese Han background (N = 300) diagnosed with either cerebral large-artery atherosclerosis (LAA, n = 100), cerebral small vessel disease (SVD, n = 100), or other stroke-free neurological disorders (control, n = 100) were recruited. Genomic DNA from the whole blood of each patient was isolated, and direct sequencing of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. RESULTS Three heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the controls (p = 0.05). The mutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and ability to assemble stable tetramers. CONCLUSIONS Heterozygous SAMHD1 gene mutations might cause genetic predispositions that interact with other risk factors, resulting in increased vulnerability to stroke.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Baozhong Xin
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Junpeng Yan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Ying Wu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44193, USA
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Jacek Skowronski
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Heng Wang
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
- Department of Pediatrics, Case Western Reserve University Medical School, Cleveland, OH 44193, USA
- Rainbow Babies & Children's Hospital, Cleveland, OH 44193, USA
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
38
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
39
|
Jakobs C, Perner S, Hornung V. AIM2 Drives Joint Inflammation in a Self-DNA Triggered Model of Chronic Polyarthritis. PLoS One 2015; 10:e0131702. [PMID: 26114879 PMCID: PMC4482750 DOI: 10.1371/journal.pone.0131702] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
Mice lacking DNase II display a polyarthritis-like disease phenotype that is driven by translocation of self-DNA into the cytoplasm of phagocytic cells, where it is sensed by pattern recognition receptors. While pro-inflammatory gene expression is non-redundantly linked to the presence of STING in these mice, the contribution of the inflammasome pathway has not been explored. To this end, we studied the role of the DNA-sensing inflammasome receptor AIM2 in this self-DNA driven disease model. Arthritis-prone mice lacking AIM2 displayed strongly decreased signs of joint inflammation and associated histopathological findings. This was paralleled with a reduction of caspase-1 activation and pro-inflammatory cytokine production in diseased joints. Interestingly, systemic signs of inflammation that are associated with the lack of DNase II were not dependent on AIM2. Taken together, these data suggest a tissue-specific role for the AIM2 inflammasome as a sensor for endogenous DNA species in the course of a ligand-dependent autoinflammatory condition.
Collapse
Affiliation(s)
- Christopher Jakobs
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven Perner
- Department of Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology Köln/Bonn, University Hospital Bonn, Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
40
|
Advances in understanding the role of type I interferons in systemic lupus erythematosus. Curr Opin Rheumatol 2015; 26:467-74. [PMID: 25010440 DOI: 10.1097/bor.0000000000000087] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Advances in understanding the genetic and molecular basis of innate immune system activation and function have supported the hypothesis that type I interferons (IFN-I), the essential mediators of antiviral host defense, are central contributors to the pathogenesis of systemic lupus erythematosus (SLE). This review addresses the recent data that support the rationale for therapeutic targeting of the IFN-I pathway in SLE. RECENT FINDINGS New insights into the mechanisms of cell-intrinsic innate immune system activation, driven by endogenous virus-like nucleic acids and potentially modified by environmental stressors, provide a model for the induction of IFN-I that may precede the clinically apparent autoimmunity in patients with lupus. Further amplification of IFN-α production, induced by nucleic-acid-containing immune complexes that activate endosomal Toll-like receptors, augments and sustains immune system activation, autoimmunity and tissue damage. SUMMARY As demonstrated in the murine studies of persistent virus infection accompanied by sustained production of IFN-I, blockade of the IFN-I pathway may reverse the immune dysregulation and tissue damage that are the essential features of the immunopathogenesis of SLE. Recent research progress has identified numerous therapeutic targets, and specific candidate therapeutics relevant to the IFN-I pathway are under investigation.
Collapse
|
41
|
Kunz M, König IR, Schillert A, Kruppa J, Ziegler A, Grallert H, Müller-Nurasyid M, Lieb W, Franke A, Ranki A, Panelius J, Koskenmies S, Hasan T, Kere J, Rönn AC, Simon JC, Schmidt E, Wenzel J, Tüting T, Landsberg J, Zeller T, Blankenberg S, Gläser R, Patsinakidis N, Kuhn A, Ibrahim SM. Genome-wide association study identifies new susceptibility loci for cutaneous lupus erythematosus. Exp Dermatol 2015; 24:510-5. [PMID: 25827949 DOI: 10.1111/exd.12708] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 12/11/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a chronic autoimmune disease of the skin with typical clinical manifestations. Here, we genotyped 906 600 single nucleotide polymorphisms (SNPs) in 183 CLE cases and 1288 controls of Central European ancestry. Replication was performed for 13 SNPs in 219 case subjects and 262 controls from Finland. Association was particularly pronounced at 4 loci, all with genomewide significance (P < 5 × 10(-8) ): rs2187668 (PGWAS = 1.4 × 10(-12) ), rs9267531 (PGWAS = 4.7 × 10(-10) ), rs4410767 (PGWAS = 1.0 × 10(-9) ) and rs3094084 (PGWAS = 1.1 × 10(-9) ). All mentioned SNPs are located within the major histocompatibility complex (MHC) region of chromosome 6 and near genes of known immune functions or associations with other autoimmune diseases such as HLA-DQ alpha chain 1 (HLA-DQA1), MICA, MICB, MSH5, TRIM39 and RPP21. For example, TRIM39/RPP21 read through transcript is a known mediator of the interferon response, a central pathway involved in the pathogenesis of CLE and systemic lupus erythematosus (SLE). Taken together, this genomewide analysis of disease association of CLE identified candidate genes and genomic regions that may contribute to pathogenic mechanisms in CLE via dysregulated antigen presentation (HLA-DQA1), apoptosis regulation, RNA processing and interferon response (MICA, MICB, MSH5, TRIM39 and RPP21).
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Arne Schillert
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Jochen Kruppa
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Andreas Ziegler
- Institut für Medizinische Biometrie und Statistik, und Zentrum für Klinische Studien, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Harald Grallert
- Research unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Department of Medicine I, Ludwig Maximilian University Munich, Munich, Germany.,German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Wolfgang Lieb
- Institute for Epidemiology and Biobank popgen, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Annamari Ranki
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Jaana Panelius
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Sari Koskenmies
- Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Taina Hasan
- Department of Dermatology, Tampere University Central Hospital, University of Tampere, Tampere, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.,Department of Medical Genetics, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Ann-Charlotte Rönn
- Clinical Research Center, Karolinska University Hospital, Huddinge, Sweden
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergology and Venereology, University of Schleswig-Holstein, Lübeck, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Thomas Tüting
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Tanja Zeller
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Stefan Blankenberg
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, German Center for Cardiovascular Research (DZHK), Hamburg, Germany
| | - Regine Gläser
- Department of Dermatology and Allergology, University of Schleswig-Holstein, Kiel, Germany
| | - Nikolaos Patsinakidis
- Department of Dermatology, Venereology and Allergology, Ruhr-University of Bochum, Bochum, Germany
| | - Annegret Kuhn
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany
| | - Saleh M Ibrahim
- Department of Dermatology, Allergology and Venereology, University of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
42
|
Kretschmer S, Wolf C, König N, Staroske W, Guck J, Häusler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, Dahl A, Rapp A, Cardoso MC, Shevchenko A, Lee-Kirsch MA. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 2015; 74:e17. [PMID: 24445253 PMCID: PMC4345975 DOI: 10.1136/annrheumdis-2013-204845] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The HIV restriction factor, SAMHD1 (SAM domain and HD domain-containing protein 1), is a triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs). Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory disorder that shares phenotypic similarity with systemic lupus erythematosus, including activation of antiviral type 1 interferon (IFN). To further define the pathomechanisms underlying autoimmunity in AGS due to SAMHD1 mutations, we investigated the physiological properties of SAMHD1. METHODS Primary patient fibroblasts were examined for dNTP levels, proliferation, senescence, cell cycle progression and DNA damage. Genome-wide transcriptional profiles were generated by RNA sequencing. Interaction of SAMHD1 with cyclin A was assessed by coimmunoprecipitation and fluorescence cross-correlation spectroscopy. Cell cycle-dependent phosphorylation of SAMHD1 was examined in synchronised HeLa cells and using recombinant SAMHD1. SAMHD1 was knocked down by RNA interference. RESULTS We show that increased dNTP pools due to SAMHD1 deficiency cause genome instability in fibroblasts of patients with AGS. Constitutive DNA damage signalling is associated with cell cycle delay, cellular senescence, and upregulation of IFN-stimulated genes. SAMHD1 is phosphorylated by cyclin A/cyclin-dependent kinase 1 in a cell cycle-dependent manner, and its level fluctuates during the cell cycle, with the lowest levels observed in G1/S phase. Knockdown of SAMHD1 by RNA interference recapitulates activation of DNA damage signalling and type 1 IFN activation. CONCLUSIONS SAMHD1 is required for genome integrity by maintaining balanced dNTP pools. dNTP imbalances due to SAMHD1 deficiency cause DNA damage, leading to intrinsic activation of IFN signalling. These findings establish a novel link between DNA damage signalling and innate immune activation in the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja König
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang Staroske
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Martin Häusler
- Department of Pediatrics, University Hospital, University of Aachen, Aachen, Germany
| | - Hella Luksch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Laura A Nguyen
- Department of Pediatrics, Center for Drug Discovery, Emory University, Atlanta, Georgia, USA
| | - Baek Kim
- Department of Pediatrics, Center for Drug Discovery, Emory University, Atlanta, Georgia, USA
- College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Dimitra Alexopoulou
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, Germany
| | | | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
43
|
Abstract
Lupus erythematosus is a prototypic autoimmune disease that can be triggered in genetically predisposed individuals by environmental exposures. The disease is based on an uncontrolled activation of the immune system that recognizes self antigens and induces inflammatory disease flares. The multifactorial pathogenesis is based on a polygenic model of inheritance with multiple various susceptibility genes elevating the disease risk. Many of these polymorphisms have been recently identified by genome-wide association studies. Monogenic forms of lupus erythematosus are rare. The identification of their underlying pathogenesis is important for the recognition of main mechanistic pathways in lupus as demonstrated by the history of defects in the complement system. The monogenic, autosomal dominant inherited familial chilblain lupus is characterized by cold-induced infiltrates on acral locations occurring in early childhood. Molecular exploration of the disease pathogenesis revealed that autoimmunity and especially lupus erythematosus can be induced by defects in intracellular elimination of nucleic acids and the subsequent type I-IFN-dependent activation of the innate immune system. This mechanism extends the concept of lupus pathogenesis: both defects in the extra- and intracellular elimination of autoantigens can lead to activation of the innate and adaptive immune system.
Collapse
|
44
|
Targeting of type I interferon in systemic autoimmune diseases. Transl Res 2015; 165:296-305. [PMID: 25468480 PMCID: PMC4306610 DOI: 10.1016/j.trsl.2014.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
Increased blood levels of type I interferon (IFN-I) and expression of a broad signature of gene transcripts that reflect induction by IFN-I are observed in many patients with systemic autoimmune diseases, and that pattern is most striking in systemic lupus erythematosus (SLE). Persistent production of IFN-α, the most abundant subtype measured in these patients, is an important feature of the immunopathogenesis of lupus and has stimulated current efforts to develop and test therapeutics that either block IFN-I or its receptor directly or target components of the IFN-I pathway involved in induction of or response to IFN-I. In this review data from animal models of chronic viral infection, examples of lupus-like syndromes associated with single-gene mutations that impact the IFN-I pathway, and longitudinal studies of patients with lupus are described and support the rationale for therapeutic targeting of the IFN-I pathway. However, the complexity of IFN-I regulation and the diversity of its effects on immune system function suggest that the definitive demonstration of that pathway as a valid and productive therapeutic target will only come from clinical trials of agents tested in patients with systemic autoimmune disease, with patients with lupus likely to be the most informative.
Collapse
|
45
|
Crow MK, Olferiev M, Kirou KA. Identification of Candidate Predictors of Lupus Flare. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2015; 126:184-96. [PMID: 26330673 PMCID: PMC4530671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Systemic lupus erythematosus, the prototype systemic autoimmune disease, is characterized by extensive self-reactivity, inflammation, and organ system damage. Sustained production of type I interferon is seen in many patients and contributes to immune dysregulation. Disease activity fluctuates with periods of relative quiescence or effective management by immunosuppressive drugs, followed by disease flares. Tissue damage accumulates over time, with kidneys and cardiovascular system particularly affected. Identification of the underlying molecular mechanisms that precede clinical exacerbations, allowing prediction of future flare, could lead to therapeutic interventions that prevent severe disease. We generated gene expression data from a longitudinal cohort of lupus patients, some showing at least one period of severe flare and others with relatively stable disease over the period of study. Candidate predictors of future clinical flare were identified based on analysis of differentially expressed gene transcripts between the flare and non-flare groups at a time when all patients had relatively quiescent clinical disease activity. Our results suggest the hypothesis that altered regulation of genome stability and nucleic acid fidelity may be important molecular precursors of future clinical flare, generating endogenous nucleic acid triggers that engage intracellular mechanisms that mimic a chronic host response to viral infection.
Collapse
Affiliation(s)
- Mary K. Crow
- Correspondence and reprint requests: Mary K. Crow, MD,
Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | | | | |
Collapse
|
46
|
Pendergraft WF, Means TK. AGS, SLE, and RNASEH2 mutations: translating insights into therapeutic advances. J Clin Invest 2014; 125:102-4. [PMID: 25500879 DOI: 10.1172/jci78533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease characterized by the presence of nucleic acid- and protein-targeting autoantibodies and an aberrant type I IFN expression signature. Aicardi-Goutières syndrome (AGS) is an autosomal-recessive encephalopathy in children that is characterized by mutations in numerous nucleic acid repair enzymes and elevated IFN levels. Phenotypically, patients with AGS and SLE share many similarities. Ribonuclease H2 (RNase H2) is a nucleic acid repair enzyme that removes unwanted ribonucleotides from DNA. In this issue of the JCI, Günther and colleagues provide an in-depth investigation of the mechanisms underlying the link between defective removal of ribonucleotides in AGS and SLE, and these findings will likely serve as a strong springboard to provide novel therapeutic inroads.
Collapse
|
47
|
Günther C, Kind B, Reijns MAM, Berndt N, Martinez-Bueno M, Wolf C, Tüngler V, Chara O, Lee YA, Hübner N, Bicknell L, Blum S, Krug C, Schmidt F, Kretschmer S, Koss S, Astell KR, Ramantani G, Bauerfeind A, Morris DL, Cunninghame Graham DS, Bubeck D, Leitch A, Ralston SH, Blackburn EA, Gahr M, Witte T, Vyse TJ, Melchers I, Mangold E, Nöthen MM, Aringer M, Kuhn A, Lüthke K, Unger L, Bley A, Lorenzi A, Isaacs JD, Alexopoulou D, Conrad K, Dahl A, Roers A, Alarcon-Riquelme ME, Jackson AP, Lee-Kirsch MA. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest 2014; 125:413-24. [PMID: 25500883 DOI: 10.1172/jci78001] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/09/2014] [Indexed: 01/22/2023] Open
Abstract
Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2-associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity.
Collapse
|
48
|
Mankan AK, Schmidt T, Chauhan D, Goldeck M, Höning K, Gaidt M, Kubarenko AV, Andreeva L, Hopfner KP, Hornung V. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J 2014; 33:2937-46. [PMID: 25425575 DOI: 10.15252/embj.201488726] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular recognition of non-self and also self-nucleic acids can result in the initiation of potent pro-inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2'-5'), which then binds to the endoplasmic reticulum resident protein STING. This initiates a signaling cascade that triggers the induction of an antiviral immune response. While most studies on intracellular nucleic acids have focused on dsRNA or dsDNA, it has remained unexplored whether cytosolic RNA:DNA hybrids are also sensed by the innate immune system. Studying synthetic RNA:DNA hybrids, we indeed observed a strong type I interferon response upon cytosolic delivery of this class of molecule. Studies in THP-1 knockout cells revealed that the recognition of RNA:DNA hybrids is completely attributable to the cGAS-STING pathway. Moreover, in vitro studies showed that recombinant cGAS produced cGAMP upon RNA:DNA hybrid recognition. Altogether, our results introduce RNA:DNA hybrids as a novel class of intracellular PAMP molecules and describe an alternative cGAS ligand next to dsDNA.
Collapse
Affiliation(s)
- Arun K Mankan
- Institute of Molecular Medicine, University Hospital University of Bonn, Bonn, Germany
| | - Tobias Schmidt
- Institute of Molecular Medicine, University Hospital University of Bonn, Bonn, Germany
| | - Dhruv Chauhan
- Institute of Molecular Medicine, University Hospital University of Bonn, Bonn, Germany
| | - Marion Goldeck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital University of Bonn, Bonn, Germany
| | - Klara Höning
- Institute of Molecular Medicine, University Hospital University of Bonn, Bonn, Germany
| | - Moritz Gaidt
- Institute of Molecular Medicine, University Hospital University of Bonn, Bonn, Germany
| | - Andrew V Kubarenko
- Institute of Molecular Medicine, University Hospital University of Bonn, Bonn, Germany
| | - Liudmila Andreeva
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital University of Bonn, Bonn, Germany
| |
Collapse
|
49
|
Abstract
R-loops are cellular structures composed of an RNA/DNA hybrid, which is formed when the RNA hybridises to a complementary DNA strand and a displaced single-stranded DNA. R-loops have been detected in various organisms from bacteria to mammals and play crucial roles in regulating gene expression, DNA and histone modifications, immunoglobulin class switch recombination, DNA replication, and genome stability. Recent evidence suggests that R-loops are also involved in molecular mechanisms of neurological diseases and cancer. In addition, mutations in factors implicated in R-loop biology, such as RNase H and SETX (senataxin), lead to devastating human neurodegenerative disorders, highlighting the importance of correctly regulating the level of R-loops in human cells. In this review we summarise current advances in this field, with a particular focus on diseases associated with dysregulation of R-loop structures. We also discuss potential therapeutic approaches for such diseases and highlight future research directions.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Diamond J. Autosomal dominant IFIH1 gain-of-function mutations cause Aicardi-Goutières syndrome. Clin Genet 2014; 86:473-4. [PMID: 25080300 DOI: 10.1111/cge.12471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/01/2022]
Abstract
Aicardi-Goutières Syndrome is caused by IFIH1 mutations Oda et al.(2014) The American Journal of Human Genetics 95(1): 121-125. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling Rice et al.(2014) Nature Genetics 46(5): 503-510.
Collapse
Affiliation(s)
- J Diamond
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|